
ongo,

PHYSICAL REVIEW A 66, 062317 ~2002!
General-purpose parallel simulator for quantum computing
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With current technologies, it seems to be very difficult to implement quantum computers with many qubits.
It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However,
for a large-size problem, the simulation often requires more computational power than is available from
sequential processing. Therefore, simulation methods for parallel processors are required. We have developed
a general-purpose simulator for quantum algorithms/circuits on the parallel computer~Sun Enterprise4500!. It
can simulate algorithms/circuits with up to30 qubits. In order to test efficiency of our proposed methods, we
have simulated Shor’s factorization algorithm and Grover’s database search, and we have analyzed robustness
of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corre-
sponding results, statistics, and analyses are presented in this paper.
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I. INTRODUCTION

Modern computers, not only PCs, but also super comp
ers, are based on the semiconductor switches. As their s
have gotten smaller, their processing speed has gotten f
and their processing data has gotten larger. However, it
become apparent that if development of computing tech
ogy is to follow Moore’s law, at some stage, probably with
the next 10–20 years, the number of atoms in the struct
will become so small that the underlying physical pheno
ena will not follow the laws of classical physics, but the law
of quantum physics. Therefore, it will be necessary to ta
quantum effects into account when designing new, m
powerful computers.

A quantum computer@1,2# could solve efficiently some
important algorithmic problems using superposition and
terference principles of quantum mechanics. When an a
or a particle is used as a quantum bit, then quantum mec
ics says that it can be prepared as a coherent superpositi
two basis statesu0& and u1&. Strings of qubits can been-
tangledand encode in some sense a vast amount of infor
tion. Quantum computers can support entirely new kinds
computation, with qualitatively new algorithms based
quantum principles. Shor@3# proposed polynomial quantum
algorithms for integer factoring and discrete logarithm co
putation. Grover@4# suggested a quantum search algorith
that achieves quadratic speedup with respect to clas
ones.

Having such theoretical results, a natural question
whether we could ever build quantum computers. One of
obstacles isdecoherence—an interaction of quantum system
with their environment that destroys fragile superposition
the quantum systems in which computations are perform
Decoherence is caused because the environment is ‘‘me
ing’’ the state of a quantum system by interacting with
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Second one isinaccuracy ~operational errors!. Quantum
computers are actually analog: that is, they have a continu
of states. For example, one of the most common quan
gates ‘‘rotates a quantum bit by an angleu. ’’ When applying
this gate, there is always some inaccuracy in the rotation

With current technologies, it seems to be very difficult
implement quantum computers with many qubits. It is the
fore of importance to simulate quantum algorithms and c
cuits on the existing computers. The purpose of the simu
tion is:

~1! To investigate quantum algorithms behavior. O
course, we have already known that Grover’s search a
rithm is optimal. That is, no quantum algorithm can searchN
items using fewer thanV(AN) accesses to the search orac
However, we do not know whether Shor’s factorization
gorithm is optimal. Therefore, it is important to check b
simulations how effective the improved Shor’s factorizati
algorithm is.

~2! To analyze performance and robustness of quan
circuits in the presence of decoherence and operationa
rors. Not to mention, quantum error-correcting codes are
fective in fighting decoherence and operational errors. I
one of our goals to establish useful quantum error-correc
codes. As the first step, this paper aims to check effect
these errors in practice.

Simulations often require more computational power th
is usually available on sequential computers. Therefore,
have developed a simulation method for parallel comput
That is, we have developed a general-purpose simulator
quantum algorithms and circuits on a parallel comput
symmetric multiprocessor~shown in Fig. 1!.

II. BASIC DESIGN

A. Registers

The simulation is for circuit model of quantum comput
tion. A set of n qubits is called aregister of size n. The
general state of then-qubit register is
©2002 The American Physical Society17-1
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uf&5 (
i 50

2n21

a i u i &, where a iPC, (
i 50

2n21

ua i u251.

That is, the state of ann-qubit register is represented by
unit-length complex vector inH 2n. In a classical computer
to store a complex numbera5x1 iy , one needs to store
pair of real numbers (x,y). In our implementation each rea
number will be represented by adouble precision word. The
double precision word is 16 bytes~64 bits! on most of the
computers. 2n14 bytes memory are therefore required to de
with the state of ann-qubit register in a classical compute

B. Evolution

The time evolution of ann-qubit register is determined b
a unitary operator ofH 2n. The size of the matrix is
2n32n. In general, it requires 2n32n space and 2n(2n11

21) arithmetic operations to perform classically such
evolution step.

However, we mostly use operators that have simple st
tures when we design quantum circuits. That is, an evolu
step is performed by applying a unitary operator (232) to a
single qubit ~a single qubit gate! or by applying the con-
trolled unitary operator such as a controlled-NOT gate. It re-
quires only 232 space and 332n arithmetic operations to
simulate such an evolution step as explained below.

1. Single-qubit gates

Suppose that the MSB~most significant qubit! is 0th qu-
bit. When a unitary matrixU5(u21 u22

u11 u12) is applied to thei th

qubit ~Fig. 2!, the overall unitary operation applied to th
n-qubit register state has the formX5( ^ k50

i 21 I ) ^ U ^

( ^ k5 i 11
n21 I ). 2n32n matrix X is the sparse regular matri

shown in Fig. 3.
That is, all theSi are the same. We therefore do not ha

to generateX explicitly. We have to only store the 232
matrix U. Since there are only two nonzero elements for e

FIG. 1. SMP~symmetric multiprocessors!.

FIG. 2. Single-qubit gate.
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row in X, the evolution step~i.e., multiplication of a matrix
and a vector! is simulated in 3•2n arithmetical operations.

Parallelization. Of course, the evolution step (Xuf&) can
be executed in parallel. Let 2P be the number of processor
available in the simulating system. The evolution step is
composed into a sequence of submatrix-subvector mult
cationMk (0<k,2i). Mk is defined asSkfk , that is, as the
multiplication of a submatrixSk (2n2 i32n2 i) and a subvec-
tor fk whose length is 2n2 i ~shown in Fig. 4!. Note that
there are no data dependencies betweenMk andMl (kÞ l ).
Therefore,Mk andMl can be executed in parallel. We assig
a sequence of computation:

to a processorp (0<p,2P). That is, the processorp com-
putes 2i 2P submatrix-subvector multiplications, and the res
of multiplications are performed in other processors in p
allel. After each processor has finished computations
were assigned to it, it executes a synchronization primiti
such as the barrier, to make its modifications to the vec
(f), that is, the state of the register visible to other proc
sors.

When the number of submatrices is smaller than the nu
ber of processors~i.e., 2i,2P), it is inefficient to assign the
computationMk(5Skfk ,0<k,2i) to one processor as de
scribed above. It can cause a load imbalance in the sim
tion system. In this case, we should decompose the com
tation Mk itself to improve parallel efficiency. Each
submatrixSk is then divided into 2P11 chunks of rows. Each
chunk of rows,Rj (0< j ,2P11), contains the adjoining
2n2 i 2(P11) rows ofSk . The multiplications using the chun
of rows Rj and R2P1 j are assigned to a processorj as de-
scribed in Fig. 5. This decomposition is applied to allMk
computations (0<k,2i).

Note that the computation usingj th row of the submatrix
must be always paired with that using (j 12n2 i 21)th row
when we use an ‘‘in-place’’ algorithm~i.e., The results of
Xuf& are stored inuf&).

That is, multiplications using the chunk of rowsRj and
R2P1 j are assigned to the same processorj. This is because
there are dependencies across processors. Consider fo
ample the following case.

FIG. 3. Total unitary matrix.
7-2



GENERAL-PURPOSE PARALLEL SIMULATOR FOR . . . PHYSICAL REVIEW A 66, 062317 ~2002!
FIG. 4. Computation decom-
position in the general case.
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If the first element is computed and the result (xu11

1yu12) is stored before the fourth element is computed, th
the result of the fourth element computation is notxu21

1yu22, but (xu111yu12)u211yu22. However, this is
wrong. To avoid this situation, all the processors have
execute barrier operations before storing the results of c
putations. However, a barrier operation per store opera
can cause heavy overheads.

Therefore, the first-element computation and four
element computation should be assigned to the same pro
sor. Then, the data dependencies are not cross processo
in processor.

First, the processor computesxu111yu12 and stores the
result in a temporary variablet1 on the local storage are
~i.e., stack!. Second, the processor itself computes the re
xu211yu22 and stores it in the fourth element. Third, th
processor stores the contents of the temporary variablet1 in
the first element. In this way, we can avoid the above wro
situation without performing synchronization primitives.
FIG. 5. Computation decom-
position in the large subblock
case.
7-3
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there are no overheads for parallel execution, the time c
plexity is thus reduced toO(2n2P), where 2P is the number
of processors available in the system.

2. Controlled qubit gates

Suppose that a unitary matrixU5(u21 u22

u11 u12) is applied to the

i th qubit if and only if thecth bit ~controlled bit! is 1
~Fig. 7!.

Let CTX be the overall unitary matrix (2n32n). First, we
consider the matrixX mentioned in Sec. II B 1 as if ther
were no controlled bits. Then, for eachj (0< j ,2n21), the
j th row of CTX (CTX@ j #) is defined as follows:

CTX@ j #5H X@ j # the cth bit in j is 1,

I @ j # the cth bit in j is 0,

whereI @ j # is j th row of the unit matrixI andX@ j # is j th row
of the matrixX. In this case, we also do not have to gener
CTX or X explicitly. We have only to store the 232 matrix
U. It is easy to extend this method to deal with the case
many controlled bits. The evolution step is executed in p
allel as described in Sec. II B 1. Therefore, the simulat
time isO(2n2P) if there are no overheads for parallel exec
tion (2P is the number of processors available in the sim
lation system.!

f-controlled U gateis also simulated whenf is a boolean
function. It is similar to the controlledU gate. But in this
case, theU gate is applied to the target bit ifff (c)51 ~the
cth bit is the controlled bit!. This is used in the simulation o
Grover’s search algorithm@4#.

3. Measurement gates

The measurement step for ann-qubit register stateuf&
5( j 50

2n21a j u j & is simulated inO(2n) time as follows.
~1! A random numberr, 0<r ,1, is generated
~2! An integeri, 0< i<2n21, is determined such that

(
j 50

i 21

ua j u2<r ,(
j 50

i

ua j u2.

We assume that the measurement is done with respect t
standard basis$u i &%.

FIG. 6. Hn circuit.
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C. Basic circuits

1. Hadamard transform

The Hadamard transformHn is defined as follows:

Hnux&5
1

A2n (
yP0,1n

~21!x•yuy&, for xP$0,1%n.

Hn is implemented by the circuit in Fig. 6, whereH
5(1/A2)(1 21

1 1). Note that simulation requiresO(n2n2P)
time, if there are no overheads for parallel execution (2P is
the number of processors available in the simulation syste!.

2. Quantum Fourier transform

Quantum Fourier transform~QFT! is a unitary operation
that essentially performs discrete Fourier transform~DFT! on
quantum register states. QFT maps a quantum stateuf&
5(x50

2n21axux& to the state(x50
2n21bxux&,

bx5
1

A2n (
y50

2n21

vxyay , v5e2p i /2n
.

The circuit implementing the QFT is shown in Fig. 8.H is
the Hadamard gate, andRd is the phase-shift gate denoted
(

0 eip/2d
1 0

).
For generaln, this circuit is of sizeO(n2) @20#. Therefore,

the evolution step is simulated inO(n22n2P) time if there
are no overheads for parallel execution~There are 2P pro-
cessors available in the system.! Of course, we can reduc
the circuit size toO„n log(n/e)… @5,6#, if we settle to the
implementation with a fixed accuracy (e), because the con
trolled phase-shift gates acting on distantly separated qu
contribute only exponentially small phases. In this case,
evolution step is simulated inO„n log(n/e)2n2P

… steps if
there are no overheads for parallel execution.

If we regard QFT transform as ablack box operator, we
do not have to use this quantum circuit in the simulator

FIG. 7. Controlled qubit gate.

FIG. 8. The QFT2n circuit (n54).
7-4
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GENERAL-PURPOSE PARALLEL SIMULATOR FOR . . . PHYSICAL REVIEW A 66, 062317 ~2002!
perform QFT transformation. We can use fast Fourier tra
form ~FFT! in the simulator instead of the QFT circuit if w
suppose that QFT circuit has no error. FFT algorithm
quires onlyO(n2n2P) steps if there are no overheads f
parallel execution. Of course, FFT gives the exact soluti
We use the eight-radix in-place FFT algorithm.

3. Arithmetical circuits

Arithmetical circuits are important for quantum compu
ing @7#. In the Shor’s factoring algorithm@3#, arithmetical
circuits are needed to compute modular exponentiat
Therefore, according to Ref.@8#, we have implemented th
modular exponentiation circuit by using constant adde
constant modular adders, and constant multiplie
xa(modN) can be computed using the decomposition,

xa~modN!5)
i 50

l 21

@~x2i
!ai~modN!#,

where

a5(
i 50

l 21

ai2
i @5al 21al 22 , . . . ,a0~binary representation!#.

Thus, modular exponentiation is just a chain of multiplic
tions where each factor is either 1 (ai50) or x2i

(ai51).
Therefore, the circuit is constructed by the pairwise co
trolled constant multipliers@21#.

Let N be ann-bit number, anda a 2n-bit number~that is,
l is equal to 2n in the above equation.! in the Shor’s factor-
ing algorithm becausea is as large asN2. n11 qubits are
required as the work space for the controlled multiplier a
n14 for the controlled adders. The total number of requir
qubits becomes 5n16.

The circuit is constructed with theO( l ) @that is, O(n)]
pairwise controlled constant multipliers. A controlled co
stant multiplier consists ofO(n) controlled constant modula
adders. A controlled constant modular adder consists of
controlled constant adders. A controlled constant adder c
sists ofO(n) XOR ~controlled-NOT! gates. Thus, one modula
exponentiation circuit requiresO(n3) gate. Details are de
scribed in Ref.@8#. It is simulated inO(n32n2P) steps if
there are no overheads for parallel execution (2P is the num-
ber of processors available in the simulation system!.

III. ERROR MODEL

A. Decoherence

We consider a quantum depolarizing channel as the d
herence error model. In this channel, each qubit is left
changed with probability 12p. Otherwise, each of the fol
lowing possibilities has probabilityp/3: the qubit is negated
or its phase if changed, or it is both negated and its phas
changed.
06231
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B. Operational errors

In general, all single-qubit gates can be generated fr
rotations,

UR~u!5S cosu 2sinu

sinu cosu D ,

andphase shifts,

UP1~f!5S 1 0

0 eifD
and

UP2~f!5S eif 0

0 1D .

For example,

H5UR~p/4!UP1~p!,

and

GNOT5UR~p/2!UP1~p!.

The simulator represents inaccuracies by adding small de
tions to the angles of rotationu andf. Each error angle is
drawn from the Gaussian distribution with the standard
viation (s).

IV. PRELIMINARY EXPERIMENTS

We describe the simulation environment and some exp
ments about basic quantum circuits.

A. Simulation environment

We have designed a simulator for the parallel compu
Sun Enterprise 4500 ~E4500!. E4500 has eight
UltraSPARC-II processors~400 MHz! with 1 MB E-cache
and 10 GB memory. The system clock is 100 MHz. OS
SOLARIS 2.8 ~64bit OS!. The simulator is written in the C
language and the compiler we use is Forte Compiler 6.0.
compiler option ‘‘-xO5 -fast -xtarget5ultra2 -xarch5v9’’ is
used. We use the solaris thread library for multiproces
execution. Under this environment, if we use an in-pla
algorithm, 30-qubit quantum register states can be sim
lated.

B. Quantum Fourier transform

Table I shows QFT execution time by the simulator th
uses QFT circuit and~classical! FFT algorithm. Numerical
error value ranges from 10215 to 10214. Recall that 2P is the
number of processors available in the simulation syste
FFT algorithm requiresO(n2n2P) steps, and QFT circuit
requiresO(n22n2P) steps forn-qubit quantum register, if
there are no overheads for parallel execution. The execu
time is increased exponentially with respect ton. Table I
shows that the execution time of FFT is about 20– 30 tim
as fast as that of QFT circuit. Both execution times are
7-5
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creased when the number of processors is increased.
speedup ratios on 8-processor execution are about 4–5.
reason why the speedup ratios on 8-processor execution
not 8 is that the parallel execution has some overheads
single-processor execution does not have. The parallel
ecution overheads are operating system overheads~multi-
threads creation, synchronization, and so on!, load imbal-
ance, memory-bus saturation, memory-bank conflict, fa
sharing, and so on. For small-size problems, the ratio
overheads to the computation for parallel execution is re
tively large and speedup ratios on multiprocessor execu
may be less than four. The decoherence and operationa
rors experiment for QFT is described in Sec. V.

C. Hadamard transform

Table II shows Hadamard transform~HT! execution time.
HT circuit requiresO(n2n2P) steps forn-qubit quantum reg-
ister. The speedup ratio on 8-processor execution beco
about 5.

Effect of errors

We have investigated the decrease of theu0&^0u term in
the density matrix for the 20-qubit register.

Decoherence errors. We have analyzed decoherence
the HT circuit on the depolarizing channel. Of course,
simulation deals with pure states. Therefore, the experim
were repeated 10 000 times and we use the average va

TABLE I. QFT execution time~sec!.

Qubits Number of processors
(n) Algorithm 1 2 4 8

20 Circuit 26.08 7.25 5.01 5.33
FFT 1.21 0.92 0.72 0.53

22 Circuit 124.78 66.96 38.03 23.40
FFT 5.01 3.71 2.79 1.83

24 Circuit 643.02 331.98 183.01 137.7
FFT 20.00 12.61 8.40 5.84

26 Circuit 2745.56 1469.73 799.57 526.8
FFT 113.29 73.08 48.39 32.84

28 Circuit 12597.8 6738.13 3661.51 2338.1
FFT 567.19 319.16 205.98 142.01

29 Circuit 31089.6 16790.6 9189.68 5811.4
FFT 1232.16 697.68 423.00 286.2

TABLE II. HT execution time~sec!.

Qubits Number of processors
(n) 1 2 4 8

20 2.38 1.18 0.76 0.40
22 10.85 5.73 3.20 1.35
24 46.94 24.96 13.40 9.58
26 205.81 109.97 58.83 38.71
28 887.40 467.71 253.82 167.3
29 2027.9 1081.1 592.08 395.8
06231
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Each experiment uses different initial random seed. The
tial state of the quantum register isu00•••0&5u0&. HT cir-
cuit is applied to the quantum register over and over. Thx
axis in Fig. 9 shows the even iteration number. If there are
errors ~i.e., the error probability is 0! and the number of
iterations is even, the state remains to beu0& andu0&^0u term
in the density matrix remains 1. Figure 9 shows how de
herence errors degrade for theu0&^0u term. The noise de-
grades theu0&^0u term significantly if the error probability is
greater than 1023. When the error probability is 1022, the
u0&^0u term is decreased in exponential order in proport
to the number of iterations.

In this easy case, we can computeu0&^0u term in the
density matrix also theoretically. First, consider the 1-qu
case. Letp be the error probability andrk be the density
matrix after the HT circuit is applied to the quantum regis
k times. The density matrixrk11 is then calculated as fol
lows:

rk115~12p!HrkH* 1
p

3
sxHrkH* sx* 1

p

3
syHrkH* sy*

1
p

3
szHrkH* sz* .

When the initial state of the quantum register isu0& andk
is even,rk is calculated as follows:

rk5
1

2S 11S 12
4

3
pD k

0

0 12S 12
4

3
pD kD .

In then-qubit case, we can calculate the density matrix sim
larly if the initial state of the quantum register isu0, . . . ,0&
andk is even.u0&^0u term of rk is

S 11S 12
4

3
pD k

2
D n

.

FIG. 9. Decrease of theu0&^0u term in the density matrix~20
qubits!.
7-6
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Figure 9 also shows this theoretical value ofu0&^0u term in
the density matrix ifp51025;1022 andn520. We can see
that the simulations and the theoretically computations y
almost the same result.

Operational errors. The simulator implements ‘‘inaccura
cies’’ by adding small deviations to two angles of rotation
SinceH5UR(p/4)UP1(p), we add small deviationsx andy
to (p/4) and p, respectively. That is, we useH(x,y)
5UR((p/4)1x)UP1(p1y) as H gate in this experiment.x
andy are drawn from the Gaussian distribution with the sta
dard deviations. As mentioned above, the experiments we
executed 10 000 times and we use the average value.
experiment uses different initial random seed. Figure
shows how operational errors degrade theu0&^0u term when
s51025;1022 andn520. Theu0&^0u term is not affected
by the operational error ifs is less than 1022.

In this case, we can also compute theoretically theu0&^0u
term in the density matrix. First, consider the 1-qubit ca
Let rk be the density matrix after HT circuit is applied to th
quantum registerk times. The density matrixrk11 can be
calculated as follows:

rk115E
2`

` E
2`

`

H~x,y!rkH~x,y!* p~x!p~y!dxdy,

where p(z)5(1/A2ps)e2z2/2s2
. If the initial state of the

quantum register isu00•••0&5u0&, rk can be expressed a
follows:

rk5
1

2 S 11e2(s2/4)9k 0

0 12e2(s2/4)9kD .

As for the generaln-qubit case, we can calculate the dens
matrix similarly if the initial state of the quantum register
u00•••0&, andk is even.u0&^0u term of rk is then

S 11e2(s2/4)9k

2
D n

.

FIG. 10. Decrease of theu0&^0u term in the density matrix~20
qubits!.
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Figure 10 also shows this theoretical value ofu0&^0u term
in the density matrix if the standard deviations51025

;1022 andn520. It follows from the theoretical computa
tion that u0&^0u term decreases exponentially with respect
the number of iterationsk.

Operational and decoherence errors. Each element of
Table III represents theu0&^0u term of the density matrix
after HT is applied to the stateu0& of a 20-qubit register
10 000 times.

The combined effect of two factors may be worse than
case of each factor alone. That is to say, the effect seem
be the product of each factor. Table III shows this situatio

V. EXPERIMENTS

A. Shor’s factorization algorithm

We investigate behavior of Shor’s factorization algorith
The point is~1! how effective the improved algorithm@9# is,
~2! effects of decoherence errors and operational errors.

First, we review the algorithm briefly.
Input. An l bit odd numbern that has at least two distinc

prime factors.
Output. A nontrivial factor ofn:
~1! Choose an arbitraryxP$1,2, . . . ,n21%.
~2! ~Classical step! Computed5gcd(x,n) ~greatest com-

mon divisor ofx and n! using Euclid’s algorithm. Ifd.1,
outputd and stop.

~3! ~Quantum step! Try to find the order ofx:
~a! Initialize an l-qubit register and a 2l -qubit register
to stateu0&u0&.
~b! Apply HT to the second register.
~c! Perform modular exponentiation operation, that
u0&ua&→uxa(modn)&ua&.
~d! Measure the first register and apply the QFT to t
second register and measure it. Lety be the result.

~4! ~Classical step! Find relatively prime integersk and r
(0,k,r ,n), such thatu(y/22l)2(k/r )u<1/2(2l 11) by us-
ing the continued fraction algorithm. Ifxr[” 1(modn), or if r
is odd, or ifxr /2[61(modn), output ‘‘failure’’ and stop.

~5! ~Classical step! Computed65gcd(n,xr /261) using
Euclid’s algorithm. Output numbersd6 and stop.

TABLE III. Combined effects for HT.

Operational (s)
Decoherence (p) 0 1025 1024 1023

0 1.0000 1.0000 0.9999 0.997
1025 0.9870 0.9870 0.9849 0.979
1024 0.9010 0.9010 0.8909 0.878
1023 0.2910 0.2790 0.2779 0.266

TABLE IV. Execution time in Shor’s factorization algorithm
when n515 andx511. ~All quantum operations are executed o
the circuit.!

Modular exponentiation QFT

18184~sec! 0.64270~sec!
7-7
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When the simulator performs all the step-3 operatio
~not only QFT but also modular exponentiation! on the quan-
tum circuit, 5l 16 qubits are totally required, as described
Sec. II C 3. Therefore, the simulator can only deal with 4-
integern (5l 16,530→ l<4). The 4-bit integer that satis
fies the input property is only 15. We have tried to factor
on the simulator. Beyond our expectation, modular expon
tiation is computationally much heavier than QFT.

Modular exponentiation requiresO( l 32l 2P) steps and
QFT on the circuit requiresO( l 22l 2P) steps, when there ar
2P processors available in the simulation system and th
are no overheads for parallel execution. Of course, in
classical computer, modular exponentiation consists of b
operations such as addition, multiplication, and divisio
However, these basic operations are not so heavy if the c
sical computer is used, because it has the dedicated no
versible circuit@the so-called~ALU ! arithmetic logic unit#.
This situation suggests that a brand-new fast quantum a
rithm for arithmetic operations is required to factor larg
numbers. 15 is not enough to investigate the behavio
Shor’s factoring algorithm. In order to factor much larg
number in a reasonable time, the simulator performs the
3~c! and the step 3~d! classically. That is, the modular expo
nentiation are computed classically and QFT is computed
FFT algorithm in the simulator~see Table IV!. In this case,
the simulator does not need to generate the first regi
Therefore, the simulator can factor about 14– 15-bit integ
~for example, 23089!.

The factoring algorithm succeeds with the probabil
greater than

TABLE V. Number of needed iterations for Shor’s factorin
algorithm.

Number of iterations
Theoretical Simulation

n Original Improved

21311(52113101) 15.79 6.690 1.760
21733(52113103) 15.85 8.990 2.356
22999(52113109) 16.00 6.360 1.730
22523(52233101) 15.88 5.480 1.770
22927(52273101) 15.91 3.790 1.470
22969(52233103) 15.94 8.050 2.070
23129(52293101) 15.92 7.133 1.636

TABLE VI. Detailed effect of improved algorithm.

Ratio of success/failure
n 1 ~Neighbor! 2 ~GCD! 3 ~SF! 4 ~LCM!

21311 27/9 52/19 12/4 3/4
23129 27/9 52/19 12/4 3/4
22999 37/6 47/79 13/8 2/58
22969 41/8 22/82 31/22 1/28
22927 25/3 35/49 18/2 1/28
22523 37/6 45/76 18/22 7/54
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Probsucc~n!5pstep21~12pstep2!pstep3;4

5S 12
f~n!

n21 D1
f~n!

n21 S 1

2

4

p2

e2g

log lognD ,

where pstep2 denotes the probability that the step~2! suc-
ceeds andpstep3;4 denotes the probability that step~3! and
the step~4! succeed andg is the Euler constant, andf(n) is
the Euler number ofn. If the above algorithm is repeate
O„1/Probsucc(n)… times, the success probability can be
close to 1 as desired.

We choose ann5pq wherep andq are prime numbers
These kinds of integers are chosen in an RSA cryptosys
~developed by Ronald Rivest, Adi Shamir, and Leona
Adleman! because it is believed that it is hard to factor su
integers easily. Recall thatf(n)5(p21)(q21) for such
integers. We have experimented with several RSA-type
;15-bit integers.

The simulator repeats the above algorithm until a no
trivial factor of n is found, and records the number of iter

FIG. 11. Amplitude amplification by QFT in the presence
decoherence error~top! and the required number of iterations~bot-
tom! ~16 qubits!.

FIG. 12. Amplitude amplification by QFT in the presence
operational error~top! and the required number of iterations~bot-
tom! ~16 qubits!.
7-8
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tions. The experiment was executed 100 times, and we
culate the average of these recorded iterations. We h
compared the simulation values with the theoretical num
of needed iterations@i.e., 1/probsucc(n)]. The results are
shown in the Table V. Theoretical values~‘‘theoretical’’ col-
umn! are about only 2;4 times as large as simulation valu
~‘‘Original’’ column !. Although much more simulations ar
required, the theoretical values seem to be fairly good.

As suggested in Ref.@9#, the algorithm was optimized to
perform less quantum computation and more~classical! post-
processing.

(1) Neighbor y check. No relatively prime integersk andr
are found by using the continued fraction algorithm, then i
wise to tryy61, y62.

(2) gcd check. Even if xr[” 1 (modn), try to compute
d65gcd(n,xr /261).

(3) Small factor check. If xr[” 1(modn), it is wise to try
2r , 3r , . . . . This is because if (y/22l)'(k/r ), wherek andr
have a common factor, this factor is likely to be sma
Therefore, the observed value of (y/22l) is rounded off to
(k8/r 8) in the lowest terms.

(4) lcm (least common muliplier) check. If two candidates
for r, r 1, and r 2, have been found, it is wise to te
lcm(r 1 ,r 2) as a candidate forr.

We have tested how much the algorithm is improved
these modifications. The results are also shown in Tabl
~‘‘Improved’’ column!. The number of iterations is reduce
to about 1/5;2/5. The detailed effect of the improved alg
rithm is described in Table VI. Each element of Table
represents the ratios/ f , wheres means the number of suc
cess iterations andf is the number of failure iterations. Fo
example, forn523129, the first optimization, ‘‘neighbo
check’’ is performed for 2719536 iterations and a candi
date of the order is found successfully in 27 iterations
seems that the second optimization ‘‘gcd check’’ works w
for all n that we have experimented with. From this resu
we can see that even ifxr[” 1(modn), d65gcd(n,xr /261)

TABLE VII. Combined effects for QFT~16 bit!.

Operational (s)
Decoherence (p) 0 1025 1024 1023 1022

0 1.0000 0.9999 0.9999 0.9999 0.999
1025 0.9880 0.9840 0.9860 0.9880 0.984
1024 0.8837 0.8897 0.8827 0.8801 0.898
1023 0.3287 0.3399 0.3332 0.3209 0.336
1022 0.0027 0.0015 0.0019 0.0017 0.003

FIG. 13. The circuit of Grover’s algorithms.
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often becomes a factor ofn. That is, even if the candidater is
not equal toord(x) ~an order ofx), r may be a divisor of
ord(x). That is,N{'a.1, a•r 5ord(x). In this case, the
following equation holds whenr is even.

0~modn![xord(x)21[~xr21!~x(a21)r1x(a22)r1•••11!

[~xr /221!~xr /211!~x(a21)r1x(a22)r1•••1!.

Thus, there is the possibility thatn andxr /261 have a com-
mon nontrivial factor.

B. Effect of errors

We have analyzed decoherence and operational erro
the QFT circuit.

Decoherence errors. We assume that each qubit is le
intact with probability 12p and it is affected by each of th
error operatorssx ,sy ,sz with the same probability (p/3),
each time the register is applied by the controlled rotat

FIG. 14. Decrease of the amplitude of the correct element in
presence of decoherence errors~10 qubits!.

FIG. 15. Decrease of the amplitude of the correct element in
presence of operational errors~10 qubits!.
7-9
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gateRd . Figure 11 shows the amplitude amplification pha
by the QFT circuit on the depolarizing channel in Sho
factorization algorithm@step 3 ~d!#, when n5187 and x
523. The y axis in Fig. 11 shows the amplitude. The expe
ment was executed 1000 times and we use the average.
error probability is greater than 1023, it is hard to use QFT
circuit for period estimation.

Operational errors. In the simulator, ‘‘inaccuracies’’ are
implemented by adding small deviations to angles of ro
tions of Rd . We considerH5UR(p/4)UP1(p), and GNOT

5UR(p/2)UP1(p). The simulator also represents inaccu
cies by adding small deviations to these angles of rotatio
The error is drawn from the Gaussian distribution with t
standard deviation (s). As mentioned above, the experime
was executed 1000 times and we use the average value.
ure 12 shows the amplitude amplification phase by QFT
Shor’s factorization algorithm@step 3~d!#, whenn5187 and
x523. It seems that the period extraction by using QFT
not affected by the operational error.

Operational and decoherence errors. We investigate also
the combined effect of operational and decoherence err
Table VII shows the results. Each element of the table r
resents thefidelity. The fidelity is defined as the inner prod
uct of the correct state and the simulated state with erro

The combined effect of two factors may be worse th
each factor alone. That is to say, the effect seems to be
product of each factor. However, when the decoherence
is relatively higher, the small-deviation operational error c
improve the results contrary to our expectations.

C. Grover’s search algorithm

Suppose that a functionf k :$0,1%n→$0,1% is an oracle
function such thatf k(x)5dxk . TheG iteration is defined as
2HnVf 0

HnVf k
. The sign-changing operatorVf is imple-

mented by using thef-controlledNOT gate and one ancillary
bit. Figure 13 shows the circuit of Grover’s algorithm.

Effect of errors

We have analyzed the impacts of decoherence and op
tional errors in the circuit for Grover’s algorithm. We assum
again that the depolarizing channel is used. We consideH
5UR(p/4)UP1(p), andGNOT5UR(p/2)UP1(p). The simu-
lator also represents inaccuracies by adding small deviat
to these angles of rotations. Each error angle is drawn a
from the Gaussian distribution with the standard deviations.

Figures 14 and 15 show the impacts of errors for a
qubit register. The experiments were repeated 1000 ti
and we use the average values. If there are no errors
plotting the amplitude of the correct element~that is,k) we
get a sine curve. However, the amplitudes are decreasedG
iterations are repeated in the presence of errors. Figure
shows the impacts of decoherence error. We can see tha
decoherence error affects the period of the sine curve. Fig
15 shows the impacts of operational errors. It seems tha
operational error does not affect the period of the sine cu
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VI. RELATED WORKS

There are many quantum simulators for quantum circ
model of computation@10–13#. QDD @11# aims to use binary
decision diagram in order to represent the states of quan
register. QCL @12# and OPENQUBIT @13# both use complex
number representation of quantum states like our simula
In addition,QCL tries to establish a high-level, architectur
independent programming language. Obenland’s simul
@10,14# is based on an actual physical experimental reali
tion and it uses parallel processing like our simulator. A
though it runs on the distributed-memory multicompute
our simulator runs on the shared-memory multicompute
Therefore, in our simulator, there is no need to distribute a
collect states of the quantum register. In addition, our sim
lator uses more efficient evolution algorithms and ado
~classical! FFT algorithms for fast simulation of the large
size problems. Our simulator does not depend on any ac
physical experimental realizations. It is not easy to say wh
realizations are best at the moment. In other words,
simulator is more general purpose.

Berman et al. simulated Shor’s factorization algorithm
~four-qubit case! using the Ising-spin quantum computer. Th
nonresonant effects are analyzed in detail@15#. They also
presented the results of simulations of controlled-NOT gate
between remote qubits, and the creation of long-distance
tanglement in a one-dimensional nuclear-spin quantum c
puter with many qubits~up to 1000! @16#. However, this
simulation did not take into account of all the parameters
Ref. @17#, they developed a consistent dynamical pertur
tion theory that takes into account of all the parameters
numerical simulations are used to prove their theory.

Long et al. investigated the effects of gate imperfectio
~operational errors! in Grover’s search and Shor’s factoriza
tion by performing numerical simulations@18,19#. But they
do not consider decoherence errors. Our simulator deals
only with operational errors but also with decoherence
rors.

VII. CONCLUSION

We have developed a parallel simulator for quantum co
puting on a parallel computer~Sun, Enterprise4500!. Up to
30 qubitscan be handled. We have performed Shor’s fact
ization and Grover’s database search by using the simula
Our results show that the improved Shor’s factorization
gorithm is really effective. We analyzed robustness of
corresponding quantum circuits in the presence of deco
ence and operational errors. If the decoherence rate is gre
than 1023, it seems to be hard to use both quantum alg
rithms in practice.

For future work, we will investigate the correlation be
tween decoherence and operational errors. That is,
small-deviation operational errors can improve the res
when the decoherence rate is relatively higher. Furtherm
we will investigate how effective quantum error-correctin
codes are.
7-10
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