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With current technologies, it seems to be very difficult to implement quantum computers with many qubits.
It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However,
for a large-size problem, the simulation often requires more computational power than is available from
sequential processing. Therefore, simulation methods for parallel processors are required. We have developed
a general-purpose simulator for quantum algorithms/circuits on the parallel coniButeEnterprise4500I1t
can simulate algorithms/circuits with up 89 qubits In order to test efficiency of our proposed methods, we
have simulated Shor’s factorization algorithm and Grover’s database search, and we have analyzed robustness
of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corre-
sponding results, statistics, and analyses are presented in this paper.

DOI: 10.1103/PhysRevA.66.062317 PACS nuntber03.67.Lx, 03.65.Yz

I. INTRODUCTION Second one isinaccuracy (operational errops Quantum
computers are actually analog: that is, they have a continuum

Modern computers, not only PCs, but also super computef states. For example, one of the most common quantum
ers, are based on the semiconductor switches. As their sizg&tes “rotates a quantum bit by an anglé When applying
have gotten smaller, their processing speed has gotten fastéis gate, there is always some inaccuracy in the rotation.
and their processing data has gotten larger. However, it has With current technologies, it seems to be very difficult to
become apparent that if development of computing technolimplement quantum computers with many qubits. It is there-
ogy is to follow Moore’s law, at some stage, probably within fore of importance to simulate quantum algorithms and cir-
the next 10—20 years, the number of atoms in the structureguits on the existing computers. The purpose of the simula-
will become so small that the underlying physical phenom-ion is:
ena will not follow the laws of classical physics, but the laws (1) To investigate quantum algorithms behavior. Of
of quantum physics. Therefore, it will be necessary to takecourse, we have already known that Grover’s search algo-
quantum effects into account when designing new, mordithm is optimal. That is, no quantum algorithm can seach
powerful computers. items using fewer thafd(\/N) accesses to the search oracle.

A guantum computef1,2] could solve efficiently some However, we do not know whether Shor’s factorization al-
important algorithmic problems using superposition and in-gorithm is optimal. Therefore, it is important to check by
terference principles of quantum mechanics. When an atorsimulations how effective the improved Shor’s factorization
or a particle is used as a quantum bit, then quantum mechaadgorithm is.
ics says that it can be prepared as a coherent superposition of (2) To analyze performance and robustness of quantum
two basis state$0) and |1). Strings of qubits can ben-  circuits in the presence of decoherence and operational er-
tangledand encode in some sense a vast amount of informarors. Not to mention, quantum error-correcting codes are ef-
tion. Quantum computers can support entirely new kinds ofective in fighting decoherence and operational errors. It is
computation, with qualitatively new algorithms based onone of our goals to establish useful quantum error-correcting
quantum principles. Shdi8] proposed polynomial quantum codes. As the first step, this paper aims to check effects of
algorithms for integer factoring and discrete logarithm com-these errors in practice.
putation. Grove4] suggested a quantum search algorithm Simulations often require more computational power than
that achieves quadratic speedup with respect to classicid usually available on sequential computers. Therefore, we
ones. have developed a simulation method for parallel computers.

Having such theoretical results, a natural question isThat is, we have developed a general-purpose simulator for
whether we could ever build quantum computers. One of thgluantum algorithms and circuits on a parallel computer:
obstacles islecoherence-an interaction of quantum systems symmetric multiprocessdishown in Fig. 1.
with their environment that destroys fragile superposition in
the quantum systems in which computations are performing. Il. BASIC DESIGN
Decoherence is caused because the environment is “measur- )
ing” the state of a quantum system by interacting with it. A. Registers

The simulation is for circuit model of quantum computa-
tion. A set of n qubits is called aregister of size n. The
*Electronic address: niwa@is.s.u-tokyo.ac.jp general state of the-qubit register is
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|¢):20 aili), where a;eC, 2 |ai?=1.

= =0 row in X, the evolution stefi.e., multiplication of a matrix

S : N : .
That is, the state of an-qubit register is represented by a and a vectoris simulated in 32" arithmetical operations.

unit-length complex vector ift{ on. In a classical computer, Paralleliza?ion Of course, the evolution steX(¢)) can

to store a complex number=x-+iy, one needs to store a be executed in parallel. Let"2be the number of processors
pair of real numbersx,y). In our implementation each real available |n'the simulating system. The'evolut|on step Is Qe_—
number will be represented bydmuble precision wordThe composed Into a s?equenpe of.submatrlx-subve_ctor multipli-
double precision word is 16 bytd64 bit9 on most of the Cat'o.an (O$k<2 ). My 'S defms_di a§kn(_75ik’ thatis, as the
computers. 24 bytes memory are therefore required to dealMultiplication of a submatri, (2" 'x 2" ) and a subvec-

. I - .
with the state of am-qubit register in a classical computer, (OF ¢k Whose length is 2°' (shown in Fig. 4. Note that

there are no data dependencies betwegrand M, (k#1).
5. Evoluti Therefore M, andM, can be executed in parallel. We assign
- Evolution a sequence of computation:

The time evolution of am-qubit register is determined by

a unitary operator ofH,. The size of the matrix is M ppi-P,Mpsi-p iy, o s Myi1yai-Poy
2"% 2", In general, it requires 2" space and Z2"*?! ,
—1) arithmetic operations to perform classically such an 9i—P

evolution step.

However, we mostly use operators that have simple struc-
tures when we design quantum circuits. That is, an evolution p .
step is performed by applying a unitary operatoix(2) to a foa prgc;ssop (O,s p<27). That IS, the processqr com-
single qubit(a single qubit gateor by applying the con- pute52 _supmatrlx-subvector m'ultlpllcatlons, and thg rests
trolled unitary operator such as a controlledt gate. It re-  ©f multiplications are performed in other processors in par-
quires only 2<2 space and 82" arithmetic operations to allel. After each processor has finished computations that

simulate such an evolution step as explained below were assigned to it, it executes a synchronization primitive,
' such as the barrier, to make its modifications to the vector

1. Single-qubit gates (), that is, the state of the register visible to other proces-
- " sors.
Suppose that the MSBnost significant qubitis Oth qu- When the number of submatrices is smaller than the num-

bit. When a unitary matriXJ:(EiEg) is applied to théth  per of processoré.e., 2<2P), it is inefficient to assign the
qubit (Fig. 2), the overall unitary operation applied to the computationM (= Sc¢y,0<k<2') to one processor as de-
n-qubit register state has the forix=(®|_j)oU® spribed above. It can cause a load imbalance in the simula-
(2PZL,,1). 2" 2" matrix X is the sparse regular matrix tion system. In this case, we should decompose the compu-
shown in Fig. 3. tation M, itself to improve parallel efficiency. Each

. . . . . l
That is, all theS; are the same. We therefore do not haveSubmatrixS, is then divided into 8*1 chunks of rows. Each

. P 1 - - . .
to generateX explicitl. We have to only store the>22 ~ Shunk of rows,R; (0<j<2"""), contains the adjoining

) . — ] — P+l . . . .
matrix U. Since there are only two nonzero elements for eaci?” ) rows of S,. The multiplications using the chunk
of rows R; andR,p, ; are assigned to a procesgoas de-

0 scribed in Fig. 5. This decomposition is applied to k|
computations (&k<2').

1 . Note that the computation usirfjgh row of the submatrix

. : must be always paired with that using+2"~'"1)th row

1 U when we use an “in-place” algorithnti.e., The results of

X|¢) are stored if¢)).
That is, multiplications using the chunk of ro®; and

n—1 Ror; are assigned to the same procegsdihis is because
there are dependencies across processors. Consider for ex-
FIG. 2. Single-qubit gate. ample the following case.
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If the first element is computed and the resuku{;
+Yyuy,) is stored before the fourth element is computed, then
the result of the fourth element computation is naty;
+YUy,, but (Xupj;+yuj)us+yu,,. However, this is
wrong. To avoid this situation, all the processors have to
execute barrier operations before storing the results of com-
putations. However, a barrier operation per store operation
can cause heavy overheads.

Therefore, the first-element computation and fourth-
element computation should be assigned to the same proces-
sor. Then, the data dependencies are not cross processor but
in processor.

First, the processor computesi;;+Yyu;, and stores the
result in a temporary variablg on the local storage area
(i.e., stack Second, the processor itself computes the result
XUy;+YUy, and stores it in the fourth element. Third, the
processor stores the contents of the temporary varialite
the first element. In this way, we can avoid the above wrong
situation without performing synchronization primitives. If
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kTR,
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there are no overheads for parallel execution, the time com- 0

plexity is thus reduced t®(2" ), where 7 is the number 1—

of processors available in the system. c—" T
2. Controlled qubit gates i : U

Suppose that a unitary matrix= (3:1 EZI) is applied to the

ith qubit if and only if thecth bit (controlled bi} is 1

(Fig. 7). n—1
Let CT X be the overall unitary matrix (2<2"). First, we

consider the matrixX mentioned in Sec. II B 1 as if there

were no controlled bits. Then, for eagh0<j<2"—1), the

jth row of CTX (CTX]j]) is defined as follows:

FIG. 7. Controlled qubit gate.

C. Basic circuits
1. Hadamard transform

X[j1 the cthbitin j is 1, The Hadamard transforid,, is defined as follows:

CTXII=1 1151 the cthbitin | is 0,

Hn|X)=i > (—1)*Yy), for xe{0,1}".
7,

wherel[ ] is jth row of the unit matriXx andX[j] is jth row c0,1"

of the matrixX. In this case, we also do not have to generate H, is implemented by the circuit in Fig. 6, whei¢
CTXor X explicitly. We have only to store thex22 matrix — =(1/y2)(} _]). Note that simulation require®(n2"~F)
U. It is easy to extend this method to deal with the case ofime, if there are no overheads for parallel executioR i€

many controlled bits. The evolution step is executed in parthe number of processors available in the simulation system
allel as described in Sec. Il B 1. Therefore, the simulation

time isO(2"~P) if there are no overheads for parallel execu- 2. Quantum Fourier transform
tion (27 is the number of processors available in the simu-

lation syster). Quantum Fourier transforfQFT) is a unitary operation

that essentially performs discrete Fourier transfODRT) on

f-controlled U gateis also simulated whehis a boolean uantum register states. QFT maps a quantum sije
function. It is similar to the controlled) gate. But in this q n_ 9 ) P q

case, theU gate is applied to the target bit if{c)=1 (the = Zx-0 @lX) to the state=3_o"B,|x),
cth bit is the controlled bjt This is used in the simulation of

’ i 2"-1
Grover's search algorithrfd]. B 1 ey, e g2
V2" =0
3. Measurement gates
The measurement step for anqubit register stated) The circuit implementir!g the QFT is sh_own in Fig.k8.is
=212161aj|j> is simulated inO(2") ti_me as follows. tr11e cI)-|adamard gate, ai}, is the phase-shift gate denoted as
(1) A random number, O<r<1, is generated (o eiﬂ/zd)-
(2) An integeri, 0<i<2"—-1, is determined such that For generah, this circuit is of sizeD(n?) [20]. Therefore,

the evolution step is simulated @(n%2"~P) time if there
i-1 i are no overheads for parallel executiofhere are 2 pro-
> |a1|2$r<z | ;|2 cessors available in the systgn@f course, we can reduce
j=0 j=0 the circuit size toO(nlog(n/e)) [5,6], if we settle to the
implementation with a fixed accuracy) because the con-
We assume that the measurement is done with respect to th@lled phase-shift gates acting on distantly separated qubits
standard basiéli)}. contribute only exponentially small phases. In this case, the
evolution step is simulated i©(nlog(n/e)2" F) steps if
there are no overheads for parallel execution.

O HH+ If we regard QFT transform aslaack box operatgrwe
do not have to use this quantum circuit in the simulator to
14H
. R21R3| A G G G :
5 - H Jie) :
n—2— H |- HHRI— sdd
I |
n-HH [H et
The bit—order reverse
FIG. 6. H,, circuit. FIG. 8. The QF7%n circuit (n=4).
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perform QFT transformation. We can use fast Fourier trans- B. Operational errors
form (FFT) in the simulator instead of the QFT circuit if we
suppose that QFT circuit has no error. FFT algorithm re
quires onlyO(n2"~P) steps if there are no overheads for

In general, all single-qubit gates can be generated from
rotations

parallel execution. Of course, FFT gives the exact solution. cosf® —sind
We use the eight-radix in-place FFT algorithm. Ur(0) = sing  cosf |’
3. Arithmetical circuits andphase shifts

Arithmetical circuits are important for quantum comput- 1 0
ing [7]. In the Shor’s factoring algorithm3], arithmetical UP1(¢)=( idz)
circuits are needed to compute modular exponentiation. 0 e
Therefore, according to Ref8], we have implemented the

modular exponentiation circuit by using constant adders:dnd

constant modular adders, and constant multipliers. e¢ 0

x?(modN) can be computed using the decomposition, UP2(¢):( 0 1)_
-1 For example,

x*(modN) = [T [(*)%(modN)], H = Un( /4) Up (1)
i = UR P1 ’

and
where
Gnot= Ur(7/2)Upy ().
I-1 . . . . .
_ z oif— bi . The simulator represents inaccuracies by adding small devia-
a_i:O 8i2'[=a-132, .. . Ag(binary representation. tions to the angles of rotatiofl and ¢. Each error angle is
drawn from the Gaussian distribution with the standard de-
viation (o).
Thus, modular exponentiation is just a chain of multiplica-
tions where each factor is either h;E0) or x2 (ai=1). IV. PRELIMINARY EXPERIMENTS
Therefore, the circuit is constructed by the pairwise con- . ) . . i
trolled constant multiplier§21]. We describe the simulation environment and some experi-

Let N be ann-bit number, anch a 2n-bit number(that is, ~Ments about basic quantum circuits.
| is equal to 21 in the above equatiohin the Shor’s factor- _ _ _
ing algorithm becausa is as large adN®. n+1 qubits are A. Simulation environment
n+4 for the controlled adders. The total number of requireds Enterprise 4500 (E4500. E4500 has eight
qubits becomes 15+ 6. _ _ UltraSPARC-II processor$400 MH2) with 1 MB E-cache
The circuit is constructed with the(l) [that is,O(n)]  and 10 GB memory. The system clock is 100 MHz. OS is
pairwise controlled constant multipliers. A controlled con- g aris 2.8 (64bit 0. The simulator is written in the C

stant multiplier consists dD(n) controlled constant modular  |anguage and the compiler we use is Forte Compiler 6.0. The
adders. A controlled constant modular adder consists of fivgompiler option “-xO5 -fast -xtargetultra2 -xarch=v9” is

controlled constant adders. A controlled constant adder conysed. We use the solaris thread library for multiprocessor
sists ofO(n) XOR (controlledNOT) gates. Thus, one modular execution. Under this environment, if we use an in-place

exponentiation circuit require®(n®) gate. Details are de- algorithm, 30-qubit quantum register states can be simu-
scribed in Ref[8]. It is simulated inO(n32""P) steps if |ated

there are no overheads for parallel executioR i2the num-
ber of processors available in the simulation sygtem B. Quantum Fourier transform

Table | shows QFT execution time by the simulator that

Ill. ERROR MODEL uses QFT circuit andclassical FFT algorithm. Numerical
error value ranges from 16°to 10 1% Recall that 2 is the
number of processors available in the simulation system.

We consider a quantum depolarizing channel as the decd=FT algorithm requiresD(n2"~ ) steps, and QFT circuit
herence error model. In this channel, each qubit is left unrequiresO(n?2"~?) steps forn-qubit quantum register, if
changed with probability + p. Otherwise, each of the fol- there are no overheads for parallel execution. The execution
lowing possibilities has probabilitg/3: the qubit is negated, time is increased exponentially with respectrioTable |
or its phase if changed, or it is both negated and its phase &hows that the execution time of FFT is about 20—30 times
changed. as fast as that of QFT circuit. Both execution times are de-

A. Decoherence
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TABLE |. QFT execution timeseg. T AR
: ;(\* Eap I SVE RORKR KRR KA X, KXok KK
Qubits Number of processors 08 ***
(n) Algorithm 1 2 4 8 Tl **xx
20 Circuit 26.08 7.25 5.01 533 . e .
FFT 121 0.92 0.72 053 & |1 gy
22 Circuit 124.78 66.96 38.03 23.40 ? '}? ****.K,{*
FFT 5.01 3.71 2.79 1.83 S 04 p=10"(Sim. et _ = B
f ; Y (Theoretical) - FHEK K xx
24 Circuit 643.02 331.98 183.01 137.7 p=10'4((s_|i_,t111_ Valtueslg x X
8, eoretical) -
FFT 20.00 1261 8.40 5.84 o2f . p-10%Smvabes
26 Circuit ~ 274556 1469.73  799.57  526.82 &y  (Theoretical
o P=107(Sim. Valyes; g
FFT 113.29 73.08 48.39 32.84 Oty (Theoretical) -
. . 0 L S80pgn & S &
28 Circuit 12597.8 6738.13 3661.51 2338.19 0 20 40 60 80 100
FFT 567.19  319.16 20598  142.01 S ———
29 Circuit 31089.6 16790.6 9189.68 5811.49

FIG. 9. Decrease of th®)(0| term in the density matrix20

FFT 1232.16 697.68 423.00 286.29 .
qubits.

creased when the number of processors is increased. THech experiment uses different initial random seed. The ini-
speedup ratios on 8-processor execution are about 4—5. TiH@! state of the quantum register [80- - -0)=|0). HT cir-
reason why the speedup ratios on 8-processor execution af¥it is applied to the quantum register over and over. Xhe
not 8 is that the parallel execution has some overheads th&is in Fig. 9 shows the even iteration number. If there are no

single-processor execution does not have. The parallel exgrrors (i.e., the error probability is 0and the number of
ecution overheads are operating system overhéamsti-  iterations is even, the state remains to®pand|0)(0| term

ance, memory-bus saturation, memory-bank conflict, falséierence errors degrade for th@)(0| term. The noise de-
sharing, and so on. For small-size problems, the ratio ofrades th¢0)(0| term significantly if the error probability is
overheads to the computation for parallel execution is relagreater than 10°. When the error probability is 17, the
tively large and speedup ratios on multiprocessor executiotP){0| term is decreased in exponential order in proportion
may be less than four. The decoherence and operational éf the number of iterations.

rors experiment for QFT is described in Sec. V. In this easy case, we can compy@®(0| term in the
density matrix also theoretically. First, consider the 1-qubit

case. Letp be the error probability ang, be the density

o matrix after the HT circuit is applied to the quantum register
Table Il shows Hadamard transforiT) execution time. i times. The density matriy,. , is then calculated as fol-

HT circuit requiresO(n2"~P) steps fom-qubit quantum reg- lows:

ister. The speedup ratio on 8-processor execution becomes

C. Hadamard transform

about 5. p p
pr+1=(1=p)Hp H* +§UprkH*U: + §UyHPkH*0';
Effect of errors
We have investigated the decrease of B 0| term in n EUZHPKH*U: _
the density matrix for the 20-qubit register. 3

Decoherence errotrsWe have analyzed decoherence in o )
the HT circuit on the depolarizing channel. Of course, the When the initial state of the quantum registef03 andk

simulation deals with pure states. Therefore, the experimeni§ 8Ven.py is calculated as follows:

were repeated 10000 times and we use the average values. 4 \k

1+ 1——p) 0

TABLE II. HT execution time(seg. 1 3
Pk:§ k

Qubits Number of processors 0 1- ( 1- §p)
(n) 1 2 4 8
20 238 1.18 0.76 040 Inthen-qubit case, we can calculate the density matrix simi-
29 10.85 5.73 3.20 135 larly if the initial state of the quantum register|®, . ..,0
24 46.94 24.96 13.40 o5 andkis even 0)(0] term of py is
26 205.81 109.97 58.83 38.71 K\ n
28 887.40 467.71 253.82 167.31 1+ ( 1— —p)
29 2027.9 1081.1 592.08 395.81 3

2
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1 * = A s e TABLE lll. Combined effects for HT.
055 EBQDE Operational ¢)
' Peay_ Decoherence) 0 10°° 10°* 1073
e 09 ﬂ”‘%_n 0 1.0000 1.0000 0.9999 0.9977
@ ' Eﬂmmm 10°° 0.9870 0.9870 0.9849 0.9797
? “H-B.E,E 104 0.9010 0.9010 0.8909 0.8780
S 085 0=10"(Sim. Vall,les; ' Bea, 1073 0.2910 0.2790 0.2779 0.2664
4, (Theoretical) -------- Pea,
6=10""(Sim. Values; x Bag
3 (Theoretical) - “oag
08 “=1°2((S+'ﬁ‘éc§’r§'t‘ﬁ§§{ - 1 ~ Figure 10 also shows this theoretical valug@f0| term
6=10"%(Sim. Values; o in the density matrix if the standard deviatian=10"
(Theoretical) - ) .
0.75 . : . , ~10"“ andn=20. It follows from the theoretical computa-
0 20 40 60 80 100 tion that|0)(0| term decreases exponentially with respect to

Number of Hadmard Transform the number of iterationk.

Operational and decoherence errorEach element of
Table IIl represents th¢0)(0| term of the density matrix
after HT is applied to the stat®) of a 20-qubit register
10000 times.

The combined effect of two factors may be worse than in

ase of each factor alone. That is to say, the effect seems to
e the product of each factor. Table Il shows this situation.

FIG. 10. Decrease of th®)(0| term in the density matrix20
qubits.

Figure 9 also shows this theoretical value|@f(0| term in
the density matrix ifp=10"°~10 2 andn=20. We can see
that the simulations and the theoretically computations yiel
almost the same result.

Operational errors The simulator implements “inaccura-
cies” by adding small deviations to two angles of rotations.
SinceH = Ug(7/4)Up,(7), we add small deviations andy

to (w/4) and m, respectively. That is, we usel(x.y) We investigate behavior of Shor’s factorization algorithm.

=Ugr((7/4)+Xx)Ups(7+Yy) asH gate in this experimeni oo : ) . :
andy are drawn from the Gaussian distribution with the stan-The point is(1) how effective the improved algorithp9] is,

. . . (2) effects of decoherence errors and operational errors.

dard deviatiornr. As mentioned above, the experiments were First we review the algorithm briefl
executed 10000 times and we use the average value. Each In u't An | bit odd num%em that has);t least two distinct
experiment uses different initial random seed. Figure 10 rimg factors
shows how operational errors degrade ) 0| term when P Outout A n'ontrivial factor ofn:
0=10°~10 2 andn=20. The|0)(0| term is not affected ) ghoose an arbitrarye{lé n-1y
by the operational error i is less than 102. . i y

yIn thispcase we can also compute theoretically|)€0| @ (_C_Iassmal stepComputed=g_cd(x,n) (greatest com-
term in the density matrix. First, consider the 1-qubit case?uotgu?g':g; 2];épand n) using Euclids algorithm. 1fd>1,
Let py be the density matrix after HT circuit is applied to the i

: : ) . (3) (Quantum stepTry to find the order oi:
g;lacr&tlggdr?ﬁgelt)xges' The density matripy,, can be (@ Initialize anl-qubit register and al2qubit register

to state|0)|0).

(b) Apply HT to the second register.

(c) Perform modular exponentiation operation, that is,

|0)|a)—[x*(modn))|a).

(d) Measure the first register and apply the QFT to the

second register and measure it. lydte the result.

(4) (Classical stepFind relatively prime integerk andr

(0<k<r<n), such that|(y/2?"y— (k/r)|<1/22"*1) by us-
ing the continued fraction algorithm. Xf==1(modn), or if r

V. EXPERIMENTS

A. Shor’s factorization algorithm

pea= || Aoy poopdxdy,

where p(z)=(1/\/27m)e*22’2”2. If the initial state of the
quantum register i$00---0)=|0), p, can be expressed as
follows:

(o2 is odd, or ifx"’?==1(modn), output “failure” and stop.
1 1+e (@)% 0 _ .
== _ (5) (Classical stepComputed. =gcd(n,x”?+1) using
) 0 1— e (0%/4)% Euclid’s algorithm. Output numbers. and stop.

. . TABLE V. Execution time in Shor’s factorization algorithm,
As for the generah-qubit case, we can calculate the density\yhenn=15 andx=11. (Al guantum operations are executed on

matrix similarly if the initial state of the quantum register is the circuit)
|00---0), andk is even.|0){0| term of p, is then

Modular exponentiation QFT

18184(seq 0.64270(seq

1+e—(02/4)9k n
2
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TABLE V. Number of needed iterations for Shor’s factoring 025 =T ® X X" ¥ X X X X X XX
Number of iterations el p:ﬁ'g-as' g |
Theoretical Simulation p=107 *
. = p=10 a
n Original Improved £ o015t p=102 = .
21311(=211x 101) 15.79 6.690 1.760 %
21733(=211x 103) 15.85 8.990 2.356 g o4l ]
22999(= 211X 109) 16.00 6.360 1.730 . 5 o oo s 8 s 8 8 o oo 8 o8 o
22523(=223%x101) 15.88 5.480 1.770
22927(=227x 101) 15.91 3.790 1.470 i 1
22969(=223x103) 15.94 8.050 2.070
23129(=229% 101) 15.92 7.133 1.636 0 b
0 10000 20000 30000 40000 50000 60000

States: [n>

When the simulator performs all the step-3 operations FIG. 11. Amplitude amplification by QFT in the presence of
(not only QFT but also modular exponentiatian the quan- decoherence. errdtop) and the required number of iteratiofisot-
tum circuit, 3 + 6 qubits are totally required, as described intom (16 qubits.

Sec. Il C 3. Therefore, the simulator can only deal with 4-bit

. ’ L. . = +(1- ~

integern (51 + 6< =30—1<4). The 4-bit integer that satis- Prokucdn) =Pstere t (1 Pstere) Psters-a
fies the input property is only 15. We have tried to factor 15 d(n)\ dn) (1 4 e?

on the simulator. Beyond our expectation, modular exponen- =|1- o " )
tiation is computationally much heavier than QFT.

Modular exponentiation require®(132'~P) steps and
QFT on the circuit require®(122' ~P) steps, when there are

2P processors available in the simulation system and therfhe step(4) succeed ang is the Euler constant, and(n) is
are no overheads for parallel execution. Of course, in th?he Euler number of.. If the above algorithm, is repeated

classical computer, modular exponentiation consists of baSiB(llProQ {n)) times, the success probability can be as
operations such as addition, multiplication, and division. | cq 1o 1”°as desired,

However, these basic operations are not so heavy if the clas- We choose am=pq wherep andq are prime numbers.

sical_ computer is used, because it h_as the_ dedi_cated NONMfPhese kinds of integers are chosen in an RSA cryptosystem
ver_S|bI.e C'Fcu't[the so-called ALU) arithmetic logic unil (developed by Ronald Rivest, Adi Shamir, and Leonald
T.h's situation suggests tha_t a bfa”d'”e.w fast quantum aIg‘kdlemarj because it is believed that it is hard to factor such
rithm for arithmetic operations is required to factor Iargeri tegers easily. Recall thap(n)=(p—1)(q—1) for such

numt,)ers. 15 is not enough to investigate the behavior 0ntegers. We have experimented with several RSA-type 14
Shor’s factoring algorithm. In order to factor much Iarger~15_bit integers

number in a reasonable time, the simulator performs the step The simulator repeats the above algorithm until a non-

3(0) f"m.d the step (@) cIassmaIIy. That is, the mpdular €XPO" wrivial factor of n is found, and records the number of itera-
nentiation are computed classically and QFT is computed by

FFT algorithm in the simulatofsee Table 1V. In this case, 0.25 ——s—r—

2 2 loglogn

where pgiep denotes the probability that the st€p) suc-
ceeds ange -4 denotes the probability that stép) and

the simulator does not need to generate the first registet
Therefore, the simulator can factor about 14—15-bit integers I ioal
(for example, 23089 ' v M
The factoring algorithm succeeds with the probability gjgﬁg .
greater than g o5t 1
g
TABLE VI. Detailed effect of improved algorithm. 721 01 L i
<<
Ratio of success/failure
n 1 (Neighbop 2 (GCD) 3(SP 4 (LCM) 0.05 - .
21311 27/9 52/19 12/4 3/4
23129 2719 52/19 1274 3/ 05 10000 20000 30000 40000 50000 60000
22999 37/6 47179 13/8 2/58 —
22969 41/8 22/82 31/22 1/28
22927 25/3 35/49 18/2 1/28 FIG. 12. Amplitude amplification by QFT in the presence of
22523 37/6 45/76 18/22 7/54 operational erroftop) and the required number of iteratiofisot-

tom) (16 qubits.
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TABLE VII. Combined effects for QFT16 bit). T T T T
e T T ]
Operational ¢) ) ?% & z
Decoherenceff) 0 10° 104 10°%® 10°? 0% FA
iy 7 % t? J
0 1.0000 09999 0.9999 0.9999 0.9998 x % g 2 |
10°° 0.9880 0.9840 0.9860 0.9880 0.9848 3 5M% N %
104 0.8837 0.8897 0.8827 0.8801 0.8980 & . ) ?; |
10°° 0.3287 0.3399 0.3332 0.3209 0.3363 < ? af EV I (I
1072 0.0027 0.0015 0.0019 0.0017 0.0031 03}, . ¥ R 3 L
x & % % 2
0.2 t* PPN % J
" 3_18'4 1) "
= - L]
tions. The experiment was executed 100 times, and we cal ~ *'F  p=i0® % 5 L
° % X . &

culate the average of these recorded iterations. We haw 0
compared the simulation values with the theoretical number
of needed iterationgi.e., 1/prol,{n)]. The results are
shown in the Table V. Theoretical valu€sheoretical” col- FIG. 14. Decrease of the amplitude of the correct element in the
umn) are about only 2-4 times as large as simulation values presence of decoherence err¢t§ qubits.
(“Original” column). Although much more simulations are
required, the theoretical values seem to be fairly good. often becomes a factor of That is, even if the candidatds

As suggested in Ref9], the algorithm was optimized to not equal toord(x) (an order ofx), r may be a divisor of
perform less quantum computation and malessical post-  ord(x). That is,N> Ja>1, a-r=ord(x). In this case, the
processing. following equation holds whenis even.

(1) Neighbor y checkNo relatively prime integerk andr
are found by using the continued fraction algorithm, then it is

20 40 60 80 100 120 140 160
Number of G. lteration

wise to tryy+1, y+2. =x0rd() _ 1= (x"—1)(x@ Dryx@2r . 41
(2) gcd check Even if x'#1 (modn), try to compute O(modn)=x (= 1)ix X )
d.=gcd(n,x"?+1). =(x"2=1)(x"P+1)(x@ D4 x@=2r 4.1,

(3) Small factor checkif x"#1(modn), it is wise to try
2r, 3r, ....This is because ify(/2°")~ (k/r), wherek andr
have a common factor, this factor is likely to be small. Thus, there is the possibility thatandx"?=1 have a com-
Therefore, the observed value of/2?') is rounded off to mon nontrivial factor.
(k"/r") in the lowest terms.

(4) lem (least common muliplier) ched.kt\./vo cgndidates B. Effect of errors
for r, r4, andr,, have been found, it is wise to test _ _
lem(r,,r,) as a candidate far. We have analyzed decoherence and operational errors in

We have tested how much the algorithm is improved bythe QFT circuit. o
these modifications. The results are also shown in Table v Decoherence errorsWe assume that each qubit is left
(“Improved” column). The number of iterations is reduced Intact with probability I-p and it is affected by each of the
to about 1/5-2/5. The detailed effect of the improved algo- €ITor operatorsry oy, o, with the same probability /3),
rithm is described in Table VI. Each element of Table VI €ach time the register is applied by the controlied rotation

represents the ratis/f, wheres means the number of suc-

cess iterations anflis the number of failure iterations. For 1 & ' Y o) - N
example, forn=23129, the first optimization, “neighbor 0.9 | F % ,Xm& Y
check” is performed for 2# 9= 36 iterations and a candi- 08 | ; = &* ;M‘;
date of the order is found successfully in 27 iterations. It 07 9 % b - oA
seems that the second optimization “gcd check” works well . ® - ’l; = e
for all n that we have experimented with. From this result, g 06 * P PR -
we can see that even ¥ #1(modn), d. =gcd(n,x"?+1) £ o5f = T g PR *a
£ L i)
< 04l [ - :
0 — = 1 O B 3 03 o Y ? L) .
e e O R e O e O s O ) ! i :
[0} — — — — — — — 0.2 —: 5=}8:‘3‘ s . % %
H fi H fy H fy H 01h o002 5 ™ %
Ideal o & L
0 1 1 ] 1 1 * 1 1 L]
0 - g Hd e 0 20 4 60 80 100 120 140 160
1 1 1 Number of G. Iteration

[0
V2

FIG. 15. Decrease of the amplitude of the correct element in the
FIG. 13. The circuit of Grover’s algorithms. presence of operational erratB0 qubits.
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gateRy. Figure 11 shows the amplitude amplification phase VI. RELATED WORKS
by the QFT circuit on the depolarizing channel in Shor’s ) o
factorization algorithm[step 3 (d)], when n=187 andx There are many quantum simulators for quantum circuit

=23. The y axis in Fig. 11 shows the amplitude. The experi-nodel of computatiof10-13. Qb [11] aims to use binary

ment was executed 1000 times and we use the average. If t€cision diagram in order to represent the states of quantum
error probability is greater than 18, it is hard to use QFT register.oCL [12] and OPENQUBIT [13] both use complex
circuit for period estimation. number representation of quantum states like our simulator.
Operational errors In the simulator, “inaccuracies” are In addition, QcL tries to establish a high-level, architecture-
implemented by adding small deviations to angles of rotaindependent programming language. Obenland's simulator
tions of Ry. We considerH = Ug(/4)Upy(7), and Gyor [10,14 is based on an actual physical experimental realiza-

= Ug(7/2)Upy (). The simulator also represents inaccura-tion anq it uses parallel'prpcessing like our sirpulator. Al-
cies by adding small deviations to these angles of rotationdnough it runs on the distributed-memory multicomputers,
The error is drawn from the Gaussian distribution with the®Ur Simulator runs on the shared-memory multicomputers.
standard deviationd). As mentioned above, the experiment Therefore, in our simulator, there is no need tp_dlstrlbute_ and
was executed 1000 times and we use the average value. FigR!leCt states of the quantum register. In addition, our simu-
ure 12 shows the amplitude amplification phase by QFT i ator uses more effyment evolut|on. algor!thms and adopts
Shor's factorization algorithrfistep 3d)], whenn=187 and ((_:Iassma) FFT aIgont_hms for fast simulation of the large-
x=23. It seems that the period extraction by using QFT isSiZ& Problems. Our simulator does not depend on any actual
not affected by the operational error. phygca_l experimental realizations. It is not easy to say which
Operational and decoherence erroM/e investigate also rgallzatlons are best at the moment. In other words, our
the combined effect of operational and decoherence error§Mulator is more general purpose. o _
Table VIl shows the results. Each element of the table rep-, Bermanetal. simulated Shor’s factorization algorithm
resents thdidelity. The fidelity is defined as the inner prod- (four-qubit casgusing the Ising-spin quantum computer. The
uct of the correct state and the simulated state with errors, "nresonant effects are a_nalyzgd in defaB]. They also
The combined effect of two factors may be worse thanpresented the resultg of simulations .of controlkm_r— gate
each factor alone. That is to say, the effect seems to be ﬂ%etween remote QUb't_S' and.the creation of [ong-d|stance en-
product of each factor. However, when the decoherence rat@nglément in a one-dimensional nuclear-spin quantum com-

is relatively higher, the small-deviation operational error canp,Uter V\,”th many QUb't‘rT(Up to 1000 [16]. However, this
improve the results contrary to our expectations simulation did not take into account of all the parameters. In

Ref. [17], they developed a consistent dynamical perturba-
tion theory that takes into account of all the parameters and
C. Grover's search algorithm numerical simulations are used to prove their theory.
o . . Long et al. investigated the effects of gate imperfections
Suppose that a functiofi :{0,1}"—{0,1} is an oracle (,harational errojsin Grover's search and Shor’s factoriza-
function such thaf,(x) = 6. TheG iteration is defined as tjon by performing numerical simulatiorjd8,19. But they
_HanoHank-_ The sign-changing operatdr is mp_le- do not consider decoherence errors. Our simulator deals not
mented by using thécontrolledNOT gate and one ancillary only with operational errors but also with decoherence er-
bit. Figure 13 shows the circuit of Grover’s algorithm. rors.

Effect of errors

We have analyzed the impacts of decoherence and opera- VIl. CONCLUSION
tional errors in the circuit for Grover’s algorithm. We assume

again that the depolarizing channel is used. We consitler puting on a parallel computdBun, Enterprise4500Up to

ator 150 ropresbns aceuracios by ading smal deviatoril dUDIISCan be handled W have performed Shor's factor
P . y gst ization and Grover’s database search by using the simulator.
to these angles of rotations. Each error angle is drawn aga

f he G ian distributi th th dard deviaii Bur results show that the improved Shor’s factorization al-
rom the Gaussian distribution with the standard deviation = qithm s really effective. We analyzed robustness of the

Figures 14 and 15 show the impacts of errors for a 10¢4responding quantum circuits in the presence of decoher-

qubit register. The experiments were repeated 1000 timégnce and operational errors. If the decoherence rate is greater

and we use the average values. If there are no errors, Ryan 1073, it seems to be hard to use both quantum algo-
plotting the amplitude of the correct eleméthtat is,k) we  rithms in practice.

get a sine curve. However, the amplitudes are decreaséd as  For future work, we will investigate the correlation be-
iterations are repeated in the presence of errors. Figure lveen decoherence and operational errors. That is, why
shows the impacts of decoherence error. We can see that teeall-deviation operational errors can improve the results
decoherence error affects the period of the sine curve. Figunehen the decoherence rate is relatively higher. Furthermore,
15 shows the impacts of operational errors. It seems that thee will investigate how effective quantum error-correcting
operational error does not affect the period of the sine curvecodes are.

We have developed a parallel simulator for quantum com-
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