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General impossible operations in quantum information
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We prove a general limitation in quantum information that unifies the impossibility principles such as
no-cloning and no-anticloning. Further, we show that for an unknown qubit one cannot design a universal
Hadamard gate for creating equal superposition of the original and its complement state. Surprisingly, we find
that Hadamard transformations exist for an unknown qubit chosen either from the polar or equatorial great
circles. Also, we show that for an unknown qubit one cannot design a universal unitary gate for creating
unequal superpositions of the original and its complement state. We discuss why it is impossible to design a
controllednoT gate for two unknown qubits and discuss the implications of these limitations.
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[. INTRODUCTION impossible and possible operations on quantum information
that are allowed by laws of quantum physics. Because these
In the microscopic world a qubit carries quantum as wellwould give rise to serious implications for quantum comput-
as classical information. To specify the quantum informationing and information processing devices in the future.
content of an unknown qubit we need doubly infinite pith The purpose of this paper is multifold. First, we show that
of information, whereas to extract classical information wethere is no allowed transformation that will take an unknown
need to do a measurement and that yields only a single bit ¢nd a blank state at the input port and produce the original
information. This makes a qubit so distinct from a classical@long with a function of the original state at the output port.
bit. Unlike classical information there are several limitations This limitation generalizes and unifies the no-cloning and
on the basic operations that one can perform on quantuffio-anticloning principle for arbitrary qubits. Second, we
information. Using linearity of quantum evolution it can be show that one cannot design a Hadamard gate that will create
shown that one cannot copy an unknown state perfectl linear superposition of an unknown state along with its
[2,3]. Further, using unitarity alone it can be shown that non-complement state with equal amplitudes. Surprisingly, we
orthogonal states cannot be copied exaply Similarly, it ~ Sshow that there exist two distinct Hadamard transformations
was shown that there is no linear, trace preserving operatiof®r unknown qubits chosen from the polar and equatorial
that takes two copies of an unknown state and delete a copgreat circles. We also show that it is not possible to design a
by acting jointly on both the copid$,6]. In addition, it was  unitary transformations that will create an unequal superpo-
found that one cannot complement an arbitrary qubit, wherg&ition of the original qubit with its complement. Third, we
complementing means flipping a qubit on Bloch spH&@].  show that one cannot design a controlled-N@WNoT) gate
It was also shown that one cannot design a machine that wifer two unknown qubits and discuss implications of these
take an unknown qubit and a blank state, and produce thémitations. Moreover, unlike the qubits in preferred compu-
original along with a flipped statf9]. Recently, a stronger tational basis states, if the qubits are in some arbitrary states
no-cloning theorem has been proved which says that th#en the quantum computational logic gates cannot be de-
supplementary information needed to make a copy must b&igned perfectly.
as large as possib[d0]. At the heart of these fundamental ~ The organization of our paper is as follows. In Sec. Il, we
limitations there lies the unknowability of a single quantumpresent our generalized limitation. In Sec. Ill, we discuss
state. nonexistence of universal Hadamard gate and unitary gates.
On the other hand there are certain types of physical opln Sec. IV, we discuss why it is impossible to design max
erations that one can perform, in principle, on quantum ingate for two unknown qubits. In Sec. V, we briefly discuss
formation. For examp|e, as we all know, one can swap aﬁhe implications of these limitations for future quantum me-
unknown state with a known or an unknown state perfectlychanical computers and the conclusions follows.
One can teleport an unknown state with the help of dual

classical and quantum chanméd]. One; can create universal Il. GENERAL LIMITATION ON QUANTUM

entangled states of an unknown qubit with two types of ref- INFORMATION

erence statefl2] using shared entanglement and classical

communication. One can also erd4e,14] the content in- In the sequel we prove a general impossibility theorem for

formation of an unknown state by swapping it with a stan-quantum information. Suppose we are given a qubit in an
dard state and then performing an irreversible operdgn  unknown statéW¥ )= «|0)+ 8|1) € H?, with «, 8 beingun-
Therefore, it is of utmost importance to know what are theknown complex numbers ante|?+|g|2=1. This state is
isomorphic to any two-state system parametrized by two real
parameters ap¥ (6, $))=cosh/2|0)+sina/2e'?|1) with O
*Also at School of Informatics, University of Wales, Bangor <6< and O<¢=<2.
LL 57 1UT, United Kingdom. Email address: akpati@iopb.res.in Theorem | Given an arbitrary statgV) eH? of an un-
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known qubit and a blank stat& ) e 2, there does not exist when we send an unknown and blank states through a ma-
a isometric mapM:H?@H?@H>*—~H?®H29H? that chine we will have an output state given by

will transform V)o|3)®|Q)— \/Xa|o>®u|o>®|Q0>+ V(1—N\)a*|0)

®A|0)®|Qo)+ VA B|1)® U[1)®| Q)

where |Q and |Qy) are the initial and final states of the T ok
ancilla (it could be the corresponding states of the proposed FVA-MBTHeAL)2[Qy). ©

machine itself. Here| 7(W)) is the function of the original, However, ideally we should have obtained an output state
namely, a state that is a function ef 8 or their complex  gjven by

conjugates. It may be related to the original state either by a

unitary or antiunitary transformation, i.d A(W))=K|¥),  |¥)&|A¥))®|Qy)=[Aa?/0)®U|0)+ (1—N\)|a|?|0)
whereK can be a unitary operatdf or antiunitary operator

[¥)e[2)e|Q)—[¥)e|AW¥))e|Quw), @

A. More generally] 7(¥)) may be related to¥) by a sum ®A0)+ N B%1)®U|1)

of unitary and antiunitary operators, i.e}.z-'(\lf)>=(\/XU T o2

+V(1-N)A|¥, with 0<A<1 and\ is real. Here only TVA-MIBF D @AlL)

those unitaries and antiunitaries may be considered that gives + \/Xa13|0>® u|1)

isometric (only norm preserving transformations in 2.

Proof. Since a qubit in the canonical orthogonal states carry +V(1-N)aB*|0)®A|1)
classical information and can be measured without any dis-

turbance it can be manipulated at will. Let there be a ma- + \/Xa,B|l>®U|O)

chine that transforms a qubit in the orthogonal std@®s +J(1=N)a* B|1) 2 A|0)] ®|Q
915)9|Q)—[0)8 | 7(0))2]Qo) and |10 [Syo|Q)— 1) IyeAl0)]8[Qe)
®|F(1))®|Q,). First, we consider the case whiris either (7)

unitary or antiunitary. If we send an unknown qubit through

this machine, then by linearity we have Since Egs(6) and (7) can never be the same for arbitrary

values ofa andB, we conclude that the generalized machine

V)@ [3)e|Q)=(al0)+B[1))®|S)e|Q)—a|0)®|F(0))  does not exist for an unknown qubit. Hence the proof.
The nonexistence of a machine defined in ED. is a

®|Qo) +BI1)®|F(1))®[Qy), (20 class of general form of limitations that one can impose on
- ) guantum information. Some known impossible machines can
and by antilinearity of map we have be thought of as special cases of the above impossible ma-

B chine. For example, if 7(¥))=|¥), then it is the no-
[T)e[2)®[Q)=(al0)+B|1))®|%)®|Q)— a*|0) cloning principle, as the unitary operatér=1, with | being
®|F(0))®|Qo)+ B*|1)®|F(1))®|Q,).  the identity operation. IfFA(W))=[¥*)=a*[0)+p*|1)
=(C|W¥), with C being conjugation operation, then this limi-
3 tation suggests that starting with an unknown qubit it is im-
possible to produce the original and a conjugate qubit. Here,

Note the complex conjugation om and 5 due fo the anti- will be the conjugating operation which is an antiunitary

linear nature of the map. Ideally, we should have obtained i

the output port a state of the type operator. [f{F(¥))=|¥), where|¥)=a*|1)—5*[0) then
K is flipping operation and is conjugating up to a unitary
[¥Y® | AW))®|Qy)=[a?|0)®|F(0))+ B%1)®|F(1)) operator. In this case our limitation becomes impossible of

producing a complement copy along with the original start-
+apB(|0)®[F(1))+|1)®|FO0)))]  ing from a single copy. This can be regarded as a new limi-

®|Qy) 4) tation on quantum information. Note that it is not the same as
v the no-complementing principle which states that the opera-
whenK is a unitary operator or a state of the type tion [W)—|W¥) is an impossible operatiofi7,8]. In the

present case, it aims to preserve the original and produce a
WY@ | FAP))®|Qy)=[|a|?0)|F0))+|Bl?1)®|F1))  complement copy and that is an impossible one. Since any
. N antiunitary transformation is conjugating times unitary trans-
+ap*[0)®]F(1))+a* BI1) formation, one can relate the complement and conjugate
®|F(0))]®|Qy) (5)  states for a qubit asl')=(—ioy)C|¥). Thus, we are able to
find different limitations as well as unify three principles
whenK is an antiunitary operator. Since the states in Egs. under a general impossible machine.

and(4) and in Eqgs.(3) and(5) can never be equal for arbi- WhenK is a sum of unitary and antiunitary transforma-
trary values ofa and B, there is no allowed machine to tion then we have a different type of impossible machine and
satisfy Eq.(1). it becomes very interesting indeed. For examplé&l# | and

Next we consider the case whgA(W)) is related td W) A is complementing operation, then the transformatibn
by a sum of unitary and antiunitary operators. In actuality,will suggest
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W)@ |3)0|Q)—[ N ¥)a|¥) where one can imagine that one half of the Bloch sphere has
been chosen to play the role loF ) and the other half to play

+V(1-M)|P)®|P)]®|Qy), (8)  the role of|¥). Alternately, a naturally universal way of
defining a Hadamard gate would be

which can be called an impossible cloning-cum-

complementingquantum machine. Because wher1 it 1 S

will be purely a quantum cloning and wher=0 it will be |\I’>_’E(|q’>+'|q’>)

purely quantum complementing machine. For any intermedi-

ate value of\ the machine will be a hybrid one. Since we 1

cannot have an exact hyb_rld machine, it woulq bg very inter- W) — (i | W) +| ). (10)
esting to see how the optimal values of the fidelity for such \/5

an approximate machine behave as a function of the known

parametei. Here fidelity may be defined in the usual senseThe later definition has an advantage that the transformation

as the 'overlap of the idegl output with the aqtual OutpUls invariant if we interchangé¥) and|¥). But as we will
state (in general a mixed state pscuar i€, F  see subsequently, both the definitions have their own advan-
=(F(W)|pactual F(¥)). However, our purpose is not to tages when applied to special classes of unknown qubits.
study approximate machines, butdiscoverphysical opera- Theorem Il There is no Hadamard gate defined by Egs.
tions that cannot be done exactly. We can suggest that if il(lg) or (10) for an unknown qubit that will create an equal

the future one discovers some other limitations, then thosgyperposition of the original state?) and its complement
may be encompassed by our principle. One may notice that

the quantum copy-deleting machine proposed in REf. state| V).

does not belong to the above class of machines because theWe_can prove th_is gsing either the "”e"’?”ty of guantum
deletion operation maps [¥)®|¥)®|Q)—|¥)e[3) evolution or the unitarity. The proof below is based on the

®|Qu). unitarity. _ _
Proof. Suppose that there exists a universal Hadamard
gate for all possible inputs chosen from Bloch sphere. If it is
I1l. NONEXISTENCE OF UNIVERSAL HADAMARD so, then for any two distinct qubitﬁllfl),|\lf2>} and their

AND UNITARY GATES complement state§¥;),|¥,)}, by Eqg.(9) we must have
In this section we discuss two other limitations that do not

belong to the above class. We prove that it is impossible to 1 —

design some important one-qubit gates for a qubit in some |W1>_}E(|\P1)+|\P1>)

unknown state. First, we show why it is impossible to have a

Hadamard gate in a universal way. Second, we show that one 1

cannot design a unitary gate th_at will create unequal super- W) — —(|¥,)— | W,)). (12)
position of unknown state with its complement. J2

It is beyond doubt that in quantum computation and in-
formation theory two ubiquitous gates are Hadamard and\nd similarly, we must have
CNOT. These gates are very useful in various quantum algo-
rithms (like Deutsch-Jozsa, Shor, and Grover, eand infor- 1 —
mation processing protocofd5]. We will prove that one |‘1’2>—>E(|‘1’2>+|‘1’2>)
cannot design these useful logic gates for arbitrary, unknown
qubits We know that if we are given a qubit in either t}@ 1
or |1) state, then the Hadamard transformatiome-qubit . - i
gate rotates a qubit in the stat@)— (1/y2) (|0)+|1)) and [V2)— \/§(|qu> V2)). (12
|1)— (1/y2) (J0)—|1)), i.e., it creates superposition of the
original and its complement state with equal amplitudes. ThéNow taking the inner product, we have
question is, if we are given an unknown qubit pointed in
some arbitrary directiom in a state| W) or in the direction

—nin a state|\I_f>, can we design a logic gate that will
transform these inputs as follows:

() S (O + (W3 )+ (E ) + (T3 )

(F) 5 (W3 )— (03[~ (T3 )

1 J—
|U)— —=(|¥)+|V)) _
J2 (V4| W,)). (13

- 1 - Similarly, if we consider the Hadamard transformation de-
W) — — (| W) —|¥)), (9) fined by Eq.(10) then for two arbitrary qubits we have the
V2 inner product condition
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1 T — (W (0,)| W
(AW ) 5 (W4 Wo) + (W W) — (W[ W) (W (O)[W(62))=(W (00)[W (62), (19
o for arbitrary nonzero values @. This crucial condition en-
(W4 T,)) sures that the unitarityl3) is not violatedfor polar qubits.

However, if we take qubits from equatorial great circle, then

any qubit and its complement can be written |85(¢))

=H(cos¢/2|0)—ising/2|1)) and |V (¢))=H(isin#/2|0)

_ —cos¢/2|1)) up to an overall phase, whekgis the ordinary

(V4| P,)). (14 Hadamard gate. One can check that the following conditions
hold for equatorial qubits:

(P 5)— 5 (V1 W5) i) + (V)

Taking |W,)=a;|0)+ B;|1) and |¥,)=a*|1)— B*|0)

with i=1,2, we can check that for two arbitrary qubits (W ($)|V (b)) =(W(b1)|¥ (b)),
<\I’||‘I’J>:_<\P||\PJ>* and<\lf||‘l’]>:<‘y||\]?]>* is alWﬁyS — —
satisfied. With these conditions, it is clear that the inner prod- (V(h) W (h2))=(V (1) W (o). (16)

uct is not preserved. Hence a universal Hadamard gate d
fined by Eqs(9) or (10) cannot exist for arbitrary qubits. In
guantum interferometric languagae cannot design a 50/50

; torial great circles.
beam splitter for an unknown photdhat creates a equal equa . . .
superposition of photon polarization with its orthogonal Second, consider the Hadamard transformation defined by

counterpart. This is a very important limitation as it suggest?q' (10.)' One can C.heCk th‘"’.‘t. if we choose_ qu_b|ts fror_n_ polar
that linearity does not allow us to linearly superpose an undreat cwple then using conQ|t|or(|$5), the unitarity Cor?d'“"”
known state with its complement (14) is violated But for qubits chosen from equatorial great

One may wonder is there any special class of qubits foFir.CIe’ using conditior{16), pnitarity requiremen(14) i.s sat-
which a universal Hadamard gate exists? It may be remarke fied. Hence one can Qe5|gn a Hadamard gate _defmed by Eq.
0) for equatorial qubits but not for polar qubits. So what

that even though it is not possible to flip an arbitrary qubit, a ; \ .
qubit chosen from equatorial or polar great circle on a BIoch\tNe h;ive fc:gnd Ids ;hatdf(l))r aEn grbnra% qub't tthe H?dgn:ard
sphere can be flipped exacfly6]. This is also the largest set ransformations defined by Eq&) or (10) do not exist. Bu

of states on a Bloch sphere that can be complemented pgﬁr a polar qubit the correct Hadamard transform is &.

fectly [17]. Surprisingly, and somewhat curiously, here Weand for an equatorial qubit the correct Hadamard transform is
will show that if we restrict our qubits from polar great circle Eq. (10. . i .
then thereexistsHadamard transformatio(®) for unknown B_elow_we |IIusFrate how def|n|t|0|(|9)_ is at work for pole_lr
values of#, but not for qubits from equatorial great circle. If ?Ub't?' Flrst_t, n(t3rt]|cte th”at V\t'.e W%“'%)“kl? to havc(aj a unitary
we restrict our qubits from equatorial great circle then ther rr?n\?vr?r“rrall?n bi?thvrw Sk? tll’slfy rc(j:fn 'r HWE Sn?nr q an tun\-/v
existsHadamard transformatioii0) for unknowne, but not Wi|(|)h v ealrqu ough the ordinary Hadamard gate, we
for qubits from polar great circle. ave
With the computational basis of a qubit,|d) represents

a point on the north pole and) represents a point on the |\p(9)>_>i (cos€+sinf
2

\3/\_/ith this condition the inner product conditiaid3) is not
preserved and hence there cannot be a Hadamard3)dte

0)+

0 0
cos——smE) |1)}

south pold 1), then the union of the se$; US represents V2 2 2 2
polar great circle, wher& :={|W(6))|| W (6))=cosa/2|0)

; - il - — 1
+sin@/2|1),0< <} and Sp={|V(0))||T(6)) W (6))— — (cosf—sinf) |0)—(cosf+sinf) |1>}_
=cos6/2|1) — sin #2|0),0< #=<}. Similarly, the union of the V2 2 2 2 2
setsSEUSE represents equatorial great circle, whefg (17)

={|W ()| W(¢))=1//2(|0) +€'?|1)),0<p=<27} and
Se ={|V ()P (¢)) =12(|1)—e '?|0)),0=< p=<27}.

These classes of qubits belong to one-dimensional subspace

Ideally, we should have obtained

> ; 1 6 0 6 6
of S© and play a very special role because they are those |W(g))——|| cosz—sin5||0)+ cos—+sm—)|1)}
which can also be remotely prepared using one unit of quan- V2 2 2 2 2
tum entanglement and one bit of classical communication
[16]. This gives a hint that, maybe for these classes of qubits, 1 6 0 N 0
one can design Hadamard gates. | (9)>—>E (cos§+sm§ |0)+ smz—cosE) |1>}

First, consider the Hadamard transformation defined in (18)
Eqg. (9). The reason why a Hadamard g&®& exists for the
polar great circle is that it preserves the inner product conThe actual and the ideal states are different. Hence the ordi-
dition (13). One can check that for this set if we denote nary Hadamard gate cannot be used to create(:Ele_ But
|W1)=[¥(6,)) and| V) =|¥(6,)) and so on, then one has the desired unitary transformation is not difficult to find and
_ _ is given by the original Hadamard matrix times the Pauli
(W(0)|W(6,))y=—{(V(0,)|¥(6,)), spin matrixo,, i.e., the Hadamard transformation for polar
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qubits is given byHp=o,H=1/yZ(3 11). This will create (W1(60)|W(60))—(¥1(6)|¥,(6))+(a*b—ab*)
an equal superposition of any arbitrary real qubit and its _
complement, i.e., the action dflp on [W(6)) will give X(W1(0)|¥(0)), (22

1N2(|¥(6))+|P(h)) and on |[¥(6)) wil give
1/\2 (|w(6))—|¥(6))), up to an overall minus sign in the
later case.

Similarly, one can find a unitary Hadamard gate for an
equatorial qubit that satisfies EGLO). If we send| ¥ (¢))
=H(cos#/2|0)—i sin¢/2|1)) through Eq.(10) we have

where we have usedlhe co@iticrs). Similarly, by taking

the inner product of ¥,(6)|¥,(6)) we can check that it

will not preserve the inner product unleag are real. This

shows that for unequal superpositions of polar qubit with its

complement state to hold the amplitudes in the superposition

should be real. In an analogous manner one can find trans-

1 formations for equatorial qubits also.

|V ($))— =[(1+1)e'¥20)+(1—i)e 1 ®21)] (19 Thus, single-qubit gates such as Hadamard and unitary
2 gates cannot be designed in a universal manner. The surpris-

ing thing is that linearity does not allow linear superposition

and if we send |\5(¢)):H(i sing/2|0)—cosg/2|1))  of an unknown qubit with its complement!

through Eq.(10) we have
IV. NONEXISTENCE OF c-NOT GATE

FOR UNKNOWN QUBITS

— 1 ) )
V() — =[(1+i)e'?J0)—(1—i)e "#?1)]. (20
() 2[( ) 10)=( ) - 20 Next, we briefly come to another important gate, namely,

the cNOT gate which is one of the gates needed for universal
The desired Hadamard gate that will do the above job igjuantum computation. In this section we discuss why it is
given byHg=1/2(3%1_9). This will create an equal super- impossible to design a goT gate for two qubits that have
position of any arbitrary equatorial qubit and its complementPeen prepared in some unknown state. This is a two-qubit
i.e., the action ofHg on [¥(¢)) will give 1/\2(|V(¢)) gaml';md d|t:ELi)k|?.§ |()|>1|§)|>()7|ﬁ>L:?>,IC:t>]|1>H|0>|dl>t;_It1.>f|0> ;
= — G : — an — . ips the second bit if an
+'|E’(¢)>) and on [¥(4)) will give L2(i[¥(¢)) only if the first qubit is in the statél), otherwise it does
+|T(e))). nothing.
One can also ask if it is possible to create unequal super- One can ask: Does there exist al@T gate for arbitrary
position of an unknown qubit with its complement state? Iftwo-qubits that will take
such a device exist then we would have o .
_ (W)= [W) W), [W)[¥)—[W)[¥),
| )y —a|¥)+b|W¥)) _ _ -
()W) = [W)[W),  [V)W)—=[¥)|¥). (23

|¥)—b*[¥)—a*|V¥)), (21)  Again using linearity it can be easily shown that this gate
does not exists. Physically, this impossibility can be traced to

wherea,b are knowncomplex numbers anfh|?+|b|?=1.  the fact thatcNOT gate measures the first qubit and flips the
Using unitarity one can show that the above gate cannoé

exists. However, if a qubit is chosen from the polar circle on
the Bloch sphere and #,b are real, then it is possible to
create unequal superposition of a state with its complemen
We know that if a qubit is in0) or |1) then one creates
|0)—al0)+b|1) and |1)—b|0)—all) by applying a
known unitary transformatiot)=(2 ). One can check UGR=10)0]®1 +]1){1]|® oy (24)
that if we apply Ug=(2 ") to |¥(6)), it will give
a|¥(6)+b|¥(6) and to |¥(6)) will give b|¥(6))
—a|W¥(6)) up to an over all minus sign in the latter case. — _

The amplitudes, b in unequal superposition have to be real, Udior= TN ¥ |01 +| U)W | oy a,B), (25
otherwise the gate will not be “universal” for real qubits. L

That is, when applied to two distinct arbitrary qubits, it will where o (a,8)=(¥}XW¥|+|¥){W¥|) and this cannot
not preserve the inner product. To see this, letbe designed without prior knowledge of the amplitudes.
{|W(61)),|¥(6,))} be two nonorthogonal states and (In fact, the other two Pauli matrices in unknown basis

{IW(61)),|W(62))} be their complement states. If the gatesuch  as  oy(a,B8)= —i(|\If><\?|—|‘5)<\If|),az(a,ﬂ)
has to be universal, it should work for all inputi. Suppose:(m,)(\w_ .

econd one iff the first qubit is in the statk). As we know,

measuring an unknown qubit without disturbing it, is impos-
ible [18]. Hence one cannot design an universgbT gate

or all qubits. Alternately, the atoT operator for two qubits

in orthogonal states is given by

cannot be used for arbitrary qubits. Because the desired
c-NOT operator for two unknown qubits would be given by

| W) (W) are also impossible to measyr&hus

a,b are complex, thenW¥(6))—a|¥.(6))+b|¥i(6)))  unknowability of a single quantum rules out the existence of
and |W,(0))—a|¥,(0))+b|¥,(6))). Taking the inner c-NOT gate. Similarly, one can also rule out doubleat
product, we have and multiple-cNOT gates for unknown qubits.
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V. CONCLUSIONS In conclusion, we have argued that the impossibility of
f producing a copy and a complement copy are special cases

Before conclu_dnjg we briefly mention the |mpI|qat|ons O of the general limitation. We proved thamniversalHadamard
the well-known limitations, and those discovered in this pa-

per, on the future design of quantum computers and unitary logic operations cannot be performed exactly on
We suggest that the general limitations, impossibility Ofarbltrary unknown qubits for creating equal and unequal su-

designing Hadamard gate, unitary logic gate, anebt-gate perpositions. The Iin_ear super_position, which is at the heart
' ’ of quantum mechanics, that itself cannot be created for a

for ar.b|trary qubits can h_ave SOme Serious |mpI|cat|ons_. I_n asingle guantum in an unknown basis. However, if a qubit is
classical computer physical laws do not impose any limita-

tions to performing various logical operations suchnas chosen from polar or equatorial great circle on a Bloch
P 9 ) 9 P : ' sphere then one can design these logic operations by suitably
AND, XOR, FANOUT (cloning), and FAN-IN (deleting. More-

over, arbitrary classical operations can be generated througgweﬁning the transformations. We also discussed why we can-
L y P . 9 ot design a evOT gate for unknown qubits. Future avenues
one bit gate such asnoT and a two-bit gate such as apR.

In quantum world, information is stored in superposed stateOf exploration lie in designing universal, approximate and
q " . perposed gptimal general transformations, Hadamard andt-gates
and that makes it completely different from classical infor-

mation. For example, perfect cloning and deleting are nogr arbitrary qubits in the spirit of universal estimatifig],

allowed operations in a quantum computer. Nevertheless loning [20-22, and universal manipulation of qubits
P q puter. ' [8,23,24. Also one can try to realize these impossible opera-

l,se‘;g: flg:ovngrﬁ?j;ocnoen;b'Lg?%;wafxe%rg:amegﬁﬁfazgengrc])'r}tions in a probabilistic but exact manner analogous to the
q P ) ’ robabilistic cloning[25], novel cloning[26], and probabi-

Fevise our Lnderstanding about uniersalty of quanium comlotC deleting operationt27-2d, I addiion, one may try o
putation. In the light of the present work it may be said thate?(tend _these Ilmltatlo_ns and po§5|ble operations for higher-
: ; . dimensional and continuous variable quantum systems.
even though one-qubit gatan example being a Hadamard
and two-qubit gate such ascaloT are universal with respect
to designing arbitrary unitary operators, they themselves are
not universal with respect to states. In a classical computer
these gates are universal with respect to operations as well as | wish to thank S. Bose, S. L. Braunstein, N. Gisin, and
physical states on which information is stored. But in a quanvarious others for very useful discussions on these ideas at
tum computer it is not so. In the future one would like to several stages in the last two years. Nevertheless, | am re-
investigate further the implications of these fundamentakponsible if there are any unavoidable errors in the presenta-
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