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Largest separable balls around the maximally mixed bipartite quantum state
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For finite-dimensional bipartite quantum systems, we find the exact size of the largest balls, in spectrall p

norms for 1<p<`, of separable~unentangled! matrices around the identity matrix. This implies a simple and
intuitively meaningful geometrical sufficient condition for separability of bipartite density matrices: that their
purity tr r2 not be too large. Theoretical and experimental applications of these results include algorithmic
problems such as computing whether or not a state is entangled, and practical ones such as obtaining infor-
mation about the existence or nature of entanglement in states reached by nuclear magnetic resonance quantum
computation implementations or other experimental situations.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Entanglement is an important element of many quant
information processing procedures, from cryptography
computation to quantum teleportation. Indeed, a quantum
gorithm operating on pure quantum states must entang
number of qubits increasing unboundedly with the input si
if it is not to be simulable in polynomial time on a classic
computer@1#. It is not known whether this is so when th
computer state may be mixed. Determining whether a gi
state, even of two quantum systems, is entangled or s
rable ~not entangled! is, in general, difficult, and consider
able effort has been expended on finding necesssary an
sufficient conditions. The normalized separable states for
convex set. A key aspect of the geometry of a convex se
the size of the largest ball~especially inl 2 norm! that fits
entirely inside it, and the smallest ball that covers it. We h
find the inner ball for the set of separable quantum sta
The result has both practical and theoretical relevance.
example, it provides a simple sufficient criterion for sepa
bility. A bipartite state of a composite system with over
dimensiond is separable if its purity trr2 is less than 1/(d
21) ~as conjectured in Ref.@2#!. Because of its simple geo
metric nature and ease of computation, this criterion is lik
to be very useful both in theoretical applications and in a
lyzing whether entanglement was present in experime
Just as importantly, knowing the size of such balls helps
to understand the computational complexity of problems
volving a convex set. For example, using bounds on the
of the inner ball~rather than the exact result we present he!
one of us has shown the NP~nondeterministic polynomial!
hardness of the ‘‘weak membership’’ problem for separa
ity when the dimensions of the two systems are not too
ferent @8#. It is likely that the exact result reported here
may be used in extending this hardness result or in obtain
other complexity results about separability and entang
ment.

Our main results begin with Theorem 1, that the mat
I 1D is separable for all HermitianD with uuDuu2<1. Cor-
ollary 1 gives similar statements for otherp norms. Theorem
3 establishes that for 2<p<`, these are the largest suc
balls, by showing that at any larger radius, there are st
whose partial transpose fails to be positive semidefinite~so
1050-2947/2002/66~6!/062311~7!/$20.00 66 0623
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they are entangled!. A similar result is easy for 1<p<2, as
remarked before the statement of Theorem 2; however,
involves subtracting a normalized pure state to reach
edge of the ball where the state becomes singular and th
at the edge of the positive cone. By contrast, Theorem
involves adding a maximally entangled state, so thep.2
balls hit the boundary of the separable states at some pl
where positive entangled states lie across the bound
Theorem 4 tells us about the size of the largest nega
eigenvalues of the partial transpose of bipartite positive m
trices that are rank-m projectors, giving us information abou
how quickly we can hit the entangled matrices when dep
ing from the identity by adding a positive multiple of such
projector. In particular, by considering a perturbationD pro-
portional to such a projector whose partial transpose
maximal modulus of its most negative eigenvalue, it can
shown that forp52, also, the largestp-norm ball aroundI
touches the edge of the separable cone at places within
positive cone.

As one example of practical relevance, the ‘‘pseudopu
states that describe each molecule in nuclear magnetic r
nance quantum information processing are mixtures of
uniform density matrix with a pure state; the signal of qua
tum dynamics derives from the small pure component. B
cause of this, the density matrices of the different nucl
spins in a given molecule have not, in experiments done
far, exhibited entanglement despite the pure component
ing an entangled state; they have remained within kno
lower bounds on the size of the ball of separable states@3#.
Our determination of the exact size of this ball for bipart
entanglement increases known lower bounds on the pola
tion necessary in order for such bulk computation
pseudopure states to be able to achieve bipartite entan
ment, although due to the bipartite nature of our analysis
does not rule out the production of entangled states that
separable with respect to every bipartition, at lower polari
tion. This raises the interesting question whether the ex
nential gap between our bound for bipartite separability a
known bounds for separability in this context can be clos
Other quantum information processing procedures may
involve such mixtures; also, mixture with the identity matr
is a frequently studied model of quantum noise, the ‘‘dep
larizing channel,’’ to which our results are relevant. Wh
this occurs in bipartite contexts, our results are much str
ger than previously known. We emphasize, though, that
©2002 The American Physical Society11-1
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sufficient conditions for entanglement and separability p
vided by our results apply in arbitrary contexts, not only f
mixtures of a pure state with the normalized identity.

II. MATHEMATICAL BACKGROUND AND NOTATION

We represent unnormalized states of a quantum sys
composed of two subsystems of dimensionsM and N ~‘‘ M
^ N system’’!, as positive semidefiniteM3M block matri-
ces, withN3N blocks~so that they areMN3MN complex
matrices!. ~These are the elements of the unnormalized d
sity operator, in some fixed basis of product statesei ^ f j .)
Rather than Dirac notation, we use roman letters for vect
but we use † for the adjoint. Such a matrixA is calledsepa-
rable if it can be written

A5(
i

xixi
†

^ yiyi
† . ~1!

Objects such asxixj
† are outer products~in Dirac notation

uxi&^xj u; here uxi& are not assumed normalized.!. We useei
for elements of an orthonormal basis~typically u i & in Dirac
notation!. Thus ourei ^ ej would typically be writtenuei&
^ uej&, or uei&uej& or simply u i &u j & in Dirac notation.Mn is
the set ofn3n complex matrices,Mmn the set ofm3n
complex matrices. When interpreting tensor products
block matrices the left-hand factor corresponds to ‘‘whi
block,’’ and the right hand to the indices within blocks.

uuXuu ~or uuXuu`), with a matrixX as argument, is the usua
operator norm induced by Euclidean normuuxuu5A(x,x) on
vectors~i.e., uuXuuªsupuuxuu51uuXxuu). ~It is also theł ` norm
of the vector of singular values ofX, i.e., the largest singula
value.! uuXuu1 is trAX†X, the sum of the singular values ofX.
uuXuu2, the Frobenius norm, isAtr X†X, the Euclidean norm
associated with the inner product trX†Y. The squared Frobe
nius norm is also the sum of squared singular values oX,
and the sum of squared moduli ofX’s matrix elements. We
write @ai j # for the matrix with elementsai j .

Linear mapsf. Mm→Mn are calledpositiveif they pre-
serve positive semidefiniteness. They also preseve Herm
ity ~write Hermitian H as a sum of positive and negativ
semidefinite parts, and use linearity and positivity!. A sto-
chastic map takes the identity matrixI to itself. We may
apply such a mapf to one subsystem of a bipartite syste
while doing nothing to the other system. Applying it to th
N-dimensional subsystem is just applying it to each block
the block matrixX. We call the resulting map on the biparti
systemf̃,

f̃~X!ªS f~X1,1! f~X1,2! ••• f~X1,N!

f~X2,1! f~X2,2! ••• f~X2,M !

. . . . . . . . . . . .

f~XN,1! f~XN,2! ••• f~XN,N!

D . ~2!

An important condition equivalent to separability ofA is
that for any stochastic positive linear mapf, f̃(A) be posi-
tive semidefinite. We refer to it as the ‘‘Woronowicz cond
tion.’’ This appeared in Ref.@5#, but was already essentiall
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proven~along with the sufficiency of the partial transpositio
map ~‘‘Woronowicz-Peres criterion’’! for two qubits or a 2
^ 3 system, and a 2̂4 counterexample! in Ref. @6#, though
the terminology of separability and entanglement is not u
there. The proof there is given for a 2̂N system (N,`),
but it works forM ^ N by expanding the range of an inde
We also use the following fact.

Fact. Let D be an M3M block matrix ~whose blocks
need not be square!. DefineD8 as the matrix whose elemen
are the operator norms of the blocks ofD. Then uuDuu
<uuD8uu<M uuDuu. The first inequality is well known; the
second holds becauseuuD i j uu[uuPiDQj uu<uuDuu. (Pi(Qi) is
the projector onto thei th subspace in the direct sum decom
position of the row~column! space that defines the blocks#
So, by adding toD8 a matrix with non-negative entrie
~therefore not decreasing the norm! we can obtainuuDuu times
the M3M all-ones matrix, whose norm isM.

III. MAIN RESULT: SEPARABILITY OF PERTURBATIONS
OF THE IDENTITY

We give two proofs of the main result. Both proceed v
Proposition 2, which states that stochastic positive lin
maps onn3n matrices are contractive with respect to theł `

~‘‘operator’’! norm of matrices, forall matrices.~The result
for Hermitian matrices only is much easier.! Those interested
only in the shortest proof, which uses the Naimark extens
may skip to the statement of Proposition 2 below. We think
is of interest to see the connections of the norm contrac
result to two different concepts well known to quantum i
formation theorists: in in the second proof, the Naimark e
tension and in the first proof, separability. The first pro
proceeds via Proposition 1, which is a special case of rec
results by one of us providing sufficient criteria for sepa
bility.

Proposition 1.If uuXuu<1, the block matrix

S I X

X† I D ~3!

is separable. This is theM52 case of a recent theorem@7#
that all positive semidefiniteM3M block Toeplitz or block
Hankel matrices whose blocks areN3N matrices are sepa
rable, whose proof we include here. The paper@7# also con-
tains two alternative proofs for the special caseM52. One
of those proofs was independently discovered in Ref.@9#.

Proof (of separability of positive semidefinite bloc
Toeplitz matrices [7]).The proposition is a corollary to the
following Lemma.

Lemma.Consider an@(M11)3N# positive semidefinite
block Toeplitz matrixT,

T5S R0 R1 R2 ••• RM

R1
† R0 R1 ••• RM21

R2
† R1

† R0 ••• •••

. . . . . . . . . . . . . . .

RM
† RM21

† RM22
†

••• R0

D .
1-2
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~This structure is the definition of a Toeplitz matrix.! Sup-
pose thatR(T)5K. Then there exist anN3K matrix X and
a K3K unitary matrix U such the T( i , j )5XUi 2 jX†,0
< i , j <M21.

Proof. Since our matrixT is positive semidefinite with
R(T)5K, T5YY†, where

Y5~Y0 Y1 Y2 ••• YM!T,

and each blockYi is anN3K matrix. Define the upper sub
matrix YU as

YU5~Y0 Y1 Y2 ••• YM21!T,

and, correspondingly, the lower submatrixYL as

YL5~Y1 Y2 Y3 ••• YM!T.

It follows straight from the Toeplitz structure thatYUYU
†

5YLYL
† . Thus there exists an unitaryK3K matrix U such

that YL5YUU or in other words,

Y5~Y0 Y0U Y0U2
••• Y0UM21!T.

Recalling thatT5YY†, we finally get the identities

T~ i , j !5XUi 2 jX†,0< i , j <M21;X5Y0 .

Corollary. Using the notation of the proof above, putU
5V Diag(z1 , . . . ,zK)V† whereV is unitary and the complex
numberszi have norm one, i.e.,zī5zi

21 ,1< i<K. Denote
the i th column ofXV as Li and Zi5(1,zi , . . . ,zi

M21)T, 1
< i<K. Then the following ‘‘separability’’ representatio
holds:

T5 (
1< i<K

ZiZi
†

^ LiLi
† .

We can use Proposition 1 to show a contraction inequa
~Proposition 2 below!. We got the idea of using separabilit
to obtain operator inequalities involving stochastic posit
maps from Ref.@6#, where the Kadison inequalityf(X2)
>@f(X)#2 for stochasticf and HermitianX is implicitly
connected with the separability of

r5S I X

X X2D .

In a sense, forM52 separability ofr is equivalent to Propo-
sition 1, as in this case there is a local unitary transforma
r°(A^ I )r(A†

^ I ) which maps block Toeplitz matrices t
block Hankel ones~see Ref.@7#!,

A5
1

A2
S 1 i

i 1D .

One can probably prove the next proposition using the Ka
son inequality and this transformation.

Proposition 2.Let f:Mn→Mn be a stochastic positive
linear map. Then for anyXPMn , uuf(X)uu<uuXuu.
06231
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Proof 1.We show thatf(X)<1 if uuXuu<1; the proposi-
tion follows by f ’s linearity. Apply f̃ to the separable stat
of Proposition 1, obtaining

S I f~X!

f~X†! I D . ~4!

Write X5X11 iX2 with X1 ,X2 Hermitian. Then f(X†)
5f(X1

†2 iX2
†)5 ~by Hermiticity preservation off, which

follows from its positivity! f(X1)†2 if(X2)†5f(X1
1 iX2)†5f(X)†. Hence Eq.~4! is equal to

S I f~X!

f~X!† I D . ~5!

Since this resulted from applyingf̃ to a separable state, it i
a positive semidefinite matrix. Positivity of this matrix
equivalent~cf. e.g., Ref.@10#, p. 472! to f(X)†f(X)<I ; i.e.,
x†f(X)†f(X)x<1 for all normalizedx, i.e., uuXuu<1.

This proof was independently discovered in Ref.@9#. Let
us present a very different proof which does not use sep
bility but another concept well known in the quantum info
mation community.

Proof 2 (lifting). It is well known that the extreme point
of the matrix ball$X:uuXuu<1% are unitary matrices. Thus w
can assume thatX is unitary, i.e.,X5(1< i<Nzieiei

† , where
uzi u51,1< i<N and $ei ,1< i<N% is an orthonormal basis
in CN. Thusf(X)5(1< i<NziQi ,Qi5f(eiei

†). Sincef is a
positive stochastic map,

Qi>0~1< i<N! and I 5 (
1< i<N

Qi .

By Naimark’s theorem@11,12# ~cf. Ref. @13# for a simple
exposition in finite dimension! there exist commuting or-
thogonal projectorsPi :CK→CK,N<K<N2, and a unitary
injection U:CN→CK such that

Qi5U†PiU~1< i<N! and I 5 (
1< i<N

Pi .

It is easy to see thatuu(1< i<Nzi Pi uu<1. Thus

I (
1< i<N

ziQi I<iU†i I (
1< i<N

zi Pi I iUi<1. ~6!

This second proof suggests that there might be a deeper
nection between Naimark’s theorem and separability.

We proceed to the main theorems.
Theorem 1.The matrixI 1D is separable for all Hermitian

D with uuDuu2<1.
Proof.

uuf̃~D!uu2<uuAuu2<uuAuu2
2 , ~7!

whereAª@ai j #, ai jªuuf(D i j )uu.

uuAuu2
25(

i j
ai j

2 5(
i j

uuf~D i j !uu2. ~8!
1-3
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~The first inequality is because the operator norm of a bl
matrix is bounded above by that of the matrix whose e
ments are the norms of the blocks, and the second is bec
the Frobenius norm is an upper bound to the operator no!
But uuf(D i j )uu2<uuD i j uu by Proposition 2, and this in turn i
less thanuuD i j uu2. So

uuf̃~D!uu2<(
i j

uuf~D i j !uu2<(
i j

uuD i j uu2
2[uuDuu2

2<1, ~9!

the last inequality being the premise of the theorem. Hav
shown thatuuf̃(D)uu<I , and also usingf̃(I )5I , we get
f̃(I 1D)>0, so that by Woronowicz’ criterionI 1D is sepa-
rable.

IV. COROLLARIES AND ADDITIONAL RESULTS:
MAXIMALITY OF BALLS, SCALING,

AND SPECIFIC PERTURBATIONS

Let us now present some corollaries of Theorem 1. De
uuDuupª(( i ul i up)1/p (l i being the eigenvalues of the squa
Hermitian matrixD.!

Corollary 1 ( l p balls). Consider anN3N system. Then
the matrix I 1D is separable for all HermitianD with
uuDuup<1(1<p<2) and uuDuup<B(N,p)5:N2/p21(2<p
<`).

Proof.The statements follow from basicp-norm inequali-
ties: the first from theq52 cases ofuuDuup>uuDuuq ~for 1
<p<q), the second from theq52 cases of uuDuuq
<n1/q21/puuDuup ~for p>q). Note that the dimensionn is N2

in our case.@These inequalities are equivalent to similar on
for the vectorp normsuuxuupª(( ixi

p)1/p; the first set can be
proved by changing variables toyi5xi

p and using the tri-
angle inequality for norms, the second by lettingyi5xi

q and
using the convexity off :z°za for a>1 (a5p/q in our
case!.#

The l ` result was also obtained very recently in Ref.@9#
using quite different methods. Thep balls in Corollary 1 are
clearly the largest possible for 1<p<2: by subtracting any
normalized pure state, for which all thesep norms are 1, we
can leave the positive, and hence the separable, cone. W
about 2,p<`? Theorem 3 will show that these are th
largest balls for these norms, too.

The next theorem gives information about how fast
can reach the entangled states by perturbing the identity
specific direction: adding a positive multiple of a pure sta
The main point is that, perhaps surprisingly, the entang
states are reached fastest by perturbing with a 2^ 2 Bell
state, rather than, say, a maximally entangled state.

Theorem 2 (Perturbation by positive multiples of pu
states).~1! Consider a purer corresponding to a stateuc&
5( i j c i j ei ^ ej , 1< i , j <N. The the spectrum ofrT is
@d1

2 , . . . ,dN
2 ;didj ,2didj (1< iÞ j <N)#, whered1 , . . . ,dN

are the singular values of theN3N matrix cª@c i j :1< i , j
<N# ~thusd1

21•••1dN
2 51). ~2! Define
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W~N!5 min
rPD(N,N)

2lmin~rT!,

whereD(N,N) is the set of density matrices ofN3N sys-
tems. ThenW(N)5 1

2 . ~3! If I 1ar is separable for allr and
a.0 thena<W(N)2152.

Proof. Diagonalize c by local unitaries using the
singular value ~‘‘Schmidt’’ ! decomposition obtaining
Diag(d1 , . . . ,dN). The corresponding density matrix ha
blocksr i j 5didjeiej

† , and the spectrum ofrT ~which is not
changed by applying local unitaries prior to partial transp
sition! is as given in part~1! of Theorem 2. The bound in par
~2! follows from 2ab<a21b2 and is achieved by
(1/A2,1/A2,0, . . . ,0). The Woronowicz-Peres~WP! condi-
tion gives part~3!.

Contrary to the ‘‘folklore,’’ in the result above, the fully
entangled state is not the worst one; rather, the worst
maximally entangled state of two local two-dimensional su
spaces.

Theorem 3 establishes the maximum size of thep balls for
p.2. The proof involves considering perturbations by
positive multiple of the maximally entangled state and est
lishes when this procedure hits the entangled states. Be
formulating the theorem we introduce some notatio
CWP(N,N) is the closed convex cone ofN23N2

positive matrices satisfying the WP condition, i.e.,r
PCWP(N,N) iff r>0 and rT>0. CSep(N,N) is the closed
convex cone ofseparable positive matrices. Obviously
CWP(N,N),CSep(N,N). Both CWP(N,N) andCSep(N,N) are
subsets of the realN4-dimensional linear spaceH(N2) of
HermitianN23N2 matrices. The cone dual to a convex setX
~which need not be a cone! is X*ª$y:^y,x&>0,;xPX%.

Theorem 3.Supposep.2. If the p ball B(N,p,a)5$A
PH(N2):A5I 1D, uuDuup<a% belongs toCWP(N,N) then
a<B(N,p)5:N2112/p(2<p<`).

As CWP(N,N),CSep(N,N) this theorem proves that thel p
balls B@N,p,B(N,p)# in Corollary 1 are largest possible
Moreover, the form of the statesI 1arE in the proof shows
that for p.2, parts of the boundary are in the interior of th
positive cone, so that there are entangled states just bey
For p52, N2/p2151, so the pointsI 1arE are at the edge o
the positive cone; however, in Sec. V we will prove Theore
4, which allows us to exhibit interior points of the positiv
cone that are on the boundary of the largest ball forp52 as
well.

Proof of Theorem 3.It is easy to see that the cone du
to B(N,p,a), i.e., B(N,p,a)* , is $APH(N2):tr(A)
>auuAuuq ,q5p/(p21)%. It is known @6# that CWP(N,N)*
5$r11r2

T :r i>0,i 51,2%. If B(N,p,a),CWP(N,N) then
CWP(N,N)* ,B(N,p,a)* and at least tr(r)5tr(rT)
>uurTuuq for all r>0. Consider the fully entangled pureN
3N staterE . Then tr(rE)51. It follows from part~1! of
Theorem 2 thatrE

T hasN1N(N21)/2 eigenvalues equal to
1/N and N(N21)/2 eigenvalues equal to21/N. Thus we
get that 1>auurEuuq5aN(22q)/q and, finally, a<N(q22)/q

5N2/p21.
The following corollary of Theorem 1 gives~as is evident

from the proof! the strongest sufficient condition for separ
1-4
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bility of A>0 that can be derived by scaling@considering all
ways of writing A5z(I 1D) with z.0] and using the
Frobenius norm case of Theorem 1~applied toD).

Corollary 2 (scaling).Let A be an~unnormalized! density
matrix of a bipartite system with total dimensiond5NM
andl5(l1 , . . . ,ld) be the vector of eigenvalues ofA. If

S~l!5:d2
uuluu1

2

uuluu2
2
<1 ~10!

thenA is separable.
Proof. It is easy to see thatS(l)5mina.0uual2euu2

2 , where
e is a vector of all ones. Therefore ifS(l)<1 thenA5b(I
1D), whereb.0 anduuDuu2

2<1. It follows from Theorem 1
that A5b(I 1D) is separable.

Corollary 3 (largest Frobenius ball for density matrices
Suppose thatA is a normalized density matrix of a bipartit
system with total dimensiond5NM, i.e., (1< i<dl i51 and
l i>0,1< i<d. If uuA2(1/d)I uu2

25uul2(1/d)euu2
2<1/d(d

21)5:r 2 thenA is separable.r is the largest such constan
Proof. Define t5l2(1/d)e. Then uuluu1

251 and uuluu2
2

51/d1uutuu2
2. ThusS(l)5d21/(uutuu2

211/d) and S(l)<1
if and only if uutuu2

2<1/d(d21). From Corollary 2 it follows
thatA is separable. On the other hand,r 51/Ad(d21) is the
radius of the largest ball inside thed-dimensional simplex.

Remark.In terms of the ‘‘purity’’ trr2 of the density ma-
trix ~which takes the value 1 for pure states and 1/d for the
maximally mixed state!, Corollary 3 says thatr is separable
if its purity is less than or equal to 1/(d21).

One might conjecture that forN3N bipartite systems~so
d5N2), any l not satisfying Eq.~10! is the spectrum of
some nonseparable positive matrix. This is not so: a su
cient condition for separability of two-qubit density matric
in terms of the spectrum is@14# l12l32Al2l4<0, where
l i are decreasingly ordered. This can hold when the purit
greater than 1/3, as also noted in Ref.@15#.

Corollary 4.The matrixI 1ar, wherer is anN3N state,
is separable if21<a<N2/(N222).

Proof.Clearly it is enough to prove this for pure states.
this case the vector of eigenvalues ofI 1ar is

la5:~1,1, . . .,1,11a!.

Direct computation gives thatS(la)5N22(N21a)2/(N2

12a1a2). It follows that S(la)<1 if and only if 21<a
<N2/(N222).

Corollary 5. If we consider the normalized mixturess
5(12e)I /d1er, for purer, and scale them as

s5
12e

d S I 1
de

12e
r D , ~11!

by Corollary 4 these are separable ife<1/(d21)[1/(N2

21).
A very slightly better, but messier, bound can be obtain

by solving a quadratic equation derived from Corollary
06231
-

is

d
,

reminding us that the most obvious or tractable scaling is
generally the best. Corollary 5 is of course also true
mixed r.

V. PERTURBATION OF THE IDENTITY BY POSITIVE
MULTIPLES OF PROJECTORS

A final result again illustrates the power of scaling~Cor-
ollary 2!. It gives us the most negative eigenvalue of a par
transpose of a projector on a bipartite system. This is in
esting because it tells us when we will hit the entang
matrices if we add a positive multiple of that projector to t
identity. Define

Wm~N!ª min
rPP(m,N)

2lmin~rT!,

whereP(m,N) stands for the compact set of all rankm or-
thogonal projectors inCN

^ CN. Notice that part~2! of Theo-
rem 2 states thatW1(N)5W(N)5 1

2 ; clearly WN(N)50, it
follows from Theorem 1 that alsoWN21(N)50; it is easy to
prove that ifK/L is an integer thenWK(N)/K<WL (N)/L.

Theorem 4.

WN(N21)/2~N!5
N21

2
.

Proof. Let us define the following operator intervals:

I~a,N!5:$r:CN
^ CN→CN

^ CN:~11a!I>r>I %.

It follows by a straightforward rescaling from thel ` part of
Corollary 1 and Theorem 3 that we have the following pro
erties.

Property 1. If 0<a<2/(N21) then all matrices in
I(a,N) are separable~and thus satisfy the Woronowicz
Peres condition!.

Property 2.If a.2/(N21) then there exists a matrix in
I(a,N) which does not satisfy the Woronowicz-Peres con
tion.

It is easy to see that the extreme points of the comp
convex setI(a,N) are of the formI 1aP, whereP is an
arbitrary orthogonal projector; correspondinglyd dimen-
sional vectors composed of eigenvalues of extreme po
have~up to permutations! the following form:

lm,a5e1aVm ,0<m<d5N2,

wheree is the all-ones vector and vectorVm has its firstm
coordinates equal to 1 and the rest equal to 0. Simple alg
gives thatS(lN(N21)/2,2/(N21))51 andS(lk,2/(N21)),1 for
all kÞN(N21)/2. Therefore ife.0 is small enough then
S(lk,2/(N21)1e),1 for all kÞN(N21)/2. Corollary 2 im-
plies that for all small enoughe.0 matricesI 1@2/(N21)
1e#P are are separable~and thus satisfy the Woronowicz
Peres condition! provided thatP is an orthogonal projector o
rank kÞN(N21)/2. It follows from Property 2 above tha
for all a.2/(N21) there exists an orthogonal projectorPa
such that I 1aPa does not satisfy the Woronowicz-Pere
condition, in other words that

ulmin~Pa
T!u.a21.
1-5
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It follows that if a52/(N21)1e ande.0 is small enough
then necessarily the rankR satisfies

R~Pa!5
N~N21!

2
.

Thus WN(N21)/2(N)>(N21)/2 , but Property 1 above im
plies thatWN(N21)/2(N)<(N21)/2. Therefore,

WN(N21)/2~N!5
N21

2
.

One implication of this result is that the boundary of t
largestp52 ball also contains points in the interior of th
postive cone. One sees this by noting thata52/(N21) is the
largesta for which I 1aP is separable, whereP is the rank
N(N21)/2 projector achieving the valueWN(N21)/25(N
21)/2 of Theorem 4. For all greatera, the matrix is en-
tangled; so is the scaled operator (N21)/N times this ma-
trix. But for a52/(N21) this scaled matrix satisfies@(N
21)/N#(I 1aP)5I 1D, where D is Hermitian with N(N
11)/2 eigenvalues21/N and N(N21)/2 eigenvalues
11/N. This is well within the interior of the positive cone
and uuDuu251.

VI. DISCUSSION AND CONCLUSION

For a product ofRN-dimensional systems in a mixture

r5~12e!I /NR1er8 ~12!

(r8 a normalized density matrix! @4#, extending Ref.@3#,
found lower and upper bounds on the valueemax(r) below
~and at! which the state can be guaranteed to be separa
1/(11N2R21)<emax(r),1/(11NR21). ~The N52 case is
in Ref. @3#.! For bipartite systems (R52), these bounds ar
1/(11N3) and 1/(11N). The lower bound is close to wha
one can get from thel ` ~operator norm! result, while the
upper bound comes from mixing in the maximally entang
rE . The results of this paper give 1/(N221)<emax(r)
<2/(21N2). The lower bound is via Corollary 5 of Theo
rem 1, and is tighter due to the use of Frobenius rather t
operator norm; the upper bound uses Theorem 2 and
same scaling as in Corollary 5, and is tighter because
maximally entangled state is not the optimal state to mix

Our knowledge of the exact size of the two-norm ball
the bipartite case gives us a bound exponentially better
known bounds onemax(r). This shows how much more
powerful our sufficient condition for separability is than pr
viously known geometric conditions, in the bipartite settin

It is also illuminating to investigate the implications o
our results in the multipartite setting; we will compare wi
in

06231
le:

d

n
he
e
.

an

.

the results of Refs.@4,3# mentioned above. For multipartit
states (R.2) we get a slightly better upper bound o
emax(r). For example, for evenR, emax(r)<2/(21NR), by
dividing the systems into equal sized sets and viewing
state as bipartite. For qubits, this is actually the same a
Ref. @3#, although since we used a slightly less than optim
scaling, we could improve it a bit. Our results also imply th
no matter what stater is mixed in, if e<1/(NR21), the
state is separable with respect to every bipartition. This
dramatically larger than bound of Ref.@3# below which the
state is guaranteed separable, but not directly compar
because a state can be separable with respect to every
bipartition yet not be separable@16#. This raises the impor-
tant question of the size of the largest separable ball in
multipartite case, to which we expect our methods can c
tribute.

In conclusion, we have found the exact size of the larg
p-norm balls of entangled states around the identity, for
1<p<`, and established for 2<p<` that the edge of
these balls can be reached within the positive cone. App
via scaling as we illustrated with several corollaries and
amples, this yields sufficient conditions for separabil
which can be exponentially stronger in many situations th
previously known conditions. In particular, we found th
strongest such condition statable in terms of the spectrum
a density matrix, and derivable via scaling of thep52 result:
for normalized density matrices ofd^ d systems, it is that
the purity trr2 be less than 1/(d21). In addition, for three
special classes of perturbations~positive multiples of pure
states, positive multiples of the maximally entangled sta
and positive multiples of projectors!, we found the smalles
perturbation in the class achieving entanglement. The p
state result, that it is a 2̂2 Bell state rather than anN^ N
maximally entangled state, is not only mathematically int
esting but transparent in meaning, and possibly surpris
These are natural special classes of perturbations that
been previously considered in quantum information theo
so we expect that these results will find application in ma
appropriate situations. Because of the natural geometric f
of our general sufficient conditions for separability~Theorem
1! and related results, their status as a basic aspect o
geometry of the entangled states, and the important role
these balls in computational questions, we anticipate m
applications for them, in theory and in the interpretation a
engineering of experiments that aim to produce entan
ment.
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