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Correlation of energy and free energy for the thermal Casimir force between real metals

V. B. Bezerra, G. L. Klimchitskaya,* and V. M. Mostepanenko†

Departamento de Fı´sica, Universidade Federal da Paraı´ba, Caixa Postal 5008, CEP 58059-970, Joa˜o Pessoa, Brazil
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The energy of a fluctuating electromagnetic field is investigated for the thermal Casimir force acting between
parallel plates made of a real metal. It is proved that for nondissipative media with temperature-independent
dielectric permittivity the energy at nonzero temperature comprises the~renormalized! energies of the zero-
point and thermal photons. In this manner photons can be considered as collective elementary excitations of the
matter of plates and electromagnetic field. If the dielectric permittivity depends on temperature, the energy
contains additional terms proportional to the derivatives of« with respect to temperature, and the quasiparticle
interpretation of the fluctuating field is not possible. The correlation between energy and free energy is
considered. Previous calculations of the Casimir energy in the framework of the Lifshitz formula at zero
temperature and optical tabulated data supplemented by the Drude model at room temperature are analyzed. It
is demonstrated that this quantity is not a good approximation either for the free energy or the energy. A
physical interpretation of this hybrid quantity is suggested. The contradictory results in the recent literature on
whether the zero-frequency term of the Lifshitz formula for the perpendicular polarized modes has any effec-
tive contribution to the physical quantities are discussed. Four main approaches to the resolution of this
problem are specified. The precise expressions for entropy of the fluctuating field between plates made of a real
metal are obtained, which helps to decide between the different approaches. The conclusion is that the Lifshitz
formula supplemented by the plasma model and the surface impedance approach are best suited to describe the
thermal Casimir force between real metals.
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I. INTRODUCTION

The Casimir effect is a rare macroscopic manifestation
the zero-point electromagnetic energy. It results from the
teration of the zero-point spectrum by the material bou
aries~see Casimir’s original paper@1# and extensive reviews
@2–6#!. In recent years considerable attention was paid to
precision measurements of the Casimir force between m
lic surfaces@7–15#. The results of these measurements w
used in Refs.@16–20# to constrain the hypothetical interac
tions predicted by many extensions to the standard mo
and also in nanotechnology@21#. This called for a new the-
oretical investigation of the Casimir force with allowan
made for the realistic boundary properties, i.e., surf
roughness, finite conductivity of a metal, and nonzero te
perature~see Ref.@6# for review!. Also the combined effec
of these factors has attracted considerable attention.

In this paper we consider the correlation between ene
and free energy for the Casimir force acting between t
plane parallel plates made of a real metal of finite cond
tivity kept at nonzero temperature. At zero temperature,
influence of the finite conductivity of the boundary me
onto the Casimir force was examined in Refs.@22–25# on the
basis of the Lifshitz theory using the optical tabulated d
supplemented by the Drude model. In this approach the
simir energy was represented by an integral with respec
continuous frequency, as it is at zero temperature. Howe
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the optical tabulated data and the value of the relaxa
parameter of the Drude model atT5300 K were substituted
which are actually temperature dependent. By this means
fact, some hybrid quantity was computed, which is differe
from both energy and free energy, with no clear relevance
either of them. When it is considered that the Casimir ene
between two plates is generally used to calculate the Cas
force in the experimental configuration of a sphere~spherical
lens! above a plate, the resolution of this issue is of gr
interest. The relationship between energy, free energy, a
quantity computed in Refs.@22–25# is shown below.

Investigation of the correlation between energy and f
energy for the thermal Casimir force has also assumed g
importance in connection with the contradictory results o
tained by different authors when applying the Lifshitz theo
to real metals@26–35#. The contradictions arise on whethe
or not the zero-frequency term of the Lifshitz formula for th
perpendicular polarized modes of an electromagnetic fi
contributes to physical quantities. There are four main
proaches to the resolution of this issue in the recent lite
ture.

~a! According to Refs.@26,35# based on the immediat
application of the unmodified Lifshitz formula, the zero
frequency term of this formula for the perpendicular pola
ized modes is equal to zero in the case of real metals
scribed by the Drude model~remind the reader that for idea
metals the reflection coefficients for both polarizations
equal to unity at zero frequency, and hence the ze
frequency term for both modes is not equal to zero!. This
approach leads to the conclusion that thermal correction
the Casimir force are large, negative, and linear in tempe
ture at small separations, and the asymptotic Casimir fo
between real metals at large separations is two times sm

-

’’
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BEZERRA, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW A66, 062112 ~2002!
than for the case of an ideal metal~with no regard for the
particular value of the conductivity! @32#.

~b! From the standpoint of Refs.@28,32#, the perpendicu-
lar polarized modes give a nonzero contribution at zero
quency. To find it, a special modification of the zer
frequency term of the Lifshitz formula was proposed~found
by analogy with the prescription of Ref.@36# for an ideal
metal but not coinciding with it!.

~c! According to Refs.@30,31#, the perpendicular polar
ized modes also give a nonzero contribution at zero
quency. For real metals it is, however, the same as for
ideal metal, i.e., the reflection coefficients for both modes
equal to unity at zero frequency. What this means is for r
metals the same modification of the zero-frequency term
the Lifshitz formula is made as for ideal metals@36#. This
approach leads to linear~although positive! thermal correc-
tions to the Casimir force at small separations and to
absence of any finite conductivity corrections for real met
starting from moderate separations of several microme
regardless of metal quality@32#.

~d! Finally, according to the approach of Refs.@27–29#
both modes with the parallel and perpendicular polarizati
do contribute to the zero-frequency term and this contri
tion can be calculated by the substitution of the plas
model dielectric function into the unmodified Lifshitz fo
mula. The same conclusion is obtained in Ref.@33# on the
basis of the surface impedance approach.

Thus, at the moment there is no agreement in the theo
ical literature as to the description of the thermal Casim
force between real metals. To gain a more complete un
standing of the present state of affairs, in Ref.@34# the ther-
modynamical argument was exploited. According to R
@34#, the approaches~a! and ~c! do not conform to the re-
quirements of thermodynamics as they lead to negative
ues of entropy and violation of the Nernst heat theore
Although the qualitative conclusions of Ref.@34# are quite
correct, the quantitative calculations are incomplete as t
do not take into account the entropy of real photons. T
precise expressions for the energy and free energy of
fluctuating electromagnetic field found below are used to
tain the quantitative behavior of entropy as a function
surface separation distance and temperature. The obta
results confirm the conclusion of Ref.@34# that the ap-
proaches~a! and ~c! are not compatible with thermodynam
ics. They also give the possibility to compare the approac
~b! and ~d! in order to decide between them.

The paper is organized as follows. In Sec. II the m
notations are introduced and the case of nondissipative
densed media separated by a gap is considered, with
media described by a temperature-independent dielectric
mittivity. It is proved that in this situation one can introduc
photons as quasiparticles due to the collective elemen
excitations of condensed matter and electromagnetic fi
As a consequence, the energy at temperatureT defined via
the derivative of the free energy with respect toT comprises
the ~renormalized! energies of the zero-point and therm
photons. In Sec. III the energy and free energy of the fluc
ating electromagnetic field are considered on the basis o
Lifshitz theory and the plasma model. In Sec. IV the app
06211
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cability of the Drude model for the calculation of the therm
Casimir force is discussed. The energy and free energy
found in the case of a metal described by the Drude mo
The alternative approaches to this problem available in
erature are analyzed and compared. The physical sense o
energy at temperatureT appears to be more complicated th
in the case of the plasma model. It is shown that ene
contains additional terms depending on the derivatives of
dielectric permittivity with respect to temperature. In Sec.
the entropy for the thermal Casimir force acting between r
metals is calculated precisely for both plasma and Dru
dielectric functions. Section VI contains conclusions and d
cussion.

II. PHOTONS BETWEEN PLATES AS ELEMENTARY
EXCITATIONS

We consider the configuration of two semispaces~thick
plates! with frequency-dependent dielectric permittivit
«(v) restricted by parallel planes and separated by an em
space with distancea between them at a temperatureT. This
is a system in thermal equilibrium. The free energy per u
area is given by the well-known Lifshitz formula@2,6,37,38#,

FE~a,T!5
kBT

4p (
l 52`

` E
0

`

k'dk'@ lnD i~j l ,k'!

1 lnD'~j l ,k'!#. ~1!

HereD i ,'(v,k') are the quantities having zero values on t
photon eigenfrequencies permitted between the plates by
boundary conditions~indicesi ,' label two independent po
larizations, andk' is the modulus of a wave vector in th
plane of plates!

D i ,'~vk' ,n
i ,' ,k'!50. ~2!

They can be expressed in terms of reflection coefficients
the imaginary frequency axis

D i ,'~j l ,k'!512r i ,'
2 ~j l ,k'!e22aql, ~3!

where

r i
2~j l ,k'!5F«~ i j!ql2kl

«~ i j!ql1kl
G2

, r'
2 ~j l ,k'!5S ql2kl

ql1kl
D 2

~4!

with the notations

ql[Aj l
2

c2
1k'

2 , kl[A«~ i j l !
j l

2

c2
1k'

2 . ~5!

In Eq. ~1! kB is the Boltzmann constant andj l
52p lkBT/\, where l 50,61,62, . . . , are theMatsubara
frequencies. As seen from Eq.~3!, the quantitiesD i ,' are
normalized in such a way that the free energy~1! tends to
zero for the infinitely remote plates (a→`). The details of
the renormalization procedure can be found in Refs.@6,25#.
2-2
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CORRELATION OF ENERGY AND FREE ENERGY FOR . . . PHYSICAL REVIEW A 66, 062112 ~2002!
In this section we consider nondissipative media, which
to say that«(v) is a real function. It will be assumed als
that at a given frequency« does not depend on temperatur
Both conditions are satisfied, e.g., for metals described
the plasma model or for dielectrics with a constant dielec
permittivity ~the case of dissipative media is considered
Secs. IV and V!. Under these conditions we find the simp
quasiparticle interpretation for photons between plates
the expression for the energy of the fluctuating field a
temperatureT.

According to thermodynamics, energy at an arbitrary te
perature is given by

E~a,T!52T2
]

]T

FE~a,T!

T
, ~6!

where the free energy is defined in Eq.~1!.
Taking into account that the term of Eq.~1! with l 50 is

linear in temperature and the quantitiesD i ,' are even func-
tions of l, one obtains

E~a,T!52
kBT2

2p (
l 51

` E
0

`

k'dk'

]

]T
@ lnD i~j l ,k'!

1 lnD'~j l ,k'!#. ~7!

Let us next use thatD i ,' depend on temperature through t
Matsubara frequencies only, so that]/]T5(j l /T)]/]j l .
Thus, energy per unit area is given by

E~a,T!52
kBT

2p (
l 51

`

j lE
0

`

k'dk'

]

]j l
@ lnD i~j l ,k'!

1 lnD'~j l ,k'!#. ~8!

We consider now the interpretation of energy at tempera
T in terms of elementary excitations. In the case of the n
dissipative media under consideration, the photon eigen
quencies are real and the nonrenormalized energy of equ
rium fluctuating electromagnetic field in the syste
comprises the energy of zero-point fluctuations and Plan
photons@39#,

Enr~a,T!5\E
0

`k'dk'

2p (
n

H vk' ,n
i F1

2
1

1

e\vk' ,n
i /(kBT)21

G
1vk' ,n

' F1

2
1

1

e\vk' ,n
' /(kBT)21

G J . ~9!

Identically, Eq.~9! can be rearranged to give

Enr~a,T!5
\

2E0

`k'dk'

2p (
n

S vk' ,n
i coth

\vk' ,n
i

2kBT

1vk' ,n
' coth

\vk' ,n
'

2kBT
D . ~10!
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This quantity is evidently infinite. The renormalized value
the sum over the eigenfrequenciesvk' ,n

i ,' can be calculated

by the use of the argument theorem@2,3,6,25,40#

(
n

S vk' ,n
i coth

\vk' ,n
i

2kBT
1vk' ,n

' coth
\vk' ,n

'

2kBT
D U

ren

5
1

2p i RC
vcoth

\v

2kBT
d@ ln D i~v,k'!1 ln D'~v,k'!#,

~11!

where the integration pathC in the plane of complexv is
shown in Fig. 1, and the normalized quantitiesD i ,' , having
zero values on eigenfrequencies, were substituted define
Eqs. ~3!–~5!, with j l changed by2 iv. Note that the func-
tion v coth@\v/(2kBT)# has poles at the imaginary freque
cies v l5 i j l , l 561,62, . . . , where j l are the Matsubara
frequencies~it is, however, regular atv050). Because of
this, the integration along the imaginary axis involves sem
circles about these poles. Integration along a semicir
whose radius extends to infinity, makes zero contribution
the right-hand side of Eq.~11!. As a result, Eq.~11! leads to

(
n

S vk' ,n
i coth

\vk' ,n
i

2kBT
1vk' ,n

' coth
\vk' ,n

'

2kBT
DU

ren

5
i

2pE2`

`

j cot
\j

2kBT
d@ ln D i~j,k'!1 ln D'~j,k'!#

2(
l 51

`

ResFv coth
\v

2kBT

D i8~v,k'!

D i~v,k'!
,i j l G

2(
l 51

`

ResFv coth
\v

2kBT

D'8 ~v,k'!

D'~v,k'!
,i j l G

52
2kBT

\ (
l 51

`

j lF 1

D i~j l ,k'!

]D i~j l ,k'!

]j l

1
1

D i~j l ,k'!

]D i~j l ,k'!

]j l
G . ~12!

Here prime denotes the derivative with respect tov and we
took into account thatD i ,' are even functions ofv, so that
their derivatives are odd ones. This property leads also to
zero value of the seemingly pure imaginary integral in t
right-hand side of Eq.~12!.

Substituting the right-hand side of Eq.~12! into Eq. ~10!
instead of a nonrenormalized sum, we obtain the renorm
ized energy at a temperatureT coinciding with Eq.~8! de-
rived from the thermodynamical definition~6!. In such a
manner we have proved that at certain conditions the th
modynamical energy at equilibrium is given by the additi
sum of the contributions from the zero-point fluctuations a
Planck’s photons. The renormalization of both quantities
duces to the subtraction of the contribution of a free sp
2-3
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BEZERRA, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW A66, 062112 ~2002!
with no plates. As a consequence, in the absence of diss
tion, photons between plates can be considered as some
of quasiparticle excitations in the system of the electrom
netic field interacting with the matter of plates. A simp
example of this situation is given by metals described by
plasma model.

III. ENERGY AND FREE ENERGY FOR THE THERMAL
CASIMIR FORCE IN THE FRAMEWORK

OF THE PLASMA MODEL

The considerations of the preceding section can be il
trated by the dielectric function of the plasma model

«~v!512
vp

2

v2
, «~ i j!511

vp
2

j2
, ~13!

wherevp is the plasma frequency. This dielectric function
real and its parameter does not depend on temperature.
use of the plasma model to calculate the thermal Cas
force corresponds to the approach~d! described in the Intro-
duction. The free-electron plasma model works well for f
quencies of visible light and infrared optics. It is comm
knowledge that the dominant contribution to the Casimir
fect comes from the range around the characteristic
quencyvc5c/(2a). Thus the plasma model is applicable
the a range from a few tens of nanometers to around a h
dred micrometers.

For the sake of convenience, we introduce the dimens
less variables

FIG. 1. Integration pathC in the plane of complex frequency
The Matsubara frequencies arej l and photon eigenfrequencies a
vn .
06211
a-
ind
-

e

s-

he
ir

-

-
-

-

n-

j̃5
2aj

c
, y254a2S k'

2 1
j2

c2D ~14!

in terms of which the plasma dielectric function takes t
form

«~ i j̃ !511
ṽp

2

j̃2
, ṽp5

2avp

c
. ~15!

In terms of the variablesj̃,y the Lifshitz formula~1! can be
rewritten as

FE~a,T!5
kBT

16pa2 (
l 52`

` E
u j̃ l u

`

ydy@ ln D i~ j̃ l ,y!

1 lnD'~ j̃ l ,y!#, ~16!

where

D i ,'~ j̃ l ,y!512r i ,'
2 ~ j̃ l ,y!e2y ~17!

and the reflection coefficients are

r i
2~ j̃ l ,y!5H y«~ i j̃ !2A@«~ i j̃ !21#j̃21y2

y«~ i j̃ !1A@«~ i j̃ !21#j̃21y2
J 2

,

r'
2 ~ j̃ l ,y!5H y2A@«~ i j̃ !21#j̃21y2

y1A@«~ i j̃ !21#j̃21y2
J 2

. ~18!

By virtue of the fact that« depends on temperature throug
the Matsubara frequencies only, the zero-frequency term
Eq. ~16! ( l 50) does not contribute the energy~6! @compare
with Eq. ~7!#. It is notable also that in the special case of t
plasma model the perpendicular reflection coefficient fr
Eq. ~18! is given by

r'
2 ~ j̃ l ,y!5r'

2 ~y!5S y2Aṽp
21y2

y1Aṽp
21y2

D 2

, ~19!

i.e., it is frequency and temperature independent for anl.
For this reason, its derivative with respect to temperat
2-4
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CORRELATION OF ENERGY AND FREE ENERGY FOR . . . PHYSICAL REVIEW A 66, 062112 ~2002!
does not contribute to energy~6!. As a result, in the frame
work of the plasma model the energy per unit area at a t
peratureT, calculated by Eqs.~6! and ~16!, takes the form

Epl~a,T!5
kBT

8pa2 (
l 51

`

j̃ l
2@ ln D i~ j̃ l ,j̃ l !1 ln D'~ j̃ l ,j̃ l !#

1
kBT

4pa2 (
l 51

` E
j̃ l

`

ydy
r i~ j̃ l ,y!

ey2r i
2~ j̃ l ,y!

]r i~ j̃ l ,y!

]j̃ l

.

~20!

This equation is convenient for numerical calculations.
Let us now compare the values of energy at temperatuT

given by Eq.~20! and free energy of Eq.~16! with the values
of energy at zero temperature given by@2,6,37,38#

E~a,0!5
\c

32p2a3E0

`

dj̃E
j̃

`

ydy@ ln D i~ j̃,y!1 ln D'~ j̃,y!#.

~21!

The calculational results atT5300 K for the case of Al with
@41#

vp511.5 eV51.7531016 rad/s ~22!

are shown in Fig. 2. In this figure the dimensionless ratio

Rpl5
Epl~a,T!

uEpl~a,0!u
,

FE
pl~a,T!

uEpl~a,0!u
,

Epl~a,0!

uEpl~a,0!u
521

~23!

are plotted by the solid lines 1, 2 and the dashed line, res
tively, as the functions of the surface separation. The ene
at zero temperatureEpl(a,0) is computed by Eq.~21! where
r
lle

ll

06211
-

c-
y

the plasma dielectric function given by Eq.~13! is substi-
tuted. It is clearly seen that at smallest separations all th
quantities ~energy atT50, energy and free energy atT
5300 K) have approximately equal values. With an increa
of the separation distance the modulus of the relative ene
at temperatureT decreases to zero limiting value while th
modulus of the relative free energy increases. Note that
limiting cases of small and large separations can be simu
neously considered as the limits of low and high tempe
tures, respectively, if one compares with the so called eff
tive temperaturekBTe f f5\vc5\c/(2a) @3,6,32#.

The asymptotic behavior of energy and free energy
small and large separations~low and high temperatures! in
the case of the plasma model can also be investigated
lytically. As was proved in Ref.@29#, one can expand Eq
~16! in powers of a small parameterlp/2pa, wherelp is the
plasma wavelength, and in a contribution, depending on t
perature, it would suffice to preserve the first power on
The result valid for alla>lp is

FIG. 2. Relative energy at temperatureT5300 K ~curve 1!, free
energy~curve 2!, and energy at zero temperature~dashed line! ver-
sus surface separation in the framework of the plasma model.
FE
pl~a,T!5Epl~a,0!2

\c

8p2a3 (
l 51

` H p

2~ l t !3
coth~p l t !2

1

~ l t !4
1

p2

2~ l t !2

1

sinh2~p l t !
1

lp

2pa F p

~ l t !3
coth~p l t !2

4

~ l t !4

1
p2

~ l t !2

1

sinh2~p l t !
1

2p3

l t

coth~p l t !

sinh2~p l t !
G J , ~24!
wheret[Te f f /T. The quantityEpl(a,0) is the energy at zero
temperature. Its expansion in powers oflp/2pa can be
found in Refs.@6,42# ~here the result up to fourth orde
should be used in order to get sufficient accuracy at sma
separations!.

From Eq.~24! the required asymptotics follow. At sma
separations (T!Te f f) one obtains
st

FE
pl~a,T!5Epl~a,0!2

\cz~3!

16pa3 F S 11
lp

paD S T

Te f f
D 3

2
p3

45z~3! S 112
lp

paD S T

Te f f
D 4G , ~25!

wherez(z) is the Riemann zeta function.
2-5
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Applying the thermodynamical definition~6! to Eq. ~25!,
we obtain the low-temperature asymptotic of energy

Epl~a,T!5Epl~a,0!1
\cz~3!

8pa3 F S 11
lp

paD S T

Te f f
D 3

2
p3

30z~3! S 112
lp

paD S T

Te f f
D 4G . ~26!

This asymptotic expression is obtained also from Eqs.~8! or
~20! by the use of the Abel-Plana formula~see Ref.@28#
where similar calculations were performed!.

In the opposite case of large separations (T@Te f f), Eq.
~24! leads to the main contribution of the form

FE
pl~a,T!52

kBT

8pa2
z~3!S 12

lp

paD . ~27!

By virtue of Eq. ~6! the asymptotic value of energy i
Epl(a,T)50. If one wished to have a more exact asympto
of energy, the next~exponentially small inT/Te f f) terms
omitted in Eq.~27! should be taken into account or Eq.~20!
should be used. In both cases the result is one and the s

Epl~a,T!52kBT
p

a2 S T

Te f f
D 2 S 122

lp

pa

T

Te f f
De22pT/Te f f.

~28!

Comparison of the numerical calculations presented in Fi
with calculations by the asymptotic formulas of Eqs.~25!–
~28! shows that the asymptotic of small separations wo
well within the separation rangelp<a<223 mm, and the
asymptotic of large separations is applicable fora>5 mm.
In the transition range, Eqs.~16!,~20! should be used to cal
culate the values of the free energy and energy for the t
mal Casimir force in the framework of the plasma model

If we consider the limitvP→` (lP→0) in Eqs.~24!–
~28!, the results for an ideal metal are obtained.

IV. DIFFERENT APPROACHES TO THE CALCULATION
OF ENERGY AND FREE ENERGY

IN THE FRAMEWORK OF THE DRUDE MODEL

Let us now consider metals described by the Drude
electric function

«~v!512
vp

2

v~v1 ig!
, «~ i j!511

vp
2

j~j1g!
, ~29!

whereg is the relaxation parameter. In terms of a dimensio
less frequency introduced in Eq.~14!, the Drude dielectric
function along the imaginary axis is

«~ i j̃ !511
ṽp

2

j̃~ j̃1g̃ !
, g̃[

2a

c
g. ~30!

As was noticed in the Introduction, there is no agreemen
the recent literature regarding the use of the Drude mode
the framework of the Lifshitz theory. Because of this, it
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appropriate to reexamine the applicability of the Dru
model in the context of the thermal Casimir force. The Dru
model, as opposed to the plasma model, takes into acc
the phenomenon of volume relaxation. In reality, this ph
nomenon plays a role in the domain of the normal skin eff
where the mean-free pathl of the electron is much less tha
the penetration depth of the electromagnetic oscillations
a metald and the mean distancev/v traveled by an electron
in a time 1/2p of the period of the electromagnetic fiel
@43,44#. For most of metals atT5300 K the domain of the
normal skin effect extends from the quasistatic fields~where
« is pure imaginary! to the frequencies of order 1012 rad/s.
What this means is that the Drude dielectric function ha
direct relationship only to plate separations 0.1 cm,a
,1 km such that the characteristic frequencyvc5c/(2a)
belongs to this domain. However, at so large separations
Casimir force is extremely small and is of academic inter
only.

For higher frequencies, depending on which metal is c
sidered, the anomalous skin effect (d! l , d!v/v) or relax-
ation region (v/v! l !d) occur. Here the volume relaxatio
described by the parameterg is not significant, but, in gen-
eral, the space dispersion gives an important contribut
Note that in the domain of the anomalous skin effect~it
extends up to around 731013 rad/s) a metal cannot be de
scribed by either the Drude model, given by Eqs.~29! and
~30!, or by any dielectric function depending only on fre
quency.

On further increase of frequency, the transition to the
frared optics occurs, wherev/v!d! l ~or to the ‘‘extremely
anomalous skin effect’’ if we use Casimir’s terminolog
@43#!. In this domain the volume relaxation does not play a
role. In the semiclassical theory of ac conductivity« is prac-
tically real, signifying no dissipation of the electromagne
energy within the metal@45#. Because of this, the plasm
model is realistic if the characteristic frequencyvc belongs
to the domain of the infrared optics~see Sec. III!. This do-
main extends to frequencies of around 231016 rad/s and for
higher frequencies is followed by the domain of the ultrav
let transparency of metals. However, some interelectron
lisions and a scattering on the surface lead to a small im
nary part of« in the domain of infrared optics@46#, as is
demonstrated by the optical tabulated data for complex
fraction index @41#. These data are often used to find t
values of«( i j) along the imaginary axis through the dispe
sion relation@6,22–25#. By way of example, for Al the op-
tical data forv>6.0831013 rad/s are tabulated@41#.

At the same time, the existence of the anomalous s
effect domain, where the concept of«(v) is not applicable,
is usually ignored, and the optical tabulated data are theo
cally extended into the domain of lower frequencies
means of the Drude dielectric function@41#. This is needed
to compute the dispersion integral from zero to infinity. T
values of«( i j) obtained in such a manner by means of t
dispersion relation and extended tabulated data are sati
torily in agreement up toj;1015 rad/s with«( i j) obtained
by the immediate substitution of the imaginary frequen
into the Drude model according to Eq.~29! with no use of
the dispersion relation. This suggests that the Drude mo
2-6
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can be applied for the calculation of the Casimir force with
a micrometer domaina>0.4 mm in parallel with the plasma
model. It should be particularly emphasized, however, t
the application of the Drude model in the domain of infrar
optics is physically unjustified as the volume relaxation
absent in this domain~below we call into question also th
possibility to substitute the Drude dielectric function into t
zero-frequency term of the Lifshitz formula!.

In contrast to the case considered in Sec. II, the Dr
metals are dissipative media, described by the comp
-
er
m

he

o

a

io

s

n-
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«(v). At a given frequency,« depends explicitly on tem-
perature through the relaxation parameterg. Because of this,
the energy of the equilibrium fluctuating electromagne
field cannot be presented anymore in the simple form of
~9!. In accordance with the thermodynamic equality~6!, ad-
ditional terms appear in the right-hand side of Eq.~9! con-
taining the derivatives]vk' ,n

i ,' /]T @39#.
Substituting Drude dielectric function~30! into the Lif-

shitz formula for the free energy~16! and using the definition
~6! of energy at temperatureT, one obtains
ED~a,T!52
kBT2

16pa2

]

]T
f 0

(a,b,c)~a,T!1
kBT

8pa2 (
l 51

`

j̃ l
2@ ln D i~ j̃ l ,j̃ l !1 ln D'~ j̃ l ,j̃ l !#

1
kBT

4pa2 (
l 51

` E
j̃ l

`

ydyH r i~ j̃ l ,y!

ey2r i
2~ j̃ l ,y!

F j̃ l

]r i~ j̃ l ,y!

]j̃ l

1T
]r i~ j̃ l ,y!

]g̃

]g̃

]TG1
r'~ j̃ l ,y!

ey2r'
2 ~ j̃ l ,y!

F j̃ l

]r'~ j̃ l ,y!

]j̃ l

1T
]r'~ j̃ l ,y!

]g̃

]g̃

]TG J . ~31!
m-
n is

p-
ich

ork
and

r in

en

nd
-

th
e of
Here the zero-frequency term of Eq.~16! is separated be
cause there is disagreement in recent literature on wheth
not it contributes to the Casimir energy and force. The i
mediate consequence of Eqs.~6!, ~16!, and ~30! @approach
~a! described in Introduction# is @26#

f 0
(a)~a,T!5E

0

`

dy y ln~12e2y!52z~3!. ~32!

This result is given by the parallel modes only, while t
perpendicular modes do not contribute.

The special modification of the zero-frequency term
Eq. ~16! proposed in Ref.@32# @approach~b!# leads to

f 0
(b)~a,T!52z~3!1E

0

`

dy y ln@12r'
2 ~y,y!e2y#. ~33!

The two contributions in the right-hand side of Eq.~33! are
given by the parallel~perpendicular! modes, respectively.

If for real metals the same prescription is used as for
ideal metal@approach~c!#, one obtains@30,31#

f 0
(c)~a,T!52E

0

`

dy y ln~12e2y!522z~3!, ~34!

where both polarizations lead to equal nonzero contribut
Evidently, in the framework of the approaches~a! and~c! the
zero-frequency term is temperature independent and doe
contribute to the energy~31!. In the framework of the ap-
proach~b! there is only a fair contribution due to the depe
dence ofr'(y,y) on g(T) in Eq. ~33!.

Note that Eq.~31! is in direct analogy to Eq.~20!. The
additional terms that are present in Eq.~31! take into account
or
-

f

n

n.

not

the explicit dependence of the dielectric permittivity on te
perature through the relaxation parameter. This equatio
convenient for the numerical calculations.

Before performing the calculations, let us give the a
proximate expressions for both free energy and energy wh
allow one to compare the results obtained in the framew
of the Drude and plasma models. For this purpose we exp
Eq. ~16! in powers of a small parameterg/vp preserving the
first-order term only~for Al at T5300 K, g50.05 eV57.6
31013 rad/s, so that for lowerT, g/vp<0.004). The coef-
ficient near this term can be computed in the zeroth orde
a small parametera5lp/4pa51/ṽp . The result is

FE
D~a,T!5FE

pl~a,T!1
kBT

16pa2 H f 0
(a,b,c)~a,T!1z~3!

2E
0

`

dy y ln@12r'
2 ~y!e2y#J

1
g

vp

kBT

4pa2 (
l 51

` F j̃ lE
j̃ l

` dy

ey21
1

1

j̃ l
E

j̃ l

` dy y2

ey21
G ,

~35!

whereFE
pl(a,T) is the free energy in the plasma model giv

by Eq. ~24!, and r'(y) is defined in Eq.~19!. It is notable
that the results of numerical calculations by this formula a
by Eqs.~16! and~30! ~with different approaches to the zero
frequency term! coincide with an accuracy of 0.06% ata
50.4 mm and better than 0.01% fora>3 mm. Note, as dis-
cussed above, the Drude model leads to satisfactory«( i j)
only up toj;1015 rad/s and is in strong disagreement wi
the optical tabulated data for higher frequencies. Becaus
2-7
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this, atT5300 K it is meaningless to use the Drude diele
tric function at separations,0.4 mm. However, even a
these separations, Eq.~35! is correct with an accuracy o
0.07%.

As evident from Eqs.~32!–~35!, the contribution of the
zero-frequency term to the difference of the free energ
DFE5FE

D2FE
pl , computed in the framework of the Drud

and plasma models, depends on the approach used,

DFE
0(a)52

kBT

16pa2E0

`

dy y ln@12r'
2 ~y!e2y#, ~36!

DFE
0(b)5

kBT

8pa2

g~T!

vp
E

0

` y dy

ey21
5

pkBT

48a2

g~T!

vp
, ~37!

DFE
0(c)52

kBT

16pa2 H z~3!2E
0

`

dy y ln@12r'
2 ~y!e2y#J .

~38!

In the case of approaches~a! and ~c!, the difference of the
free energies contains terms which linearly decrease w
decreasing temperature@Eqs. ~36! and ~38!#. In the case of
approach~b!, owing to the relaxation parameter,DFE

0 falls
off more quickly with decreasing temperature@the same is
true forFE

pl , as is seen from Eq.~25!, and for the summation
term in the right-hand side of Eq.~35!#. It should be particu-
larly emphasized that the presence of the linear terms in t
perature in the free energy is in contradiction to the requ
ments of thermodynamics~see Sec. V!.

To obtain the approximate perturbative expression for
energy by analogy with Eq.~35!, one should use the explic
dependence ofg on temperature. It has been known that
temperatureT.TD/4, whereTD is the Debye temperatur
~for Al TD5428 K @47#!, ]g/]T5g/T, i.e., g is linear in
temperature. Generally,]g/]T5ng/T with n5n(T)>1. In
Fig. 3, the dependence ofg on temperature is plotted for A
on the basis of tabulated data@47#. Finally, the required ex-
pression for the energy is

FIG. 3. Relaxation parameter of Al versus temperature.
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ED~a,T!5Epl~a,T!1e0
(a,b,c)~a,T!1

kBT

4pa2

g

vp

3(
l 51

` F 2j̃ l
2

ej̃ l21
2~n11!j̃ lE

j̃ l

` dy

ey21

2
n21

j̃ l
E

j̃ l

` dy y2

ey21
G , ~39!

wheree0
(a)5e0

(c)50, and

e0
(b)~a,T!52

pkBT

48a2

ng

vp
. ~40!

In Fig. 4 the results of the numerical calculations a
shown for Al described by the Drude model in different a
proaches atT5300 K. In the vertical axis the dimensionles
ratios are plotted,

RD5
ED~a,T!

uED~a,0!u
,

FE
D~a,T!

uED~a,0!u
,

ED~a,0!

uED~a,0!u
521, ~41!

as a function of the surface separation. Curve 1 shows
behavior of the relative energy~which is practically the same
in all three approaches!; curves 2a, 2b, and 2c show th
relative free energy in the approaches~a!, ~b!, and ~c!, re-
spectively. The dashed curve is for the energy at zero t
perature. All calculations are performed both using the ex
expressions~16!,~31! and the approximate ones~35!,~39!
with coinciding results.

It is important to explain in more detail the notatio
ED(a,0). It is the value of energy in the framework of th
Drude model~30!, computed at zero temperature in the sen
that Eq.~21! with a double integral instead of a discrete su
is employed. At the same time, in calculations ofED(a,0)
the value of the relaxation parameterg at T5300 K is used.
We divide the calculational results into this hybrid quanti
previously used in literature~see, e.g., Refs.@6,22–25#!. This

FIG. 4. Relative energy at temperatureT5300 K ~curve 1!, free
energy@curve 2a in the approach~a!, curve 2b in the approach~b!,
and curve 2c in the approach~c!#, and energy at zero temperatu
~dashed line! versus surface separation in the framework of t
Drude model.
2-8
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allows one to associate this quantity with energy and f
energy in order to clarify its physical meaning.

As is seen from Fig. 4, curve 1, illustrating the equ
behavior of energy in all three approaches, and curve
illustrating the behavior of free energy as given by the
proach b!, demonstrate plausible properties. Among oth
things, the free energy approaches energy with a decrea
the surface separation distance~compare with Fig. 2 in the
case of the plasma model!. As to the curves 2a and 2c, rep
resenting the free energy in the approaches~a! and ~c!, they
do not approach each other or the energy within the appl
tion range of the Drude dielectric function. Note that even
separations of about 0.420.5 mm the free energyFE

D ~curve
2a!, obtained by the direct application of the Lifshitz fo
mula, differs by 8% from the double integralED(a,0)
~dashed line!.

An important point is that not only the free energy
curve 2a but also 2b and 2c, and energy of curve 1 do
approach the dashed line in Fig. 4 representing the qua
that is in common use as a measure of energy at zero
perature@6,22–25#. This is clearly seen from Fig. 5 wher
the curves 1, 2b, and 2c are reproduced on an enlarged
for the smallest separations where the Drude model is ap
cable. The long-dashed curve 3 in Fig. 5 illustrates the
pendence of one more quantity on surface separation de
as

RD5
Eg

D~a,T!

uED~a,0!u
, ~42!

whereEg
D is the energy at a temperatureT computed on the

assumption thatg does not depend on temperature~and pre-
serves its value as atT5300 K). Curve 3 is computed by
Eq. ~31! with ]g̃/]T50. The same curve is obtained by th
application of the approximate Eq.~39! with n50.

From Fig. 5 we notice that curve 3 approaches the sh
dashed curve with a decrease of a separation distance

FIG. 5. Relative energy at temperatureT5300 K ~curve 1!, free
energy@curve 2b in the approach~b! and curve 2c in the approac
~c!#, and energy at zero temperature~short-dashed line! versus sur-
face separation in the framework of the Drude model reproduce
an enlarged scale. Long-dashed curve 3 presents energy com
on the assumption that dielectric permittivity does not depend
temperature.
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cause of this, it may be concluded that the hybrid quan
ED(a,0) computed in the literature is in fact some appro
mation for Eg

D , i.e., for the energy at temperatureT com-
puted without regard for the explicit dependence of the
electric properties on temperature@we remind that this kind
of dependence is absent in the case of the plasma model~see
Secs. II and III! but is essential for metals described by t
Drude model#. From Fig. 5 it follows that at a separation o
0.5 mm ED(a,0) departs from the correct value of energ
~curve 1! by approximately 0.75%. As to the free energies
the approaches~a! and~c!, the deviations are larger~8% and
3.3%, respectively; these approaches are in contradic
with thermodynamics, see Sec. V!. The above deviations
should be added to the errors ofED(a,0), discussed in Ref
@23#, which are connected with uncertainties in the optic
tabulated data.

V. ENTROPY FOR THE THERMAL CASIMIR FORCE
BETWEEN REAL METALS

Consideration of the entropy of the fluctuating field
dependence on temperature allows one to test different
proaches discussed above for conformity to thermodynam
Entropy of the fluctuating electromagnetic field can be e
pressed in terms of a free energy,

S~a,T!52
]FE~a,T!

]T
~43!

or, taking into account Eq.~6!, identically, as

S~a,T!52
1

T
@E~a,T!2FE~a,T!#. ~44!

So it can be simply computed by the use of the results for
free energy and energy obtained in Secs. III and IV.

Let us start with the plasma model where the analyti
calculation is possible@approach~d!#. At small separations
~low temperatures! one can use Eqs.~25! and ~26! for the
free energy and energy, respectively (a>lp is supposed!.
Then both Eqs.~43! and~44! lead to one and the same resu

Spl~a,T!5
3kBz~3!

8pa2 S T

Te f f
D 2H 12

4p3

135z~3!

T

Te f f

1
lp

pa F12
8p3

135z~3!

T

Te f f
G J . ~45!

Note that this expression was first obtained in Ref.@34# with
errors in numerical coefficients, because in Ref.@34# the en-
ergy of thermal photons was not taken properly into accou
At large separations~high temperatures! the asymptotic ex-
pressions~27!,~28! are applicable, leading to

Spl~a,T!5
kBz~3!

8pa2 S 12
lp

paD ~46!

n
ted
n
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~we have omitted exponentially small terms in 2pT/Te f f).
In the limit of lp→0, Eqs.~45! and ~46! lead to the values
of entropy for plates made of an ideal metal,

S~a,T!5
3kBz~3!

8pa2 S T

Te f f
D 2F12

4p3

135z~3!

T

Te f f
G ,

S~a,T!5
kBz~3!

8pa2
~47!

for T!Te f f , T@Te f f , respectively. The results~47! coincide
with those obtained for an ideal metal in Ref.@48#. Asymp-
totical behavior of the entropy for an ideal metal in a hi
temperature limit was obtained also in Ref.@49#. The result
of Ref. @49# is, however, two times smaller than in Eq.~47!
and Ref.@48# due to an error contained not only in the e
tropy but also in the expression for the Casimir energy
tween two plates made of an ideal metal at zero tempera
as is used in Ref.@49#.

It is obvious that Eq.~45! leads to non-negative values o
entropy withSpl(a,0)50, as is demanded by the third law o
thermodynamics~the Nernst heat theorem@50#!.

We now direct our attention to the entropy in the fram
work of the Drude model. As before, numerical calculatio
can be performed by the exact formulas for the energy
free energy or by the approximate ones valid ata>lp with
coinciding results. From Eqs.~35! and ~43!, one obtains

SD~a,T!5Spl~a,T!1S0
(a,b,c)~a,T!1

kB

4pa2

g

vp

3(
l 51

` F 2j̃ l
2

ej̃ l21
2~n12!j̃ lE

j̃ l

` dy

ey21

2
n

j̃ l
E

j̃ l

` dy y2

ey21
G . ~48!

HereSpl(a,T) is the entropy in the framework of the plasm
model computed by Eqs.~24! and ~43!, and S0

(a,b,c)(a,T),
defined by

S0
(a,b,c)~a,T!52

kB

16pa2

]

]T H TF f 0
(a,b,c)~a,T!1z~3!

2E
0

`

dy y ln~12r'
2 ~y!e2y!G J , ~49!

describes the contribution of the zero-frequency term of
Lifshitz formula to entropy in different approaches. Usin
the same perturbation expansions as in Sec. IV, one obt

S0
(a)~a,T!52

kBz~3!

16pa2 S 122
lp

pa
13

lp
2

p2a2D ,

S0
(b)~a,T!52

kBp

48a2
~n11!

g

vp
, ~50!
06211
-
re,

-
s
d

e

ns

S0
(c)~a,T!5

kBz~3!

8pa2

lp

pa S 12
3

2

lp

paD .

The results of numerical calculations using Eqs.~48! and
~50! for a52 mm are presented in Fig. 6. As is seen from t
figure, in the approach~a! entropy is negative in a wide
temperature range fromT50 to almostT5300 K, which is
a nonphysical result. In the approach~a! entropy preserves
the negative sign for lesser separations between the plat
well. In the approaches~b!, ~c! entropy is positive as it mus
be. In the approach~b! SD(a,0)50, whereas in the ap
proaches~a!, ~c! SD(a,0)Þ0 which is in contradiction with
the Nernst heat theorem. From Eqs.~48! and ~50! it follows
that

SD~a,0!5S0
(a,b,c)~a,0!, ~51!

S0
(b)~a,0!50, S0

(c)~a,0!2S0
(a)~a,0!5

kBz~3!

16pa2
,

where the absolute values ofS0
(a,c)(a,0) are given by Eq.

~50!. They are not only different from zero but depend on t
parameters of the system~plate separation distance an
plasma wavelength! which is prohibited by the third law of
thermodynamics@50#. Because of this, approaches~a! and~c!
must be rejected. Note also that approach~a! predicts non-
zero value of entropy at zero temperature for an ideal me
in contradiction with the field-theoretical result of Ref.@48#.
As for approaches~b! and ~d!, based on the special modifi
cation of the zero-frequency term of the Lifshitz formula a
on the use of the plasma model, respectively, they are
agreement with the requirements of thermodynamics. To
cide between them some additional considerations, which
presented in the following section, are needed.

VI. CONCLUSIONS AND DISCUSSION

In the above, the correlation between the Casimir ene
and the free energy at a temperatureT is investigated for the
case of two plane parallel plates made of a real metal. I
shown that for the nondissipative media described by the

FIG. 6. Entropy of fluctuating electromagnetic field in th
framework of the Drude model versus temperature computed on
basis of approaches~a!, ~b!, and ~c! ~curves a, b, and c, respec
tively!.
2-10
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CORRELATION OF ENERGY AND FREE ENERGY FOR . . . PHYSICAL REVIEW A 66, 062112 ~2002!
dielectric permittivity with no explicit dependence on tem
perature the photons between plates can be considered a
elementary excitations of the electromagnetic field intera
ing with the matter of plates. In this case the energy at te
peratureT is proved to be a sum of the~renormalized! energy
of zero-point oscillations and thermal photons. If the me
are dissipative and their dielectric permittivity depends
temperature, the simple picture above is not correct.
concept of thermal photons loses immediate significance
the energy of fluctuating field contains additional terms
pending on the derivatives of the dielectric permittivity wi
respect to temperature.

The expression for the energy at a temperatureT found in
this paper helps to elucidate the meaning of the so-ca
‘‘Casimir energy at zero temperature’’ calculated by ma
authors as a double integral using the Drude model and
tical tabulated data at room temperature~note that this quan-
tity is of great importance as it is proportional to the Casim
force in the configuration of a sphere or a spherical le
above a plate used in experiments@6–12,15#!. The com-
monly accepted opinion that the above-mentioned quantit
approximately equal to the free energy at small temperat
~small separations! is inexact. In fact, even at rather sma
separations the ‘‘Casimir energy at zero temperature’’ de
ates from the free energy by several percent but approa
the energy at room temperature calculated on the assum
that the dielectric permittivity does not depend onT explic-
itly ~this assumption is not correct in the case of the Dru
dielectric function!.

Different approaches to describe the thermal Casi
force from recent literature were compared and analyzed@ap-
proaches~a!, ~b!, ~c! in the framework of the Drude mode
and approach~d! in the framework of the plasma model—se
Introduction#. The quantitative expressions for the entropy
the fluctuating field are obtained here in the case of r
metals. They give the possibility to conclude that the a
proaches~a! and ~c! are in contradiction with the principle
of thermodynamics and must be rejected. The approache~b!
and ~d! are found to be in agreement with thermodynami

To make a choice between the approaches~b! and ~d! let
us discuss the behavior of the dielectric permittivities of
plasma and Drude models at small frequencies. Severa
thors @26,30,31,35# give preference to the Drude model b
cause it showsv21 frequency dependence of the dielect
permittivity at small frequencies as it follows from Maxwe
equations~compare withv22 frequency dependence give
by the plasma model!. Although this statement is true,
should be remembered that the Drude model is not ap
cable at all frequencies. We note that the concept of«(v)
itself, not only the Drude model, does not work in the d
main of the anomalous skin effect~see Sec. IV!. As to the
quasistatic limit, although«(v) is of orderv21 in this do-
main, the Drude model is also not applicable as the cor
«(v) is pure imaginary. Since the zero-frequency term of
Lifshitz formula necessarily belongs to the domain of t
quasistatic fields, where the concept of traveling waves fa
the substitution of the Drude dielectric function into this te
~resulting in all the above problems! seems to be unjustified

To clarify the situation with the thermal Casimir force, l
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us consider two pairs of plane parallel platesa55 mm apart
made of Al~one pair of plates! and of indium tin oxide~the
other one!. Due to large separation distance, the asympto
of high temperatures is applicable and only the ze
frequency term of the Lifshitz formula determines the to
value of the Casimir force. At quasistatic frequencies both
and indium tin oxide are good conductors. Because of t
the Lifshitz formula would lead to one and the same Casi
force at 5mm separation for both pairs of plates if one su
stitutes into it the actual reflection properties of these ma
rials at zero frequency. This conclusion is in contradicti
with intuition. Note that indium tin oxide is transparent
visible and near infrared light. Within a wide waveleng
range 7mm,l,100 mm around the characteristic wave
lengthlc562.8mm ~the latter corresponds to the characte
istic frequencyvc5c/2a5331013 rad/s), giving the main
contribution into the Casimir force at zero temperature@3#,
the reflectivity of indium tin oxide is below 80%@51#. Note
that the second parameter of the problem, first Matsub
frequency, is vM52pkBT/\52.4531014 rad/s, i.e., lM
57.7 mm, which belongs to the region of even larger tran
parency of indium tin oxide. In this situation it is difficult to
imagine that ata55 mm the indium tin oxide plates are
attracted with the same Casimir force as Al plates which
almost perfect reflectors within a wide range around
characteristic wavelength.

We can avoid this contradiction between the literally u
derstood theory and physical intuition if we assume that i
not correct to substitute the actual behavior of the dielec
permittivity at zero frequency into the Lifshitz formula. In
stead, in order to obtain the physically correct results,
frequency dependence of the dielectric permittivity and
flection coefficients around the characteristic frequen
should be extrapolated to zero Matsubara frequency and
stituted into the Lifshitz formula. If this conjecture is ac
cepted, one should conclude that, within the range of
crometer separation distances between plates, the pla
model dielectric function, i.e., the approach~d!, is preferable
as compared to the use of the Drude dielectric function co
bined with any of the above approaches~a!, ~b!, ~c!. It is
apparent from the fact that the plasma dielectric function a
respective reflection coefficients admit reasonable contin
tion from the range of infrared optics to zero frequency.

The contradictions discussed in this paper lead to a c
clusion that the concepts of the frequency-dependent die
tric permittivity and fluctuating electromagnetic field insid
media in application to the thermal Casimir force betwe
real metals are inadequate idealizations. Less sophistic
approaches, such as the surface impedance approach~the Le-
ontovich boundary conditions!, which do not consider the
fluctuating field inside matter@3,33#, appear to be more ad
equate and lead to physically justified results for all sepa
tion distances between plates. By way of example, in
domain of the infrared optics the surface impedance lead
the same results as the Lifshitz formula in combination w
the plasma model@approach~d!#. If the characteristic fre-
quency belongs to the domain of the normal skin effe
where the Drude model is physically correct, there is
reasonable continuation of« to zero frequency avoiding the
2-11
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above problems. At the same time, the impedance appro
when applied in the domain of the normal skin effect, lea
to quite satisfactory results@33# coinciding with those for
ideal metal as it must be at separations larger than 0.1
@almost the same results are given in this domain by
approaches~b! and ~c!#.

To conclude, at present the impedance approach ca
considered as the most universal, reliable, and straigh
ward way to calculate the thermal Casimir force between
metals at different separation distances. In the domain
micrometer separations, the plasma model is also reali
,

ep

.

e

.

.

ov

F.
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Regarding the Drude model, it can be used to describe
thermal Casimir force only with some appropriate modific
tion of the zero-frequency term of the Lifshitz formula@like
in the approach~b!, for instance#.
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