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General impossible operations in quantum information
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We prove a general limitation in quantum information that unifies the impossibility principles such as
no-cloning and no-anticloning. Further, we show that for an unknown qubit one cannot design a universal
Hadamard gate for creating equal superposition of the original and its complement state. Surprisingly, we find
that Hadamard transformations exist for an unknown qubit chosen either from the polar or equatorial great
circles. Also, we show that for an unknown qubit one cannot design a universal unitary gate for creating
unequal superpositions of the original and its complement state. We discuss why it is impossible to design a
controlled-NOT gate for two unknown qubits and discuss the implications of these limitations.
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I. INTRODUCTION

In the microscopic world a qubit carries quantum as w
as classical information. To specify the quantum informat
content of an unknown qubit we need doubly infinite bits@1#
of information, whereas to extract classical information
need to do a measurement and that yields only a single b
information. This makes a qubit so distinct from a classi
bit. Unlike classical information there are several limitatio
on the basic operations that one can perform on quan
information. Using linearity of quantum evolution it can b
shown that one cannot copy an unknown state perfe
@2,3#. Further, using unitarity alone it can be shown that no
orthogonal states cannot be copied exactly@4#. Similarly, it
was shown that there is no linear, trace preserving opera
that takes two copies of an unknown state and delete a c
by acting jointly on both the copies@5,6#. In addition, it was
found that one cannot complement an arbitrary qubit, wh
complementing means flipping a qubit on Bloch sphere@7,8#.
It was also shown that one cannot design a machine that
take an unknown qubit and a blank state, and produce
original along with a flipped state@9#. Recently, a stronge
no-cloning theorem has been proved which says that
supplementary information needed to make a copy mus
as large as possible@10#. At the heart of these fundament
limitations there lies the unknowability of a single quantu
state.

On the other hand there are certain types of physical
erations that one can perform, in principle, on quantum
formation. For example, as we all know, one can swap
unknown state with a known or an unknown state perfec
One can teleport an unknown state with the help of d
classical and quantum channel@11#. One can create universa
entangled states of an unknown qubit with two types of r
erence states@12# using shared entanglement and classi
communication. One can also erase@13,14# the content in-
formation of an unknown state by swapping it with a sta
dard state and then performing an irreversible operation@5#.
Therefore, it is of utmost importance to know what are t
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impossible and possible operations on quantum informa
that are allowed by laws of quantum physics. Because th
would give rise to serious implications for quantum comp
ing and information processing devices in the future.

The purpose of this paper is multifold. First, we show th
there is no allowed transformation that will take an unkno
and a blank state at the input port and produce the orig
along with a function of the original state at the output po
This limitation generalizes and unifies the no-cloning a
no-anticloning principle for arbitrary qubits. Second, w
show that one cannot design a Hadamard gate that will cr
a linear superposition of an unknown state along with
complement state with equal amplitudes. Surprisingly,
show that there exist two distinct Hadamard transformati
for unknown qubits chosen from the polar and equato
great circles. We also show that it is not possible to desig
unitary transformations that will create an unequal super
sition of the original qubit with its complement. Third, w
show that one cannot design a controlled-NOT~c-NOT! gate
for two unknown qubits and discuss implications of the
limitations. Moreover, unlike the qubits in preferred comp
tational basis states, if the qubits are in some arbitrary st
then the quantum computational logic gates cannot be
signed perfectly.

The organization of our paper is as follows. In Sec. II, w
present our generalized limitation. In Sec. III, we discu
nonexistence of universal Hadamard gate and unitary ga
In Sec. IV, we discuss why it is impossible to design a c-NOT

gate for two unknown qubits. In Sec. V, we briefly discu
the implications of these limitations for future quantum m
chanical computers and the conclusions follows.

II. GENERAL LIMITATION ON QUANTUM
INFORMATION

In the sequel we prove a general impossibility theorem
quantum information. Suppose we are given a qubit in
unknown stateuC&5au0&1bu1&PH 2, with a, b beingun-
known complex numbers anduau21ubu251. This state is
isomorphic to any two-state system parametrized by two
parameters asuC(u,f)&5cosu/2u0&1sinu/2eifu1& with 0
<u<p and 0<f<2p.

Theorem I. Given an arbitrary stateuC&PH 2 of an un-
©2002 The American Physical Society19-1
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known qubit and a blank stateuS&PH2, there does not exis
a isometric mapM:H 2

^ H 2
^ H 2→H 2

^ H 2
^ H 2 that

will transform

uC& ^ uS& ^ uQ&→uC& ^ uF~C!& ^ uQC&, ~1!

where uQ and uQC& are the initial and final states of th
ancilla ~it could be the corresponding states of the propo
machine itself!. HereuF(C)& is the function of the original,
namely, a state that is a function ofa,b or their complex
conjugates. It may be related to the original state either b
unitary or antiunitary transformation, i.e.,uF(C)&5KuC&,
whereK can be a unitary operatorU or antiunitary operator
A. More generally,uF(C)& may be related touC& by a sum
of unitary and antiunitary operators, i.e.,uF(C)&5(AlU
1A(12l)AuC, with 0<l<1 and l is real. Here only
those unitaries and antiunitaries may be considered that g
isometric ~only norm preserving! transformations inH 2.
Proof. Since a qubit in the canonical orthogonal states ca
classical information and can be measured without any
turbance it can be manipulated at will. Let there be a m
chine that transforms a qubit in the orthogonal statesu0&
^ uS& ^ uQ&→u0& ^ uF(0)& ^ uQ0& and u1& ^ uS& ^ uQ&→u1&
^ uF(1)& ^ uQ1&. First, we consider the case whenK is either
unitary or antiunitary. If we send an unknown qubit throu
this machine, then by linearity we have

uC& ^ uS& ^ uQ&5~au0&1bu1&) ^ uS& ^ uQ&→au0& ^ uF~0!&

^ uQ0&1bu1& ^ uF~1!& ^ uQ1&, ~2!

and by antilinearity of map we have

uC& ^ uS& ^ uQ&5~au0&1bu1&) ^ uS& ^ uQ&→a* u0&

^ uF~0!& ^ uQ0&1b* u1& ^ uF~1!& ^ uQ1&.

~3!

Note the complex conjugation ona and b due to the anti-
linear nature of the map. Ideally, we should have obtaine
the output port a state of the type

uC& ^ uF~C!& ^ uQC&5@a2u0& ^ uF~0!&1b2u1& ^ uF~1!&

1ab~ u0& ^ uF~1!&1u1& ^ uF~0!&)]

^ uQC& ~4!

whenK is a unitary operator or a state of the type

uC& ^ uF~C!& ^ uQC&5@ uau2u0& ^ uF~0!&1ubu2u1& ^ uF~1!&

1ab* u0& ^ uF~1!&1a* bu1&

^ uF~0!&] ^ uQC& ~5!

whenK is an antiunitary operator. Since the states in Eqs.~2!
and ~4! and in Eqs.~3! and ~5! can never be equal for arb
trary values ofa and b, there is no allowed machine t
satisfy Eq.~1!.

Next we consider the case whenuF(C)& is related touC&
by a sum of unitary and antiunitary operators. In actual
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when we send an unknown and blank states through a
chine we will have an output state given by

uC& ^ uS& ^ uQ&→Alau0& ^ Uu0& ^ uQ0&1A~12l!a* u0&

^ Au0& ^ uQ0&1Albu1& ^ Uu1& ^ uQ1&

1A~12l!b* u1& ^ Au1& ^ uQ1&. ~6!

However, ideally we should have obtained an output st
given by

uC& ^ uF~C!& ^ uQC&5@Ala2u0& ^ Uu0&1A~12l!uau2u0&

^ Au0&1Alb2u1& ^ Uu1&

1A~12l!ubu2u1& ^ Au1&

1Alabu0& ^ Uu1&

1A~12l!ab* u0& ^ Au1&

1Alabu1& ^ Uu0&

1A~12l!a* bu1& ^ Au0&] ^ uQC&.

~7!

Since Eqs.~6! and ~7! can never be the same for arbitra
values ofa andb, we conclude that the generalized machi
does not exist for an unknown qubit. Hence the proof.

The nonexistence of a machine defined in Eq.~1! is a
class of general form of limitations that one can impose
quantum information. Some known impossible machines
be thought of as special cases of the above impossible
chine. For example, ifuF(C)&5uC&, then it is the no-
cloning principle, as the unitary operatorK5I , with I being
the identity operation. IfuF(C)&5uC* &5a* u0&1b* u1&
5CuC&, with C being conjugation operation, then this lim
tation suggests that starting with an unknown qubit it is i
possible to produce the original and a conjugate qubit. H
K will be the conjugating operation which is an antiunita
operator. IfuF(C)&5uC̄&, whereuC̄&5a* u1&2b* u0& then
K is flipping operation and is conjugating up to a unita
operator. In this case our limitation becomes impossible
producing a complement copy along with the original sta
ing from a single copy. This can be regarded as a new li
tation on quantum information. Note that it is not the same
the no-complementing principle which states that the ope
tion uC&→uC̄& is an impossible operation@7,8#. In the
present case, it aims to preserve the original and produ
complement copy and that is an impossible one. Since
antiunitary transformation is conjugating times unitary tran
formation, one can relate the complement and conjug
states for a qubit asuC̄&5(2 isy)CuC&. Thus, we are able to
find different limitations as well as unify three principle
under a general impossible machine.

When K is a sum of unitary and antiunitary transform
tion then we have a different type of impossible machine a
it becomes very interesting indeed. For example, ifU5I and
A is complementing operation, then the transformation~1!
will suggest
9-2
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GENERAL IMPOSSIBLE OPERATIONS IN QUANTUM . . . PHYSICAL REVIEW A66, 062319 ~2002!
uC& ^ uS& ^ uQ&→@AluC& ^ uC&

1A~12l!uC& ^ uC̄&] ^ uQC&, ~8!

which can be called an impossible ‘‘cloning-cum-
complementing’’ quantum machine. Because whenl51 it
will be purely a quantum cloning and whenl50 it will be
purely quantum complementing machine. For any interme
ate value ofl the machine will be a hybrid one. Since w
cannot have an exact hybrid machine, it would be very in
esting to see how the optimal values of the fidelity for su
an approximate machine behave as a function of the kn
parameterl. Here fidelity may be defined in the usual sen
as the overlap of the ideal output with the actual out
state ~in general a mixed state! ractual, i.e., F
5^F(C)uractualuF(C)&. However, our purpose is not t
study approximate machines, but todiscoverphysical opera-
tions that cannot be done exactly. We can suggest that
the future one discovers some other limitations, then th
may be encompassed by our principle. One may notice
the quantum copy-deleting machine proposed in Ref.@5#
does not belong to the above class of machines becaus
deletion operation maps uC& ^ uC& ^ uQ&→uC& ^ uS&
^ uQC&.

III. NONEXISTENCE OF UNIVERSAL HADAMARD
AND UNITARY GATES

In this section we discuss two other limitations that do n
belong to the above class. We prove that it is impossible
design some important one-qubit gates for a qubit in so
unknown state. First, we show why it is impossible to hav
Hadamard gate in a universal way. Second, we show that
cannot design a unitary gate that will create unequal su
position of unknown state with its complement.

It is beyond doubt that in quantum computation and
formation theory two ubiquitous gates are Hadamard
CNOT. These gates are very useful in various quantum a
rithms ~like Deutsch-Jozsa, Shor, and Grover, etc.! and infor-
mation processing protocols@15#. We will prove that one
cannot design these useful logic gates for arbitrary, unkno
qubits. We know that if we are given a qubit in either theu0&
or u1& state, then the Hadamard transformation~one-qubit
gate! rotates a qubit in the stateu0&→ (1/A2) (u0&1u1&) and
u1&→ (1/A2) (u0&2u1&), i.e., it creates superposition of th
original and its complement state with equal amplitudes. T
question is, if we are given an unknown qubit pointed
some arbitrary directionn in a stateuC& or in the direction

2n in a stateuC̄&, can we design a logic gate that wi
transform these inputs as follows:

uC&→
1

A2
~ uC&1uC̄&)

uC̄&→
1

A2
~ uC&2uC̄&), ~9!
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where one can imagine that one half of the Bloch sphere
been chosen to play the role ofuC& and the other half to play

the role of uC̄&. Alternately, a naturally universal way o
defining a Hadamard gate would be

uC&→
1

A2
~ uC&1 i uC̄&)

uC̄&→
1

A2
~ i uC&1uC̄&). ~10!

The later definition has an advantage that the transforma

is invariant if we interchangeuC& and uC̄&. But as we will
see subsequently, both the definitions have their own adv
tages when applied to special classes of unknown qubits

Theorem II. There is no Hadamard gate defined by E
~9! or ~10! for an unknown qubit that will create an equ
superposition of the original stateuC& and its complement

stateuC̄&.
We can prove this using either the linearity of quantu

evolution or the unitarity. The proof below is based on t
unitarity.

Proof. Suppose that there exists a universal Hadam
gate for all possible inputs chosen from Bloch sphere. If i
so, then for any two distinct qubits$uC1&,uC2&% and their

complement states$uC̄1&,uC̄2&%, by Eq. ~9! we must have

uC1&→
1

A2
~ uC1&1uC̄1&)

uC̄1&→
1

A2
~ uC1&2uC̄1&). ~11!

And similarly, we must have

uC2&→
1

A2
~ uC2&1uC̄2&)

uC̄2&→
1

A2
~ uC2&2uC̄2&). ~12!

Now taking the inner product, we have

^C1uC2&→
1

2
~^C1uC2&1^C1uC̄2&1^C̄1uC2&1^C̄1uC̄2&!

^C̄1uC̄2&→
1

2
~^C1uC2&2^C1uC̄2&2^C̄1uC2&

1^C̄1uC̄2&!. ~13!

Similarly, if we consider the Hadamard transformation d
fined by Eq.~10! then for two arbitrary qubits we have th
inner product condition
9-3
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^C1uC2&→
1

2
~^C1uC2&1 i ^C1uC̄2&2 i ^C̄1uC2&

1^C̄1uC̄2&!

^C̄1uC̄2&→
1

2
~^C1uC2&2 i ^C1uC̄2&1 i ^C̄1uC2&

1^C̄1uC̄2&!. ~14!

Taking uC i&5a i u0&1b i u1& and uC̄ i&5a i* u1&2b i* u0&
with i 51,2, we can check that for two arbitrary qubi

^C i uC̄ j&52^C̄ i uC j&* and ^C i uC j&5^C̄ i uC̄ j&* is always
satisfied. With these conditions, it is clear that the inner pr
uct is not preserved. Hence a universal Hadamard gate
fined by Eqs.~9! or ~10! cannot exist for arbitrary qubits. In
quantum interferometric languageone cannot design a 50/5
beam splitter for an unknown photonthat creates a equa
superposition of photon polarization with its orthogon
counterpart. This is a very important limitation as it sugge
that linearity does not allow us to linearly superpose an
known state with its complement.

One may wonder is there any special class of qubits
which a universal Hadamard gate exists? It may be rema
that even though it is not possible to flip an arbitrary qubit
qubit chosen from equatorial or polar great circle on a Blo
sphere can be flipped exactly@16#. This is also the largest se
of states on a Bloch sphere that can be complemented
fectly @17#. Surprisingly, and somewhat curiously, here w
will show that if we restrict our qubits from polar great circ
then thereexistsHadamard transformation~9! for unknown
values ofu, but not for qubits from equatorial great circle.
we restrict our qubits from equatorial great circle then th
existsHadamard transformation~10! for unknownf, but not
for qubits from polar great circle.

With the computational basis of a qubit, ifu0& represents
a point on the north pole andu1& represents a point on th
south poleu1&, then the union of the setsS P

1US P
2 represents

polar great circle, whereS P
1
ª$uC(u)&uuC(u)&5cosu/2u0&

1sinu/2u1&,0<u<p% and S P
2
ª$uC̄(u)&uuC̄(u)&

5cosu/2u1&2sinu 2u0&,0<u<p%. Similarly, the union of the
setsS E

1US E
2 represents equatorial great circle, whereS E

1

ª$uC(f)&uuC(f)&51/A2(u0&1eifu1&),0<f<2p% and
S E

2
ª $uC(f)&uuC(f)& 51/A2(u1&2e2 ifu0&),0<f<2p%.

These classes of qubits belong to one-dimensional subs
of S2 and play a very special role because they are th
which can also be remotely prepared using one unit of qu
tum entanglement and one bit of classical communica
@16#. This gives a hint that, maybe for these classes of qub
one can design Hadamard gates.

First, consider the Hadamard transformation defined
Eq. ~9!. The reason why a Hadamard gate~9! exists for the
polar great circle is that it preserves the inner product c
dition ~13!. One can check that for this set if we deno
uC1&5uC(u1)& anduC2&5uC(u2)& and so on, then one ha

^C~u1!uC̄~u2!&52^C̄~u1!uC~u2!&,
06231
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^C~u1!uC~u2!&5^C̄~u1!uC̄~u2!&, ~15!

for arbitrary nonzero values ofu. This crucial condition en-
sures that the unitarity~13! is not violatedfor polar qubits.
However, if we take qubits from equatorial great circle, th
any qubit and its complement can be written asuC(f)&

5H(cosf/2u0&2 isinf/2u1&) and uC̄(f)&5H( isinf/2u0&
2cosf/2u1&) up to an overall phase, whereH is the ordinary
Hadamard gate. One can check that the following conditi
hold for equatorial qubits:

^C~f1!uC̄~f2!&5^C̄~f1!uC~f2!&,

^C~f1!uC~f2!&5^C̄~f1!uC̄~f2!&. ~16!

With this condition the inner product condition~13! is not
preserved and hence there cannot be a Hadamard gate~9! for
equatorial great circles.

Second, consider the Hadamard transformation define
Eq. ~10!. One can check that if we choose qubits from po
great circle then using conditions~15!, the unitarity condition
~14! is violated. But for qubits chosen from equatorial gre
circle, using condition~16!, unitarity requirement~14! is sat-
isfied. Hence one can design a Hadamard gate defined by
~10! for equatorial qubits but not for polar qubits. So wh
we have found is that for an arbitrary qubit the Hadama
transformations defined by Eqs.~9! or ~10! do not exist. But
for a polar qubit the correct Hadamard transform is Eq.~9!
and for an equatorial qubit the correct Hadamard transform
Eq. ~10!.

Below we illustrate how definition~9! is at work for polar
qubits. First, notice that we would like to have a unita
transformation that will satisfy Eq.~9!. If we send an un-
known ‘‘real’’ qubit through the ordinary Hadamard gate, w
will have

uC~u!&→
1

A2
F S cos

u

2
1sin

u

2D u0&1S cos
u

2
2sin

u

2D u1&G
uC̄~u!&→

1

A2
F S cos

u

2
2sin

u

2D u0&2S cos
u

2
1sin

u

2D u1&G .
~17!

Ideally, we should have obtained

uC~u!&→
1

A2
F S cos

u

2
2sin

u

2D u0&1S cos
u

2
1sin

u

2D u1&G
uC̄~u!&→

1

A2
F S cos

u

2
1sin

u

2D u0&1S sin
u

2
2cos

u

2D u1&G .
~18!

The actual and the ideal states are different. Hence the o
nary Hadamard gate cannot be used to create Eq.~18!. But
the desired unitary transformation is not difficult to find a
is given by the original Hadamard matrix times the Pa
spin matrixsx , i.e., the Hadamard transformation for pol
9-4
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qubits is given byHP5sxH51/A2( 1 1
1 21). This will create

an equal superposition of any arbitrary real qubit and
complement, i.e., the action ofHP on uC(u)& will give

1/A2(uC(u)&1uC̄(u)&) and on uC̄(u)& will give

1/A2 (uC(u)&2uC̄(u)&), up to an overall minus sign in th
later case.

Similarly, one can find a unitary Hadamard gate for
equatorial qubit that satisfies Eq.~10!. If we senduC(f)&
5H(cosf/2u0&2 i sinf/2u1&) through Eq.~10! we have

uC~f!&→
1

2
@~11 i !eif/2u0&1~12 i !e2 if/2u1&] ~19!

and if we send uC̄(f)&5H( i sinf/2u0&2cosf/2u1&)
through Eq.~10! we have

uC̄~f!&→
1

2
@~11 i !eif/2u0&2~12 i !e2 if/2u1&]. ~20!

The desired Hadamard gate that will do the above job

given byHE51/A2( 0 12 i
11 i 0). This will create an equal supe

position of any arbitrary equatorial qubit and its compleme
i.e., the action ofHE on uC(f)& will give 1/A2(uC(f)&

1 i uC̄(f)&) and on uC̄(f)& will give 1/A2(i uC(f)&

1uC̄(f)&).
One can also ask if it is possible to create unequal su

position of an unknown qubit with its complement state?
such a device exist then we would have

uC&→auC&1buC̄&)

uC̄&→b* uC&2a* uC̄&), ~21!

wherea,b are knowncomplex numbers anduau21ubu251.
Using unitarity one can show that the above gate can
exists. However, if a qubit is chosen from the polar circle
the Bloch sphere and ifa,b are real, then it is possible t
create unequal superposition of a state with its complem
We know that if a qubit is inu0& or u1& then one creates
u0&→au0&1bu1& and u1&→bu0&2au1& by applying a
known unitary transformationU5( b

a
2a
b ). One can check

that if we apply UG5( a
b

a
2b) to uC(u)&, it will give

auC(u)&1buC̄(u)& and to uC̄(u)& will give buC(u)&

2auC̄(u)& up to an over all minus sign in the latter cas
The amplitudesa,b in unequal superposition have to be re
otherwise the gate will not be ‘‘universal’’ for real qubits
That is, when applied to two distinct arbitrary qubits, it w
not preserve the inner product. To see this,
$uC(u1)&,uC(u2)&% be two nonorthogonal states an

$uC̄(u1)&,uC̄(u2)&% be their complement states. If the ga
has to be universal, it should work for all inputs. Suppo

a,b are complex, thenuC1(u)&→auC1(u)&1buC̄1(u)&)
and uC2(u)&→auC2(u)&1buC2(u)&). Taking the inner
product, we have
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^C1~u!uC2~u!&→^C1~u!uC2~u!&1~a* b2ab* !

3^C1~u!uC̄2~u!&, ~22!

where we have used the condition~15!. Similarly, by taking

the inner product of̂ C̄1(u)uC̄2(u)& we can check that it
will not preserve the inner product unlessa,b are real. This
shows that for unequal superpositions of polar qubit with
complement state to hold the amplitudes in the superposi
should be real. In an analogous manner one can find tr
formations for equatorial qubits also.

Thus, single-qubit gates such as Hadamard and uni
gates cannot be designed in a universal manner. The sur
ing thing is that linearity does not allow linear superpositi
of an unknown qubit with its complement!

IV. NONEXISTENCE OF c- NOT GATE
FOR UNKNOWN QUBITS

Next, we briefly come to another important gate, name
the c-NOT gate which is one of the gates needed for univer
quantum computation. In this section we discuss why it
impossible to design a c-NOT gate for two qubits that have
been prepared in some unknown state. This is a two-q
gate and takes u0&u0&→u0&u0&,u0&u1&→u0&u1&,u1&u0&
→u1&u1& and u1&u1&→u1&u0&. It flips the second bit if and
only if the first qubit is in the stateu1&, otherwise it does
nothing.

One can ask: Does there exist a c-NOT gate for arbitrary
two-qubits that will take

uC&uC&→uC&uC&, uC&uC̄&→uC&uC̄&,

uC̄&uC&→uC̄&uC̄&, uC̄&uC̄&→uC̄&uC&. ~23!

Again using linearity it can be easily shown that this ga
does not exists. Physically, this impossibility can be traced
the fact thatCNOT gate measures the first qubit and flips t

second one iff the first qubit is in the stateuC̄&. As we know,
measuring an unknown qubit without disturbing it, is impo
sible @18#. Hence one cannot design an universalCNOT gate
for all qubits. Alternately, the c-NOT operator for two qubits
in orthogonal states is given by

UCNOT
(0,1) 5u0&^0u ^ I 1u1&^1u ^ sx ~24!

cannot be used for arbitrary qubits. Because the des
c-NOT operator for two unknown qubits would be given b

UCNOT
C,C̄ 5uC&^Cu ^ I 1uC̄&^C̄u ^ sx~a,b!, ~25!

where sx(a,b)5(uC&^C̄u1uC̄&^Cu) and this cannot
be designed without prior knowledge of the amplitude
~In fact, the other two Pauli matrices in unknown bas

such as sy(a,b)52 i (uC&^C̄u2uC̄&^Cu),sz(a,b)

5(uC&^Cu2uC̄&^C̄u) are also impossible to measure.! Thus
unknowability of a single quantum rules out the existence
c-NOT gate. Similarly, one can also rule out double-c-NOT

and multiple-c-NOT gates for unknown qubits.
9-5
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V. CONCLUSIONS

Before concluding we briefly mention the implications
the well-known limitations, and those discovered in this p
per, on the future design of quantum computers.

We suggest that the general limitations, impossibility
designing Hadamard gate, unitary logic gate, and c-NOT gate
for arbitrary qubits can have some serious implications. I
classical computer physical laws do not impose any lim
tions to performing various logical operations such asNOT,
AND, XOR, FANOUT ~cloning!, and FAN-IN ~deleting!. More-
over, arbitrary classical operations can be generated thro
one bit gate such as aNOT and a two-bit gate such as anXOR.
In quantum world, information is stored in superposed sta
and that makes it completely different from classical info
mation. For example, perfect cloning and deleting are
allowed operations in a quantum computer. Nevertheles
is well known that one-bit and two-bit unitary gates are u
versal for quantum computation. However, the limitations
the one-bit and two-bit gates suggest that perhaps we ne
revise our understanding about universality of quantum co
putation. In the light of the present work it may be said th
even though one-qubit gate~an example being a Hadamar!
and two-qubit gate such as aCNOT are universal with respec
to designing arbitrary unitary operators, they themselves
not universal with respect to states. In a classical comp
these gates are universal with respect to operations as we
physical states on which information is stored. But in a qu
tum computer it is not so. In the future one would like
investigate further the implications of these fundamen
limitations in quantum information.
, a
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In conclusion, we have argued that the impossibility
producing a copy and a complement copy are special c
of the general limitation. We proved thatuniversalHadamard
and unitary logic operations cannot be performed exactly
arbitrary unknown qubits for creating equal and unequal
perpositions. The linear superposition, which is at the he
of quantum mechanics, that itself cannot be created fo
single quantum in an unknown basis. However, if a qubi
chosen from polar or equatorial great circle on a Blo
sphere then one can design these logic operations by sui
defining the transformations. We also discussed why we c
not design a c-NOT gate for unknown qubits. Future avenu
of exploration lie in designing universal, approximate a
optimal general transformations, Hadamard and c-NOT gates
for arbitrary qubits in the spirit of universal estimation@19#,
cloning @20–22#, and universal manipulation of qubit
@8,23,24#. Also one can try to realize these impossible ope
tions in a probabilistic but exact manner analogous to
probabilistic cloning@25#, novel cloning@26#, and probabi-
listic deleting operations@27–29#. In addition, one may try to
extend these limitations and possible operations for high
dimensional and continuous variable quantum systems.

ACKNOWLEDGMENTS

I wish to thank S. Bose, S. L. Braunstein, N. Gisin, a
various others for very useful discussions on these idea
several stages in the last two years. Nevertheless, I am
sponsible if there are any unavoidable errors in the prese
tion of these ideas.
-
@1# R. Jozsa,Geometric Issues in Foundations of Science, edited
by S. Huggett~Oxford University Press, Oxford, 1997!.

@2# W.K. Wootters and W.H. Zurek, Nature~London! 299, 802
~1982!.

@3# D. Dieks, Phys. Lett. A92, 271 ~1982!.
@4# H.P. Yuen, Phys. Lett. A113, 405 ~1986!.
@5# A.K. Pati and S.L. Braunstein, Nature~London! 404, 164

~2000!.
@6# W.H. Zurek, Nature~London! 404, 40 ~2000!.
@7# A. K. Pati, ~unpublished!.
@8# V. Buzek, M. Hillery, and R.F. Werner, Phys. Rev. A60, R2626

~1999!.
@9# N. Gisin and S. Popescu, Phys. Rev. Lett.83, 432 ~1999!.

@10# R. Jozsa, LANL Report, e-print quant-ph/0204153.
@11# C. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres

W.K. Wooters, Phys. Rev. Lett.70, 1895~1993!.
@12# A.K. Pati, Pramana, J. Phys.59, 217 ~2002!.
@13# R. Landauer, IBM J. Res. Dev.5, 183 ~1961!.
@14# C.H. Bennett, Int. J. Theor. Phys.21, 905 ~1982!.
@15# M. A. Nielsen and I. L. Chuang,Quantum Computation and
nd

Quantum Information~Cambridge University Press, Cam
bridge, 2000!.

@16# A.K. Pati, Phys. Rev. A63, 014302~2001!.
@17# S. Ghosh, A. Roy, and U. Sen, Phys. Rev. A63, 014301

~2001!.
@18# C.A. Fuchs, LANL Report, e-print quant-ph/9611006.
@19# S. Massar and S. Popescu, Phys. Rev. Lett.74, 1259~1995!.
@20# V. Buzek and M. Hillery, Phys. Rev. A54, 1844~1996!.
@21# N. Gisin and S. Massar, Phys. Rev. Lett.79, 2153~1997!.
@22# R.F. Werner, Phys. Rev. A58, 1827~1998!.
@23# L. Hardy and D.D. Song, Phys. Rev. A63, 032301~2001!.
@24# L. Hardy and D.D. Song, Phys. Rev. A63, 032304~2001!.
@25# L.M. Duan and G.C. Guo, Phys. Rev. Lett.80, 4999~1998!.
@26# A.K. Pati, Phys. Rev. Lett.83, 2849~1999!.
@27# Y. Feng, S. Zhang, and M. Yim, Phys. Rev. A65, 042324

~2002!.
@28# D. Qiu, Phys. Rev. A65, 052303~2002!.
@29# J. Feng, Y.F. Gao, J.S. Wang, and M.S. Zhan, Phys. Rev. A65,

052311~2002!.
9-6


