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Macroscopic entanglement jumps in model spin systems
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In this paper, we consider some frustrated spin models for which the ground states are known exactly. The
concurrence, a measure of the amount of entanglement can be calculated exactly for entangled spin pairs.
Quantum phase transitions involving macroscopic magnetization changes at critical values of the magnetic
field are accompanied by macroscopic jumps inTke0 entanglement. A specific example is given in which
magnetization plateaus give rise to a plateau structure in the amount of entanglement associated with nearest-
neighbor bonds. We further show that macroscopic entanglement changes can occur in quantum phase transi-
tions brought about by the tuning of exchange interaction strengths.
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Entanglement is a characteristic feature of quantumdicate that entanglement develops special features in the vi-
mechanical systems which has no classical anflggThe cinity of a quantum critical point.
state of a paifor more than a pajrof quantum systems is The studies carried out so far have been confined to 1D
entangled if the corresponding wave function does not facsystems with only nearest-neighb@N) exchange interac-
torize, i.e., is not a product of the wave functionstions. There are several quasi-1D and -2D antiferromagnetic
of the individual systems. A well-known example (AFM) spin models which describe frustrated spin systems
of an entangled state is the singlet state of two gpjpar-  [20]. Frustration arises if conflicting interactions are present
ticles, (1/\/5)(|”>_|“>), which cannot be written as a in the system, i.e., when all the interactions between spins
product of the spin states of individual spins. Measuremen€annot be simultaneously satisfied. A good example of a
on one component of an entangled pair fixes the state of th@ustrated spin system is the AFM Ising model on the trian-
other implying nonlocal correlations. Interest in quantum en-gular lattice. An elementary plaquette of the lattice is a tri-
tanglement is extensive because of its fundamental role iangle. The Ising spin variables have two possible values,
quantum communication and information processing such a& 1, corresponding to the up- and down-spin orientations.
quantum teleportatiofi2], superdense codinB], quantum An antiparallel spin pair has the lowest interaction energy
cryptographic key distributiofi4], etc. Experimental imple- —J. A parallel spin pair has the energyJ. In an elementary
mentation of some of the protocols has so far been achievegiangular plaquette, there are three interacting spin pairs.
in simple physical settings. Solid-state devices, speciallyPue to the topology of the plaguettedd number of NN
spin systems have been proposed as possible candidates Bsinds, all the three spin pairs cannot be simultaneously an-
large scale realization5,6]. In particular, the Heisenberg tiparallel in the ground state. There is bound to be one par-
spin-spin exchange interaction gives rise to entangled statgdlel spin pair giving rise to frustration in the system. Con-
in spin systems and has been shown to provide the basis féfder another example in which the spins in a linear chain
universal quantum computatidi@,8]. Examples of other in- interact via NN as well as next-nearest-neighlfbiNN)
teracting many-body systems in which entanglement propeyAFM interactions. In a triplet of successive spins, the two
ties have been studied include the harmonic ctiginthe NN spin pairs and one NNN spin pair cannot be simulta-
one-dimensional Kondo Necklace modéD] and the BCS neously antiparallel and the linear spin chain is frustrated.
condensat@l1]. Frustration in a system may occur due to the topology of the

Entanglement in a state like its energy is quantifiable andattice (triangular, kagomeetc) or due to the inclusion of
has been computed both =0 and at finiteT (thermal further-neighbor interactions leading in most cases to spin-
entanglementfor a variety of spin models in both zero and disordered ground states. The models exhibit QPTs as the
finite external magnetic fields. The models include thee€xchange interaction parameters are tuned to particular ratios
HeisenbergkX, XY, XXX XXz and transverse Ising models or at critical values of the external magnetic field. Some of
in one dimensior(1D) [12—18. The computational studies the models exhibit the phenomenon of magnetization pla-
show that the amount of entanglement between two spins iffaus in which plateaus appear in the magnetizationsite
a multispin state can be modified by changing the temperaversus the external magnetic figlcturve at quantized values
ture and/or the external magnetic field. Some recent studie®f m (m and h are chosen to be dimensionlg$21]. The
have explored the relations between entanglement and quagondition for the appearance of plateaus is
tum phase transitions in the ferromagnédgd/) XY model in
a transverse magnetic field and in a special case of the Sy— my=integer, Q)
model, namely, the transverse Ising mofie,17]. A quan-
tum phase transitiofQPT) can take place at=0 by chang- whereSy andmy are the total spin and magnetization in unit
ing some parameter of the system or an external variable likperiod of the ground state. The plateaus indicate that the spin
the magnetic field19]. The ground-state wave function un- excitation spectrum is gapped so that the magnetization re-
dergoes qualitative changes in a QPT and model studies impains constant. In this paper, we consider some spin models
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for which the ground states are known exactly in certain J
parameter regimes. An exact measure of the entanglemer
between two spins can be obtained in these states in Jo ] J
straightforward manner because of the simple structure of th¢ ® R
ground states. We report two major results. In the presence ¢ :
an external magnetic field, macroscopic magnetization jumps J
at critical values of the magnetic fieldfrst-order QPTsare . o
accompanied by macroscopic changes in the amount of pair- FIG._1. A two-leg frustrated spin ladder. T_he spin-spin exchange
wise entanglement. Furthermore, some examples are given jpteraction strength along the rungdg . The interleg NN and the
which the entanglement structure is modified due to QpTgiagonal exchange interactions are of equal stredgth
(again first order brought about by the tuning of exchange
interaction strengths.

A measure of entanglement between the spirsdB is
given by a quantity called concurrengk2,13. To calculate
this, a knowledge of the reduced density maisixg is re-
quired. This is obtained from the ground-state wave function

magnetization jumps are accompanied by macroscopic
jumps in entanglement. The first model is a frustrated two-
leg S=3 ladder model[24] (Fig. 1) the Hamiltonian of
which is given by

N
by tracing out all the spin degrees of freedom except those of H = 3.8.8 1> & 4
the spinsA and B. Let p,g be defined as a matrix in the ladder % 0SS .21 v @
standard basi$|11),[1T1),[L7),/L1)}. One can define the _ _
spin-reversed density matrix aTs=(cry®cry)p*(cry® ay), The exchange interaction strengi=Jg along the rungs.

wherea, is the Pauli matrix. The concurrenis given by The intrachain NN and the diagonal exchange interactions
C=maxA;—N,—A3—A,,0}, where \'s are the square '€ of equal strengtll. When h=0 ar_ld (JR/J_)>)\ (N
roots of the eigenvalues of the matpyp in descending or- 71'40%3]’ the exagrthground state C?nS'St;] of singles) th
der. The spinA andB are entangled iC is nonzero,C=0 along e rungs. 'Ne Spin pairs along the Tungs are thus

S . maximally entangled and all other spin pairs are unen-
implies an unentangled state, a@e- 1 corresponds to maxi- tangled \)//Ve definge a quantity pin-p
mum entanglement. The models, we consider in this paper '

belong to the Majumdar-GhosiMG) [22] and the Affleck- o N2
Kennedy-Lieb-TasakiAKLT ) [23] families of models. The f=— > C(i), (5)
MG model is the simplest frustrated model in 1D. The spins N =1

have magnitudé and the Hamiltonian is given by
which is the average concurrence per rung of the ladder. The

N summation is over the rung index witk/2 being the total
iZl S-Si2- 2 number of rungs. Since all the other spin pairs are unen-
- tangled, the average concurrence per NN bdpe=73 (the

N is the total number of spins and the strength of the NNNNN bonds includeN/2 rung bonds andN intrachain NN
exchange interaction is half that of the NN interaction. Thebonds. The magnetization properties of the frustrated ladder
boundary condition is periodic. The exact ground state ignodel are simpl¢25]. Figure 2a) shows the magnetization

N G

N
HMG:‘]EI S-St

doubly degenerate with the wave functions per rungM as a function of the magnetic field For O0<h
<h¢,=Jr, M=0. Forh, <h<h; =Jg+2J, the rungs are
$1=[12][34]... ..., [N—1NJ, alternately in singlet an&*=1 triplet spin configurations in

the ground state. The value o is now 3. For h>hC2,

b,=[23][45]. .. . ... [N1], (3)

where [Im] denotes a singlefivalence bond(VB)] of two
spins located at the lattice sittandm. Thus in the ground-
state NN spin pairs in singlet spin configurations are maxi- ! 1
mally entangled with concurren€@=1. The value ofC for M
all the other NN or further-neighbor pairs is zero. This is
consistent with the special property of entanglement thatine 12 12
set of three sping\, B, and C, if A and B are maximally
entangled, the entanglement betwe®emand C is zero[12].
Translational invariance in the ground states can be restore

by taking linear combinations of the ground statp&p, hCl he, he e,
+ ¢,)/\/2]. In this case, all NN pairs are entangled wih ~h ~h
=0.5. The value ofC in the case of the&s=3 Heisenberg (2) b)

AFM spin chain isC=0.386[12]. Frustration appears to

increase the NN entanglement in a spin system. FIG. 2. The frustrated spin-ladder mod&lig. 1) exhibits pla-
We now give examples of some spin models in the presteaus in(a) magnetization/rungyl versus an external magnetic field
ence of an external magnetic field for which macroscopich and(b) average concurrence per rufgs h.
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_______________ Figure 3 shows another spin-ladder model with modulated
[ exchange interactior[26]. The model consists of four-spin

plaguettes coupled to two-spin rungsolid lines through
NN and diagonal exchange interactiofdotted lineg of
strengthJ,. Within each plaquette, the NN and diagonal ex-
. - . change interactions are of strength and J;, respectively.
FIG. 3. Two-chain Iadde.r model - consisting of f.our'Sp'r.' The rung exchange interaction strengtilis In a wide pa-
plaguettes coupled to two-spin rungs. The exchange interaction . .
; i rameter regime, the exact ground-state has a simple product
strengths are as shown in the figure. ] S : .
form: the plaquettes and the rungs are individually in their
ground-state spin configurations. The ground state of a
plaquette is a resonating valence bofRVB) state with
wave function given by'/lRVBl (lJIRVB’Z) for J3<Jl (J3
>J,). The ground state of a rung is a singlet. The RVB
states are given by

saturation magnetization is obtained with=1. One can
verify that the quantization conditiofl) is obeyed at each
plateau. Figure ) shows the plot of the average concur-
rence per rund versus the magnetic field A similar plot is
obtained forfyy with the difference thafyy=3 for 0<h
<h, and fyy=3 for h, <h<h. For h, <h<h,, half

the total number of rungs are B=1 triplet spin configu- ;
rations in which the two spins of a rung point up. The par- YRrVBI(RVEZ) = (f)
allel spin pairs are unentangled wi@=0. The other rungs
are in singlet spin configurations so thiat 3. In the fully o—<—o

(6)

polarized staté =0. Figure 2Zb) provides an example of a

changing magnetic field giving rise to macroscopic changes L . )
in entanglement. The ground state of the frustrated Spin‘_l'he solid lines represent singlets and the arrow signs are

ladder model forh=0 has a simple structure and can bedrawn according to the phase convention that in a VB be-
expressed as a product over rung singlet states. The reducBYeen the sitesandj, if the arrow points away from the site
density matrixpag, needed to calculate the entanglement: then the spin configuration is  (2)(|1(1)1(j))
between the spin& and B, can be calculated exactly and —|1()T(}))]. It is easy to check that the NN spins in
analytically in a straightforward manner. Once the matrix|¥rver) are entangled with concurren€=0.5. The NNN
elements ofp g are known, the concurrenécan be calcu- SPINS along thel dlggonals are unentangled. On the other
lated. Because of the uncomplicated structure of the grounBand, the NN spins ifyiryg) are unentangled and the NNN
state,C can alternatively be calculated using simple argu-SPin pairs are entangled witB=1. At J,=J;, there is a
ments. Each spin in the ladder belongs to a rung singlet oRPT from the ground state in which the plaquette spin con-
VB, so that it is maximally entangled with its partner spin. figurations are described Hy/rye;) to the ground state in
Thus, the entanglement between a spimd any other spin, Which the same are described Byryg). In both the
belonging to other rung singlets, is zero. The concurrébce Phases, the rungs are in singlet spin configurations. The QPT
of a maximally entangled pair is 1 so thhtthe average IS accompanied by macroscopic changes in the amount of
concurrence per rung, is 1 forth<h, . Similar arguments NN and NNN entanglements. The average concurrence per
hold true forh, <h<h,, when the ladder has a different NN bond, fyw, in the full ladder is3 for J;<J, and3 for

d in with & simpl J;>J;. The average concurrence per NNN bofig, is 0
ground state, again with a simple structure. for J;<J; and & for J;>J;. In a finite magnetic fielch

#0, the exact ground state maintains its product form in an

extended parameter regime. This gives rise to magnetization
plateaus in the magnetization/siteversush curves. Again,

the jumps in the magnetization are accompanied by jumps in
the amount of entanglement. To give one specific example,
consider the casd;<<J;. The average concurrence/NNN
bond in the full ladder is zero for€@h< hc1=31 and ¢ for

hc1< h< hc2:2‘J2- At hcl, m jumps from zero to the value

. Each plaquette is in the ground-state spin configuration
(1T =17Ln)=[1L11)+[1111)) in the field range
he,<h<h,,. Schulenbergt al. [27] have constructed exact
eigenstates which consist of independent, localized one-
magnon states in a class of frustrated spin lattices and have
shown that these are the ground states in high magnetic
fields. The eigenstates are obtained provided certain condi-
tions are satisfied. In a kagortatice, the magnon states are

localized inN/9 hexagons, wher8l is the total number of
FIG. 4. Kagomédattice with N spins. The circles mark thd/9  spins. The hexagons in which the magnon excitations occur
hexagons in which independent magnons can be localized. are isolated from each othéFig. 4). Above the saturation
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magnetic field, all the spins in the lattice are in a FM spinthe Haldane phases aBys= — 3y, + 5 (1+Y,) andEax. T
configuration|0), and each spin pair is unentangled. The=y,—33(1+Y,), respectively.

state|0) is the vacuum for magnon excitations. At a critical ~As mentioned before, in the RS phase the spin pairs along
field below the saturation magnetic field, the exact eigenstatthe rungs are perfectly entangled with concurre@eel . All
consisting ofN/9 localized one-magnon excitations becomesthe other spin pairs are unentangled. The amount of entangle-
the ground state. The localized magnon excitation has thment in the AKLT phase can be computed in the following

wave function manner. FofH,S*]=0, whereS* is thez component of the
total spin, the reduced density matrix of a spin pair located at
1 8 the sitesi andj has the forn{12]
1)=—=2 (-1)'s7[0). (7)
V6 =1 u, 0 0 0
This gives rise to a macroscopic change in the magnetization o 0 w, z 0 (10)
curve. In each of thé\/9 hexagons, a spin is equally en- Pi 0 z w O
tangled with all the other five spins and the magnitude of the 0 0 0 u

concurrence i€= 3. This signifies a macroscopic change in

the amount of entanglement. The magnetization jump occUfrhe concurrence quantifying the entanglement is given by

ring at a critical value of the magnetic field signifies a first-

order QPT. We have shown through specific examples that C=2maxf0,z|—Ju,u_]. (12)

such QPTs give rise to macroscopic jumps in the amount of

entanglement associated with NN and/or further-neighbowang and Zanardi29] have shown that the matrix element

spin pairs. of pj; can be expressed in terms of the various correlation
QPTs can also be brought about by tunning exchange irfunctions Gup=(0ia0ip)=Tr(Ti,0j5p), (a=X)y,2),

teraction strengths. We have already given an example of thighere p is the density operator. The magnetization/site

in the case of the ladder model shown in Fig. 3. Ret0, a :(1/N)Tr(zi'\‘:lgizp)_ In particular, the following relations

QPT occurs atl3/J;=1. In the frustrated two-leg ladder hold true:

model shown in Fig. 1, a QPT takes place at the critical value

([Jr/3])=1.401. Below the critical point, the ground state Ur=3(12m+G,,),
is that of an effectives=1 chain with theS=1 spins form-
ing out of the pairs oS=3 rung spins. The spin ladder is 7= 3 (Gyt Gyy). (12)

now in the Haldane phase ofS&= 1 chain. Above the critical

point, the ladder is in the rung-singléRS) phase in which  The correlation functions in the AKLT phase can be calcu-
the rung spins are in singlet spin configurations. KolezhuKated in an exact manner using the transfer-matrix method in
and Mikeskd 28] have proposed a generalized frustrated ladthe matrix productMP) formalism[30]. The AKLT ground

der model in which the first-order QPT between the RS andgtate can be written in the MP form as

the Haldane phases can be studied in an exact manner. This

model includes biquadratic interactions besides NN and NI2
NNN (diagonal ones. The Hamiltonian is given by YakLT= Triﬂl 9i (13
H=2 hii1, _ )i —V2Jty)
— i, with g;= : (14
V2lto) —lto)
Yi 2 a2 ,z = =z : ;
hi,i+1:§(51,i 2SS 1S 1)+ (Sy- S The product in Eq(13) is over the N/2) rungs of the ladder.

The two spin3’s of each rung are in a triplet spin configu-
. S - . ration in the AKLT phase giving rise to an effective spin 1. In
+ 52 S+ 1) FY2(S1i- Spi 1t Spi Spjia) Eq. (14), the statest,) with u=+1, 0, and—1 represent a
- 2 & - spin state witt§’=+1, 0 and— 1, respectively. Calculation
FX2(S1i S1i40)(Sei Saiv 1) FXa(Spi- Soiva) of the correlation functionss,,, («=x,y,z) of the spin
& & pairs in the AKLT state can be carried out following standard
X(Si+Stj+1), ) . .
T procedureg30]. We quote the final results. The various cor-
where x,— £ (3—2y,), x,—%(3y,~2). (9 relationfunctions are

. . g o (O ag =0 ag
The indices 1 and 2 correspond to the lower and upper legs (0100010 +10) = (0200020 +10) = (T1naT2n+ 1a)

of the ladder, respectively, ands the rung index. The exact =(O1ni1a02na)=— & (@=XY,2),
phase boundary between the RS and the Haldane phases is ’ ’

given byy,;=2(1+y,). The ground state in each phase is (15
known exactly. In the Haldane phase the ground state is the

AKLT state[23]. The ground-state energy/rung in the RS and (01na02na)= 3 (@=X,Y,2). (16)
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The correlation functions, in which the distaniceeparating In the latter case, however, the prefactoyc(r—71.) be-
the rungs on which the spins are located=i4 (in Eq. (15 comes zero at the transition poif28]. Thus, long range
|=1), involve the factor 4¢ 1)'3~'~1. With the knowledge  spin-spin correlations cannot develop in the system.
of the correlation functions, the concurrence can be deter- |n summary, we have shown through specific examples
mined using the relationgl1) and (12) (m in the AKLT  that first-order QPTs can bring about macroscopic changes in
phase is zero One finds that in the AKLT phase, the spin the amount of pairwise entanglement in spin systems. We
pairs along the rungs are unentangled. In the RS phase, thve given the specific example of a spin model in which
same spins are maximally entangled. The intraleg NN anghagnetization plateaus give rise to a plateau structure in the
the NNN (diagonal spin pairs are entangled in the AKLT gyerage concurrence per rung as well as NN bond. There are
ltohheasséesv;l)litr? ;gir;guar:gnlfe:ntgalnngﬁa?jChAZiSir?. :E;r}ﬁsizirggfsglss{everal low-dimensional AFM compounds in which magne-
) i TR tization plateaus have been observed experimen{aify}.

from the RS phase to the AKLT phase is accompanied byryg app?earance of magnetization platea%s has ?Een ex-
macroscopic changes in the entanglement structure. lained in terms of metal-insulator transitions of magnetic

_The generalized ladder model studied by Kolezhuk an(gxcitations driven by a magnetic fie[83]. In the insulating
Mikeska has a rich phase diagrd@8] describing both first- = 131041 phase, the magnetic excitations give rise to crystal-
order and second-grder QPTS‘ .At the second-order pha§ e order and in the metalliénonplateau phase they are
boundary, the gap in the excitation spectrum goes 10 ZerGnarant |t will be of interest to explore the possibility of a
There are five possible phases: RS, AKLT, AM,, andD2. lateau structure in the amount 80 as well as finiteT
The phases D1 and D2 have spontaneously broken symmetiy,io,qjements in such systems. Our study shows that an ex-

&rnal magnetic field can be employed to give rise to large

The phase boundaries separating the FM-D1, AKLT-D1 : :
' 'changes in the amount of entanglement and provides the ba-
AKLT-D2, RD-D1, and RD-D2 are known exactly and have gjeq tor the construction of an entanglement “amplifier” or

been determined in the MP formalism. The correspondingswitch." There is a large number of spin models which
QPTs are second-order transitions. The two first-order phasg init OpTs of significant interest. Some of these models
boundaries separating the RD-AKLT and AKLT-FM phasedescribe 2D systems. Examples include the Shastry-

are also known exactly. Preliminary calculatiof&l] near Sutherland modefl34], the S=% AFM model on the(1/5)-
. 1 2

the second-order phase boundaries suggest that the pairw'&@pleted square lattida5], a lattice of weakly-coupled two-

entang_lement_does not extenql beyond the NNN distance. TWSg ladderq 36], etc. Some of these models are reviewed in
same Is true in the case of first-order QPTs. Os_teel'ohl._ . Refs.[20,37). All these models exhibit second-order QPTs
.[16] have con5|dereq .the range of entanglement n the VIlNAom a spin-disordered gapped phase to a gapless phase with
ity of the quantum critical point of the transverse IS|.ng modelIong range spin-spin correlations. Osterlehal. [16] and

in 1D. They have found that even at the critical point, WhereOsborne and Nielsef17] have found evidence of entangle-

the spf)m-spl_n cor_relat|ons atredlot:\g range(tdﬁ thel\(l:ﬁrlllczrr?nce Ment showing scaling behavior in the vicinity of the quantum
_zriro or shpln pairs separate | d>f/f more ba? th'ls ange ritical point. Similar studies should be carried out for the
ere 1S, however, one crucial diiterence between this mo pin models mentioned to augment our knowledge of the

and the AKLT-type models described by MP states. The Mprelationship between QPTs and entanglement.

states are finitely correlated, i.e., the spin-spin correlation Note added in ProofOur attention has been drawn to an

. _ _|/ . .
function (S'Sf, ) =Ase ¢ decays exponentially with the eajier work by Y. Shi[38] on entanglement properties of
correlation lengthé equal to a few lattice spacings. As the quantum spin liquids in two dimensions.
transition pointr=7, (7 is some model paramejeis ap-

proached, the correlation lenggheither does not exhibit any E.C. is supported by the Council of Scientific and Indus-
singularity or diverges in a power-law fashion as—(r.)?. trial Research, India under Grant No. %186)/97-EMR-I.
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