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Largest separable balls around the maximally mixed bipartite quantum state
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For finite-dimensional bipartite quantum systems, we find the exact size of the largest balls, in $pectral
norms for I=<p=<oo, of separabléunentanglefimatrices around the identity matrix. This implies a simple and
intuitively meaningful geometrical sufficient condition for separability of bipartite density matrices: that their
purity trp? not be too large. Theoretical and experimental applications of these results include algorithmic
problems such as computing whether or not a state is entangled, and practical ones such as obtaining infor-
mation about the existence or nature of entanglement in states reached by nuclear magnetic resonance quantum
computation implementations or other experimental situations.
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I. INTRODUCTION AND SUMMARY OF RESULTS they are entanglgdA similar result is easy for £p=<2, as
remarked before the statement of Theorem 2; however, this
Entanglement is an important element of many quantuninvolves subtracting a normalized pure state to reach the
information processing procedures, from cryptography tcedge of the ball where the state becomes singular and thus is
computation to quantum teleportation. Indeed, a quantum a@t the edge of the positive cone. By contrast, Theorem 3

gorithm operating on pure quantum states must entangle volves adding a maximally entangled state, so pe2

number of qubits increasing unboundedly with the input size2lls hit the boundary of the separable states at some places

e ; ; ol .- Where positive entangled states lie across the boundary.
ifitis not to be _5|mu|ab|e in polynomial time on a classical Theorer% 4 tells us a%out the size of the largest negativg
ggmpﬂi:[gétg :f]ano;t)(la(rx])iv)\(lg dwlgittg?;\}::ilr? Isvvfw(()at\r,]vgreg t?fe eigenvalues of the partial transpose of bipartite positive ma-
statep even of twoy Lantum s stems. is egntan led orgse ?r_ices that are ranka projectors, giving us information about

' quar y o 9 . PHow quickly we can hit the entangled matrices when depart-
rable (not entangledis, in general, difficult, and consider-

- ing from the identity by adding a positive multiple of such a
able effort has been expended on finding necesssary and/‘ﬁf%jector. In particular, by considering a perturbatibmro-

sufficient conditions. The normalized separable states form Bortional to such a projector whose partial transpose has
convex set. A key aspect of the geometry of a convex set igaximal modulus of its most negative eigenvalue, it can be
the size of the Iargest ba(bspemally |n|2 norm) that fits shown that fOI’p=2, also, the |argeqj)_n0rm ball around

entirely inside |t, and the smallest ball that covers it. We herqOU(:heS the edge of the Separab|e cone at p|aces within the
find the inner ball for the set of separable quantum statesositive cone.

The result has both practical and theoretical relevance. For As one example of practical relevance, the “pseudopure”
example, it provides a simple sufficient criterion for separastates that describe each molecule in nuclear magnetic reso-
bility. A bipartite state of a composite system with overall nance quantum information processing are mixtures of the
dimensiond is separable if its purity {° is less than 14  uniform density matrix with a pure state; the signal of quan-
—1) (as conjectured in Ref2]). Because of its simple geo- tum dynamics derives from the small pure component. Be-
metric nature and ease of computation, this criterion is likelycause of this, the density matrices of the different nuclear
to be very useful both in theoretical applications and in anaspins in a given molecule have not, in experiments done so
lyzing whether entanglement was present in experimentdar, exhibited entanglement despite the pure component be-
Just as importantly, knowing the size of such balls helps on#'d an entangled state; they have remained within known
to understand the computational complexity of problems in{OWer bounds on the size of the ball of separable st8gs
volving a convex set. For example, using bounds on the siz@ur determlna_tlon of the exact size of this ball for blpartl'ge
of the inner ballrather than the exact result we present here Qntanglement mcrease; kn?wn Iowr?r Eollf(nds on the polanza-
one of us has shown the NRondeterministic polynomial 1ON necessary in order for such bulk computation on
hardness of the “weak membership” problem for Separabil_pseudopure states to be able to achieve bipartite entangle-

itv when the di ; fthe t i Ct d.fment, although due to the bipartite nature of our analysis, it
ity when the dimensions of the two systems are not 100 ity ,eq ot ryle out the production of entangled states that are
ferent[8]. It is likely that the exact result reported herein

) ) . ) - separable with respect to every bipartition, at lower polariza-
may be used in extending this hardness result or in obtaining,n “This raises the interesting question whether the expo-
other complexity results about separability and entanglepential gap between our bound for bipartite separability and
ment. _ o _ known bounds for separability in this context can be closed.
Our main results begin with Theorem 1, that the matrixQther quantum information processing procedures may also
| +A is separable for all Hermitiad with [|A[[,=<1. Cor- involve such mixtures; also, mixture with the identity matrix
ollary 1 gives similar statements for oth@norms. Theorem s a frequently studied model of quantum noise, the “depo-
3 establishes that for2p=<«, these are the largest such larizing channel,” to which our results are relevant. When
balls, by showing that at any larger radius, there are statethis occurs in bipartite contexts, our results are much stron-
whose partial transpose fails to be positive semidefif§te  ger than previously known. We emphasize, though, that the
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sufficient conditions for entanglement and separability proproven(along with the sufficiency of the partial transposition
vided by our results apply in arbitrary contexts, not only for map (“Woronowicz-Peres criterion) for two qubits or a 2

mixtures of a pure state with the normalized identity. ®3 system, and a@4 counterexamp)ein Ref.[6], though
the terminology of separability and entanglement is not used
Il. MATHEMATICAL BACKGROUND AND NOTATION there. The proof there is given for agN system <o),

. but it works forM ® N by expanding the range of an index.
We represent unnormalized states of a quantum systefje 310 use the following fact.

composed of two subsystems of dimensidhsand N (* M Fact. Let A be anM x M block matrix (whose blocks

®N system’), as positive semidefinit X M block matri-  neeq not be squareDefineA’ as the matrix whose elements
ces, WithN> N blocks(so that they ar@INXMN complex  gre the operator norms of the blocks Af Then ||Al]

matrices. (The_se are th(_e eIements of the unnormalized den'SIIA’||$M||A||. The first inequality is well known: the
sity operator, in some f_|xed basis of product stagsf;.) second holds becausg;j||=||PAQ;||<||All. (Pi(Qy) is
Rather than Dirac notation, we use roman letters for vectorsy, projector onto théth subspace in the direct sum decom-
but we use T for the adjoint. Such a maths calledsepa-  osition of the row(column space that defines the blocks.

rable if it can be written So, by adding toA’ a matrix with non-negative entries
(therefore not decreasing the norwe can obtain|A|| times
A= xxioyyl. (1) theM XM all-ones matrix, whose norm M.
i

+

Objects such ag;x! are outer productéin Dirac notation Il. MAIN RESULT: SEPARABILITY OF PERTURBATIONS
|Xi><xj

; here|x;) are not assumed normalizgdWe useeg, OF THE IDENTITY

for elements of an orthonormal bagtypically |i) in Dirac We give two proofs of the main result. Both proceed via

notation). Thus oure;®e; would typically be written|e;)  Proposition 2, which states that stochastic positive linear

®|e;), or|ej)|e;) or simply|i)|j) in Dirac notation.M, is  maps omxn matrices are contractive with respect to the

the set ofnXn complex matricesMy,, the set ofmXn  (“gperator”) norm of matrices, fomll matrices.(The result

complex matrices. When interpreting tensor products agor Hermitian matrices only is much easjéFhose interested

block matrices the left-hand factor corresponds to “whichonly in the shortest proof, which uses the Naimark extension,

block,” and the right hand to the indices within blocks. may skip to the statement of Proposition 2 below. We think it
[[X]| (or[|X]|..), with a matrixX as argument, is the usual is of interest to see the connections of the norm contraction

operator norm induced by Euclidean noffr||=(x,x) on  result to two different concepts well known to quantum in-

vectors(i.e., || X[ :=supjy=1/|XX|[). (It is also thet., norm  formation theorists: in in the second proof, the Naimark ex-

of the vector of singular values &, i.e., the largest singular tension and in the first proof, separability. The first proof

value) ||X]|1 is tryX"X, the sum of the singular values Bf ~ proceeds via Proposition 1, which is a special case of recent

[IX]|2, the Frobenius norm, igtr X'X, the Euclidean norm results by one of us providing sufficient criteria for separa-

associated with the inner productttY. The squared Frobe- bility.

nius norm is also the sum of squared singular valueX,of Proposition 1.If ||X||<1, the block matrix

and the sum of squared moduli ¥fs matrix elements. We

write [a;;] for the matrix with elementsy;; . ( X

()

Linear maps¢. M,— M,, are calledpositiveif they pre- xt
serve positive semidefiniteness. They also preseve Hermitic-
ity (write HermitianH as a sum of positive and negative s separable. This is thel =2 case of a recent theoref]
semidefinite parts, and use linearity and positivitk sto-  that all positive semidefinité! x M block Toeplitz or block
chasticmap takes the identity matrik to itself. We may  Hankel matrices whose blocks ae< N matrices are sepa-
apply such a magb to one subsystem of a bipartite system, raple, whose proof we include here. The pajfralso con-
while doing nothing to the other system. Applying it to the tains two alternative proofs for the special cade=2. One
N-dimensional subsystem is just applying it to each block ofpf those proofs was independently discovered in IR
the block matrixX. We call the resulting map on the bipartite  prgof (of separability of positive semidefinite block

system?}&, Toeplitz matrices [7]).The proposition is a corollary to the
following Lemma.
Xy d(Xyd o d(Xin) Lemma.Consider arff (M +1)XN] positive semidefinite
5 d(Xo1) d(Xon) o d(Xow) block Toeplitz matrixT,
B(X):= L@
PR e e e RO Rl Rz e RM
Hd(Xny) ¢ Xn2) - d(Xnn) Rl R, R, - Ry
An important condition equivalent to separability Afis T= R} RI Ro

that for any stochastic positive linear map ¢é(A) be posi-
tive semidefinite. We refer to it as the “Woronowicz condi- N ; N
tion.” This appeared in Ref5], but was already essentially Ru Rm-1 Ru-2 - Ro
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(This structure is the definition of a Toeplitz matjipSup-
pose thatR(T) =K. Then there exist aN X K matrix X and
a KXK unitary matrix U such theT(i,j)=XU""I1X',0
<i,jsM-1.

Proof. Since our matrixT is positive semidefinite with
R(T)=K, T=YY', where

Y=(Y0 Y1 Y3 YM)T,

and each blockf; is anNXxX K matrix. Define the upper sub-

matrix Y as
YU=(Y0 Y1 Yy YMfl)T,
and, correspondingly, the lower submat¥x as
Y|_=(Y1 Y2 Y3 YM)T-

It follows straight from the Toeplitz structure thz)rtUY[rJ
=YLYI. Thus there exists an unitak/}X K matrix U such
thatY, =Yy U or in other words,

Y=(Yo YoU YoU? YoUM )T,
Recalling thafT=Y Y', we finally get the identities
T(i,j)=XU " IX",0<i,jsM—-1;X=Y,.

Corollary. Using the notation of the proof above, put
=V Diag(z;, . . . ,zx)V' whereV is unitary and the complex
numbersz; have norm one, i.e?=zi‘1,1$i$K. Denote
theith column ofXV asL; andZ=(1z,....2" H7, 1

<i<K. Then the following “separability” representation

holds:

T:

1<i

zzloLL].
K

i

We can use Proposition 1 to show a contraction inequalit
(Proposition 2 below We got the idea of using separability
to obtain operator inequalities involving stochastic positive

maps from Ref[6], where the Kadison inequality(X?)
=[4(X)]? for stochastic$ and HermitianX is implicitly
connected with the separability of

I X
X X2

In a sense, foM =2 separability ofp is equivalent to Propo-

p=
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Proof 1.We show thatp(X)<1 if ||X||<1; the proposi-

tion follows by ¢'s linearity. Apply ¢ to the separable state
of Proposition 1, obtaining

(l ¢(X))
B(XT) 1 '

Write X=X;+iX, with X;,X, Hermitian. Then ¢(X")
= ¢(XI—ixJ)= (by Hermiticity preservation ofs, which
follows from its positivity &(X1)T—id(X,) = p(X;
+iX,) "= ¢(X)". Hence Eq(4) is equal to

(l ¢(X))
()" 1 '

Since this resulted from applying to a separable state, it is
a positive semidefinite matrix. Positivity of this matrix is
equivalent(cf. e.g., Ref[10], p. 472 to ¢(X)Tp(X)<I: i.e.,
xTp(X)Tp(X)x=<1 for all normalizedx, i.e., ||X||<1.

This proof was independently discovered in H&fl. Let
us present a very different proof which does not use separa-
bility but another concept well known in the quantum infor-
mation community.

Proof 2 (lifting). It is well known that the extreme points
of the matrix ballX:||X||<1} are unitary matrices. Thus we
can assume that is unitary, i.e.,X=3,_;_\zeel, where
|zi|=1,1<i<N and{e;,1<i=<N} is an orthonormal basis
in CN. Thus(X)=21-i-nziQi,Qi= ¢(eje]). Sinces is a
positive stochastic map,

4

®)

Qi=0(1<i<N) and I= >, Q.
1<i<N
By Naimark’s theorem 11,12 (cf. Ref. [13] for a simple
exposition in finite dimensionthere exist commuting or-
thogonal projector®; :CK—CK,N<K=<N?, and a unitary
)iﬁjection U:CN—CK such that

Q=U'P,U(1<i<N) and I= D,

1<i=<N

It is easy to see thdt>,-;<nziPi||<1. Thus

1<is

‘ » ziQi‘snu*u
1<i<N

ENZiPi‘”UHSl. (6)

This second proof suggests that there might be a deeper con-
nection between Naimark’s theorem and separability.

sition 1, as in this case there is a local unitary transformation e proceed to the main theorems.

p—(A®1)p(AT®1) which maps block Toeplitz matrices to

block Hankel onegsee Ref[7]),

gl o)

Theorem 1The matrixl + A is separable for all Hermitian
A with ||A|],=<1.
Proof.

[()lP=<[IAl1P<]|AllZ, (7

One can probably prove the next proposition using the KadiwhereA:=[a;;], a;;:=||$(A;)]|.

son inequality and this transformation.

Proposition 2.Let ¢:M,—M, be a stochastic positive

linear map. Then for anXe M,, ||#(X)||<||X]]|.

||A||§=i2j aﬁ-=; (A2 ®
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(The first inequality is because the operator norm of a block W(N)= min —Apmin(ph),
matrix is bounded above by that of the matrix whose ele- peD(N,N)
ments are the norms of the blocks, and the second is because

the Frobenius norm is an upper bound to the operator norm. . . :
But ||¢(Aij)||2$||Aij|| by Proposition 2, and this in turn is where D(N,N) is trle set of dens_lty matrices &f XN sys-
less tharj|Aj|[2. So tems. ThenV(N)=1. (3) If | +ap is separable for ajp and

a>0 thena<W(N) 1=2.

Proof. Diagonalize ¢ by local unitaries using the
singular value (“Schmidt”) decomposition obtaining
||$(A)||2$2 ||¢(Aij)||2S2 ||Aij||§E||A||§S1, (9) Diag(d,, ...,dy). The corresponding density matrix has

i] i bIock5pij=didjeieJT, and the spectrum g (which is not
changed by applying local unitaries prior to partial transpo-

the last inequality being the premise of the theorem. Having%c'g)lor:c)olllso‘af'sg“f/ﬁ)nn:n gzréi) ;’Em‘iorg’;‘ d2. izheat;ﬁitg\]/de'dn p;\;t

shown that||¢(4)[|<I, and also using(1)=1, we get (1/2,112,0, ... ,0). The Wronowicz-Pere§WP) condi-
¢(1+A)=0, so that by Woronowicz’ criterioh+ A is sepa-  tion gives part(3).
rable. Contrary to the “folklore,” in the result above, the fully

entangled state is not the worst one; rather, the worst is a
maximally entangled state of two local two-dimensional sub-

IV. COROLLARIES AND ADDITIONAL RESULTS: spaces. ) ] )
MAXIMALITY OF BALLS, SCALING, Theorem 3 establishes the maximum size offitballs for
AND SPECIFIC PERTURBATIONS p>2. The proof involves considering perturbations by a

positive multiple of the maximally entangled state and estab-
Let us now present some corollaries of Theorem 1. Defingishes when this procedure hits the entangled states. Before
[[A][p:=(Zi|Ni|P)M (\; being the eigenvalues of the square formulating the theorem we introduce some notation.
Hermitian matrixA.) Cwe(N,N) is the closed convex cone ofN?xN?
Corollary 1 (I, balls). Consider anNX N system. Then positive matrices satisfying the WP condition, i.ep,
the matrix | +A is separable for all Hermitiam\ with e Cywp(N,N) iff p=0 andp’™=0. CsedN,N) is the closed
[[Allp<1(1<p=<2) and ||A][,<B(N,p)=:N*""(2<p  convex cone ofseparable positive matrices. Obviously
< ). Cwp(N,N)CCsedN,N). Both Cup(N,N) andCse{N,N) are
Proof. The statements follow from basgenorm inequali-  subsets of the reaN*-dimensional linear spackl(N?) of
ties: the first from theg=2 cases of|[A[[,=[|Al|q (for 1 HermitianN2x N2 matrices. The cone dual to a convex Xet
<p=q), the second from theq=2 cases 0f||A||g (which need not be a copés X* :={y:(y,x)=0Vxe X}.
<n™@~1P[|A]|, (for p=q). Note that the dimensionis N Theorem 3.Supposep>2. If the p ball B(N,p,a)={A
in our case[These inequalities are equivalent to similar onese H(N?):A=1+A, ||A| |p=<a} belongs toCye(N,N) then
for the vectorp norms||x||p:=(2ixip)1’p; the first set can be a<B(N,p)=:N"1"?P(2<p=wx).
proved by changing variables tg=x" and using the tri- As Cywp(N,N) CCsedN,N) this theorem proves that thg
angle inequality for norms, the second by letting=x and  balls B[N,p,B(N,p)] in Corollary 1 are largest possible.
using the convexity off:z—z* for a=1 (a=p/q in our  Moreover, the form of the statds-apg in the proof shows
case.] that forp>2, parts of the boundary are in the interior of the
Thel,, result was also obtained very recently in Rgf]  positive cone, so that there are entangled states just beyond.
using quite different methods. Theballs in Corollary 1 are  Forp=2, N*P~1=1, so the point$+ apg are at the edge of
clearly the largest possible forslp<2: by subtracting any the positive cone; however, in Sec. V we will prove Theorem
normalized pure state, for which all thes@morms are 1, we 4, which allows us to exhibit interior points of the positive
can leave the positive, and hence the separable, cone. Whatne that are on the boundary of the largest ballpfer2 as
about 2<p=<«=? Theorem 3 will show that these are the well.
largest balls for these norms, too. Proof of Theorem 3lt is easy to see that the cone dual
The next theorem gives information about how fast weto B(N,p,a), i.e., B(N,p,a)*, is {AeH(N?):tr(A)
can reach the entangled states by perturbing the identity in za||Al|q,q=p/(p—1)}. It is known [6] that Cyp(N,N)*
specific direction: adding a positive multiple of a pure state.={p,+p;:p;=0i=1,2. If B(N,p,a)CCwp(N,N) then
The main point is that, perhaps surprisingly, the entangled,,»(N,N)* CB(N,p,a)* and at least tigf)=tr(p")
states are reached fastest by perturbing with@22Bell  =||pT||, for all p=0. Consider the fully entangled puh¢
state, rather than, say, a maximally entangled state. XN statepg. Then trpg)=1. It follows from part(1) of
Theorem 2 (Perturbation by positive multiples of pure Theorem 2 thapt hasN+N(N—1)/2 eigenvalues equal to
states).(1) Consider a pure corresponding to a staiey)  1/N and N(N—1)/2 eigenvalues equal te-1/N. Thus we
=2 ¢e®e€;, 1s<i,j<N. The the spectrum ofp" is get that Pa||pE||q=aN(2‘Q)’q and, finally, a<N(-2/a
[di, ... d§;did;,—did;(1<i#j<N)], whered,, ..., dy =N2P-L
are the singular values of tHéX N matrix ¢:=[ ¢;; : 1<i,j The following corollary of Theorem 1 givess is evident
=<N] (thusd§+ e +dﬁ,= 1). (2) Define from the proof the strongest sufficient condition for separa-
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bility of A=0 that can be derived by scalifgonsidering all
ways of writing A=¢(1+A) with {>0] and using the
Frobenius norm case of Theorem(dpplied toA).
Corollary 2 (scaling).Let A be an(unnormalizegl density
matrix of a bipartite system with total dimensiah=NM

andA=(\q, ... ,\q) be the vector of eigenvalues &f If
S(\)=:d— ||)\H§<1 (10
IN[E

thenA is separable.

Proof. It is easy to see th&(\)=min,-|lax—€l[3, where
e is a vector of all ones. Therefore $(A)<1 thenA=Db(l
+A), whereb>0 and||A||2<1. It follows from Theorem 1
thatA=b(l +A) is separable.

Corollary 3 (largest Frobenius ball for density matrices).
Suppose tha# is a normalized density matrix of a bipartite
system with total dimensiod=NM, i.e.,Z;<;<4\;=1 and
N=01<i=d. If [|A—(1/d)I|[53=]||\x—(1/d)e||5<1/d(d
—1)=:r? thenA is separabler is the largest such constant.

Proof. Define t=\—(1/d)e. Then||\||3=1 and||\||5
=1/d+||t||2. ThusS(\)=d—1/(||t||3+1/d) and S(\)=<1
if and only if ||t||5<1/d(d—1). From Corollary 2 it follows
that A is separable. On the other hames 1/\/d(d—1) is the
radius of the largest ball inside tliedimensional simplex.

Remark.n terms of the “purity” tr p? of the density ma-
trix (which takes the value 1 for pure states and fbr the
maximally mixed statg Corollary 3 says thap is separable
if its purity is less than or equal to 4 1).

One might conjecture that fod X N bipartite systemgso
d=N?), any A not satisfying Eq.(10) is the spectrum of

PHYSICAL REVIEW A 66, 062311 (2002

reminding us that the most obvious or tractable scaling is not
generally the best. Corollary 5 is of course also true for
mixed p.

V. PERTURBATION OF THE IDENTITY BY POSITIVE
MULTIPLES OF PROJECTORS

A final result again illustrates the power of scalifgor-
ollary 2). It gives us the most negative eigenvalue of a partial
transpose of a projector on a bipartite system. This is inter-
esting because it tells us when we will hit the entangled
matrices if we add a positive multiple of that projector to the
identity. Define
min _)\min(PT),
peP(m,N)

Win(N) =

whereP(m,N) stands for the compact set of all rankor-
thogonal projectors i€N® CN. Notice that part2) of Theo-
rem 2 states thatV;(N)=W(N)=13; clearly Wy(N)=0, it
follows from Theorem 1 that alsé/y_;(N)=0; itis easy to
prove that ifK/L is an integer theWV, (N)/K=<=W,_ (N)/L.

Theorem 4.

N—-1
Win-1)2AN) = —
Proof. Let us define the following operator intervals:
Z(a,N)=:{p:CNoCcN—CNaCN:(1+a)I=p=1}.

It follows by a straightforward rescaling from the part of
Corollary 1 and Theorem 3 that we have the following prop-
erties.

Property 1. If 0<a<2/(N—1) then all matrices in

some nonseparable positive matrix. This is not so: a suffiZ(a,N) are separabldand thus satisfy the Woronowicz-

cient condition for separability of two-qubit density matrices
in terms of the spectrum {&4] A ;—A3— VoA 4<0, where

Peres condition
Property 2.1f a>2/(N—1) then there exists a matrix in

\; are decreasingly ordered. This can hold when the purity i€(a,N) which does not satisfy the Woronowicz-Peres condi-

greater than 1/3, as also noted in Rdf].

Corollary 4. The matrixl +ap, wherep is anNX N state,
is separable if- 1<a<N?/(N?-2).

Proof. Clearly it is enough to prove this for pure states. In
this case the vector of eigenvalueslafap is

Na=:(1,1,...,1,1+a).

Direct computation gives tha8(\,)=N2—(N2+a)?/(N?
+2a+a?). It follows thatS(\,)<1 if and only if —1<a
<N?/(N?>-2).

Corollary 5. If we consider the normalized mixtures
=(1—-¢)l/d+ep, for purep, and scale them as

1+

by Corollary 4 these are separableei1/(d—1)=1/(N?
—1).

1-€
d

de
1-€

o= Pl (1D

tion.

It is easy to see that the extreme points of the compact
convex setZ(a,N) are of the forml +aP, whereP is an
arbitrary orthogonal projector; correspondingtly dimen-
sional vectors composed of eigenvalues of extreme points
have (up to permutationsthe following form:

Ama=e+aVy,0sm=sd=N?

wheree is the all-ones vector and vectdf, has its firstm
coordinates equal to 1 and the rest equal to 0. Simple algebra
giVeS thatS()\N(N,l),ZVZ/(N,l))=1 and S()\k,Z/(N*l))<1 for

all k#N(N—1)/2. Therefore ife>0 is small enough then
SN 2in-1)+ ) <1 for all k#N(N—1)/2. Corollary 2 im-
plies that for all small enougla>0 matricesl +[2/(N—1)
+€]P are are separabl@nd thus satisfy the Woronowicz-
Peres conditionprovided thaP is an orthogonal projector of
rank k#N(N—1)/2. It follows from Property 2 above that
for all a>2/(N—1) there exists an orthogonal projectey
such thatl+aP, does not satisfy the Woronowicz-Peres
condition, in other words that

A very slightly better, but messier, bound can be obtained

by solving a quadratic equation derived from Corollary 2,

Amin(PD|>a".
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It follows that if a=2/(N—1)+ e and e>0 is small enough the results of Refd.4,3] mentioned above. For multipartite

then necessarily the ranR satisfies states R>2) we get a slightly better upper bound on
emaxdp). For example, for eveR, enad{p)=<2/(2+NF), by
N(N—1) dividing the systems into equal sized sets and viewing the
R(Pa)= 2 state as bipartite. For qubits, this is actually the same as in

Ref.[3], although since we used a slightly less than optimal
Thus Wyn-1)2(N)=(N—1)/2 , but Property 1 above im- scaling, we could improve it a bit. Our results also imply that

plies thatWyy-1y2(N)<(N—1)/2. Therefore, no matter what state is mixed in, if e<1/(N?—1), the
state is separable with respect to every bipartition. This is

N—1 dramatically larger than bound of R¢8] below which the
WN(N*l)/Z(N):T- state is guaranteed separable, but not directly comparable

because a state can be separable with respect to every such
One implication of this result is that the boundary of the bipartition yet not be separab[@6]. This raises the impor-
largestp=2 ball also contains points in the interior of the tant question of the size of the largest separable ball in the
postive cone. One sees this by noting that2/(N—1) isthe = multipartite case, to which we expect our methods can con-
largesta for which | +aP is separable, where is the rank tribute.
N(N—1)/2 projector achieving the valu@/y-1),=(N In conclusion, we have found the exact size of the largest
—1)/2 of Theorem 4. For all greater, the matrix is en- p-norm balls of entangled states around the identity, for all
tangled; so is the scaled operatdi 1)/N times this ma- 1<p=, and established for p=<« that the edge of
trix. But for a=2/(N—1) this scaled matrix satisfig{N  these balls can be reached within the positive cone. Applied
—1)/NJ(I+aP)=1+A, where A is Hermitian with N(N via scaling as we illustrated with several corollaries and ex-
+1)/2 eigenvalues—1/N and N(N—1)/2 eigenvalues amples, this yields sufficient conditions for separability
+1/N. This is well within the interior of the positive cone, which can be exponentially stronger in many situations than
and||Al[,=1. previously known conditions. In particular, we found the
strongest such condition statable in terms of the spectrum of
VI. DISCUSSION AND CONCLUSION a density matrix, and derivable via scaling of fhve 2 result:
. . . . for normalized density matrices af®d systems, it is that
For a product oRN-dimensional systems in a mixture o purity trp? be less than 16— 1). In addition, for three
special classes of perturbatiofsositive multiples of pure
p=(1—e)l/NR+ep’ (12)  states, positive multiples of the maximally entangled state,
) ) ) ) and positive multiples of projectorswe found the smallest
(p" a normalized density matrix{4], extending Ref[3],  nerturbation in the class achieving entanglement. The pure
found lower and upper bounds on the vakjg,(p) below  giate result, that it is a2 Bell state rather than aN®N
(and aj zvghllch the state can be gu?ranteed to be separableg;aximally entangled state, is not only mathematically inter-
V(1+NT" ) <emadp) <L(1+N77). (TheN=2 case is esting but transparent in meaning, and possibly surprising.
in Ref.[3].) For bipartite systemsR=2), these bounds are These are natural special classes of perturbations that have
1/(1+N° and 1/(+N). The lower bound is close to what peen previously considered in quantum information theory,
one can get from thé.. (operator norm result, while the 5o we expect that these results will find application in many
upper bound comes from mixing in the maximally entangledappropriate situations. Because of the natural geometric form
pe. The results of this paper give Nf—1)<ema{p)  of our general sufficient conditions for separabilijheorem
<2/(2+N?). The lower bound is via Corollary 5 of Theo- 1) and related results, their status as a basic aspect of the
rem 1, and is tlghter due to the use of Frobenius rather thageometry of the entang|ed states, and the important role of
operator norm; the upper bound uses Theorem 2 and th@ese balls in computational questions, we anticipate many
same scaling as in Corollary 5, and is tighter because thgpplications for them, in theory and in the interpretation and

maXimaIIy entangled state is not'the optimal state to mix .inengineering of experiments that aim to produce entang]e_
Our knowledge of the exact size of the two-norm ball in ment.

the bipartite case gives us a bound exponentially better than
known bounds onep,{p). This shows how much more
powerful our sufficient condition for separability is than pre- ACKNOWLEDGMENTS
viously known geometric conditions, in the bipartite setting.
It is also illuminating to investigate the implications of ~ We thank Manny Knill for discussions, and the U.S. DOE
our results in the multipartite setting; we will compare with and NSA for support.
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