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Conditional quantum logic using two atomic qubits
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In this paper we propose and analyze a feasible scheme where the detection of a single scattered photon from
two trapped atoms or ions performs a conditional unitary operation on two qubits. As examples we consider the
preparation of all four Bell’s states, the reverse operation that is a Bell’s measurement, and a controlled-NOT

~CNOT! gate. We study the effect of atomic motion and multiple scattering by evaluating Bell’s inequalities
violations and by calculating theCNOT gate fidelity.
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I. INTRODUCTION

Implementing a quantum controlled-NOT ~CNOT! gate is a
key step in present attempts towards quantum computa
Many different schemes forCNOT gates using atoms or ion
have been proposed@1–6#, and some of them implemente
@7–9#. These schemes generally require a strong quan
interaction between the particles that are used to carry
physical qubits. Though there are still many difficulties
the way, very promising results have been obtained rece
using that approach, both with trapped ions@10# and neutral
atoms@11#.

Another possible way is to give up the requirement fo
direct interaction between the qubits, and rather use an in
ference effect and a measurement-induced state projectio
create the desired operation@12#. This provides ‘‘condi-
tional’’ quantum gates, where the success of the logical
eration is heralded by appropriate detection events. Un
some conditions, such gates can also be exploited for
fledged quantum computing@12#.

Another type of conditional scheme was proposed
Refs. @13,14#, for creating an entangled state of two atom
simply by detecting a photon spontaneously emitted by
atom pair. This is done by avoiding to leave any ‘‘whic
path’’ information, so that the emitting atom cannot be ide
tified. In such a scheme there is no direct interaction betw
the two atomic qubits, that can in principle be located ve
far from each other.

In this paper we propose to extend the ideas of R
@13,14#, to realize a fullCNOT gate, or a Bell’s-state measure
ment, or more generally to implementconditional unitary
operations. Our scheme will be based on an experimen
setup using two atoms in two neighboring microscopic
pole traps@5,15,16#, but it can be readily applied to othe
systems. In Sec. I we will describe how to realize a con
tional unitary transformation that maps the four factoriz
states of two qubits onto the four maximally entangled Be
states. Since a convenient experimental signature of
tanglement is the violation of Bell’s inequalities~BI! @17#,
we will evaluate the result of a test of BI on the ‘‘tran
formed’’ pair of qubits, taking into account imperfections d
to the motion of atoms~Sec. II! and to the spontaneous emi
sion of two photons by two atoms~Sec. III!. BI measure-
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ments are studied quantitatively in Sec. IV. In Sec. V w
describe aCNOT gate based on the Bell’s states created by
procedure of Sec. I, and we calculate the fidelity of this ga
taking into account the motion of the atoms in the traps a
the possible spontaneous emission of two photons. Fin
we discuss these results and suggest developments o
proposed scheme.

II. PREPARING FOUR ORTHOGONAL BELL’S STATES

We consider two atomsi 51,2, trapped in two separat
dipole traps and prepared in one of two statesue& i or ug& i of
the ground-state hyperfine structure. We represent four in
states of the two-atom system as a vector column

$uab&%5 t$ugg&,uge&,ueg&,uee&%, a,b5e,g. ~1!

Each atom can be excited to one of the upper statesue8& i or
ug8& i by resonants-polarized laser fields of Rabi frequencie
Vgi ,Vei , as shown in Fig. 1. The fields are weak, so that
probability to excite both atoms is much smaller than t
probability to excite only one atom. An excited atom m
emit spontaneously a photon, with the wave vectork and
certain polarization, onp-polarized ug8& i→ug& i or ue8& i
→ue& i transitions. Occasionally, a photon passes through
optical system shown in Fig. 2 and it is registered by t
photodetector. We assume that the polarizerP transmits only
p-polarized photons, and thuss-polarized photons emitted
on the ue8& i→ug& i and ug8& i→ue& i transitions will not be
registered.

After the excitation, the wave function of the two atoms
changed fromuab& to uCa&1uCb&2,

FIG. 1. Scheme of the relevant atom transitions.
©2002 The American Physical Society06-1
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uCe& i5ue& i1bug8& ie
i (kedr i1wei),

uCg& i5ug& i1bue8& ie
(kgdr i1wgi),

wa i5ka•r i1wa i
0 , ~2!

where dr i describes fluctuations in the position of atomi
near the equilibrium due to the motion of the atom in t
trap,r i is the atom position at equilibrium,ke,g are the wave
vectors of the laser field resonant to eithere→g8 or g→e8
transitions,wa i

0 is the phase of the laser fieldVa i , b!1 is a
real constant.

The registration of a photon means that the wave func
uCa&uCb& is projected to a Bell’s stateuBab&5uk&B̂uab&,
where uk& is the state of the field with one spontaneou
emitted photon. For example,uCg&uCg& is projected to
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uk&B̂ugg&5uk&uBgg&,

uBgg&5~1/A2!$uge&ei [qgdr21kl2(k)1wg2]

1ueg&ei [qgdr11kl1(k)1wg1]%, ~3!

where qa5ka2k, k5uku, and l i(k) is the optical length
which a photon travels through the optical system towa
the photodetector. The optical system is set in such a w
that the images 18, 28 of atoms 1 and 2 perfectly coincide o
the photodetector. This means thatl i(k) is the same for all
registered photons, and thereforekl i(k)5kl i . Introducing
the vector column$uBab&%5 t$uBgg&,uBge&,uBeg&,uBee&% of
the Bell’s states we can express them in terms of the in
states~1! as$uBab&%5@B#8$uab&%, where
@B#85
1

A2F 0 ei (qgdr21wg21kl2) ei (qgdr11wg11kl1) 0

ei (qedr21we21kl2) 0 0 ei (qgdr11wg11kl1)

ei (qedr11we11kl1) 0 0 ei (qgdr21wg21kl2)

0 ei (qedr11we11kl1) ei (qedr21we21kl2) 0

G , ~4!
me,

t of

e
ho-
tisti-

the
is a matrix of Bell’s operatorB̂.
In general, the wave functionuBgg&(uBge&) is not orthogo-

nal to uBee&(uBeg&). In order to make sure that all Bell’
states are orthogonal, one has to satisfy two conditions,

05^BeeuBgg&5Wgee
i (wg12we21kl12kl2)

1Weg* ei (wg22we11kl22kl1), ~5!

FIG. 2. Proposed scheme for conditional quantum logic. Ato
1,2 are placed in a focal plane of the input lensL of the optical
system. The atom pair is excited by the laser field with the w
vectorkL , circularly polarized in theyz plane, and emits a photo
with the wave vectork on thex-polarized transition. The polarize
P selectsx-polarized photons that are transmitted through an in
ferometerI towards a photodetector. A mirrorm of the interferom-
eter is tilted so that the images 18,28 of the two atoms coincide on
the photodetector. The unit vector in the direction of ap-polarized
atomic dipole is denoted asd, andu0 is the aperture angle of th
lensL.
05^BeguBge&5Wgge
i (wg12wg21kl12kl2)

1Wee* ei (we22we11kl22kl1), ~6!

whereWab5ei (qadr12qbdr2). If the atoms are very cold in a
steep trap, so that they are deeply in the Lamb-Dicke regi
one should takeWab51 in Eqs.~5! and ~6!. But we point
out that the resulting conditions are actually independen
the atoms motion. Indeed,

^Wab&5^Wab* &5VaVb[12D~T!,

Va5K (
n50

2`
~21!n

~2n!!
^~qa•dr !2n&TL

qa

, ~7!

where ^•••&T and ^•••&qa
mean, respectively, the averag

over the atom motion and over directions of registered p
tons. We average separately over symmetrical and sta
cally independent motion of each atom, drop indexi in dr i ,
and introduce the parameterD(T), 0<D(T),1, whereT is
the temperature associated with the random motion of
atoms. One can see that^Wab& and ^Wab* & disappear from
orthogonality conditions~5!,~6!, which are reduced to a
single condition

wg2
0 2wg1

0 1we2
0 2we1

0 1~ke1kg!~r22r1!12k~ l 22 l 1!5p.
~8!

In our geometry we havewa1
0 5wa2

0 , and thus this condition
becomes

~ke1kg!~r22r1!12k~ l 22 l 1!5p. ~9!
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There are various ways to fulfill this condition. If on
chooseske52kg , i.e., thes1 ands2 lasers are propagat
ing in opposite directions, the condition for orthogonality
the Bell’s states is obtained by adjusting the interferome
path difference so thatk( l 22 l 1)5p/2. But it is also possible
to take ke5kg5kL , together with kL(r22r1)5p/2, ob-
tained by adjusting the trap’s positions. Assuming then t
kl25kl152np for simplicity, taking ~here and everywhere
below! the origin of the coordinate system on the atom 1 a
definingq5kL2k, the Bell’s operator matrix can be written

@B#85
1

A2F 0 ieiqdr2 eiqdr1 0

ieiqdr2 0 0 eiqdr1

eiqdr1 0 0 ieiqdr2

0 eiqdr1 ieiqdr2 0

G ,

which converts four initial atom states to four Bell’s state
which are orthogonal in average over the atom moti
Though the condition for the orthogonality in average d
pends only on the atoms equilibrium positions, the final
delity of the conditional unitary transformation will obv
ously depend on the atoms motion, due to thedr1 anddr2 in
the @B#8 matrix.

In order to simplify the local operations used in the rest
the paper, it is convenient to perform two phase transform
tions for atom 2, that make the changeue&2→2 i ue&2 just
before the photon observation andue&2→ i ue&2 right after it.
Taking into account such transfornations as diag$1,2 i ,1
2 i %@B#8diag$1,i ,1,i %[@B#, where diag means diagonal m
trix, we find

@B#5
1

A2F 0 2eiqdr2 eiqdr1 0

eiqdr2 0 0 eiqdr1

eiqdr1 0 0 2eiqdr2

0 eiqdr1 eiqdr2 0

G , ~10!

which has real elements in the absence of atom motiondr i

50. In a geometry where the phaseswa i
0 can be indepen-

dently controlled, one can obtain the matrix~10! more
straightforwardly, for example by choosing in Eq.~8! kl2
5kl152np, ke5kg5kL , r150, and

wg1
0 5we1

0 50, we2
0 52kL•r2 , wg2

0 5p2kL•r2 . ~11!

Below we refer to@B# as a Bell’s operator matrix supposin
either that condition~9! is true and the Bell’s operation is th
photon observation procedure with the two phase trans
mations for atom 2, or that there is only the photon obser
tion, but conditions~11! are satisfied.

In order to get a physical understanding about the qua
of the Bell’s-states preparation, we will now look in deta
whether the prepared states can violate Bell’s inequalities
these calculations we will use the expression~10! corre-
sponding toke5kg5kL , but similar results could be easil
obtained in the case whereke52kg ~the fully phase-
matched situation where the atoms’ positions would can
out is not accessible with our experimental geometry!.
06230
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III. BELL’S INEQUALITIES

When the atoms are prepared in a Bell’s state, the sta
tical behavior of measurable quantities~such as the popula
tion of stateua& i) is governed by the entangled wave fun
tion uBab&. Here BI will be used as a simple experiment
characterization of the degree of entanglement of the a
pair. As we will see below, either atoms motion or simult
neous excitation of the two atoms may reduce or even s
press the BI violation.

In order to test BI we carry out the following sequence
operations.

~1! The atoms are prepared in one of the states~1!.
~2! Atoms are excited by weak laser pulses under the c

ditions of Eq.~9!.
~3! One spontaneously emitted photon is registered

there is no photon after some delay, the stages~1!,~2! are
repeated until one photon is registered.

~4! Raman transitions for each atom are carried out so

ug& i→cos~u i !ug& i2sin~u i !ue& i ,

ue& i→cos~u i !ue& i1sin~u i !ug& i . ~12!

~5! Populations ofua& i states are measured.
~6! Operations~1!–~5! have to be repeated until a fu

statistical ensemble of results for the population ofua& i
states is obtained.

~7! The steps~1!–~6! are repeated for four different Ra
man transitions with four pairs of angles$u1 ,u2%, $u18 ,u28%,
$u18 ,u2%, and$u1 ,u28%.

After the operations~1!–~6! are carried out, the state o
atoms and a photon isuk&R̂B̂uab&, where the operatorR̂
describes Raman transitions~12! for two atoms. We note tha
the wave function is writtenon the rightto the operator. We
preserve the same convention for matrix notations, so
R̂B̂uab& is an element of@RB#$uab&%, where$uab&% is the
vector column~1!. It is shown in Appendix B that in this cas
the matrix @RB# of R̂B̂ operator is the matrix produc
@B#@R(u i)#; the matrix@R(u i)# for the Raman transitions is
given by Eq.~B2! of Appendix B, and@B# is given by Eq.
~10!. Here and below we denote the dependence onu1 and
u2 as a dependence onu i , when it does not lead to confu
sion.

Let us callPab
(gd)(u i) the probability to find atoms in stat

ugd&, while the initial atom state isuab&. By taking the
modulus square of each matrix element in@RB# one can find

Pgg
(gg)~u i !5Pge

(ge)~u i !5Pge
(eg)~u i !5Pgg

(ee)~u i !

50.5@sin2~u12u2!10.5Q~T,u i !#,

Pge
(gg)~u i !5Pgg

(ge)~u i !5Pgg
(eg)~u i !5Pge

(ee)~u i !

50.5@cos2~u12u2!20.5Q~T,u i !#,

Peg
(gg)~u i !5Pee

(ge)~u i !5Pee
(eg)~u i !5Peg

(ee)~u i !

50.5@cos2~u11u2!10.5Q~T,u i !#, ~13!
6-3
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Pee
(gg)~u i !5Peg

(ge)~u i !5Peg
(eg)~u i !5Pee

(ee)~u i !

50.5@sin2~u11u2!20.5Q~T,u i !#,

whereQ(T,u i)5D(T)sin(2u1)sin(2u2) andD(T) is given by
Eq. ~7!. One hasD(T)50 in the absence of atoms motion,
this case the maximum violation of Bell’s inequalities is o
tained. In the opposite~high-temperature! situation, where
D(T)→1, one obtains from Eqs.~13!,

Pgg
(gg)~u i !→0.5@sin2~u1!cos2~u2!1sin2~u2!cos2~u1!#,

~14!

and similar expressions for the other probabilities. This c
responds to a ‘‘classical’’ limit where BI cannot be violate
Thus D(T) is a ‘‘decoherence parameter’’ which grows u
with the temperature fromD(0)50 to maxD51.

For each atomi 51,2 we define a random variablej i ,
with values11 or 21 depending on whether an atom
found, respectively, inug& i or ue& i state after registering a
photon and carrying out the Raman transition. With the h
of Eqs. ~13! one can find^j1&5^j2&50, ^j1

2&5^j2
2&51,

where the average is made over the results of a sequen
operations~1!–~6!. The correlation functions are given by

Eab~u i ![
^j1j2&2^j1&^j2&

A^j1
2&^j2

2&
5^j1j2&

52@Pab
(ee)~u i !2Pab

(eg)~u i !#,

so that

Ege~u i !52Egg~u i !5cos@2~u12u2!#2Q~T,u i !,

Eeg~u i !52Eee~u i !5cos@2~u11u2!#1Q~T,u i !. ~15!

As usual we define the quantity

Sab~u i ,u i8!5Eab~u i !2Eab~u1u28!1Eab~u18u2!1Eab~u i8!
~16!

for each initial stateua,b&, then the Bell’s inequalities rea
@18#

22<Sab~u i ,u i8!<2. ~17!

The results~13!–~16! are similar to ones obtained for the B
test with polarization-entangled photon pairs@19#, the differ-
ence is that here the decoherence is taken into accoun
means ofD(T). In the following section we look for the
violation of inequalities~17! for each initial state of the two
atom system.

IV. EFFECT OF ATOM MOTION ON BELL’S
INEQUALITIES TEST

In order to predict accurately the value ofSab(u i ,u i8) we
have to calculate the factorD(T), which depends on the
trapping potential and the aperture angleu0 of the input lens
of the optical system. In general, the trapping potentia
anharmonic, nonsymmetric andu0 is not small. All of these
06230
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complicate the precise calculation ofD(T), which will be
carried out elsewhere. Here we will consider a simple ord
of-magnitude estimation, using anharmonic approximat
for the trapping potential. The procedure carried out in A
pendix A ~see also Ref.@20#! leads to

D~T!'12e2T/Tcr, kBTcr5
h2ne f f

2

2ER
, ~18!

where Tcr is a critical temperature such thatD(T.Tcr)
'1, ne f f is an effective frequency of atom motion in th
trap. For the aperture angleu05p/4, as it is in our case
ne f f

22'1.25n'
2210.75n uu

22 , wheren' andn uu are the frequen-
cies of the motion of atoms inx, y, and in z directions,
respectively;ER5\2k2/(2mat)[hnR is the recoil energy,
and kB is the Boltzmann constant. UsingnR53.6 kHz for
Rb87 atoms and our estimationsn'5200 kHz and n uu
550 kHz, we obtainne f f555 kHz and Tcr'20 mK. In
general,ne f f andTcr depend onu0 and the direction of the
laser field. The maximumTcr is reached whenk is parallel to
kL for the most of the emitted photons. For the geometri
arrangement displayed in Fig. 2, the variation ofTcr as a
function ofu0 is given by Eqs.~A8! of Appendix A, and it is
displayed in Fig. 3.

Let us choose parameters of Raman transitions

u150, u25x, u1852x, u2853x, ~19!

andT/Tcr50.5, for such case factorsSge(x)52See(x) and
Seg(x)52Sgg(x) are shown in Fig. 4~a!.

One can observe the violation of BIuSab(x)u.2 for
Sge(x) and See(x), while BI are satisfied forSeg(x) and
Sgg(x). This situation can be inverted by choosingu150,
u252x, u1852x, andu28523x, so that BI will be violated
for Seg(x) and Sgg(x) but satisfied forSge(x) and See(x).
Therefore, all four states do violate BI, but the combinati
of angles to be used depend on the state in the pairw
fashion just described. Figure 4~b! shows the maxima of
uSabu versus the normalized temperature of the atom mot
found for u1,2,u1,28 given by Eqs.~19!. The condition to vio-

FIG. 3. Critical temperature as a function of the aperture an
of the optical system.
6-4
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FIG. 4. ~a! Sge(x)52See(x)
~solid line! andSeg(x)52Sgg(x)
~dashed line! at T/Tcr50.5 and
anglesu1 , u2 , u18 , u28 given by
Eqs. ~19!. Bell’s inequalities are
violated forSge(x)52See(x). ~b!
The maxima ofuSabu for different
T/Tcr . Dotted lines in~a! mark
uSu52 anduSu52A2.
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late BI for all four states~for suitable choices of Rama
angles! is therefore thatT,Tcr .

V. EFFECT OF MULTIPLE SCATTERING ON BELL’S
INEQUALITIES TEST

Now we take into account the excitation of two atom
together and examine how it influences the BI violation. L
us first consider the case of only three levels in each a
shown in Fig. 5.

We examine a possibility that a photon emitted by o
atom is registered, while another atom also emits a photo
ue8&→ue& transition, but this photon is missed. After the e
citation to ue8& i state the wave function of atomi 51,2 is
given by Eqs.~2!,

uCg&15aug&11bue8&1eikLdr1,

uCg&25aug&22bue8&2eikLdr2,

where we suppose that conditions~11! are satisfied. If the
photonk is emitted by one atom and registered, while a
other photonk8 is emitted by the other atom and misse
then the atoms go fromue8e8& to uee& state and we have

eikL(dr11dr2)ue8e8&→eikL(dr11dr2)~e2 ikdr1uee8&

1e2 ikdr2ue8e&)uk&→ f uee&uk,k8&,

f 5ei (qdr11q8dr21w28)1ei (qdr21q8dr11w18), ~20!

whereq85kL2k8, w i8 is the phase of a missed photon em
ted by atom i 51,2 and we suppose, as usual,kl15kl2
06230
t
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e
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52pn. It may also happen that one atom emits the mis
photon first, and then the registered photon comes from
other atom. In that case, one has to change the field s
uk,k8& in Eq. ~20! to uk8,k&. After registering a photon and
performing the phase transformationue&2→ i ue&2, the state
ugg& is projected to the state

1

AN
@~eiqdr1ueg&2eiqdr2uge&)uk&1~j!1/2f uee&

3~ uk8,k&1uk,k8&)], ~21!

where j5(b/a)2. Taking into account that the field stat
uk8,k& is orthogonal touk,k8&, and calculatinĝ u f u2&T52,
one obtains the normalizing factorN52@112j#.

After carrying out the Raman transitions, the atom sta
in the right part of Eq.~21! are changed in accordance wi
the transformation~12!. Following the procedure of Sec. II
we find

Egg~u i !52@12D~T!#sin 2u1 sin 2u22
cos 2u1 cos 2u2

112j
.

~22!

Figure 6 showsSgg(x) calculated with the help of Eqs.~16!
and ~22! for T/Tcr50.5, u1 , u2 , u18 , andu28 given by Eqs.
~19! and variousj. If the stateue8& i is excited by a weak
‘‘square’’ pulse, so thatVgi is constant during the excitatio
time and zero otherwise, thenj5uVgiu2/d2!1, whered is
nt
the
FIG. 5. This scheme represents the eve
where both atoms are transferred together to
ue& state, but one emitted photon is missed.
6-5



g
c

go
ed
Th
t,

will
the
sive

the
ons

ent.
tate

tion
n

the

il-
nt
om
tor
e

trix

y

PROTSENKOet al. PHYSICAL REVIEW A 66, 062306 ~2002!
the detuning from the resonance onug& i→ue8& i transition. BI
are violated foruVgiu2/d2<0.13 if T50.5Tcr , as it can be
seen on Fig. 6.

It is convenient to write the final two-atom state, takin
into account simultaneous excitation of two atoms for ea
initial stateuab&, under the following matrix form:

A2/N~ uk&B̂1uk,k8&B̂(2))uab&, ~23!

where the stateuk,k8& is orthogonal touk& and normalized to
1, the matrix@B# of the operatorB̂ is given by Eq.~10!, and
the matrix of the operatorB̂(2) is

@B(2)#5A2jF 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

G . ~24!

VI. BELL’S STATE MEASUREMENT

In the preceding section we have shown that four ortho
nal Bell’s states can be prepared from four initial factoriz
states, under the condition of detecting a single photon.
reverse process, usually known as a Bell’s measuremen

FIG. 6. FactorSgg(x) for Raman transition parameters given b
Eqs.~19!, T/Tcr50.5 andj50 ~curve 1!, j50.05 ~2!, j50.15 ~3!
andj51 ~4!. BI violation is observed forj up to 0.13.
06230
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actually also realized using the same scheme. Here we
evaluate the efficiency of a whole sequence, including
preparation followed by the measurement—two succes
clicks will be therefore required.

By carrying out the steps~1!–~3! of the procedure de-
scribed in Sec. III we prepare a Bell’s stateuBab& of two
atoms. ThenuBab& can be projected to the pure stateuab& of
two atoms, or ‘‘measured,’’ by proceeding the steps~1!–~3!
with the phases of the laser fields,

we2
0 5p2kLDr , wg1

0 5we1
0 50, wg2

0 52kLDr .

Taking into account the multiple scattering, one arrives to
final state of two atoms and spontaneously emitted phot
after the Bell’s-state preparation fromuab& state followed by
the Bell’s-state measurement,

A1/Ñ~ uk̃& B̂̃1uk̃,k̃8&B̂(2))~ uk&B̂1uk,k8&B̂(2))uab&,
~25!

whereÑ is the normalizing factor. A matrix@B̃# of an opera-

tor B̂̃ is @B#21 with dr i replaced byd r̃ i , operatorB̂(2) is the
same for the Bell’s-state preparation and the measurem
Since the preparation and the measurement of a Bell’s s
are separated in time, all field states in Eq.~25! are orthogo-
nal to each other and the average over the atom mo
yields ^dr i•d r̃ j&50, i , j 51,2, because the atom motions o
different time intervals are not correlated.

The Bell’s-state measurement is not perfect due to
atom motion and the multiple scattering, so that the state~25!
is, in general, a linear combination of four states~1!. If a
fidelity of the Bell’s-state measurement is high, the probab
ity to find atoms inuab& initial state after the measureme
approaches 1, while the probabilities to find any other at
states go to 0. A matrix for the transformation of the vec
column of states~1! after the Bell’s state preparation and th
measurement is

A1/Ñ~@B#@B̃#1@B(2)#@B̃#1@B#@B(2)#1@B(2)#2!. ~26!

Taking the square modulus of each element in the ma
~26! and calculatingÑ5@112j#2 one converts matrix~26!
to a matrix of probabilities to find atoms inugd& final state
starting withuab& initial state,
1

~112j!2F 12 f 114j2 2j 2j f 1

2j 12 f 114j2 f 1 2j

2j f 1 12 f 114j2 2j

f 1 2j 2j 12 f 114j2

G , ~27!

f 1~T!5D~T!2D2~T!/2.
6-6
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FIG. 7. ~a! Fidelity FB for Bell’s-state mea-
surement as a function ofT/Tcr for j50 ~curve
1!, j50.05 ~2!, j50.15 ~3!, andj51 ~4!; ~b! F
as a function ofj at T/Tcr50 ~curve 1!, T/Tcr

50.2 ~2!, T/Tcr50.5 ~3!, T/Tcr51 ~4!.
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In the case of perfect Bell’s-state preparation and the m
surement, the matrix~27! has diagonal elements equal to
and other elements equal to 0. Thus, we can take the di
nal element of the matrix~27! as the fidelityFB(j,T) of
Bell’s-state measurement,

FB~j,T!512
4j1D~T!2D2~T!/2

~112j!2
. ~28!

Fidelity FB is shown in Fig. 7~a! as a function ofT/Tcr for
various j, it is shown in Fig. 7~b! as a function ofj for
variousT/Tcr .

Small increase inFB for large j'1 is because of the
contribution of processesuaa&→ubb&→uaa&, aÞb grows
up with j due to the multiple photon scattering. Howev
this is not so important for practical cases, wherej!1.

VII. QUANTUM CNOT GATE

We have shown so far that conditional Bell’s-states pre
ration and measurement can be successfully achieved.
result is actually more general than that, and shows tha
bitrary conditional unitary transformations on two qubits c
be achieved by using Raman rotations~applied locally to
each atom! and the detection of a single click. In order
demonstrate this we will now show that the four Bell’s-sta
preparationuBab&5B̂uab& can be turned into aCNOT opera-
tion Ĉ, described by the matrix

@C#5F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

G . ~29!

We prove that in our caseĈ5Ĥ2B̂Ĥ1, whereĤ1,2 are some
local ~single-atom! operations and the matrix of Bell’s opera
tion B̂ is given by Eq.~10!. TheCNOT operation can thus be
realized by the following procedure.

~1! One of the initial states~1! of atoms is prepared.
~2! The local operationĤ1 is carried out.
06230
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~3! Atoms are excited and a spontaneously emitted pho
is registered. If there are no photons registered for a t
t0@G21 operations~1!–~3! have to be repeated.

~4! The local operationĤ2 is carried out. Let us suppose
for a while, that atoms do not move, so that the Bell’s o
erator isB̂0, where matrix@B0# is given by Eq.~10! with
dr i50. By definition@C#5@H1#@B0#@H2#, where@H1,2# are
the matrices of local operationsĤ1,2, and therefore

@H1#5@C#@H2#21@B0#21. ~30!

Taking the matrix@H2#21 as a general local transformatio
for two-level atom, inserting it in Eq.~30! with the require-
ment that the matrix product on the right of Eq.~30! should
be a local transformation, we obtain

@H1#5
1

2F i i 2 i 2 i

21 1 1 21

i i i i

21 1 21 1

G ,

@H2#5
1

A2F 0 21 0 2 i

i 0 1 0

0 21 0 2 i

2 i 0 1 0

G . ~31!

Details of the procedure of determining of@H1,2# are given
in Appendix B. As it can be seen from Eqs.~B9! and ~B10!

of Appendix B, operationĤ1 is the phase transformatio
ug&2→ i ug&2, after which the Raman transition~12! with u1

5p/4, u252p/4 is carried out. OperationĤ2 starts with
the Raman transition~12! with u152p/4, u252p/2 after
which one makes the phase transformationsue&1→2 i ue&1 ,
ug&2→2 i ug&2.

Now we take into account the atom motion, the simul
neous excitation of two atoms and find a fidelity of theCNOT

operation. We suppose thatĤ1,2 transformations are much
faster than a period of the atom motion in the trap, in su
caseĤ1,2 does not depend at all on the atom motion. Inde
6-7
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FIG. 8. ~a! Fidelity F for quantumCNOT gate
as a function ofT/Tcr for j50 ~curve 1!, j
50.05 ~2!, j50.1 ~3! and j51 ~4!; ~b! F as a
function of j at T/Tcr50 ~curve 1!, T/Tcr50.2
~2!, T/Tcr50.5 ~3!, T/Tcr51 ~4!.
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by carrying out a fast local operation with atomi, one can
choose the origin of the coordinate system in that ato
which meansr i01dr0[0. Thus, using formula~10! with
dr iÞ0 and Eq.~23! we obtain an operatorĈ of a nonperfect
CNOT transformation,

Ĉ5A2/N~ uk&Ĉ(1)1uk,k8&Ĉ(2)), ~32!

where matrices of operatorsĈ(1,2) are

@C(1)#5@H1#@B#@H2#, @C(2)#5@H1#@B(2)#@H2#.
~33!

The matrices@H1,2# are given by Eqs.~31!, and matrices
@B#,@B2# are given by Eqs.~10!,~24!, respectively.

We can now build matrices@ uC(1,2)u2#, whose elements
are the square modulus of respective elements of@C(1,2)#,
and calculate the matrix@Cp# of probabilities to find atoms
in ugd& state after theCNOT operation, whileuab& was the
initial atom state,

@Cp#5
2

N
$@ uC(1)u2#1@ uC(1)u2#%

5
1

2F 11F 12F 0 0

12F 11F 0 0

0 0 12F 11F

0 0 11F 12F

G ,

where

F5
12D~T!

112j
, ~34!

0,F,1 is the fidelity of theCNOT operation~32!. The value
of F is shown in Fig. 8~a! as a function ofT/Tcr for various
j, and it is shown in Fig. 8~b! as a function ofj for various
T/Tcr .

VIII. DISCUSSION

An important problem in the experimental demonstrat
of the conditional quantumCNOT gate operation is the sup
pression of the atom motion, which can be done by cool
06230
,

g

atoms in the traps down to the temperatures of fewmK, or
by increasing the atom oscillation frequencies. This can
done, for example, by using standing-wave trapping fiel
that separate a trapped potential into several narrow w
with oscillation frequencies much higher than the present
kHz obtained for the longitudinal motion in a tightly focuse
beam. Multiple scattering gives a rather small contributio
as long as the saturation parameter remains below a
percents. An important characteristics of the fidelity of t
CNOT gate operation is the decoherence parameterD(T). For
a reliable theoretical determination ofD(T), one needs to
know accurately the trapping potential. However, before
ing experiments on BI violation,D(T) can also be deter
mined experimentally by looking at the interference fring
on the light emitted by the two atoms, irradiated on a clos
transition@20#.

Neutral atoms in a dipole trap are not the only candida
for implementing our conditionalCNOT gate. In principle, the
gate can be realized with other resonant objects such as
example, trapped ions, or quantum dot molecules~QDMs!
incorporated in a solid matrix@21,22#. Each QDM consists in
two closely positioned quantum dots with the ground state
each dot split into two or more close states. The advanta
of QDMs are their fixed positions in the matrix and the po
siblity to prepare the initial states electronically. The dif
culty, however, is in providing the coherence during the g
operation, which is quickly destroyed by the electron-phon
interaction.

The proposed simple scheme can be generalized stra
forwardly to more complicated schemes with many elem
tary gates, which may be called ‘‘integrated condition
quantum logic blocks,’’ or ICQLB. They can be construct
by the increase of the number of atoms and~or! the number
of ground states available in a single atom. There arepn

initial states ofn atoms, if an identical photon can be emitte
on transitions top different ground states. However, becau
the photon observation process is not Hermitian, the ma
mum numberN(n,p) of obtained orthogonal Bell’s states is
in general, less thanpn, thoughN(n,p) increases withn and
p. For example, only seven orthogonal Bell’s states are p
sible for three atoms with the level scheme of Fig. 1, for a
choice of phases of laser fields. Determination ofN(n,p)
is an important question for the theoretical modeling
ICQLB.
6-8
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CONDITIONAL QUANTUM LOGIC USING TWO ATOMIC QUBITS PHYSICAL REVIEW A66, 062306 ~2002!
Another theoretical problem is how to find local transfo
mations, which convertN(n,p)3N(n,p) matrix of the gen-
eralized Bell’s transformation, obtained by the photon obs
vation procedure, to the matrix of desirable log
transformation. The procedure of Appendix B can be gen
alized, in principle, to higher-dimensional cases, howeve
seems too cumbersome, and the development of a sim
procedure would be quite helpful. We underline that ev
complicated ICQLB operate in the same five steps as
CNOT gate described above. The step~1! is the preparation of
initial N(n,p) states of atoms;~2! includes local transforma
tions; ~3! is the excitation of atoms by weak resonant field
repeated maybe several times until a spontaneously em
photon is registered;~4! is another local transformation;~5!
is the determination of final populations of atomic stat
Each step can be carried out simultaneously for all ato
together, so that the operation time of ICQLB is not mu
longer than for the elementaryCNOT gate. The increase in th
operation time of complicated ICQLB can happen, howev
because the probability forn atoms to emit more than on
photon increases withn, so that lower intensities of the ex
citing fields are required in order to avoid multiple scatt
ing.

Finally, using conditional gates in a quantum compu
requires to ‘‘store them aside’’ once they are known to wo
and to teleport them in the calculation at a later stage@12#. A
similar scheme might be possible with atomic qubits, as p
posed in Ref.@23#. Though we do not propose here a spec
way to make the present scheme scalable, a further direc
of research is clearly to study up to which point quantu
computations may be realized using conditional logical e
ments such as the ones described above.

APPENDIX A

Here we show thatD(T) can be given by Eq.~18! within
some approximations, and we estimate the critical temp
ture Tcr . We consider an atom in the trapping potential a
harmonic oscillator, with a deviation from the equilibriu
position given by dr i5$dr x ,dr y ,dr z%. Then ^eiqdr i&T

5e2^(qdr i )
2&T/2, which is the consequence that the therm

fluctuations of the position of a harmonic oscillator are d
scribed by the Gaussian distribution function, and therefo

12D~T![^eiq(dr12dr2)&5^e2^(qdr )2&T&q . ~A1!

In the coordinate system shown in Fig. 2,kx5k sinu cosw,
ky5k sinu sinw, kz5k cosu and kLx'k, kLy5kLz50, so
that

^~qdr !2&T5k2@~12sinu cosw!2^dr x
2&T1sin2u sin2w^dr y

2&T

1cos2u^dr z
2&T#. ~A2!

For the one-dimensional quantum harmonic oscillator w
the massmat , which oscillates along the axesj with the
frequencyvj , j5x,y,z in the thermal equilibrium
06230
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^dr j
2&T5

\

2matvj
cothS \vj

2kBTD'
kBT

matvj
2

, ~A3!

at \vj /(kBT)!1. Taking vx5vy52pn' and vz52pn uu
we obtain

^~qdr !2&T5k2
kBT

2p2mat
F ~11sin2u22 sinu cosw!

1

n'
2

1cos2u
1

n uu
2G . ~A4!

The average

^u~u,w!&q5E
0

2p

dwE
0

u0
sinudu P~u,w!u~u,w!, ~A5!

whereu(u,w) is some function and

P~u,w!5C0~12sin2u cos2w! ~A6!

is the probability that a photon is emitted within the optic
system with a directionk. The normalizing constantC0 is
given by

1

C0
5E

0

2p

dwE
0

u0
sinudu~12sin2u cos2w!

5
4p

3 F12
1

4
~3 cosu01cos3u0!G . ~A7!

Eq. ~A6! is obtained from the relation

P~u,w!5C0 (
l51,2

@d•el~k/k!#25C0@12~d•k!2/k2#,

whereel(k) is the unit wave vector along one of the tw
possible polarizationsl51,2 of a photon, andd is a unit
wave vector along thep-polarized atomic dipole (x axis on
Fig. 2!.

Thus, in order to findD(T) one has to insert Eq.~A4! into
Eq. ~A1! and calculatê •••&q from Eq. ~A5!. For a high-
input aperture of the optical system, this procedure c
hardly lead to an analytical result, and we use the appro
mation

^e2^(qdr )2&T&q'e2Š^(qdr )2&T‹q,

which improves asD(T) gets smaller. Thus, we obtain fi
nally D(T)512e2T/Tcr(u0), that is Eq.~18! where

kBTcr~u0!5
h2ne f f

2 ~u0!

2ER
,

1

ne f f
2 ~u0!

5
Auu~u0!

n uu
2

1
A'~u0!

n'
2

,

~A8!

A'~u0!511
4pC0~u0!

5 S 12
5 cosu02cos5u0

4 D ,
6-9
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Auu~u0!5
8pC0~u0!

15 S 12
5 cos3u013 cos5u0

8 D ,

andC0(u0) is determined by Eq.~A7!.

APPENDIX B:

In this paper we use the relation@AB#5@B#@A#, where

@AB#, @A#, and@B# are the matrices of the operatorsÂB̂, Â,
and B̂, respectively, acting on the wave functions from t
vector column~1!. Let us prove this relation. We name th
wave functions from the vector column~1! as uc i&, i

51, . . . ,4 and use therelation L̂uc i&5(k51
4 Likuck&, where

Lik is the matrix element of the matrix@L# of the operatorL̂
in the basis$uc i&%. So that we can write

ÂB̂uc i&5 (
k51

4

@B# ikÂuck&5(
l 51

4 S (
k51

4

@B# ik@A#klD uc l&

5(
l 51

4

@AB# i l uc l&,

where @A#kl , @B# ik , and @AB# i l are the elements of@A#,
@B#, and @AB#, respectively, which proves@AB# i l

5(k51
4 @B# ik@A#kl and therefore@AB#5@B#@A#.

Now we find the matrix of the local transformation
which mixes the statesug& i and ue& i of the two-level atom
i 51,2. Such transformation is necessary for the calcula
of the probabilities~13! and in order to solve Eq.~30!. Gen-
eral local transformations can be written in the form
r-

y

06230
n

ug& i→~cie
ifgiug& i2sie

ifeiue& i)e
i jgi,

ue& i→~cie
ifeiue& i1sie

ifgiug& i)e
i jei. ~B1!

They consist of the phase transformation which changes
phase of the stateua& i→ei ja iua& i , the Raman transition
given by Eq.~12! with ci[cos(ui), si[sin(ui), and another
phase transformationua& i→eifa iua& i . For our purposes
however, it is enough to consider transformations~B1! ~or
their reverse! with fa i50. The matrix of the local transfor
mations carried out with two atoms is, therefore,

@L~u i ,ja i !#5@M ~ja i !#@R~u i !#[@M ~ja i !#

3F c1c2 2c1s2 2s1c2 s1s2

c1s2 c1c2 2s1s2 2s1c2

s1c2 2s1s2 c1c2 2c1s2

s1s2 s1c2 c1s2 c1c2

G ,

~B2!

where

@M ~ja i !#[@M ~jg1 ,je1 ,jg2 ,je2!#

5diag$ei jgg,ei jge,ei jeg,ei jee%, jab[ja11jb2 ,

~B3!

is the diagonal matrix of the phase transformation a
@R(u i)#[@R(u1 ,u2)# is the matrix of the Raman transfor
mation~12! used in the calculations of the probabilities~13!.

In order to solve Eq. ~30!, we take @H2#21

5@L(u i ,ja i)#, insert it into Eq.~30! and find
@H1#5@M1~ja i !#F c1s22s1c2 c1c21s1s2 c1c22s1s2 2c1s22s1c2

2c1c22s1s2 c1s22s1c2 c1s21s1c2 c1c22s1s2

c1s22s1c2 s1s21c1c2 s1s22c1c2 s1c21c1s2

s1s21c1c2 s1c22c1s2 s1c21c1s2 c1c22s1s2

G , ~B4!
where @M1(ja i)# is a diagonal matrix obtained by inte
changing the two last elements of@M (ja i)#.

Our goal is to determineu i andja i , such that the matrix
given by Eq.~B4! can be represented as

@H1#5@L~ ũ i ,j̃a i !# ~B5!

with some ũ1,2, j̃a i . By comparing the matrices given b
Eqs.~B2! and ~B4! we see that Eq.~B5! can be true only if
uci u5usi u, that is whenu i56p/4, u i563p/4; or whenci

50 or si50, while ucj u5usj u, j Þ i . We chooseu15p/4,
u25p/2, from which we getc15s151A2,c250, s2-1,
and therefore
@H1#5F ei jgg ei jgg 2ei jgg 2ei jgg

2ei jge ei jge ei jge 2ei jge

ei jee ei jee ei jee ei jee

ei jeg 2ei jeg ei jeg 2ei jeg

G . ~B6!

We can see now that the matrix@L( ũ i ,j̃a i)# is very similar
to the matrix~B6! if we takeũ15p/4 andũ252p/4, so that

@L~p/4,2p/4,j̃a i !#5F ei j̃gg ei j̃gg 2ei j̃gg 2ei j̃gg

2ei j̃ge ei j̃ge ei j̃ge 2ei j̃ge

ei j̃eg ei j̃eg ei j̃eg ei j̃eg

2ei j̃ee ei j̃ee 2ei j̃ee ei j̃ee

G
~B7!
6-10
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with

j̃ab[j̃a11 j̃b2 . ~B8!

Apart from the notations for phases, the only difference
tween the matrices in Eqs.~B7! and ~B6! is the opposite
signs of the elements in the last rows. The simplest way
eliminate this difference by choosingj̃ee5p is not permitted
by relations~B8!. However, by the examination of Eqs.~B6!
and ~B7! one can see that they are equivalent forjeg5p,
jee5jgg5p/2, jge50, and j̃eg5 j̃gg5p/2, j̃ge5 j̃ee50.
Such a choice does not contradict with Eqs.~B3! and~B8!, it
corresponds tojg150, jg25p/2, je15p/2, je250 and
j̃g150 j̃g25p/2, j̃e15 j̃e250. Inserting such values ofj̃ab

and ũ15p/4, ũ252p/4 into Eqs.~B7! and ~B5! we find

@H1#5@M ~0,0,p/2,0!#@R~p/4,2p/4!#. ~B9!

Otherwise, the matrix@H2#21 is, by definition, given by Eqs
ie

I

06230
-

to

~B2!. Inserting thereu15p/4, u25p/2, and the values of
ja i given above we obtain

@H2#5@R~2p/4,2p/2!#@M ~0,2p/2,2p/2,0!#,
~B10!

where we take into account that@R(p/4,p/2)#21

5@R(2p/4,2p/2)# and @M (0,p/2,p/2,0)#215@M (0,
2p/2,2p/2,0)#. The matrices@H1,2# satisfying Eq.~30! are
given explicitly by Eqs.~31!. We note that the matrices give
by Eqs.~B9! and ~B10! are not the only ones which satisf
Eq. ~30!, but other possible ones will have a similar form.
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