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Lithium hyperfine splitting
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We present an approach for the calculation of relativistie® corrections to the lithium ground-state
hyperfine splitting. It is based on the effective Hamiltonian derived from relativistic quantum electrodynamic
theory. This approach with the help of appropriate nonrelativistic correlated basis sets has the potential to be
more accurate than currently available relativistic computational methods such as the relativistic many-body
perturbation theory, configuration interaction, or multiconfiguration Dirac-Fock method.
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[. INTRODUCTION the calculation of the expectation value of the Fermi contact
operator, which is proportional to a Dirac delta function at

The calculation of relativistic and QED effects in few- the origin[9]. We know, however, that there are higher-order
electron systems is a long-standing problem. We will concentelativistic and QED(quantum electrodynamigsorrections.
trate on lithium as the simplest alkali-metal atom, for whichIn the approach presented below, these higher-order correc-
several precise spectroscopic measurements have been pépns are expressed in terms of sorfreore complicated
formed[1,2]. In the simplest approach one introduces someoperators which act on theonrelativisticwave 'function. As
effective potential in which the one-electron Dirac equation result one can use the standard Rayleigh-Sthger per-
is solved, which can be regarded as the zeroth-order approxiurbation theory to find higher-order corrections with a suit-
mation. The true electron-electron interaction is treated perably optimized nonrelativistic wave function. This approach
turbatively order by order and this forms to so-called relativ-has already been applied in the simpler case of the helium
istic many-body perturbation thEOBB]. If the perturbative atom. The Lamb shift of all Iow-lying states and the hfs of a
terms are summed in all ordefis the sense of including all  2°S; state in*He [10] were calculated with high precision.
single, double, etc., excitationshen it forms the coupled We wish to extend this method to lithium, with the aim of
cluster approachd]; for a short review see Ref5]. So far ~ calculating relative ordeO(a?) relativistic corrections to
nobody has included triple excitations in a complete waythe ground-state hyperfine splitting.
which is a severe limitation of this approach. Within the
relativistic configuration interactiofRCI) method[6] one Il. EFFECTIVE HAMILTONIAN
expands the complete Hamiltonian in the basis of solutions
of the one-electron Dirac equation in the effective potential,
and afterwards solves numerically a large eigenvalue prob=
lem. Here the limitation is the size of basis sets, or in othef
words the number of included angular momenta. The mo L (@) 4
precise so far is multiconfiguration Dirac-FodMCDF) ing relat|V|st|c_cor_rectlorHhfS of orderma*”, which depends
method, as calculated for lithium by Bieretal.in Ref.[7]. O nuclear spin, is [11]

In this method the state of the atom is represented as a sum
of various antisymmetrized electron configurations and the
wave function is found by global minimization over all cho-
sen configurations. Yast al. in Ref. [8] have been able to
calculate a relativistic correction to lithium hyperfine split- 3 4z
ting (hfs) using nonrelativistic wave functions, however in a A _ aca

simplified approach by appropriate rescaling of the hydro- ths_; 3m2|'0'i7753(ri)(1+a)1 2
genic result.

Here we present in a pedagogical way an approach that 3
has the potential to be more accurate than MCDF. If we =S 22
consider lithium as a nonrelativistic system of three elec- s & m2 3
trons, then correlated basis sets are the most adequate repre-
sentation of the atomic wave function. In practice, one uses 3

. . . ab a.b
Gaussians, exponentials, or Hylleraas-type basis sets. So far, e _2 B Z_a %o b orili
for lithium the most accurate results have been obtained in s™ & om2 3 :
Ref.[9] with the help of the Hylleraas basis set. The nonrel- !
ativistic ground-state hyperfine splitting could be obtained bywherea andk are the anomalous magnetic moments of the

electron and the nucleus, respectively. The relatiok with
the magnetic moment of the nucleus of chaige is u
*Email address: krp@fuw.edu.pl; URL: www.fuw.edu pkip =2(1+Kk)Ze/(2M)]l. mandM are the electron and nuclear

In the effective Hamiltonian approach relativistic and
ED effects are expressed in terms of some effective inter-
ctions, for example, hyperfine splitting in ti® state is
iven by the Fermi contact interaction. In general, the lead-

m
H{f =11 (1 K (Hi+ Hi+ Hio, ®

L, 3)

4
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mass, respectively. The expectation valuesH§f, and H; 1

vanish in anyS state, but they will contribute in the second 7 —p
order of perturbation calculus, see below. Higher-order rela-

tivistic and QED corrections to hyperfine splitting can be 1q
written as

(E—H)
+(HE) +Ef2+- - -, (5)

1
Ehfs=<Ha¢g>+<Ha?g>+<H<h?g>+z<H<4>—, Hf::g> ; .

:Tllz Tge

whereH® is a Breit Hamiltonian in the nonrecoil limjit.1]:
s tTq

H®=HA+HB+HC, (6)

FIG. 1. Time-ordered diagrams contributing to hyperfine struc-
| Zaﬂ' ture at ordema®. The dashed line is a Coulomb photon, the wavy
8 (ri)

3
HA=Z

i=1

line is a transverse photon, the thicker horizontal line denotes the

3 . ’ )
nucleus, and the thiner horizontal line denotes electrons.

mé  2m?

3 a 5ab rarb y T , ) . .
- > —p3 — S|P +_25\°>(r”) of nucleus. This correction usually limits the precision of
i=j=1{2m r theoretical predictions. The next tet{C) includes nuclear-
5 spin-dependent operators that contribute at ordef. This
+ % 0. 5%(ry) (7)  termis not well known in the literature. However, in hydro-
2 genic systems, it leads to the so-called Breit correction. For
two-electron atoms it was presented in the work He
hyperfine splitting[10], but without detailed derivation. We

5 Za extend this result to lithium and present more details on its
H _21 4mzr_3ri>< Pi- o origin in the following sectionH (&) is a QED radiative cor-
! rection[12]

4 51 3
HO®=a(Za)’s (In 2— —)— > w88 (ri) o 1(1+K),
3 a b 3rarh 2/mM =

a Oi0; rifrs 11
Ho— > L T s ST ) 1D
i>j=1 4m° rj; ri
BN ) which is similar to that in hydrogen. The last tei}}) of
andsrij=_ri—rj, rij=|rjl. (Hi) is a correction of order o qerma? is discussed in the Summary.
mea”. It is a §-function-like term with the coefficient ob-
tained from the two-photon forward-scattering amplitude. It
has the same form as in hydrogen and depends strongly onil. DERIVATION OF HIGHER-ORDER CORRECTIONS
the nuclear structure. It also includes nuclear recoil effects . . .
and inelastic contribution. For the purpose of this work, we = W& use time-ordered perturbation theory which was pre-
assume a heavy nucleus with magnetic momentn this ylopsly used for the calculatlpn of helium hf$0], and th.e
approximationHﬁ?s) takes the forn{12] lithium case is not much dlf_ferent. él;here are four time-
ordered diagrams which contribute#$) and are presented

in Fig. 1. The first two are the same as in hydrogen, the other

3 8(Za)? d? two are three-body terms.
(5) (Za) 3 2 2
thSZ_Zl Py — [Ge(=p*) Gu(—p?) Let us start the derivation from the first diagram. We use
. P the Coulomb gauge; the wavy line denotes a transverse pho-
—(1+K)]. (100 ton, 1/(:)(8'—q'q'/q?), and the broken line is @f. In

general, ordering of the vertices of a transverse photon is
Ge(—p?) and Gy (— p?) are electric charge and magnetic- important, and one diagram represents a whole class of dia-
moment distributions in the momentum space, so-called Sggrams with all possible ordering of vertices. In our case,
chs form factors, which are determined experimentally. Thehowever, retardation can be neglected, EHH—q)—
inelastic contribution, neglected here, tends sometimes to be 1/q, and two different orderings of vertices lead to
important and depends significantly on the internal properties- 1/g%(8' —q'q'/g?). The neglect of retardation is the rea-
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son for this wavy line to be vertical. The electron vertex is dgql d3q2 _  AnZa AnZa
(g=p'—p), sz_f 3—36'q1‘re'q2'r . .
(2m)® (2m) @ 29
_ 1 o . o
—eut(p)a'u ~—el —(p'+p' N +—(oxa) ) i 1 . .
(p")a'u(p) [Zm(p p") Zm(o- o) X 5I]_ql_gl X 5 (qZXU)J(q1X|)I. (17)
1 m-M
T o [p'(p'2+3p?)+p'(p? 'IE'ze(ZL;;n over all electrons in coordinate space is presented in

i The third diagram is quite similar to the second one,

12 ’ i/n2 12
3P+ T Sl(pTX ) (pT+3p™) d®a; d®p . . . 4T dnZa
3= — W1l 12 > >
(2m)3 (2m)3 q; 20;
—(p><0')'(p’2+3p2)]]. (12 q g
x| 81— 22| x X o) (g x1)'. (18
( Qi m2M(Q2 o) (g X1)'. (18

The corresponding vertex on the nucleus line is

i The sum over all pairs of electrons is presented in (£8).
Ze—[IxX(—q)], (13 In the fourth diagram this double vertex with the pair cre-
M ation is described in the nonrelativistic limit by the term

where we have neglected spin-independent terms. The%e/(ez)?;)refggﬁnthe nonrelativistic kinetic energy. It leads to

terms can also be neglected in the electron vertex. We have

omitted here the factor (4k), which will be included later, d3q, dq AnZa
namely, in Eq.(20). The second term in Eq12) together V“:f 1 =12 diagrigiterio .
with that in Eq.(13) lead to the Fermi contact interaction, (2m)?3 (2m)® ai

which is omitted here because we are interested in higher-

order corrections. Finally, we arrive at the following expres- x( Sk qilqli) 477&( Sk gpas| 1
sion for the first diagram: QE q% qg 2m2M
_f °q g 4mZa (X9 o d qj) 1 X (g X 1) (g% o). (19
= _
(2m)° q? M q? /16m® One derives the following operators in the coordinate space
X[(p X &) (p?+3p’2) — (px &) (p'2+3p?)]. for all these diagramgl3]:
(14) H® = (1+Kk)(Vy+ Vot Va+Vy), (20)
In the coordinate space it takes the form presented in Eq. 3 I o
(21), where we sum up over all electrons and assume thawlzz — ! 3[2pi247r2a53(ri)+2><47rZaé\3(ri)pi2
this operator acts of$ states. This assumption is valid also =1 24Mm
for all other diagrams. For higher angular momenta, that ex- 2
pression would contain additional terms. +| p? [pIZ , —a ] (21)
The second diagram contains the so-called one pair cre- r

ation. The electron line between two vertices represents the 5
projection operatorA _=(E—H)/(2E) into the negative- (

energy solution of the free Dirac equation. The electron line VZZE 4 avm?’ (22)
is the sum of two terms: :

. . 3
u(p")alA_(p+ar)u(p)+u’ (p')A_(p' —dp)a'u(p) Vee 3 o Zaniafy 23
i _ STiep 3Mm? rf ]
%H(qZXU)]! (15) 3
Vi= D, _ﬂﬂ.a_ﬁj (24)
and the nucleus line is 4 iSTi<i 3Mm? 3 3

2i i The subtle point of this calculation is that the matrix element
M(qlx D' (16) of Hﬁ?s) and the second-order term in E&) are separately
divergent at smalt, or r,. However these divergences can-
There is a factor- 1 for each pair, and 1/(8), which comes cel out in the sum. This is related to the fact that for hydro-
from the denominator. The complete diagram takes the forngen this sum is equal to the expectation valueydf on the
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Dirac wave function and thus is finite. We introduce now thewhere allHy are in atomic unitsm=1,o=1. This initial
following regulator\ to the electron-nucleus Coulomb inter- expression is rewritten to the regular form, whareegular-

action ization is not necessary. The operators in the second-order
term &, are transformed with the use of
Za Za
__)_(1_e7>\m2ari) (25) 3
I I A A 1 Z Z
H'A=H —ZE S(E-H)+(E-H)-|. (30
in all Hamiltonians in Eq(5), as well as in the nonrelativistic =1L !
one. This leads to the following further replacements in ) 317 .
(6).
Hirs - H;,f’;EHﬁfS+§ [r—|-ai(E—H)+(E—H)r—|-ai}
=1 i i
Za Za
4wZa63(ri)E—V2r——>—Vzr—(l—e’““z‘”i), 37
i i

(26)  This transformation leads to new forms 6} and &y, such

that
(Za)z_ Za\? Za CmZar 2
= =\Vy Vr—i(l—e . (27 EpntEN=EpTENS (38)
Once the interaction is regularized, one can calculate all ma- e =2 yA 1 A (39
trix elements and take the limk—. As a first step, we AT (E—H)" ™/’
rederived in Ref[10] the known relativistic correction to hfs
in hydrogen, o +§ 1 | 22 +1<ZHA >
= _— g —_ —
N W (Za)flo(as 4 a4 s NS e\ A 20
hts= ( )WTT Rk (28)
4 Z 1/z A Z
: o : L —{ o= HA) = S{ = ) (Hid +5 (1 o= ) (HA) 1,
wheren is a principal quantum number. Since for lithium all 3 ri 2\ 3 ri
matrix elements can be calculated only numerically, we will (40)

transform effective operators to the regular form, where
can be taken to infinity before the numerical calculationsy i, e ¢ gre separately finite.
The initial expression for a complete set of relativistic cor- AN

rections in atomic units iswith implicit X regularization IV. PROPOSAL FOR THE NUMERICAL CALCULATION

M3 . OF MATRIX ELEMENTS
OEps=[1+K mM @ @9 The main problem, as we see it, is the analytic calculation
of matrix elements with the correlated basis set. Although all
E=EptEptEctEntEr, (30)  the integrals are manageable with Gaussians, these functions
do not give precise values for the wave function at the coa-
A 1 A lescence points. On the other hand, the wave function ex-
&a=2\H ?ths , (3D pressed in the Hylleraas basis set fulfills well the cusp con-
( ) ditions. So far, this basis set, as applied both by Yan and by
King [9], gives the most precise values for relativistic cor-
& 2< H HEfs> , (32 rections. The disadvantage of this basis set is high complex-
(E-H) ity in the coding of relativistic matrix elements. Another ba-
1 sis set that we are considering at present is the following:
(]
SC=2<HCmthS>, (33 =r0y Tl e NI N2, (41)

3 27 1 Z with even tempered distribution of exponents. We have
En= < > ( - —p2mi(r)— —[ p? [ p?, —H already derived analytic and simple formulas for matrix ele-
=1 3 24 i ments of the nonrelativistic Hamiltonian by expanding the
22 s 7 general integration formula as obtained by Fromm and Hill
il PR =i h, (oi+0) in Ref. [14]. We mention also Ref.15], where the authors
ré ' ZTi#i 3 3ol R were able to express matrix elements of the nonrelativistic
Hamiltonian in terms of1),(1/r;),(1/r;) only, which sim-
(34) plifies significantly the generation of the nonrelativistic wave
< 3 > function. However, the problem which we have not been able
) , (35

w| =

E 78%(r)l - o, to solve so far is the efficient analytic calculation of matrix

4 5
8R=ZZ—(In 2— = . o ;
3 i=1 elements of the Breit Hamiltonian, particulady-. Some

2
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progress has been achieved in Réf6]. As in the case of systemg17], and we think they could be derived as well for
helium[10], the calculation of second-order matrix elementslithium. The most computationally difficult are the so-called
requires a careful adjusting of exponents, and this is a conmBethe log terms combined with the Fermi contact operator.

putationally intensive process. Similar corrections have already been calculated for the he-
lium fine structurd 18], and the same approach will work for
V. SUMMARY lithium as well. However, at present we do not have enough

] ] experience to pursue the numerical part of this project. We
~ We have dezrlved here a complete expression for the relanink that this work might stimulate progress in the numeri-
tive qrderQ(a ) correction to !|th|L_1m hyperfine spllttmg. It cally efficient calculation of matrix elements.
is written in terms of nonrelativistic although quite compli-

cated operators. The advantage of this approach is a simple
incorporation of electron correlation through the use of a
correlated nonrelativistic basis set. Further advantages are
the consistent inclusion of all relativistic and radiative effects | wish to thank Jonathan Sapirstein for interesting discus-
at the order ofma®. We have not so far mentioned higher- sions. This work was supported by the European Commis-
order terms, denoted k(). They are known in hydrogenic sion under Contract No. HPRI-CT-2001-50034.
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