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Correlation of energy and free energy for the thermal Casimir force between real metals
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The energy of a fluctuating electromagnetic field is investigated for the thermal Casimir force acting between
parallel plates made of a real metal. It is proved that for nondissipative media with temperature-independent
dielectric permittivity the energy at nonzero temperature comprisesrém@rmalized energies of the zero-
point and thermal photons. In this manner photons can be considered as collective elementary excitations of the
matter of plates and electromagnetic field. If the dielectric permittivity depends on temperature, the energy
contains additional terms proportional to the derivatives wofith respect to temperature, and the quasiparticle
interpretation of the fluctuating field is not possible. The correlation between energy and free energy is
considered. Previous calculations of the Casimir energy in the framework of the Lifshitz formula at zero
temperature and optical tabulated data supplemented by the Drude model at room temperature are analyzed. It
is demonstrated that this quantity is not a good approximation either for the free energy or the energy. A
physical interpretation of this hybrid quantity is suggested. The contradictory results in the recent literature on
whether the zero-frequency term of the Lifshitz formula for the perpendicular polarized modes has any effec-
tive contribution to the physical quantities are discussed. Four main approaches to the resolution of this
problem are specified. The precise expressions for entropy of the fluctuating field between plates made of a real
metal are obtained, which helps to decide between the different approaches. The conclusion is that the Lifshitz
formula supplemented by the plasma model and the surface impedance approach are best suited to describe the
thermal Casimir force between real metals.
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[. INTRODUCTION the optical tabulated data and the value of the relaxation
parameter of the Drude model B 300 K were substituted,
The Casimir effect is a rare macroscopic manifestation ofvhich are actually temperature dependent. By this means, in
the zero-point electromagnetic energy. It results from the alfact, some hybrid quantity was computed, which is different
teration of the zero-point spectrum by the material boundfrom both energy and free energy, with no clear relevance to
aries(see Casimir’s original papéL] and extensive reviews either of them. When it is considered that the Casimir energy
[2—6]). In recent years considerable attention was paid to théetween two plates is generally used to calculate the Casimir
precision measurements of the Casimir force between metalerce in the experimental configuration of a sphesgherical
lic surfaceqd 7—15]. The results of these measurements werdeng above a plate, the resolution of this issue is of great
used in Refs[16-2( to constrain the hypothetical interac- interest. The relationship between energy, free energy, and a
tions predicted by many extensions to the standard modejuantity computed in Ref$22—25 is shown below.
and also in nanotechnolod®1]. This called for a new the- Investigation of the correlation between energy and free
oretical investigation of the Casimir force with allowance energy for the thermal Casimir force has also assumed great
made for the realistic boundary properties, i.e., surfacémportance in connection with the contradictory results ob-
roughness, finite conductivity of a metal, and nonzero temtained by different authors when applying the Lifshitz theory
perature(see Ref[6] for review). Also the combined effect to real metal§26—35. The contradictions arise on whether
of these factors has attracted considerable attention. or not the zero-frequency term of the Lifshitz formula for the
In this paper we consider the correlation between energperpendicular polarized modes of an electromagnetic field
and free energy for the Casimir force acting between twacontributes to physical quantities. There are four main ap-
plane parallel plates made of a real metal of finite conducproaches to the resolution of this issue in the recent litera-
tivity kept at nonzero temperature. At zero temperature, theure.
influence of the finite conductivity of the boundary metal (a) According to Refs[26,35 based on the immediate
onto the Casimir force was examined in R¢&2—-25 onthe  application of the unmodified Lifshitz formula, the zero-
basis of the Lifshitz theory using the optical tabulated datarequency term of this formula for the perpendicular polar-
supplemented by the Drude model. In this approach the Cazed modes is equal to zero in the case of real metals de-
simir energy was represented by an integral with respect tecribed by the Drude modéemind the reader that for ideal
continuous frequency, as it is at zero temperature. Howevemetals the reflection coefficients for both polarizations are
equal to unity at zero frequency, and hence the zero-
frequency term for both modes is not equal to zeithis
*On leave from North-West Polytechnical University, St. Peters-approach leads to the conclusion that thermal corrections to

burg, Russia. Email address: galina@fisica.ufpb.br the Casimir force are large, negative, and linear in tempera-
'On leave from Research and Innovation Enterprise “Modus,”ture at small separations, and the asymptotic Casimir force
Moscow, Russia. Email addresss: mostep@fisica.ufpb.br between real metals at large separations is two times smaller
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than for the case of an ideal metalith no regard for the cability of the Drude model for the calculation of the thermal
particular value of the conductivity32]. Casimir force is discussed. The energy and free energy are
(b) From the standpoint of Ref§28,32, the perpendicu- found in the case of a metal described by the Drude model.
lar polarized modes give a nonzero contribution at zero freThe alternative approaches to this problem available in lit-
quency. To find it, a special modification of the zero- €rature are analyzed and compared. The physical sense of the
frequency term of the Lifshitz formula was proposéound ~ €nergy at temperatureappears to be more complicated than

by analogy with the prescription of Reff36] for an ideal in the case of the plasma model. It is shown that energy
metal but not coinciding with jt contains additional terms depending on the derivatives of the

(c) According to Refs[30,31, the perpendicular polar- dielectric permittivity with respect to temperature. In Sec. V
e the entropy for the thermal Casimir force acting between real

ized modes also give a nonzero contribution at zero fre: . i
quency. For real metals it is, however, the same as for afpetals is calculated precisely for both plasma and Drude

ideal metal, i.e., the reflection coefficients for both modes ar&€l€ctric functions. Section VI contains conclusions and dis-
equal to unity at zero frequency. What this means is for reaf!SS!on-

metals the same modification of the zero-frequency term of

the Lifshitz formula is made as for ideal metdB6]. This Il. PHOTONS BETWEEN PLATES AS ELEMENTARY
approach leads to linedalthough positive thermal correc- EXCITATIONS

tions to the Casimir force at small separations and to the

absence of any finite conductivity corrections for real metals We consider the configuration of two semispactsck

starting from moderate separations of several micrometerglates with  frequency-dependent _dielectric permittivity
regar d?ess of metal qualilﬁBg] &(w) restricted by parallel planes and separated by an empty

i . space with distanca between them at a temperatdreThis
(d) Finally, _accordlng o ihe approach_of Re[§_7—_2q . __is a system in thermal equilibrium. The free energy per unit
both modes with the parallel and perpendicular polanzatlon%rea is given by the well-known Lifshitz formuld,6,37,38
do contribute to the zero-frequency term and this contribu- T
tion can be calculated by the substitution of the plasma T .
model dielectric function into the unmodified Lifshitz for- FE(a,T)zi > f k,dk, [InA|(& ,k,)
mula. The same conclusion is obtained in H&B] on the Am 15« Jo
basis of the surface impedance approach.

Thus, at the moment there is no agreement in the theoret-
ical literature as to the description of the thermal Casimir,
force between real metals. To gain a more complete unde
standing of the present state of affairs, in H&#] the ther-
modynamical argument was exploited. According to Ref.
[34], the approache&) and (c) do not conform to the re-
quirements of thermodynamics as they lead to negative val
ues of entropy and violation of the Nernst heat theorem. A (wll,J. k,)=0 )
Although the qualitative conclusions of R¢B4| are quite 3%k, 0B '
correct, the quantitative calculations are incomplete as the
do not take into account the entropy of real photons. Th
precise expressions for the energy and free energy of th
fluctuating electromagnetic field found below are used to ob-
tain the quantitative behavior of entropy as a function of
surface separation distance and temperature. The Obtam%ere
results confirm the conclusion of Ref34] that the ap-
proachega) and(c) are not compatible with thermodynam- e(i&)q—k q-k
ics. They also give the possibility to compare the approaches rﬁ(g K= —
(b) and(d) in order to decide between them. e(i£)ai+k a+k

The paper is organized as follows. In Sec. Il the main )
notations are introduced and the case of nondissipative COWith the notations
densed media separated by a gap is considered, with the

media described by a temperature-independent dielectric per- 2 >
mittivity. It is provgd that in this situation one can introduce q= /%+k2, k= s(i§|)§—|2+kf. (5)
photons as quasiparticles due to the collective elementary c ¢

excitations of condensed matter and electromagnetic field.

As a consequence, the energy at temperafudefined via In Eg. (1) kg is the Boltzmann constant and
the derivative of the free energy with respecfltcomprises =2wlkgT/%, wherel=0,£1,=2,..., are theMatsubara
the (renormalizedl energies of the zero-point and thermal frequencies. As seen from E(B), the quantitiesA, are
photons. In Sec. Il the energy and free energy of the fluctunormalized in such a way that the free enefdy tends to

ating electromagnetic field are considered on the basis of theero for the infinitely remote plateg{-=). The details of
Lifshitz theory and the plasma model. In Sec. IV the appli-the renormalization procedure can be found in RER5|.

+InA (& ,k,)]. (1

HereA| | (w,k, ) are the quantities having zero values on the
Bhoton eigenfrequencies permitted between the plates by the
boundary conditiongindices||, L label two independent po-
larizations, andk, is the modulus of a wave vector in the
Elane of plates

¥hey can be expressed in terms of reflection coefficients on
e imaginary frequency axis

AL (& k) =1-rf (& ke 29, &)

2
, r2(E k)=

2
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In this section we consider nondissipative media, which isThis quantity is evidently infinite. The renormalized value of
. . . . . L

to say thate(w) is a real function. It will be assumed also the sum over the elgenfrequencuaéL n can be calculated
that at a given frequency does not depend on temperature. py the use of the argument theoré)3,6,25,40
Both conditions are satisfied, e.g., for metals described by
the plasma model or for dielectrics with a constant dielectric I i
permittivity (the case of dissipative media is considered in 2 I ) ﬁ‘*’kl n ol . ﬁ‘”ki n
Secs. IV and V. Under these conditions we find the simple @k, nCO h 2kgT @, ,nCO I 2kgT
quasiparticle interpretation for photons between plates and

ren

the expression for the energy of the fluctuating field at a 1 hw
temperaturer. Zm chochde[ln Au(w,kJ_) +1In AL(w,kL)],
According to thermodynamics, energy at an arbitrary tem-
perature is given by (12)
E(aT)= —Tzi Fe(a,T) ©) where the integration pat@ in the plane of complexv is
’ oT T shown in Fig. 1, and the normalized quantiti®s, , having
zero values on eigenfrequencies, were substituted defined by
where the free energy is defined in Edj). Egs. (3)-(5), with & changed by—iw. Note that the func-
Taking into account that the term of E(l) with =0 is  tion w cott{7w/(2ksT)] has poles at the imaginary frequen-
linear in temperature and the quantitiés, are even func- Ciesw=i¢, I=*x1,+2,..., where¢ are the Matsubara
tions of I, one obtains frequencied(it is, however, regular atvy=0). Because of
this, the integration along the imaginary axis involves semi-
kT2 &0 (= 9 circles about these poles. Integration along a semicircle,
E(a,T)=— > f ki dk, —[InAy(& k) whose radius extends to infinity, makes zero contribution to
2m =1 Jo JgT the right-hand side of Eq11). As a result, Eq(11) leads to
+InA, (& k)] (7

[ L
Wi n ﬁwk n
Let us next use thak| ; depend on temperature through the En: (wlli ,nCOthﬁJFwﬁ ,nCOthﬁ)
Matsubara frequencies only, so thatdT= (& /T)dl ¢, . B B

ren

Thus, energy per unit area is given by . he
:ﬂf_ g COEkBT diinAy(&,k)+InA; (€K )]
kBT ” «© J
E(a,T)——E;l&J'O kldkla—gl[lnﬁn(&,kﬂ - o AH,((U,I(J_) |
—>' Res o cot kTm" |
+InA, (& ,k)]- (8) =1 B! Sl@,kL
[ i i - fw Al(wk))
We consider now the interpretation of energy at temperature — >, Res o cot KT B, (oK) &
T in terms of elementary excitations. In the case of the non- =1 sl A (w,k;

dissipative media under consideration, the photon eigenfre- T 1 aA(& K,
quencies are real and the nonrenormalized energy of equilib- S 2N gl[ RS
rium fluctuating electromagnetic field in the system A= 746 kD) 9€)
comprises the energy of zero-point fluctuations and Planck’s

1 aN(& k)

photons[39],
ThGE KD o

. (12

=k, dk;, 1 1
Enr(a,T)Zﬁfo ?; |ka ,n[§+ Wl Here prime denotes the derivative with respectptand we
et B took into account thad| , are even functions ob, so that

1 1 their derivatives are odd ones. This property leads also to the
top |t ————— 9) zero value of the seemingly pure imaginary integral in the
L2 ghe W/eD g right-hand side of Eq(12).

Substituting the right-hand side of E(L2) into Eq. (10)
Identically, Eq.(9) can be rearranged to give instead of a nonrenormalized sum, we obtain the renormal-

ized energy at a temperatuflecoinciding with Eq.(8) de-

4 k. dk ﬁw‘i‘( N rived from the thermodynamical definitio(6). In such a

2l il L . .

E.(a,T)= Efo 7; (a,k '“COthW manner we have proved that at certain conditions the ther-

modynamical energy at equilibrium is given by the additive

P sum of the contributions from the zero-point fluctuations and
k, ,n ) i I iti

1 I L Planck’s photons. The renormalization of both quantities re-
@i, Ot 2kgT ) (10 duces to the subtraction of the contribution of a free space
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2a 2
¢ kf+§—2
c

&= —~ y’=4a’ (14

3] "}
i1 "}

in terms of which the plasma dielectric function takes the
form

~2

e(iH)=1+ % )

b= (15

In terms of the variable~$,y the Lifshitz formula(1) can be
rewritten as

619

oo

s Fe(a,T) = —21 CydyinAE L)
a,T)= - n ,
: 16ma2 1= I 1y
+InA, (&)1, (16)
FIG. 1. Integration patiC in the plane of complex frequency.
The Matsubara frequencies afgand photon eigenfrequencies are where
wp, .
with no plates. As a consequence, in the absence of dissipa- AH,L(EI ,y)=1—rH2L(~§| e (17)

tion, photons between plates can be considered as some kind

of quasiparticle excitations in the system of the electromag-

netic field interacting with the matter of plates. A simple and the reflection coefficients are
example of this situation is given by metals described by the

plasma model.

ye(iB) — \[e(iB)—1]E+y?

2, ¢ _
Ill. ENERGY AND FREE ENERGY FOR THE THERMAL ricéy)= PN
CASIMIR FORCE IN THE FRAMEWORK ye(ié)+ V[e(i§)—1]¢°+y

OF THE PLASMA MODEL

The considerations of the preceding section can be illus-
trated by the dielectric function of the plasma model

e[y
rié&y)= —— : (18
y+ V(B - 1/+y?

oy ©p
s(a))=1——2, 8(|§)=1+—2, (13
@ 3 By virtue of the fact that depends on temperature through

the Matsubara frequencies only, the zero-frequency term of

wherew,, is the plasma frequency. This dielectric function is E9: (16) (1=0) does not contribute the energy [compare

real and its parameter does not depend on temperature. THEN Ed- (7). Itis notable also that in the special case of the
use of the plasma model to calculate the thermal Casimip'asma moqlel the perpendicular reflection coefficient from
force corresponds to the approach described in the Intro- £0- (18) is given by

duction. The free-electron plasma model works well for fre-

guencies of visible light and infrared optics. It is common

= 2
knowledge that the dominant contribution to the Casimir ef- )~ ) y— \/w§+ y?
fect comes from the range around the characteristic fre- regy)=riy)=| —p——_ . (19
guencyw.=c/(2a). Thus the plasma model is applicable in y+ \/w§+ y?

thea range from a few tens of nanometers to around a hun-
dred micrometers.

For the sake of convenience, we introduce the dimensionke., it is frequency and temperature independent for lany
less variables For this reason, its derivative with respect to temperature
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does not contribute to enerdg). As a result, in the frame-

work of the plasma model the energy per unit area at a tem-

peratureT, calculated by Eq96) and (16), takes the form

[

2, &N A (&) +In AL (§.8)]

El(a,T)= 21
8ma?

[
0

keT
i Ej.éydy
- |

47a? =1

ri(&.y)
e —rf(&.y)

ary(&.y)
i&
(20

This equation is convenient for numerical calculations.

Let us now compare the values of energy at temperdature
given by Eq.(20) and free energy of Eq16) with the values
of energy at zero temperature given [[%/6,37,38

E(a,0)= f dgf ydylinAEy)+inA, (Ey)].

(21)

327%a8

The calculational results 8= 300 K for the case of Al with
[41]

w,=115 eV=1.75< 10" rad/s (22

are shown in Fig. 2. In this figure the dimensionless ratios

F2(a,T)
|EP(2,0)|

EP'(a,T)
|EP(a,0)|

EP'(a,0)

pl— -
[EP'(2,0)]

(23

PHYSICAL REVIEW A 66, 062112 (2002

FIG. 2. Relative energy at temperatdre 300 K (curve 1), free
energy(curve 2, and energy at zero temperatdashed lingver-
sus surface separation in the framework of the plasma model.

the plasma dielectric function given by E(L3) is substi-
tuted. It is clearly seen that at smallest separations all three
guantities (energy atT=0, energy and free energy at
=300 K) have approximately equal values. With an increase
of the separation distance the modulus of the relative energy
at temperaturd decreases to zero limiting value while the
modulus of the relative free energy increases. Note that the
limiting cases of small and large separations can be simulta-
neously considered as the limits of low and high tempera-
tures, respectively, if one compares with the so called effec-
tive temperatur&g T 1= w.=%hc/(2a) [3,6,32.

The asymptotic behavior of energy and free energy at
small and large separatiori®w and high temperaturgsn
the case of the plasma model can also be investigated ana-
lytically. As was proved in Ref[29], one can expand Eq.
(16) in powers of a small paramet&p/27a, wherek, is the

are plotted by the solid lines 1, 2 and the dashed line, respe@lasma wavelength, and in a contribution, depending on tem-
tively, as the functions of the surface separation. The energgerature, it would suffice to preserve the first power only.

at zero temperaturgP'(a,0) is computed by Eq21) where

The result valid for alll=X\, is

FE'(a,T>=Ep'(a,0>— h ) —

|

wheret=T/T. The quantityEP'(a,0) is the energy at zero
temperature. Its expansion in powers Xf/27a can be
found in Refs.[6,42] (here the result up to fourth order

Z [2(| )3
a2 1

L . 2_773 coth( lt)
(It)? sintP(lt)

It sink?(arlt)

should be used in order to get sufficient accuracy at smallest

separations
From Eq.(24) the required asymptotics follow. At small
separations T<T.¢;) one obtains

L, m ! Mo | T ottty ——
(0% 2002 sinf(alt) - 273 (11" ottt (104
(24
[
hci(3) Ao\ T3
I _pl _ P
FE(RT)=E"(0) 6ma’ ma Teff)
)
~ 45((3) S Tett) | (9

where{(2z) is the Riemann zeta function.
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Applying the thermodynamical definitiof®) to Eq. (25),
we obtain the low-temperature asymptotic of energy

hce(3) Mo\ [(T )
| == a
EP'(a,T)=EP'(a,0)+ R Ta Teff)
s ( Ap *
- m % Tets (26)

This asymptotic expression is obtained also from Egsor
(20) by the use of the Abel-Plana formulaee Ref.[28]
where similar calculations were performed

In the opposite case of large separatioms>(T.¢f), EQ.
(24) leads to the main contribution of the form

kgT

8ma?

A
FPl(a,T)=— 47(3)(1—77—21 : (27)

By virtue of Eq. (6) the asymptotic value of energy is

PHYSICAL REVIEW A66, 062112 (2002

appropriate to reexamine the applicability of the Drude
model in the context of the thermal Casimir force. The Drude
model, as opposed to the plasma model, takes into account
the phenomenon of volume relaxation. In reality, this phe-
nomenon plays a role in the domain of the normal skin effect
where the mean-free pattof the electron is much less than
the penetration depth of the electromagnetic oscillations into
a metals and the mean distaned o traveled by an electron
in a time 1/2r of the period of the electromagnetic field
[43,44). For most of metals af =300 K the domain of the
normal skin effect extends from the quasistatic figldbere
¢ is pure imaginaryto the frequencies of order 1rad/s.
What this means is that the Drude dielectric function has a
direct relationship only to plate separations 0.1<tan
<1 km such that the characteristic frequensy=c/(2a)
belongs to this domain. However, at so large separations the
Casimir force is extremely small and is of academic interest
only.

For higher frequencies, depending on which metal is con-

EP!(a,T)=0. If one wished to have a more exact asymptoticsidered, the anomalous skin effeé@<!l, é<v/w) or relax-

of energy, the nextexponentially small inT/Tq¢;) terms
omitted in Eq.(27) should be taken into account or EGO)

ation region (/w<<1<<§) occur. Here the volume relaxation
described by the parameteris not significant, but, in gen-

should be used. In both cases the result is one and the san@$al, the space dispersion gives an important contribution.

21 2>\p T
7a Tt

) e*ZﬂTT/Teff.

(28

EPl(a,T)= —ksT—
a2\ Ters

Note that in the domain of the anomalous skin effétt
extends up to around>?10* rad/s) a metal cannot be de-
scribed by either the Drude model, given by E9) and
(30), or by any dielectric function depending only on fre-
quency.

Comparison of the numerical calculations presented in Fig. 2 On further increase of frequency, the transition to the in-

with calculations by the asymptotic formulas of E¢85)—

frared optics occurs, whetd o< §<I (or to the “extremely

(28) shows that the asymptotic of small separations work@nomalous skin effect” if we use Casimir’s terminology

well within the separation range,<a<2—3 um, and the
asymptotic of large separations is applicable de*5 um.

[43]). In this domain the volume relaxation does not play any
role. In the semiclassical theory of ac conductivitys prac-

In the transition range, Eq16),(20) should be used to cal- fically real, signifying no dissipation of the electromagnetic
culate the values of the free energy and energy for the thenergy within the metal45]. Because of this, the plasma

mal Casimir force in the framework of the plasma model.
If we consider the limitwp—®© (Ap—0) in Egs.(24)—
(28), the results for an ideal metal are obtained.

IV. DIFFERENT APPROACHES TO THE CALCULATION
OF ENERGY AND FREE ENERGY
IN THE FRAMEWORK OF THE DRUDE MODEL

model is realistic if the characteristic frequeney belongs

to the domain of the infrared optidsee Sec. I). This do-
main extends to frequencies of aroung 20 rad/s and for
higher frequencies is followed by the domain of the ultravio-
let transparency of metals. However, some interelectron col-
lisions and a scattering on the surface lead to a small imagi-
nary part ofe in the domain of infrared opticf46], as is
demonstrated by the optical tabulated data for complex re-

Let us now consider metals described by the Drude difraction index[41]. These data are often used to find the

electric function

W wp
S(w)zl—m, 8(|§):1+m, (29)

values ofe (i ¢) along the imaginary axis through the disper-
sion relation[6,22—29. By way of example, for Al the op-
tical data foro=6.08x 10'° rad/s are tabulatefd1].

At the same time, the existence of the anomalous skin
effect domain, where the concept ofw) is not applicable,

wherey is the relaxation parameter. In terms of a dimensionss ysually ignored, and the optical tabulated data are theoreti-

less frequency introduced in E¢l4), the Drude dielectric
function along the imaginary axis is
w5 - 2a

ity 7

(i) =1+ (30

cally extended into the domain of lower frequencies by
means of the Drude dielectric functig4l]. This is needed

to compute the dispersion integral from zero to infinity. The
values ofe (i ¢) obtained in such a manner by means of the
dispersion relation and extended tabulated data are satisfac-
torily in agreement up tg~ 10'° rad/s withe(i¢) obtained

As was noticed in the Introduction, there is no agreement itby the immediate substitution of the imaginary frequency
the recent literature regarding the use of the Drude model imto the Drude model according to E(9) with no use of
the framework of the Lifshitz theory. Because of this, it is the dispersion relation. This suggests that the Drude model
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can be applied for the calculation of the Casimir force withine(w). At a given frequencyg depends explicitly on tem-
a micrometer domaia=0.4 um in parallel with the plasma perature through the relaxation paramegeBecause of this,
model. It should be particularly emphasized, however, thathe energy of the equilibrium fluctuating electromagnetic
the application of the Drude model in the domain of infraredfield cannot be presented anymore in the simple form of Eq.
optics is physically unjustified as the volume relaxation is(9). In accordance with the thermodynamic equal@y, ad-
absent in this domaifbelow we call into question also the ditional terms appear in the right-hand side of E8). con-
possibility to substitute the Drude dielectric function into thetaining the derivatives?wl‘(fyn/ aT [39].
zero-frequency term of the Lifshitz formyla Substituting Drude dielectric functio(80) into the Lif-

In contrast to the case considered in Sec. Il, the Drudshitz formula for the free enerdi6) and using the definition
metals are dissipative media, described by the complex6) of energy at temperaturg one obtains

keT?2 0 .. keT w ~ -~ -~
EP@ )=~ (0P Nam+ — X Flina@ B+ ina. (& .8)
keT < (= Ny |w @) oy dy| @y | @y
a2 d{ev—r%z.,y) Ta s Tt A
ﬁrL(Elvy) (9;

Here the zero-frequency term of E(L6) is separated be- the explicit dependence of the dielectric permittivity on tem-
cause there is disagreement in recent literature on whether perature through the relaxation parameter. This equation is
not it contributes to the Casimir energy and force. The im-convenient for the numerical calculations.
mediate consequence of EdS§), (16), and (30) [approach Before performing the calculations, let us give the ap-
(a) described in Introductiohis [26] proximate expressions for both free energy and energy which
allow one to compare the results obtained in the framework
of the Drude and plasma models. For this purpose we expand
Eq. (16) in powers of a small parametef w, preserving the
first-order term only(for Al at T=300 K, y=0.05 e\=7.6
This result is given by the parallel modes only, while the X 10" rad/s, so that for loweT, y/w,=0.004). The coef-
perpendicular modes do not contribute. ficient near this term can be computed in the zeroth order in
The special modification of the zero-frequency term ofa small parametes = \ j/4ma= 1/Z)p_ The result is
Eq. (16) proposed in Ref[32] [approach(b)] leads to

f¥(a,T)= fomdy yIn(1—e Y)=—¢(3). (32

kgT
© FD T :Fpl T B f(a,b,c T 3
féb)(a,T):—£(3)+fo dyyin[1—ri(y.ye V). 3y e @DTFE@ )+—167Ta2( £PYa,T)+4(3)

The two contributions in the right-hand side of E§3) are - fo dy yIn[l—rf(y)ey]]
given by the paralle(perpendicularmodes, respectively.
~ If for real metals the same prescription is used as for an v KeT < |~ (= dy 1 (=dyy
ideal metallapproach(c)], one obtaing30,31]] +— 5 E Ll += | ,
wp 4ra” (=1 § -1 §lg -1
P@n-2[ dyyina-e =203, (4 (39
0

WhereFE'(a,T) is the free energy in the plasma model given
where both polarizations lead to equal nonzero contributionby Eq. (24), andr,(y) is defined in Eq(19). It is notable
Evidently, in the framework of the approach@sand(c) the  that the results of numerical calculations by this formula and
zero-frequency term is temperature independent and does noy Egs.(16) and(30) (with different approaches to the zero-
contribute to the energ{31). In the framework of the ap- frequency term coincide with an accuracy of 0.06% at
proach(b) there is only a fair contribution due to the depen- =0.4 um and better than 0.01% fear=3 wm. Note, as dis-
dence ofr , (y,y) on ¥(T) in Eq. (33). cussed above, the Drude model leads to satisfact(ry)

Note that Eq.(31) is in direct analogy to Eq(20). The  only up to &~ 10" rad/s and is in strong disagreement with
additional terms that are present in E81) take into account the optical tabulated data for higher frequencies. Because of
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FIG. 3. Relaxation parameter of Al versus temperature. FIG. 4. Relative energy at temperatdfe 300 K (curve 3, free

energy[curve 2a in the approad), curve 2b in the approadi),
this, atT=300 K it is meaningless to use the Drude dielec-and curve 2c in the approach)], and energy at zero temperature
tric function at separations<0.4 um. However, even at (dashed ling versus surface separation in the framework of the
these separations, E@R35) is correct with an accuracy of Drude model.

0.07%.
As evident from Eqs(32)—(35), the contribution of the b kgT vy
zero-frequency term to the difference of the free energies E°(a,T)=E"(a,T)+ef**%a,T)+ 2 o
) pi . 47a p
AFg=Fg—Fg, computed in the framework of the Drude
and plasma models, depends on the approach used, * &2 = dy
x> | —= : _(V+1)E|f
i=1|efi—1 ~‘-;’| Y—1
0(a) KeT [~ 2 -y 1 (=dy y?
AFg¥=——— dyyIn[1-ri(y)e””], (36 v y
16m7a2Jo — (39)
& Jg e/—1
wheree®@=e{"=0, and
apow_ kel YD) (=ydy mkel (1) o
E 2 o 2 '
8 o) Y_1 482 o kT v
mas e Joe P ePam=- 27 (40)
48a° ®p
0(0) kgT o ’ y In Fig. 4 the results of the numerical calculations are
AFg™=-— 16ma2 {3)— fo dyyIn[1-ri(y)e];. shown for Al described by the Drude model in different ap-
(39) proaches al =300 K. In the vertical axis the dimensionless
ratios are plotted,
In the case of approachéa) and (c), the difference of the 5 EPaTm) F2(a,T) E°(@a0 _ 1 @
free energies contains terms which linearly decrease with |ED(a,0)|’ |ED(a,0)|’ |E®(a,0)| '

decreasing temperatuf&gs. (36) and (38)]. In the case of
approach(b), owing to the relaxation parametexF? falls  as a function of the surface separation. Curve 1 shows the
off more quickly with decreasing temperatutie same is  behavior of the relative energwhich is practically the same
true forFE', as is seen from Ed25), and for the summation in all three approach&scurves 2a, 2b, and 2¢ show the
term in the right-hand side of E€35)]. It should be particu- relative free energy in the approach@s, (b), and(c), re-
larly emphasized that the presence of the linear terms in tenspectively. The dashed curve is for the energy at zero tem-
perature in the free energy is in contradiction to the requireperature. All calculations are performed both using the exact
ments of thermodynamidsee Sec. Y. expressions(16),(31) and the approximate one$5),(39)

To obtain the approximate perturbative expression for thevith coinciding results.
energy by analogy with Eq35), one should use the explicit It is important to explain in more detail the notation
dependence of on temperature. It has been known that atEP(a,0). It is the value of energy in the framework of the
temperaturel >Tp/4, whereTp is the Debye temperature Drude model30), computed at zero temperature in the sense
(for Al Tp=428 K [47]), dyldT=+%IT, i.e., y is linear in  that Eq.(21) with a double integral instead of a discrete sum
temperature. Generally,y/dT=vy/T with v=»(T)=1. In  is employed. At the same time, in calculationsEf(a,0)
Fig. 3, the dependence of on temperature is plotted for Al the value of the relaxation parameteiat T=300 K is used.
on the basis of tabulated ddi47]. Finally, the required ex- We divide the calculational results into this hybrid quantity,
pression for the energy is previously used in literaturesee, e.g., Ref$6,22—29). This
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a (pm) cause of this, it may be concluded that the hybrid quantity
EP(a,0) computed in the literature is in fact some approxi-
0.5 0.6 0.7 0.8 0.9 1 mation forEB, i.e., for the energy at temperatufecom-
puted without regard for the explicit dependence of the di-
electric properties on temperatumwe remind that this kind

of dependence is absent in the case of the plasma nieekel
Secs. Il and Il] but is essential for metals described by the
Drude mode]. From Fig. 5 it follows that at a separation of
0.5 um EP(a,0) departs from the correct value of energy
(curve 1 by approximately 0.75%. As to the free energies of
the approache&) and(c), the deviations are largéd8% and
3.3%, respectively; these approaches are in contradiction
with thermodynamics, see Sec..VThe above deviations
should be added to the errors BP(a,0), discussed in Ref.
[23], which are connected with uncertainties in the optical
tabulated data.

-0.92

FIG. 5. Relative energy at temperatdre 300 K (curve 1), free
energy[curve 2b in the approact) and curve 2c in the approach
(0)], and energy at zero temperatshort-dashed lineversus sur-
face separation in the framework of the Drude model reproduced on
an enlarged scale. Long-dashed curve 3 presents energy computedV, ENTROPY FOR THE THERMAL CASIMIR FORCE
on the assumption that dielectric permittivity does not depend on BETWEEN REAL METALS
temperature.

Consideration of the entropy of the fluctuating field in

allows one to associate this quantity with energy and freélependence on temperature allows one to test different ap-
energy in order to clarify its physical meaning. proaches discussed ab_ove for conformity to t_hermodynamlcs.

As is seen from Fig. 4, curve 1, illustrating the equa|Entropy pf the fluctuating electromagnetic field can be ex-
behavior of energy in all three approaches, and curve 2@ressed in terms of a free energy,
illustrating the behavior of free energy as given by the ap-
proach B, demonstrate plausible properties. Among other dFe(a,T)
things, the free energy approaches energy with a decrease of S(a,T)=— T (43
the surface separation distan@mpare with Fig. 2 in the
case of the plasma models to the curves 2a and 2c, rep-
resenting the free energy in the approactasand(c), they
do not approach each other or the energy within the applica-
tion range of the Drude dielectric function. Note éhat even at S(a,T)=— E[E(a,T)— Fe(a,T)]. (44)
separations of about 0-40.5 um the free energ¥g (curve T
2a), obtained by the direct application of the Lifshitz for-
mula, differs by 8% from the double integrdP(a,0) So it can be simply computed by the use of the results for the
(dashed ling free energy and energy obtained in Secs. Il and IV.

An important point is that not only the free energy of Let us start with the plasma model where the analytical
curve 2a but also 2b and 2c, and energy of curve 1 do natalculation is possibl¢approach(d)]. At small separations
approach the dashed line in Fig. 4 representing the quantitffow temperaturesone can use Eq$25) and (26) for the
that is in common use as a measure of energy at zero tenfree energy and energy, respectivel=\, is supposed
perature[6,22—25. This is clearly seen from Fig. 5 where Then both Eqs(43) and(44) lead to one and the same result,
the curves 1, 2b, and 2c are reproduced on an enlarged scale

or, taking into account Eq6), identically, as

for the smallest separations where the Drude model is appli- 3kgl(3)[ T |2 4amd T
cable. The long-dashed curve 3 in Fig. 5 illustrates the de- SPl(a,T)= B 5 ) ( —_——
pendence of one more quantity on surface separation defined 8ma? |\ Tetr 135(3) Terr
as Np 87w T
—|1- . (45
E2(a,T) ma 135(3) Ters
b=—T1_——, (42)
|EP(a,0)|

Note that this expression was first obtained in R&#] with
errors in numerical coefficients, because in R8#] the en-
ergy of thermal photons was not taken properly into account.
At large separationghigh temperaturgsthe asymptotic ex-
pressiong27),(28) are applicable, leading to

whereEfy’ is the energy at a temperatufecomputed on the
assumption thay does not depend on temperattaad pre-
serves its value as at=300 K). Curve 3 is computed by

Eq. (31) with 4y/dT=0. The same curve is obtained by the

application of the approximate E(B9) with »=0. kel (3)
From Fig. 5 we notice that curve 3 approaches the short- sPla,T)= B

dashed curve with a decrease of a separation distance. Be- 8ma?

M

ma

(46)

062112-9



BEZERRA, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW A66, 062112 (2002

(we have omitted exponentially small terms inr®/Ts5). S (MeVm—2K™1)
In the limit of A\,—0, Eqgs.(45 and(46) lead to the values
of entropy for plates made of an ideal metal, 0.4
C
3kgl(3)[ T \? 473 T
S(a,T)= 8{(3) _) B } 0.2 b
g8ma? |\ Ters 13%(3) Ter T (K)
50 100 150 200 300
kgl (3 _
s(a 1)=& (47) 02
8ma’® o s a

for T<Tets, T>Tes, respectively. The resultd7) coincide

with those obtained for an ideal metal in Rp48]. Asymp- FIG. 6. Entropy of fluctuating electromagnetic field in the
totical behavior of the entropy for an ideal metal in a highframework of the Drude model versus temperature computed on the
temperature limit was obtained also in Rpf9]. The result  basis of approache&), (b), and(c) (curves a, b, and c, respec-
of Ref.[49] is, however, two times smaller than in Ed.7) tively).

and Ref.[48] due to an error contained not only in the en-

tropy but also in the express!on for the Casimir energy be- ksl(3) A
tween two plates made of an ideal metal at zero temperature, Sgc)(a,T)= £
as is used in Ref49].

It is obvious that Eq(45) leads to non-negative values of ) ) )
entropy withSP'(a,0)=0, as is demanded by the third law of The results of numerical calc_ulat_lons using E@S) and
thermodynamicsthe Nernst heat theorefs0). (_50) for _a=2 pum are presented in Fl_g. 6. As is seen from the

We now direct our attention to the entropy in the frame-figure, in the approactia) entropy is negative in a wide
work of the Drude model. As before, numerical calculationstemperature range from=0 to almostT =300 K, which is
can be performed by the exact formulas for the energy an@ honphysical result. In the approat entropy preserves
free energy or by the approximate ones valicaat\ , with the negative sign for lesser separations between the plates as

coinciding results. From Eq$35) and (43), one obtains well. In the approache®), (c) entropy is positive as it must
be. In the approachib) SP(a,0)=0, whereas in the ap-

proachega), (c) S°(a,0)#0 which is in contradiction with

3 N\p
2 7a

8ma? ma

k
SP(a,T)=SP\(a, T)+ S@P%Ya, T) + — 5 7 the Nernst heat theorem. From E8) and (50) it follows
4ma® @p that
o0 ~2 -
252 | dy (2,0 =5"Ya0), G
=1]efi—1 He-1
kgl (3)
_r[rayy 49 sP@0=0, s(a0-Pa0="2—,
El fe¥—1 . ma

where the absolute values Sﬁa‘c)(a,O) are given by Eq.

(50). They are not only different from zero but depend on the

parameters of the systerfplate separation distance and

plasma wavelengihwhich is prohibited by the third law of

K P thermodynamic$50]. Because of this, approach@s and(c)

S@EPYa,T)=— B _(T[fgavbvc)(a,T)+g(3) must be rejected. Note also that appro#&ahpredicts non-
167a® dT zero value of entropy at zero temperature for an ideal metal,
in contradiction with the field-theoretical result of Rg48].

}, (49) As for approachegb) and(d), based on the special modifi-
cation of the zero-frequency term of the Lifshitz formula and
on the use of the plasma model, respectively, they are in

describes the contribution of the zero-frequency term of th%greement with the requirements of thermodynamics_ To de-

Lifshitz formula to entropy in different approaches. Using cide between them some additional considerations, which are

the same perturbation expansions as in Sec. IV, one obtaingresented in the following section, are needed.

HereSP!(a,T) is the entropy in the framework of the plasma
model computed by Eqg24) and (43), and S"(a,T),
defined by

- [“ayyina-rze

2
S®(a,T)= - kad(3) ( 1— zﬁ +3 Mo VI. CONCLUSIONS AND DISCUSSION
! 6 a2 mTa 2a2 ! . o
4 7 In the above, the correlation between the Casimir energy
K and the free energy at a temperattiris investigated for the
SP(a,T)=- BT (v+ 1)l, (500  case of two plane parallel plates made of a real metal. It is
4832 Wy shown that for the nondissipative media described by the real
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dielectric permittivity with no explicit dependence on tem- ys consider two pairs of plane parallel plates5 um apart
perature the photons between plates can be considered as thade of Al(one pair of platesand of indium tin oxidethe
elementary excitations of the electromagnetic field interactother ong. Due to large separation distance, the asymptotic
ing with the matter of plates. In this case the energy at temef high temperatures is applicable and only the zero-
peratureT is proved to be a sum of tHeenormalizedlenergy  frequency term of the Lifshitz formula determines the total
of zero-point oscillations and thermal photons. If the mediavalue of the Casimir force. At quasistatic frequencies both Al
are dissipative and their dielectric permittivity depends onand indium tin oxide are good conductors. Because of this,
temperature, the simple picture above is not correct. Théhe Lifshitz formula would lead to one and the same Casimir
concept of thermal photons loses immediate significance anfbrce at 5um separation for both pairs of plates if one sub-
the energy of fluctuating field contains additional terms de-stitutes into it the actual reflection properties of these mate-
pending on the derivatives of the dielectric permittivity with rials at zero frequency. This conclusion is in contradiction
respect to temperature. with intuition. Note that indium tin oxide is transparent to
The expression for the energy at a temperafufeund in ~ visible and near infrared light. Within a wide wavelength
this paper helps to elucidate the meaning of the so-calledange 7um<A<100um around the characteristic wave-
“Casimir energy at zero temperature” calculated by manylength\.=62.8 um (the latter corresponds to the character-
authors as a double integral using the Drude model and opstic frequencyw.=c/2a=3x 10" rad/s), giving the main
tical tabulated data at room temperattmete that this quan- contribution into the Casimir force at zero temperati8g
tity is of great importance as it is proportional to the Casimirthe reflectivity of indium tin oxide is below 80951]. Note
force in the configuration of a sphere or a spherical lenghat the second parameter of the problem, first Matsubara
above a plate used in experimer-12,19). The com- frequency, is wy=2mkgT/A=2.45x10" rad/s, i.e., Ay
monly accepted opinion that the above-mentioned quantity is=7.7 wm, which belongs to the region of even larger trans-
approximately equal to the free energy at small temperaturgsarency of indium tin oxide. In this situation it is difficult to
(small separationsis inexact. In fact, even at rather small imagine that ata=5 um the indium tin oxide plates are
separations the “Casimir energy at zero temperature” deviattracted with the same Casimir force as Al plates which are
ates from the free energy by several percent but approachesmost perfect reflectors within a wide range around the
the energy at room temperature calculated on the assumpti@haracteristic wavelength.

that the dielectric permittivity does not depend Brexplic- We can avoid this contradiction between the literally un-
itly (this assumption is not correct in the case of the Drudelerstood theory and physical intuition if we assume that it is
dielectric function. not correct to substitute the actual behavior of the dielectric

Different approaches to describe the thermal Casimipermittivity at zero frequency into the Lifshitz formula. In-
force from recent literature were compared and analyapd  stead, in order to obtain the physically correct results, the
proachega), (b), (c) in the framework of the Drude model frequency dependence of the dielectric permittivity and re-
and approackd) in the framework of the plasma model—see flection coefficients around the characteristic frequency
Introductior]. The quantitative expressions for the entropy ofshould be extrapolated to zero Matsubara frequency and sub-
the fluctuating field are obtained here in the case of reaétituted into the Lifshitz formula. If this conjecture is ac-
metals. They give the possibility to conclude that the ap-cepted, one should conclude that, within the range of mi-
proacheda) and(c) are in contradiction with the principles crometer separation distances between plates, the plasma
of thermodynamics and must be rejected. The approdthes model dielectric function, i.e., the approa@, is preferable
and(d) are found to be in agreement with thermodynamics.as compared to the use of the Drude dielectric function com-

To make a choice between the approactiesand(d) let  bined with any of the above approach@s, (b), (c). It is
us discuss the behavior of the dielectric permittivities of theapparent from the fact that the plasma dielectric function and
plasma and Drude models at small frequencies. Several avespective reflection coefficients admit reasonable continua-
thors[26,30,31,3% give preference to the Drude model be- tion from the range of infrared optics to zero frequency.
cause it showso ™! frequency dependence of the dielectric  The contradictions discussed in this paper lead to a con-
permittivity at small frequencies as it follows from Maxwell clusion that the concepts of the frequency-dependent dielec-
equations(compare withw 2 frequency dependence given tric permittivity and fluctuating electromagnetic field inside
by the plasma modgl Although this statement is true, it media in application to the thermal Casimir force between
should be remembered that the Drude model is not applireal metals are inadequate idealizations. Less sophisticated
cable at all frequencies. We note that the concept (@) approaches, such as the surface impedance appftbeche-
itself, not only the Drude model, does not work in the do-ontovich boundary conditionswhich do not consider the
main of the anomalous skin effetiee Sec. IY. As to the fluctuating field inside matt€fi3,33], appear to be more ad-
quasistatic limit, althougle(w) is of orderw ! in this do-  equate and lead to physically justified results for all separa-
main, the Drude model is also not applicable as the corredion distances between plates. By way of example, in the
e(w) is pure imaginary. Since the zero-frequency term of thedomain of the infrared optics the surface impedance leads to
Lifshitz formula necessarily belongs to the domain of thethe same results as the Lifshitz formula in combination with
quasistatic fields, where the concept of traveling waves failsthe plasma modelapproach(d)]. If the characteristic fre-
the substitution of the Drude dielectric function into this termquency belongs to the domain of the normal skin effect,
(resulting in all the above problemseems to be unjustified. where the Drude model is physically correct, there is no

To clarify the situation with the thermal Casimir force, let reasonable continuation efto zero frequency avoiding the
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above problems. At the same time, the impedance approacRegarding the Drude model, it can be used to describe the
when applied in the domain of the normal skin effect, leadghermal Casimir force only with some appropriate modifica-
to quite satisfactory results33] coinciding with those for tion of the zero-frequency term of the Lifshitz formilike
ideal metal as it must be at separations larger than 0.1 crim the approactib), for instancé.
[almost the same results are given in this domain by the
approachegb) and (c)]. ACKNOWLEDGMENTS
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