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Lithium hyperfine splitting
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We present an approach for the calculation of relativisticma6 corrections to the lithium ground-state
hyperfine splitting. It is based on the effective Hamiltonian derived from relativistic quantum electrodynamic
theory. This approach with the help of appropriate nonrelativistic correlated basis sets has the potential to be
more accurate than currently available relativistic computational methods such as the relativistic many-body
perturbation theory, configuration interaction, or multiconfiguration Dirac-Fock method.
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I. INTRODUCTION

The calculation of relativistic and QED effects in few
electron systems is a long-standing problem. We will conc
trate on lithium as the simplest alkali-metal atom, for whi
several precise spectroscopic measurements have been
formed @1,2#. In the simplest approach one introduces so
effective potential in which the one-electron Dirac equat
is solved, which can be regarded as the zeroth-order app
mation. The true electron-electron interaction is treated p
turbatively order by order and this forms to so-called relat
istic many-body perturbation theory@3#. If the perturbative
terms are summed in all orders~in the sense of including al
single, double, etc., excitations! then it forms the coupled
cluster approach@4#; for a short review see Ref.@5#. So far
nobody has included triple excitations in a complete w
which is a severe limitation of this approach. Within th
relativistic configuration interaction~RCI! method @6# one
expands the complete Hamiltonian in the basis of soluti
of the one-electron Dirac equation in the effective potent
and afterwards solves numerically a large eigenvalue p
lem. Here the limitation is the size of basis sets, or in ot
words the number of included angular momenta. The m
precise so far is multiconfiguration Dirac-Fock~MCDF!
method, as calculated for lithium by Bieron´ et al. in Ref. @7#.
In this method the state of the atom is represented as a
of various antisymmetrized electron configurations and
wave function is found by global minimization over all ch
sen configurations. Yanet al. in Ref. @8# have been able to
calculate a relativistic correction to lithium hyperfine spl
ting ~hfs! using nonrelativistic wave functions, however in
simplified approach by appropriate rescaling of the hyd
genic result.

Here we present in a pedagogical way an approach
has the potential to be more accurate than MCDF. If
consider lithium as a nonrelativistic system of three el
trons, then correlated basis sets are the most adequate r
sentation of the atomic wave function. In practice, one u
Gaussians, exponentials, or Hylleraas-type basis sets. S
for lithium the most accurate results have been obtaine
Ref. @9# with the help of the Hylleraas basis set. The nonr
ativistic ground-state hyperfine splitting could be obtained
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the calculation of the expectation value of the Fermi cont
operator, which is proportional to a Dirac delta function
the origin@9#. We know, however, that there are higher-ord
relativistic and QED~quantum electrodynamics! corrections.
In the approach presented below, these higher-order cor
tions are expressed in terms of some~more complicated!
operators which act on thenonrelativisticwave function. As
a result one can use the standard Rayleigh-Schro¨dinger per-
turbation theory to find higher-order corrections with a su
ably optimized nonrelativistic wave function. This approa
has already been applied in the simpler case of the hel
atom. The Lamb shift of all low-lying states and the hfs o
23S1 state in 3He @10# were calculated with high precision
We wish to extend this method to lithium, with the aim
calculating relative orderO(a2) relativistic corrections to
the ground-state hyperfine splitting.

II. EFFECTIVE HAMILTONIAN

In the effective Hamiltonian approach relativistic an
QED effects are expressed in terms of some effective in
actions, for example, hyperfine splitting in theS state is
given by the Fermi contact interaction. In general, the le
ing relativistic correctionHhfs

(4) of orderma4, which depends
on nuclear spinI, is @11#

Hhfs
(4)5

m

M
~11k!~Hhfs

A 1Hhfs
B 1Hhfs

C !, ~1!

Hhfs
A 5(

i 51

3
4Za

3m2
I•sipd3~r i !~11a!, ~2!

Hhfs
B 5(

i 51

3
Za

m2

r i3pi

r i
3

•I , ~3!

Hhfs
C 5(

i 51

3

2
Za

2m2

I as i
b

r i
3 S dab23

r i
ar i

b

r i
2 D , ~4!

wherea andk are the anomalous magnetic moments of
electron and the nucleus, respectively. The relation ofk with
the magnetic moment of the nucleus of chargeZe is m
52(11k)Ze/(2M )I . m andM are the electron and nuclea
©2002 The American Physical Society01-1
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mass, respectively. The expectation values ofHhfs
B and Hhfs

C

vanish in anyS state, but they will contribute in the secon
order of perturbation calculus, see below. Higher-order re
tivistic and QED corrections to hyperfine splitting can
written as

Ehfs5^Hhfs
(4)&1^Hhfs

(5)&1^Hhfs
(6)&12K H (4)

1

~E2H !8
Hhfs

(4)L
1^H rad

(6)&1Ehfs
(7)1•••, ~5!

whereH (4) is a Breit Hamiltonian in the nonrecoil limit@11#:

H (4)5HA1HB1HC, ~6!

HA5(
i 51

3 H 2
pi

4

8m3
1

Zap

2m2
d3~r i !J

2 (
i . j 51

3 H a

2m2
pi

aS dab

r
1

r a r b

r 3 D pj
b1

pa

m2
d3~r i j !

1
2pa

3m2
si•sjd

3~r i j !J , ~7!

HB5(
i 51

3 H Za

4m2r i
3
r i3pi•siJ

1 (
i , j 51,iÞ j

3 H a

4m2r i j
3
r i j 3pj~2si1sj !J , ~8!

HC5 (
i . j 51

3
a

4m2

s i
as j

b

r i j
3 S dab2

3r i j
a r i j

b

r i j
2 D , ~9!

and r i j 5r i2r j , r i j 5ur i j u. ^Hhfs
(5)& is a correction of order

ma5. It is a d-function-like term with the coefficient ob
tained from the two-photon forward-scattering amplitude
has the same form as in hydrogen and depends strongl
the nuclear structure. It also includes nuclear recoil effe
and inelastic contribution. For the purpose of this work,
assume a heavy nucleus with magnetic momentm. In this
approximationHhfs

(5) takes the form@12#

Hhfs
(5)5(

i 51

3
8~Za!2

3pM
I•sid

3~r i !E d3p

p4
@GE~2p2! GM~2p2!

2~11k!#. ~10!

GE(2p2) and GM(2p2) are electric charge and magneti
moment distributions in the momentum space, so-called
chs form factors, which are determined experimentally. T
inelastic contribution, neglected here, tends sometimes t
important and depends significantly on the internal proper
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of nucleus. This correction usually limits the precision
theoretical predictions. The next termHhfs

(6) includes nuclear-
spin-dependent operators that contribute at orderma6. This
term is not well known in the literature. However, in hydr
genic systems, it leads to the so-called Breit correction.
two-electron atoms it was presented in the work on3He
hyperfine splitting@10#, but without detailed derivation. We
extend this result to lithium and present more details on
origin in the following section.H rad

(6) is a QED radiative cor-
rection @12#

H rad
(6)5a~Za!2

4

3 S ln 22
5

2D 1

mM (
i 51

3

pd3~r i !si•I ~11k!,

~11!

which is similar to that in hydrogen. The last termEhfs
(7) of

orderma7 is discussed in the Summary.

III. DERIVATION OF HIGHER-ORDER CORRECTIONS

We use time-ordered perturbation theory which was p
viously used for the calculation of helium hfs@10#, and the
lithium case is not much different. There are four tim
ordered diagrams which contribute toHhfs

(6) and are presented
in Fig. 1. The first two are the same as in hydrogen, the ot
two are three-body terms.

Let us start the derivation from the first diagram. We u
the Coulomb gauge; the wavy line denotes a transverse
ton, 1/(2q)(d i j 2qiqi /q2), and the broken line is 1/q2. In
general, ordering of the vertices of a transverse photon
important, and one diagram represents a whole class of
grams with all possible ordering of vertices. In our ca
however, retardation can be neglected, 1/(E2H2q)→
21/q, and two different orderings of vertices lead
21/q2(d i j 2qiqi /q2). The neglect of retardation is the rea

FIG. 1. Time-ordered diagrams contributing to hyperfine str
ture at orderma6. The dashed line is a Coulomb photon, the wa
line is a transverse photon, the thicker horizontal line denotes
nucleus, and the thiner horizontal line denotes electrons.
1-2
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son for this wavy line to be vertical. The electron vertex
(q5p82p),

2eu1~p8!a iu~p!'2eH 1

2m
~pi1p8 i !1

i

2m
~s3q! i

2
1

16m3
@pi~p8213 p2!1p8 i~p2

13p82!#1
i

16m3
@~p83s! i~p213p82!

2~p3s! i~p8213p2!#J . ~12!

The corresponding vertex on the nucleus line is

Ze
i

M
@ I3~2q!# j , ~13!

where we have neglected spin-independent terms. Th
terms can also be neglected in the electron vertex. We h
omitted here the factor (11k), which will be included later,
namely, in Eq.~20!. The second term in Eq.~12! together
with that in Eq.~13! lead to the Fermi contact interaction
which is omitted here because we are interested in hig
order corrections. Finally, we arrive at the following expre
sion for the first diagram:

V15E d3q

~2p!3
eiq•r

4pZa

q2

~ I3q! j

M S d i j 2
qi qj

q2 D 1

16m3

3@~p83s! i~p213p82!2~p3s! i~p8213p2!#.

~14!

In the coordinate space it takes the form presented in
~21!, where we sum up over all electrons and assume
this operator acts onS states. This assumption is valid als
for all other diagrams. For higher angular momenta, that
pression would contain additional terms.

The second diagram contains the so-called one pair
ation. The electron line between two vertices represents
projection operatorL25(E2H)/(2E) into the negative-
energy solution of the free Dirac equation. The electron l
is the sum of two terms:

u1~p8!a jL2~p1q2!u~p!1u1~p8!L2~p82q2!a iu~p!

'
2 i

m
~q23s! j , ~15!

and the nucleus line is

2i

M
~q13I ! i . ~16!

There is a factor21 for each pair, and 1/(2m), which comes
from the denominator. The complete diagram takes the fo
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V252E d3q1

~2p!3

d3q2

~2p!3
eiq1•reiq2•r

4pZa

q2
2

4pZa

2q1
2

3S d i j 2
q1

i q1
j

q1
2 D 3

1

m2 M
~q23s! j~q13I ! i . ~17!

The sum over all electrons in coordinate space is presente
Eq. ~22!.

The third diagram is quite similar to the second one,

V35E d3q1

~2p!3

d3q2

~2p!3
eiq1•r1eiq2•r12

4pa

q2
2

4pZa

2q1
2

3S d i j 2
q1

i q1
j

q1
2 D 3

1

m2M
~q23s1! j~q13I ! i . ~18!

The sum over all pairs of electrons is presented in Eq.~23!.
In the fourth diagram this double vertex with the pair cr
ation is described in the nonrelativistic limit by the ter
A2/(2m) from the nonrelativistic kinetic energy. It leads t
the expression

V45E d3q1

~2p!3

d3q2

~2p!3
eiq1•r1eiq2•r12

4pZa

q1
2

3S d ik2
q1

i q1
k

q1
2 D 4pa

q2
2 S d ik2

q2
i q2

k

q2
2 D 1

2m2M

3~q13I ! i~q23s1! j . ~19!

One derives the following operators in the coordinate sp
for all these diagrams@13#:

Hhfs
(6)5~11k!~V11V21V31V4!, ~20!

V15(
i 51

3

2
I•si

24Mm3 H 2pi
24pZad3~r i !1234pZad3~r i !pi

2

1Fpi
2 ,Fpi

2 ,
Za

r i
G G J , ~21!

V25(
i 51

3
~Za!2

r i
4

I•si

3Mm2
, ~22!

V35 (
i , j 51,iÞ j

3

2
I•si

3Mm2

Zar i

r i
3

•

ar i j

r i j
3

, ~23!

V45 (
i , j 51,iÞ j

3

2
I•sj

3Mm2

Zar i

r i
3

•

ar i j

r i j
3

. ~24!

The subtle point of this calculation is that the matrix eleme
of Hhfs

(6) and the second-order term in Eq.~5! are separately
divergent at smallr 1 or r 2. However these divergences ca
cel out in the sum. This is related to the fact that for hyd
gen this sum is equal to the expectation value ofg A on the
1-3
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Dirac wave function and thus is finite. We introduce now t
following regulatorl to the electron-nucleus Coulomb inte
action

Za

r i
→ Za

r i
~12e2lmZar i ! ~25!

in all Hamiltonians in Eq.~5!, as well as in the nonrelativistic
one. This leads to the following further replacements
Hhfs

(6) :

4pZad3~r i ![2¹2
Za

r i
→2¹2

Za

r i
~12e2lmZar i !,

~26!

~Za!2

r i
4

[S“Za

r i
D 2

→S“Za

r i
~12e2lmZar i ! D 2

. ~27!

Once the interaction is regularized, one can calculate all
trix elements and take the limitl→`. As a first step, we
rederived in Ref.@10# the known relativistic correction to hf
in hydrogen,

dEhfs5~11k!
m3

mM

~Za!6

n3

I•s

2 S 44

9
1

4

n
2

44

9n2D , ~28!

wheren is a principal quantum number. Since for lithium a
matrix elements can be calculated only numerically, we w
transform effective operators to the regular form, wherel
can be taken to infinity before the numerical calculatio
The initial expression for a complete set of relativistic co
rections in atomic units is~with implicit l regularization!

dEhfs5u11ku
m3

mM
a6E, ~29!

E5EA1EB1EC1EN1ER , ~30!

EA52K HA
1

~E2H !8
Hhfs

A L , ~31!

EB52K HB
1

~E2H !
Hhfs

B L , ~32!

EC52K HC
1

~E2H !
Hhfs

C L , ~33!

EN5K (
i 51

3 S 2
2Z

3
pi

2pd3~r i !2
1

24Fpi
2 ,Fpi

2 ,
Z

r i
G G

1
1

3

Z2

r i
4 D I•si2 (

i , j 51,iÞ j

3
1

3

r i j

r i j
3
•

Zr i

r i
3

I•~si1sj !L ,

~34!

ER5Z2
4

3 S ln 22
5

2D K (
i 51

3

pd3~r i !I•si L , ~35!
06250
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where all HX are in atomic units:m51,a51. This initial
expression is rewritten to the regular form, wherel regular-
ization is not necessary. The operators in the second-o
term EA are transformed with the use of

H8A[HA2
1

4 (
i 51

3 F Z

r i
~E2H !1~E2H !

Z

r i
G , ~36!

Hhfs8A[Hhfs
A 1

2

3 (
i 51

3 F Z

r i
I•si~E2H !1~E2H !

Z

r i
I•si G .

~37!

This transformation leads to new forms forEA8 andEN8 , such
that

EA1EN5EA81EN8 , ~38!

EA852K H8A
1

~E2H !8
Hhfs8AL , ~39!

EN8 5EN1(
i 51

3 H 2
1

6 K I•si

Z2

r i
4 L 1

1

2 K Z

r i
Hhfs

A L
2

4

3 K I•si

Z

r i
HAL 2

1

2 K Z

r i
L ^Hhfs

A &1
4

3 K I•si

Z

r i
L ^HA&J ,

~40!

both EA8 ,EN8 are separately finite.

IV. PROPOSAL FOR THE NUMERICAL CALCULATION
OF MATRIX ELEMENTS

The main problem, as we see it, is the analytic calculat
of matrix elements with the correlated basis set. Although
the integrals are manageable with Gaussians, these func
do not give precise values for the wave function at the c
lescence points. On the other hand, the wave function
pressed in the Hylleraas basis set fulfills well the cusp c
ditions. So far, this basis set, as applied both by Yan and
King @9#, gives the most precise values for relativistic co
rections. The disadvantage of this basis set is high comp
ity in the coding of relativistic matrix elements. Another b
sis set that we are considering at present is the following

f5r 12
n r 23

mr 31
l e2l i r 12l j r 22lkr 3, ~41!

with even tempered distribution ofl exponents. We have
already derived analytic and simple formulas for matrix e
ments of the nonrelativistic Hamiltonian by expanding t
general integration formula as obtained by Fromm and H
in Ref. @14#. We mention also Ref.@15#, where the authors
were able to express matrix elements of the nonrelativi
Hamiltonian in terms of̂ 1&,^1/r i&,^1/r i j & only, which sim-
plifies significantly the generation of the nonrelativistic wa
function. However, the problem which we have not been a
to solve so far is the efficient analytic calculation of matr
elements of the Breit Hamiltonian, particularlyHC . Some
1-4
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progress has been achieved in Ref.@16#. As in the case of
helium @10#, the calculation of second-order matrix elemen
requires a careful adjusting of exponents, and this is a c
putationally intensive process.

V. SUMMARY

We have derived here a complete expression for the r
tive orderO(a2) correction to lithium hyperfine splitting. I
is written in terms of nonrelativistic although quite comp
cated operators. The advantage of this approach is a sim
incorporation of electron correlation through the use o
correlated nonrelativistic basis set. Further advantages
the consistent inclusion of all relativistic and radiative effe
at the order ofma6. We have not so far mentioned highe
order terms, denoted byEhfs

(7) . They are known in hydrogenic
A

in

s

06250
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systems@17#, and we think they could be derived as well fo
lithium. The most computationally difficult are the so-calle
Bethe log terms combined with the Fermi contact opera
Similar corrections have already been calculated for the
lium fine structure@18#, and the same approach will work fo
lithium as well. However, at present we do not have enou
experience to pursue the numerical part of this project.
think that this work might stimulate progress in the nume
cally efficient calculation of matrix elements.
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