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Macroscopic entanglement jumps in model spin systems
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In this paper, we consider some frustrated spin models for which the ground states are known exactly. The
concurrence, a measure of the amount of entanglement can be calculated exactly for entangled spin pairs.
Quantum phase transitions involving macroscopic magnetization changes at critical values of the magnetic
field are accompanied by macroscopic jumps in theT50 entanglement. A specific example is given in which
magnetization plateaus give rise to a plateau structure in the amount of entanglement associated with nearest-
neighbor bonds. We further show that macroscopic entanglement changes can occur in quantum phase transi-
tions brought about by the tuning of exchange interaction strengths.
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Entanglement is a characteristic feature of quantu
mechanical systems which has no classical analog@1#. The
state of a pair~or more than a pair! of quantum systems is
entangled if the corresponding wave function does not f
torize, i.e., is not a product of the wave functio
of the individual systems. A well-known examp
of an entangled state is the singlet state of two spin-1

2 par-
ticles, (1/A2)(u↑↓&2u↓↑&), which cannot be written as
product of the spin states of individual spins. Measurem
on one component of an entangled pair fixes the state of
other implying nonlocal correlations. Interest in quantum e
tanglement is extensive because of its fundamental rol
quantum communication and information processing suc
quantum teleportation@2#, superdense coding@3#, quantum
cryptographic key distribution@4#, etc. Experimental imple-
mentation of some of the protocols has so far been achie
in simple physical settings. Solid-state devices, specia
spin systems have been proposed as possible candidate
large scale realizations@5,6#. In particular, the Heisenber
spin-spin exchange interaction gives rise to entangled st
in spin systems and has been shown to provide the basi
universal quantum computation@7,8#. Examples of other in-
teracting many-body systems in which entanglement pro
ties have been studied include the harmonic chain@9#, the
one-dimensional Kondo Necklace model@10# and the BCS
condensate@11#.

Entanglement in a state like its energy is quantifiable a
has been computed both atT50 and at finiteT ~thermal
entanglement! for a variety of spin models in both zero an
finite external magnetic fields. The models include t
HeisenbergXX, XY, XXX, XXZ, and transverse Ising mode
in one dimension~1D! @12–18#. The computational studie
show that the amount of entanglement between two spin
a multispin state can be modified by changing the temp
ture and/or the external magnetic field. Some recent stu
have explored the relations between entanglement and q
tum phase transitions in the ferromagnetic~FM! XYmodel in
a transverse magnetic field and in a special case of
model, namely, the transverse Ising model@16,17#. A quan-
tum phase transition~QPT! can take place atT50 by chang-
ing some parameter of the system or an external variable
the magnetic field@19#. The ground-state wave function un
dergoes qualitative changes in a QPT and model studie
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dicate that entanglement develops special features in the
cinity of a quantum critical point.

The studies carried out so far have been confined to
systems with only nearest-neighbor~NN! exchange interac-
tions. There are several quasi-1D and -2D antiferromagn
~AFM! spin models which describe frustrated spin syste
@20#. Frustration arises if conflicting interactions are pres
in the system, i.e., when all the interactions between sp
cannot be simultaneously satisfied. A good example o
frustrated spin system is the AFM Ising model on the tria
gular lattice. An elementary plaquette of the lattice is a
angle. The Ising spin variables have two possible valu
61, corresponding to the up- and down-spin orientatio
An antiparallel spin pair has the lowest interaction energ
2J. A parallel spin pair has the energy1J. In an elementary
triangular plaquette, there are three interacting spin pa
Due to the topology of the plaquette~odd number of NN
bonds!, all the three spin pairs cannot be simultaneously
tiparallel in the ground state. There is bound to be one p
allel spin pair giving rise to frustration in the system. Co
sider another example in which the spins in a linear ch
interact via NN as well as next-nearest-neighbor~NNN!
AFM interactions. In a triplet of successive spins, the tw
NN spin pairs and one NNN spin pair cannot be simul
neously antiparallel and the linear spin chain is frustrat
Frustration in a system may occur due to the topology of
lattice ~triangular, kagome´, etc.! or due to the inclusion of
further-neighbor interactions leading in most cases to sp
disordered ground states. The models exhibit QPTs as
exchange interaction parameters are tuned to particular ra
or at critical values of the external magnetic field. Some
the models exhibit the phenomenon of magnetization p
teaus in which plateaus appear in the magnetization/sitm
versus the external magnetic fieldh curve at quantized value
of m (m and h are chosen to be dimensionless! @21#. The
condition for the appearance of plateaus is

SU2mU5 integer, ~1!

whereSU andmU are the total spin and magnetization in un
period of the ground state. The plateaus indicate that the
excitation spectrum is gapped so that the magnetization
mains constant. In this paper, we consider some spin mo
©2002 The American Physical Society20-1
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for which the ground states are known exactly in cert
parameter regimes. An exact measure of the entanglem
between two spins can be obtained in these states
straightforward manner because of the simple structure of
ground states. We report two major results. In the presenc
an external magnetic field, macroscopic magnetization jum
at critical values of the magnetic fields~first-order QPTs! are
accompanied by macroscopic changes in the amount of p
wise entanglement. Furthermore, some examples are give
which the entanglement structure is modified due to QP
~again first order! brought about by the tuning of exchang
interaction strengths.

A measure of entanglement between the spinsA andB is
given by a quantity called concurrence@12,13#. To calculate
this, a knowledge of the reduced density matrixrAB is re-
quired. This is obtained from the ground-state wave funct
by tracing out all the spin degrees of freedom except thos
the spinsA and B. Let rAB be defined as a matrix in th
standard basis$u↑↑&,u↑↓&,u↓↑&,u↓↓&%. One can define the
spin-reversed density matrix asr̃5(sy^ sy)r* (sy^ sy),
wheresy is the Pauli matrix. The concurrenceC is given by
C5max$l12l22l32l4,0%, where l i8s are the square

roots of the eigenvalues of the matrixrr̃ in descending or-
der. The spinsA andB are entangled ifC is nonzero,C50
implies an unentangled state, andC51 corresponds to maxi
mum entanglement. The models, we consider in this pa
belong to the Majumdar-Ghosh~MG! @22# and the Affleck-
Kennedy-Lieb-Tasaki~AKLT ! @23# families of models. The
MG model is the simplest frustrated model in 1D. The sp
have magnitude12 and the Hamiltonian is given by

HMG5J(
i 51

N

SW i•SW i 111
J

2 (
i 51

N

SW i•SW i 12 . ~2!

N is the total number of spins and the strength of the NN
exchange interaction is half that of the NN interaction. T
boundary condition is periodic. The exact ground state
doubly degenerate with the wave functions

f15@12#@34# . . . . . . .@N21N#,

f25@23#@45# . . . . . . ..@N1#, ~3!

where @lm# denotes a singlet@valence bond~VB!# of two
spins located at the lattice sitesl andm. Thus in the ground-
state NN spin pairs in singlet spin configurations are ma
mally entangled with concurrenceC51. The value ofC for
all the other NN or further-neighbor pairs is zero. This
consistent with the special property of entanglement that
set of three spinsA, B, and C, if A and B are maximally
entangled, the entanglement betweenA and C is zero @12#.
Translational invariance in the ground states can be rest
by taking linear combinations of the ground states,@(f1

6f2)/A2#. In this case, all NN pairs are entangled withC
50.5. The value ofC in the case of theS5 1

2 Heisenberg
AFM spin chain isC50.386 @12#. Frustration appears to
increase the NN entanglement in a spin system.

We now give examples of some spin models in the pr
ence of an external magnetic field for which macrosco
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magnetization jumps are accompanied by macrosco
jumps in entanglement. The first model is a frustrated tw
leg S5 1

2 ladder model@24# ~Fig. 1! the Hamiltonian of
which is given by

Hladder5(̂
i j &

Ji j SW i•SW j2h(
i 51

N

Si
z . ~4!

The exchange interaction strengthJi j 5JR along the rungs.
The intrachain NN and the diagonal exchange interacti
are of equal strengthJ. When h50 and (JR /J).l (l
.1.401), the exact ground state consists of singlets~VBs!
along the rungs. The spin pairs along the rungs are t
maximally entangled and all other spin pairs are un
tangled. We define a quantity

f 5
2

N (
i 51

N/2

C~ i !, ~5!

which is the average concurrence per rung of the ladder.
summation is over the rung index withN/2 being the total
number of rungs. Since all the other spin pairs are un
tangled, the average concurrence per NN bond,f NN5 1

3 ~the
NN bonds includeN/2 rung bonds andN intrachain NN
bonds!. The magnetization properties of the frustrated lad
model are simple@25#. Figure 2~a! shows the magnetization
per rungM as a function of the magnetic fieldh. For 0,h
,hc1

5JR , M50. Forhc1
,h,hc2

5JR12J, the rungs are

alternately in singlet andSz51 triplet spin configurations in
the ground state. The value ofM is now 1

2 . For h.hc2
,

FIG. 1. A two-leg frustrated spin ladder. The spin-spin exchan
interaction strength along the rung isJR . The interleg NN and the
diagonal exchange interactions are of equal strengthJ.

FIG. 2. The frustrated spin-ladder model~Fig. 1! exhibits pla-
teaus in~a! magnetization/rungM versus an external magnetic fiel
h and ~b! average concurrence per rungf vs h.
0-2
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saturation magnetization is obtained withM51. One can
verify that the quantization condition~1! is obeyed at each
plateau. Figure 2~b! shows the plot of the average concu
rence per rungf versus the magnetic fieldh. A similar plot is
obtained forf NN with the difference thatf NN5 1

3 for 0,h
,hc1

and f NN5 1
6 for hc1

,h,hc2
. For hc1

,h,hc2
, half

the total number of rungs are inSz51 triplet spin configu-
rations in which the two spins of a rung point up. The p
allel spin pairs are unentangled withC50. The other rungs
are in singlet spin configurations so thatf 5 1

2 . In the fully
polarized statef 50. Figure 2~b! provides an example of a
changing magnetic field giving rise to macroscopic chan
in entanglement. The ground state of the frustrated s
ladder model forh50 has a simple structure and can
expressed as a product over rung singlet states. The red
density matrixrAB , needed to calculate the entangleme
between the spinsA and B, can be calculated exactly an
analytically in a straightforward manner. Once the mat
elements ofrAB are known, the concurrenceC can be calcu-
lated. Because of the uncomplicated structure of the gro
state,C can alternatively be calculated using simple arg
ments. Each spin in the ladder belongs to a rung single
VB, so that it is maximally entangled with its partner sp
Thus, the entanglement between a spinj and any other spin
belonging to other rung singlets, is zero. The concurrencC
of a maximally entangled pair is 1 so thatf, the average
concurrence per rung, is 1 for 0,h,hc1

. Similar arguments

hold true forhc1
,h,hc2

, when the ladder has a differen
ground state, again with a simple structure.

FIG. 3. Two-chain ladder model consisting of four-sp
plaquettes coupled to two-spin rungs. The exchange interac
strengths are as shown in the figure.

FIG. 4. Kagome´ lattice with N spins. The circles mark theN/9
hexagons in which independent magnons can be localized.
06232
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Figure 3 shows another spin-ladder model with modula
exchange interactions@26#. The model consists of four-spin
plaquettes coupled to two-spin rungs~solid lines! through
NN and diagonal exchange interactions~dotted lines! of
strengthJ2. Within each plaquette, the NN and diagonal e
change interactions are of strengthJ1 and J3, respectively.
The rung exchange interaction strength isJR . In a wide pa-
rameter regime, the exact ground-state has a simple pro
form: the plaquettes and the rungs are individually in th
ground-state spin configurations. The ground state o
plaquette is a resonating valence bond~RVB! state with
wave function given bycRVB1 (cRVB2) for J3,J1 (J3
.J1). The ground state of a rung is a singlet. The RV
states are given by

~6!

The solid lines represent singlets and the arrow signs
drawn according to the phase convention that in a VB
tween the sitesi andj, if the arrow points away from the site
i, then the spin configuration is (1/A2)@ u↑( i )↓( j )&
2u↓( i )↑( j )&]. It is easy to check that the NN spins i
ucRVB1& are entangled with concurrenceC50.5. The NNN
spins along the diagonals are unentangled. On the o
hand, the NN spins inucRVB2& are unentangled and the NNN
spin pairs are entangled withC51. At J15J3, there is a
QPT from the ground state in which the plaquette spin c
figurations are described byucRVB1& to the ground state in
which the same are described byucRVB2&. In both the
phases, the rungs are in singlet spin configurations. The Q
is accompanied by macroscopic changes in the amoun
NN and NNN entanglements. The average concurrence
NN bond, f NN , in the full ladder is1

3 for J3,J1 and 1
9 for

J3.J1. The average concurrence per NNN bond,f D , is 0
for J3,J1 and 1

3 for J3.J1. In a finite magnetic fieldh
Þ0, the exact ground state maintains its product form in
extended parameter regime. This gives rise to magnetiza
plateaus in the magnetization/sitem versush curves. Again,
the jumps in the magnetization are accompanied by jump
the amount of entanglement. To give one specific exam
consider the caseJ3,J1. The average concurrence/NN
bond in the full ladder is zero for 0,h,hc1

5J1 and 1
6 for

hc1
,h,hc2

52J2. At hc1
, m jumps from zero to the value

1
6 . Each plaquette is in the ground-state spin configurat
1
2 (u↑↑↑↓&2u↑↑↓↑&2u↑↓↑↑&1u↓↑↑↑&) in the field range
hc1

,h,hc2
. Schulenberget al. @27# have constructed exac

eigenstates which consist of independent, localized o
magnon states in a class of frustrated spin lattices and h
shown that these are the ground states in high magn
fields. The eigenstates are obtained provided certain co
tions are satisfied. In a kagome´ lattice, the magnon states ar
localized inN/9 hexagons, whereN is the total number of
spins. The hexagons in which the magnon excitations oc
are isolated from each other~Fig. 4!. Above the saturation

n

0-3
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I. BOSE AND E. CHATTOPADHYAY PHYSICAL REVIEW A66, 062320 ~2002!
magnetic field, all the spins in the lattice are in a FM sp
configurationu0&, and each spin pair is unentangled. T
stateu0& is the vacuum for magnon excitations. At a critic
field below the saturation magnetic field, the exact eigens
consisting ofN/9 localized one-magnon excitations becom
the ground state. The localized magnon excitation has
wave function

u1&5
1

A6
(
l 51

6

~21! lSl
2u0&. ~7!

This gives rise to a macroscopic change in the magnetiza
curve. In each of theN/9 hexagons, a spin is equally en
tangled with all the other five spins and the magnitude of
concurrence isC5 1

3 . This signifies a macroscopic change
the amount of entanglement. The magnetization jump oc
ring at a critical value of the magnetic field signifies a fir
order QPT. We have shown through specific examples
such QPTs give rise to macroscopic jumps in the amoun
entanglement associated with NN and/or further-neigh
spin pairs.

QPTs can also be brought about by tunning exchange
teraction strengths. We have already given an example of
in the case of the ladder model shown in Fig. 3. Forh50, a
QPT occurs atJ3 /J151. In the frustrated two-leg ladde
model shown in Fig. 1, a QPT takes place at the critical va
(@JR /J#)c.1.401. Below the critical point, the ground sta
is that of an effectiveS51 chain with theS51 spins form-
ing out of the pairs ofS5 1

2 rung spins. The spin ladder i
now in the Haldane phase of aS51 chain. Above the critical
point, the ladder is in the rung-singlet~RS! phase in which
the rung spins are in singlet spin configurations. Kolezh
and Mikeska@28# have proposed a generalized frustrated l
der model in which the first-order QPT between the RS a
the Haldane phases can be studied in an exact manner.
model includes biquadratic interactions besides NN a
NNN ~diagonal! ones. The Hamiltonian is given by

H5(
i

hi ,i 11 ,

hi ,i 115
y1

2
~SW 1,i•SW 2,i1SW 1,i 11•SW 2,i 11!1~SW 1,i•SW 1,i 11

1SW 2,i•SW 2,i 11!1y2~SW 1,i•SW 2,i 111SW 2,i•SW 1,i 11!

1x1~SW 1,i•SW 1,i 11!~SW 2,i•SW 2,i 11!1x2~SW 1,i•SW 2,i 11!

3~SW 2,i•SW 1,i 11!, ~8!

where x15 4
5 ~322y2!, x25 4

5 ~3y222!. ~9!

The indices 1 and 2 correspond to the lower and upper
of the ladder, respectively, andi is the rung index. The exac
phase boundary between the RS and the Haldane phas
given by y15 4

5 (11y2). The ground state in each phase
known exactly. In the Haldane phase the ground state is
AKLT state@23#. The ground-state energy/rung in the RS a
06232
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the Haldane phases areERS52 3
4 y11 3

20 (11y2) andEAKLT
5 1

4 y12 13
20 (11y2), respectively.

As mentioned before, in the RS phase the spin pairs al
the rungs are perfectly entangled with concurrenceC51. All
the other spin pairs are unentangled. The amount of entan
ment in the AKLT phase can be computed in the followi
manner. For@H,Sz#50, whereSz is thez component of the
total spin, the reduced density matrix of a spin pair located
the sitesi and j has the form@12#

r i j 5S u1 0 0 0

0 w1 z 0

0 z w2 0

0 0 0 u2

D . ~10!

The concurrence quantifying the entanglement is given b

C52 max@0,uzu2Au1u2#. ~11!

Wang and Zanardi@29# have shown that the matrix eleme
of r i j can be expressed in terms of the various correlat
functions Gab5^s ias j b&5Tr(s ias j br), (a5x,y,z),
where r is the density operator. The magnetization/sitem
5(1/N)Tr(( i 51

N s i
zr). In particular, the following relations

hold true:

u65 1
4 ~162m1Gzz!,

z5 1
4 ~Gxx1Gyy!. ~12!

The correlation functions in the AKLT phase can be calc
lated in an exact manner using the transfer-matrix metho
the matrix product~MP! formalism @30#. The AKLT ground
state can be written in the MP form as

cAKLT5Tr)
i 51

N/2

gi ~13!

with gi5F ut0& i 2A2ut1& i

A2ut2& i 2ut0& i
G . ~14!

The product in Eq.~13! is over the (N/2) rungs of the ladder.
The two spin1

2 ’s of each rung are in a triplet spin configu
ration in the AKLT phase giving rise to an effective spin 1.
Eq. ~14!, the statesutm& with m511, 0, and21 represent a
spin state withSz511, 0 and21, respectively. Calculation
of the correlation functionsGaa (a5x,y,z) of the spin 1

2

pairs in the AKLT state can be carried out following standa
procedure@30#. We quote the final results. The various co
relation functions are

^s1,nas1,n11a&5^s2,nas2,n11a&5^s1,nas2,n11a&

5^s1,n11as2,na&52 4
9 ~a5x,y,z!,

~15!

^s1,nas2,na&5 1
3 ~a5x,y,z!. ~16!
0-4
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The correlation functions, in which the distancel separating
the rungs on which the spins are located is>1 ~in Eq. ~15!
l 51), involve the factor 4(21)l32 l 21. With the knowledge
of the correlation functions, the concurrence can be de
mined using the relations~11! and ~12! (m in the AKLT
phase is zero!. One finds that in the AKLT phase, the sp
pairs along the rungs are unentangled. In the RS phase
same spins are maximally entangled. The intraleg NN
the NNN ~diagonal! spin pairs are entangled in the AKL
phase with concurrenceC5 1

6 in each case. In the RS phas
these spin pairs are unentangled. Again, the first-order Q
from the RS phase to the AKLT phase is accompanied
macroscopic changes in the entanglement structure.

The generalized ladder model studied by Kolezhuk a
Mikeska has a rich phase diagram@28# describing both first-
order and second-order QPTs. At the second-order ph
boundary, the gap in the excitation spectrum goes to z
There are five possible phases: RS, AKLT, FM,D1, andD2.
The phases D1 and D2 have spontaneously broken symm
but the exact ground states are not known in these pha
The phase boundaries separating the FM-D1, AKLT-D
AKLT-D2, RD-D1, and RD-D2 are known exactly and hav
been determined in the MP formalism. The correspond
QPTs are second-order transitions. The two first-order ph
boundaries separating the RD-AKLT and AKLT-FM pha
are also known exactly. Preliminary calculations@31# near
the second-order phase boundaries suggest that the pai
entanglement does not extend beyond the NNN distance.
same is true in the case of first-order QPTs. Osterlohet al.
@16# have considered the range of entanglement in the vi
ity of the quantum critical point of the transverse Ising mod
in 1D. They have found that even at the critical point, whe
the spin-spin correlations are long ranged, the concurrenc
zero for spin pairs separated by more than NNN distan
There is, however, one crucial difference between this mo
and the AKLT-type models described by MP states. The
states are finitely correlated, i.e., the spin-spin correla
function ^Si

zSi 1 l
z &5ASe2 l /j decays exponentially with the

correlation lengthj equal to a few lattice spacings. As th
transition pointt5tc (t is some model parameter! is ap-
proached, the correlation lengthj either does not exhibit any
singularity or diverges in a power-law fashion as (t2tc)

2.
-
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In the latter case, however, the prefactorAs}(t2tc) be-
comes zero at the transition point@28#. Thus, long range
spin-spin correlations cannot develop in the system.

In summary, we have shown through specific examp
that first-order QPTs can bring about macroscopic change
the amount of pairwise entanglement in spin systems.
have given the specific example of a spin model in wh
magnetization plateaus give rise to a plateau structure in
average concurrence per rung as well as NN bond. There
several low-dimensional AFM compounds in which magn
tization plateaus have been observed experimentally@32#.
The appearance of magnetization plateaus has been
plained in terms of metal-insulator transitions of magne
excitations driven by a magnetic field@33#. In the insulating
~plateau! phase, the magnetic excitations give rise to crys
line order and in the metallic~nonplateau! phase they are
itinerant. It will be of interest to explore the possibility of
plateau structure in the amount ofT50 as well as finiteT
entanglements in such systems. Our study shows that an
ternal magnetic field can be employed to give rise to la
changes in the amount of entanglement and provides the
sics for the construction of an entanglement ‘‘amplifier’’
‘‘switch.’’ There is a large number of spin models whic
exhibit QPTs of significant interest. Some of these mod
describe 2D systems. Examples include the Shas
Sutherland model@34#, the S5 1

2 AFM model on the~1/5!-
depleted square lattice@35#, a lattice of weakly-coupled two-
leg ladders@36#, etc. Some of these models are reviewed
Refs. @20,37#. All these models exhibit second-order QP
from a spin-disordered gapped phase to a gapless phase
long range spin-spin correlations. Osterlohet al. @16# and
Osborne and Nielsen@17# have found evidence of entangle
ment showing scaling behavior in the vicinity of the quantu
critical point. Similar studies should be carried out for t
spin models mentioned to augment our knowledge of
relationship between QPTs and entanglement.

Note added in Proof.Our attention has been drawn to a
earlier work by Y. Shi@38# on entanglement properties o
quantum spin liquids in two dimensions.

E.C. is supported by the Council of Scientific and Indu
trial Research, India under Grant No. 9/15~186!/97-EMR-I.
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