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SupposeN parties describe the state of a quantum systemN pgssibly different density operators. Thése
state assignments represent the beliefs of the parties about the system. We examine conditions for determining
whether theN state assignments are compatible. We distinguish two kinds of procedures for assessing com-
patibility, the first based on the compatibility of tipeior beliefs on which theN state assignments are based
and the second based on the compatibilitypoédictive measurement probabilities they define. The first
procedure leads to a compatibility criterion proposed by Brun, Finkelstein, and MgBBM, Phys. Rev. A
65, 032315(2002]. The second procedure leads to a hierarchy of measurement-based compatibility criteria
which is fundamentally different from the corresponding classical situation. Quantum mechanically none of the
measurement-based compatibility criteria is equivalent to the BFM criterion.
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I. INTRODUCTION lent to a compatibility criterion proposed by Peief&4];
thus this criterion provides am-party generalization of
There are good reasofil] to view a quantum state not as Peierls’s criterion, which we cafpostPeierls(PP compat-
representing a true state of affairs, but as a state of knowibility.
edge or, more provocatively,sate of beliefThis view cor- The BFM compatibility criterion is based on the compat-
responds to the Bayesian approach to probability theory, adbility of the beliefs of theN parties. We show that the BFM
cording to which probabilities are an agent's necessarilycriterion is not equivalent to any of the measurement-based
subjectivedegrees of beliehbout a set of alternatives. Dif- compatibility criteria. This means that there is generally no
ferent scientists can have different beliefs about the sam&ay to use measurements to confirm the compatibility of
physical system, resulting in different quantum-state assignstates that are BFM compatible or to reveal the incompatibil-
ments. This can arise for a variety of reasons. For instancéty of states that are BFM incompatible.
one of the scientists might have no access or only partial The compatibility criteria we derive can be specialized to
access to another’'s measurement results. In geméslien-  classical probabilities by considering density operators all of
tists, orparties can assigmN different states, pure or mixed, which are diagonal in a common eigenbasis—i.e., commut-
to a given system. ing density operators—and by restricting the allowed mea-
In this paper, we are not concerned with how to justify asurement operators to be diagonal in the same basis. There
particular state assignment. Instead, we start from a given sate interesting differences between the hierarchy of
of N states, representing the beliefshvparties, and ask for measurement-based criteria in the classical and quantum
conditions for determining that thBl quantum states are cases. Moreover, the classical version of BFM compatibility
compatible(or, conversely, that they are contradictoryhe  is equivalent to the classical version of PP compatibility, in
conditions we derive can be viewed as criteria for the mutuatontrast to the quantum case.
compatibility of N quantum-state assignments. The paper is organized as follows. In Sec. Il, we review
There are two distinct procedures for assessing the conbriefly the concepts of Dutch-book consistency and strong
patibility of quantum statesgor, conversely, for uncovering Dutch-book consistency, which provide the foundations for
contradictions among the state$he first procedure exam- Bayesian probability theory, and define the notions of con-
ines the firm beliefs on which the parties base their stateradictory beliefs and contradictory probability assignments.
assignments and asks whether these beliefs are compatib(@ee the Appendix for an explanation of the term “Dutch
This procedure leads to the compatibility criterion proposedook.”) In Sec. I, we derive the BFM compatibility crite-
by Brun, Finkelstein, and MermitBFM) [2]. The second rion for the quantum states df parties from the requirement
procedure examines measurement probabilities predicted hijtat there be a state assignment that does not contradict the
the parties’ state assignments and asks whether these prdielief of any party. Section IV introduces our hierarchy of
abilities are compatible. We show that this second procedurmeasurement-based compatibility criteria and highlights the
leads to a hierarchy of measurement-based compatibility crisurprising differences between the classical and quantum
teria. The two-party version of one of our criteria is equiva-cases. We consider how the measurement-based compatibil-
ity criteria change when one generalizes from measurements
described by one-dimensional orthogonal projectors to posi-
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formulate a simple universal mathematical condition appli-and only if she believes it to be impossilikee, the Appen-
cable to all sets of quantum states in all Hilbert-space dimendix).

sions; we consider nontrivial examples of PP compatibility Dutch-book consistency has to do with the beliefs and
for three states of a three-dimensional system. Section Vprobability assignments of a single party. Our concern in this

closes the paper with a summary and discussion. paper is compatibility among many parties. We say that the
beliefs of N parties about a set of alternatives ammnpatible

Il. CONSISTENT PROBABILITIES if there is at least one alternative that all parties judge to be
AND CONTRADICTORY BELIEFS possible. Conversely, the beliefs Nfparties arecontradic-

tory (or incompatible if they are not compatible in the sense
The notion of consistent beliefs has its roots in the apjust described, i.e., if every alternative is deemed impossible
proach to Bayesian or subjective probability via consistenby at least one party. Examining the alternatives to determine
betting behavior. Bayesian probabilities quantify one’s de-which applies is thus guaranteed to contradict at least one
gree of belief in the various alternatives from among a set oparty. Contradictory beliefs cannot be reconciled unless at
possibilities[5]. Bayesian probabilities are given an opera-|east one party abandons a firm prior belief.
tional definition in terms of betting behavior. Suppose #hat |t s easy to imagine situations that give rise to compatible
is willing to place a bet at odds of (1p)/p to 1 on the or to contradictory beliefs. Take a die as an example. Sup-
occurrence of some event. This means thas willing 1o poseA has seen the North face of the die, which shows 4
pay in astake px with the promise of receiving payoff xif ~ dots. She, therefore, believes that it is impossible for the top
the event occurs and nothing otherwise. Thabnsiders this  face of the die to show either 3 or 4 dots, but that it is
to be afair bet—she is willing to accept the bet at these Odd&‘possib|e for it to show 1, 2, 5, or 6 dots. Supp@skas seen
no matter what the payoff, positive or negativeefines go  the East face of the die, which shows 1 dot. He believes that
be the probability tha# assigns to the event. the top face can show 2, 3, 4, or 5 dots, but not 1 or 6. These
Suppose now thah makes probability assignments to a peliefs are compatible since both parties believe that the top
set of events. We say th&@('s probability assignments are face can show 2 or 5 dots.
consistentor Dutch-book consistenif there exists no set of Now suppose that asserts that the South face of the die
bets which she regards as fair, but in which she loses fogshows 5 dots. He believes that it is impossible for the top
every outcome that she believes to be possible. Notice thagce of the die to show 2 or 5 dots, thus contradicting the
this is a purely internal consistency criterion; it refers only tobeliefs of A andB. This situation could arise it's assertion
A’s subjective beliefs. was based on a mistaken observation from across the room;
The so-called Dutch-book argumé®t 7] shows that con-  the beliefs of the three parties could be reconciled@y
sistency alone implies that's probability assignment must observing the South face again, finding that it shows 3 dots,
satisfy the usual probability axiomé) p=0, (i) p(E)=1if  and thereby giving up his firm belief that the top face could
A believes that evenE is certain to occurfiii) p(E\/F)  not show 2 or 5 dots. Another possibility is that the die was
=p(E)+p(F) if E andF are mutually exclusive, anflv)  tossed after the initial observations ByandB; the beliefs of
P(EAF)=p(E|F)p(F) (Bayes’s rulg. In the Appendix we the three parties could be reconciledifand B realized that
first review the formulation of Bayesian probabilities in the die had been tossed after their observations, which would
terms of betting behavior and then give the Dutch-book dericause them to abandon their prior firm beliefs.
vation of the standard probability rules. Under the assumption of strong consistency, where the
Consistency enforces the probability axioms, but it doedirm belief that an alternative is impossible is equivalent to
not dictate particular probability assignments, leaving thesassigning zero probability, the conditions for contradictory
to whatever wayA chooses to translate what she knows orand compatible beliefs can be reexpressed in terms of prob-
believes into probabilities. The only exception is in the caseabilities. The belief§or probability assignmentsf N parties
of certainty, where consistency requires that all probabilitiesare compatible if and only if there is at least one alternative
be 0 or 1. Indeed, a consequence of the probabilitto which all parties assign nonzero probability, i.e., there
axioms—it also follows directly from the Dutch-book exists a probability assignment that does not contradict the
argument—is thap=0 for any outcome thaf believes to firm beliefs of any of the parties. This is the classical version
be impossible. We call the belief that an outcome is imposof BFM compatibility. The beliefs(or probability assign-
sible afirm belief ments of the N parties are contradictorpr incompatiblg if
Surprisingly, consistency does not imply that>0 for  and only if every alternative is assigned zero probability by
any outcome thaA believes to be possible. In other words, if at least one party.
A assigns probability zero to an outcome, one cannot infer For ordinary consistency, the existence of one or more
from consistency alone tha# believes the event to be im- alternatives to which all parties assign nonzero probability is
possible. To make this inference, we need a slightly strongesufficient for compatible beliefs, but it is not necessary, be-
version of consistency: we say thAts probability assign- cause a party can assign zero probability to alternatives the
ment isstrongly (Dutch-book consisten{8,9] if there exists  party believes are possible. For ordinary consistency, prob-
no bet that she regards as fair in which there is at least onabilities do not carry enough information about firm beliefs
losing outcome but no winning outcomes among those outto allow compatibility to be determined from the parties’
comes she deems possible A% probability assignment is probability assignments. Since we are interested in the com-
strongly consistent, then an outcome has zero probability ipatibility of density operators, we need strong consistency so
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that propabilities for measurement outcomes generateq B¥ince N(E») is a subspace, it follows thatM
the density operators allow one to determine the firm beliefs_ N ) N CNVCH. Such ap exists if
of the parties. Therefore, we assume strong consistenggSpa'( (pa) Mps), - - - )CMp)CH. Such ap exists i
throughout the remainder of the paper, except where explicd"d only if M is not the entirety of¢, which is equivalent to
itly noted. saying that the orthocomplement 8ffl contains at least one
There is a another stronger kind of compatibility for clas-nonzero vector. Since the orthocomplementidfis the in-
sical probabilities. Suppose, for example, that in the case dkrsection of the supports of the,, we have the result that
the die,A andB come together, combine their observations,there exists g that does not contradict any party’s prior

and, thereafter, agree that the top face can show 2 or 5 dotgg|ief if and only if the intersection of the supports of all the
but not 1, 3, 4, or 6 dots. They generally would not assign the . - .
same probabilities to 2 and 5 dots, but they do have the sanf& contains at least one nonzero vector. This is the criterion
firm beliefs, a situation we capturé by saying that their ne or BFM compatibilityof state assignments. In the classical
beliefs are in concord. Generally, we say that the befiefs C2S€ the BFM criterion reduces to the condition that at least

probability assignmentof N parties areconcordantif their ~ ©N€ of _the common eigenvectors has nonzero eigenvalue for

firm beliefs coincide, i.e., if they assign zero probability to &l parties. _ o _

the same alternatives. Concordant probability assignments What we have shown is that BFM compatibility is equiva-

have the same support. It is not reasonable to demand thi&nt to the existence of a density operator that does not con-

parties have concordant probabilities, but they arise naturalljradict the firm beliefs of any party. Just as in the classical

when parties with compatible beliefs share those beliefs. case, the assumption of strong consistency, as opposed to
With this background, we turn now to BFM compatibility ordinary Dutch-book consistency, is essential for this conclu-

for quantum state assignments. sion. The reason is thamy set of consistentbut not neces-
sarily strongly consistepstate assignments can arise from a
1. BFM COMPATIBILITY set of noncontradictory beliefs. Lety,pg, ... beN arbi-

) ) ) ) trary states. These are consistent state assignmeritsgfar-
The system under consideration is described by gjes all of whom believe thaany outcome is possible, since
D-dimensional Hilbert spack. We label theN parties by an - consistency alone allows a party to believe that a vector in
index a=A,B,C, ... ; their state assignments are denotedhis null subspace corresponds to a possible outcome. Obvi-

by p, . For a projective measurement in an arbitrary ortho-oys|y, there is a posterior statethat does not contradict the

normal basis{|k) k=1,... D}, i.e, a measurement de- firm beliefs of any party; indeed, any posterior statevill

saned byorthogonalt Z%eggnl:;efnsmr;]al ﬂpr?éectofﬁée bglz'it” do. Merely consistent state assignments do not reveal enough
such a measuremen or short, the probabliity 5,4t the parties’ prior beliefs to rule out the existence of a

assigned by partyr to the outcomek is given by pi” noncontradictory posterior state assignment.
=tr(p,I1) = (K|p.|k), wherell, =|k)(k|. The case of clas- Suppose parties with BFM compatible state assignments
sical probabilities is included automatically as the situationshare their beliefs, each adopting the firm beliefs of all the
in which all the ;,a are diagonal in the same orthonormal others. BFM compatibility guarantees that there are density
basis{|k)}, and the only allowed measurement is a measureoperators that are consistent with the firm beliefs of all the
ment in this basis. parties. The parties will generally not end up assigning the
Under the assumption of strong consistency, each part§ame density operator, but they will assign density operators
assigns zero probability to precisely those outcomes he bdhat incorporate the same fi_rm beliefs and thus hav_e the same
lieves cannot occur: i.e., for each, <¢|;a|¢>:0 if ang Support. We say such density operatorsa@mecordantn the

only if party a believes that the outcome corresponding tgSaMme Sense as for prohability assignments.
|) is impossible in any measurement containjif. There- Our derivation of the BFM criterion is different from the

. . - one given by Brun, Finkelstein, and Mernii]. They show
fore, each party assigns a density opergigrwhose null ot heir criterion follows if one assumes that each of the
state assignmenfsA,f)B, ... “incorporates some subset of
¥ valid body of currently relevant information about the sys-

support and thus have nonzero probability, so the party bee'ach of theN-state assignments should be consistent with

lieves that the outcomes corresponding to all such vectors . . Lo~ .
can occur. some real state of affairs captured in Zeno’s stateThis

A densi ~ di s firm beliefs if impression is reinforced shortly, thereafter, in their paper,
ensity operatop contradicts party’s firm beliefs | where one of the explicit assumptions leading to the BFM

<¢|E’|¢}>0 for somely) that @ believes to be impossible. criterion is that “if anybody describes a system with a den-
Thus p does not contradicta’s beliefs if and only sjty matrix p, then nobody can findthe systemto be in a

if Mpo)CSMp). What we want to know is the cir- pure state in the null space pf” In contrast, our derivation
cumstances under which there is a density operator tha§ couched wholly in terms of the beliefs of the parties and
does not contradict the firm beliefs of any of the partiesdoes not appeal to a real state of affairs. It is, therefore,
i.e., a density operatqs such that\{(p,) CMp) for all a. preferable in a Bayesian approach to quantum mechanics.
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IV. MEASUREMENT-BASED COMPATIBILITY Condition (3), calledW for “weak,” says that there is at
A. Compatibility conditions least one measurement such that for any outchipeeither

We turn our attention now to compatibility conditions &/l parties assign nonzero probability kb, or they all as-
based on the compatibility of measurement probabilities. Wesign probability zero td1I,. In other words, there exists a
focus first on ODOP measurements, i.e., those described byeasurement whose measurement probabilities are concor-
complete sets of one-dimensional orthogonal projectorglant.

{Il, k=1, ... D}, the probability partye assigns to out- Finally, condition(4), calledW’, is implied byW. It states
(@) et TN Ll : that there is at least one measurement and at least one out-
comek being pi”=tr(p,I1i) =(k|p,|k). Most importantly, come for that measurement to which all parties assign non-

we assume that all parties agree on this de_scription of thEero probability; i.e., there exists a measurement whose mea-
measurement. In Sec. IV C below we generalize the compa(% X

ibilit diti o th toxt of s d i Ssurement probabilities are compatible.
Ibifity conditions 1o the context of measurements described g, mmarizing the implications we have identified up till

by POVMs. h
Our hierarchy of measurement-based compatibility condi—now’ we have
tions can be stated very simply as whether the parties’ mea- ES=BFM, ES=PP, W=W'. (5)

surement probabilities are compatible or concordant and
whether this holds for all measurements or for at least on&he latter two relations involve only the logical structure of
measurement. In mathematical language the compatibilitthe compatibility conditions; all the relations hold for both
conditions are the following: the classical and quantum cases.
R In the case of classical probabilities, there is only one
V{II;} Yk (Ya:p{”>0)\/(Va:p{"'=0)) (ES), (1) allowed measurement—a measurement in the basis that di-

R agonalizes all thé)a—so it is clear that ES is equivalent to
V{II;} 3k Va:p(®>0 (PP, (2) Wand PP is equivalent 8/’ . It is equally clear that PP and
W'’ are equivalent to BFM. Summarizing the implications for

311} VK(Va:p{®>0)\/(Va:p{®=0)) (W), (3) the classical case, we have
A WsES =BFMePR=W' (Classical. (6)
I} 3k Vapl@>0 (W). (4)
i, . i This chain reflects the two kinds of compatibility for classi-
Condition(1), called ES for “equal support,”says that for ¢4 probabilitiesW and ES correspond to the parties having
all measurements and any outcorflg, either all parties concordant probabilities, whereas BFM, PP, ald corre-

assign nonzero probability tﬁ[k, or they all assign zero spond to the parties having compatible probabilities.

probability toIl,. In other words, the parties’ probabilities
for all measurements are concordant. It is trivial to see that

ES is equivalent to all the density operatgrs having the In the quantum case, the relatiof® change in an inter-
same support, i.e., being concordant as defined in the prece@sting way to

ing section. As a consequence, ES implies BFM. ES is a very ,

strong compatibility condition, which is violated in many ES=BFM=PP=W'<W (Quantur. @)

practical situations, but which arises naturally when partieshere unlike the classical case. BEM is stronger than PP. and
with BFM compatible beliefs combine their beliefs. ’ ’ g :

. ; PP is stronger thakV’, but the most striking difference is
Unlike ES and BFM, there are fundamental dlfferen_ceﬁhat W, thegstrongest condition classically,gis the weakest
"ndition guantum mechanically. As a matter of faat,is
atisfied byany set of state assignments, as we show below.
he different structure of quantum implications in K@) is
ue to the far greater freedom quantum mechanics allows for
measurements.

We now prove the relation§7). The first implication,

S=BFM, is trivial: equal support implies that the supports

B. Relations among quantum compatibility conditions

three conditions. Conditio(2), called PP for “post-Peierls,”
is implied by ES. It says that for all measurements, there is
least one outcome to which all parties assign nonzero probd
ability; i.e., all measurements have compatible probabilities
It is often useful to think in terms of the conditions for vio-
lating PP compatibility: PP is violated if there exists a mea-

surement such that at Iea;t one party assigns zero probabil ave at least one state in common. It is also clear that the
to every outcome; for this measurement the measureme%verse implication does not hold

probabilities are contrgdictory, the outcom.e, whatever it is, To see that BFM implies PP, consider an arbitrary mea-
guaranteed to contradict one or more parties. The two-party N o T ]
version of PP is the original compatibility condition of SurementIl;=[j)(j[}. BFM compatibility is equivalent to
Peierls[3,4]; it is equivalent topaps#0. As far as we can Saying thatM=spari\(pa).Mps), - ..) is not the entire
tell, the conditions for multiparty PP compatibility cannot be Hilbert-spaceH. Since the vector§|j)} are an orthonormal
put in a simple universal mathematical form, unlike the othefbasis, at least one outcorji¢ lies outsideM and thus has a
compatibility criteria. In Sec. V, we consider nontrivial ex- Nonzero projection onto the orthocomplement/ef, which

amples of three-party PP compatibility in three dimensions.is the intersection of the supports of tpe. For this out-
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come we havek|p,|k)=tr(p,11,) >0 for all a. To see that U=[m")(m[+[m)(m,[+1—|m)(m|—[m, )(m,],
PP does not imply BFM, consider two nonorthogonal pure
states. There is no one-shot measurement that can distinguish )
the two states reliably, so the two states satisfy PP, but sincghere|m| )=—|m)e'#sind+|m, )cosd, for which it follows
the intersection of the supports of the two states containghat cos(|k),U|k))=|(k|U|k)|=|1—|(klm, }|*(1—cosd)|=cosd.
only the zero vector, the two states violate BFM. Now define|k’)=U|k) for all k. Thend(|k'),S)>e for k
A simple example shqws th&ly’ does not imply PP: two <m, and, therefored(|k’),S)>0 for k=<m. By repeating
orthogonal pure states violate PP, but they saW§ify as can  his procedure, one arrives at a basis with the property that

be seen by considering a measurement in a basis that igych pasis state is a finite distance frémas required.
cludes a vector that lies in the two-dimensional subspace

spanned by the two states, but is not equal to either of them.
To show thatW’ is equivalent td/N and is implied by PP, C. Generalized measurements

we prove the stronger result thany set of N states . : . . - .
we P g y In this section we investigate how the compatibility crite-

PasPe; - - - SatisfiesW, which shows thatV follows from 5 change if generalized measurements, described by
any of the other conditions. We construct a measuremensoyms. are included in the allowed measurements. A
{II;} each of whose projectors has nonzero overlap with theovm is a collection of positive operatof€,} satisfying

supports of all the, . Let|¢,) be an eigenvector gf, with 5 & —7: the probability assigned by party to outcomeb
nonzero eigenvaluk,. We need to find an orthonormal ba- is pl@ =tr(p.Ep)
b a '

. 2 . .
.S'S{!k» such that @<|2<k|¢”i>| for a”Ak ‘:’mda’ since this It is clear that BFM is not affected by generalizing to
implies 0<\ o|(k|bo)|*<(K|p,|k)=tr(ITp,) for all kand  pOVMS, since it is phrased in terms of firm beliefs, not in
a, wherell, =|k)(k|. Letting Sbe the set of all state vectors terms of measurements. For the measurement-based criteria,

that are orthogonal to at least ofg,), we see that what we it is logically possible that states that akeor W' incompat-
need to do is to construct an orthonormal basis none ofle relative to ODOPs can be made compatible by including

whose basis vectors is @ additional measurements; indeed, the uninformative mea-
To do the construction, we begin by defining the distancesurement with a single outcome does make all stétesnd
between two state vectors: W'’ compatible. Since all states are alreatfyandW’ com-
patible under ODOPs, however, allowing POVMs makes no
d(| ).l x))=cos Y{lx)l, (8)  difference towandW’. Itis also possible that states that are

ES or PP compatible relative to ODOPs can be made incom-
which allows us to define the distance between an arbitrarfpatible by including additional measurements. It is clear,

state vectof) and the seB by owever, that density operators with the same support satisfy
ES compatibility with POVMs included among the measure-
d(|),S)= min d(|).|x)). (9  ments; thus allowing POVMs makes no difference to ES
Ix)es compatibility.

The only compatibility criterion that is affected by gener-

A state vector ) is in Sif and only if d(|#),S)=0. Our  @lizing to POVMs is PP. We distinguish the two kinds of
construction relies on the fact that, arbitrarily close to anyP0St-Peierls compatibility by using PP-ODOP to denote com-
vector|x) e S, there exists a vectd) that is a finite dis- Patibility relative to ODOPs and PP-POVM to denote com-
tance away frons i.e., anye-ball around| x) € S contains a patibility re_latlve _to POVMs. CIear!y_PP-PQVM implies PP-
vector|y) such thatd(|#),S)>0. ODOP. To investigate PP-POVM, it is easiest to focus on the
Now choose an orthonormal basigk)! such that conditions for violating PP-POVM: PP-POVM is violated if

d(|1),S)>0. Assume thad(|k),S)=0 for at least one of there exists a measurement, described by a PQ\&W,

the basis vectors—otherwise we have the desired basis—aisich that at least one party assigns zero probability to every
let |m) be the first such basis vector in the list, i.e., outcomeb.

d(|m),S)=0 andd(|k),S)>0 for k<m. We now show that Given any POVM, we can write the POVM elemerkig

the basis can be rotated in such a way t@k),S)>0 for  in terms of their eigendecompositions, thus obtaining a finer-
k=m. Define grained POVM consisting of rank-one operators. If a POVM

{E,} shows that a set of density operators violates PP-
POVM compatibility, then the underlying rank-one POVM
reveals the same incompatibility. Thus, in investigating PP-
POVM, we can restrict attention to rank-one POVMs. More-

, , _ over, since a rank-one POVM can be extended to an ODOP
Let m’) be a state such tha@(|m >’|m.>)=d<6 arld in a higher-dimensional Hilbert spa¢the Neumark exten-
d(|m’),S)=5>0. Then there exists a unitary operaldr  sjon) [10], the question of the PP-POVM compatibility of a
such thafm’)=U|m) andd(|k),U|k))<e for allk<m. To  set of states is equivalent to the question of whether the
see this, let|m’)=|m)e'“cosd+|m, )sind, with (m, |m)  states are PP-ODOP compatible when they are embedded in
=0. We can use a Hilbert space of arbitrary dimension.

€= % mind(|k),S). (10)
k<m
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The condition for two-party PP-ODOP compatibility, V. THREE-PARTY POST-PEIERLS COMPATIBILITY

pape#0, is independent of the dimension in which the two IN THREE DIMENSIONS

states are embedded, so it is also equivalent to PP-POVM pp seems to be the only one of our compatibility criteria
compatibility[4]. The case of two nonorthogonal pure states o \yhich there is no simple, general mathematical condition
which are PP-POVM compatible, but not BFM compatible, o geciding whether a given set of density operators is com-
establishes that PP-POVM is not equivalent to BFM. patible. For two parties, however, it is easy to determine

States of a two-state systefgubif) illustrate the differ- \yhether the two density operators are PP compatible: Mer-
ence between PP relative to ODOPs and POVMs. Since defsin [4] showed that PP is satisfied if and only if the states

sity operators of full rank give nonzero probabilities for all te not orthogonal, i.e., Hpe) %0 or, equivalentlypp
measurement outcomes, they can be added to or remov%io This cor?dition, fbli,ovtf/jsﬁ;som the ,fagt that tw)o/,pdAé)r?sit
from a set of density operators without affecting the PP com-" " y

patibility of the other density operators in the set. For aqubitOperators are not PP compatible if and only if there is a

this means that we only need to consider the situation jneasurement that can distinguish them reliably,_ and there is
] ) ) NP - such a measurement if and only if the two density operators
which the parties assign pure states=3(1+n, o), «

, . ) are orthogonal. This two-party PP compatibility condition is
=1,... N, wheren, is the(unit) Bloch vector for partyr’s  {he same for ODOPs and POVMs, as can be shown directly

pure state. Two pure states are PP compatible, relative Q] or from the fact that as an ODOP condition, it is inde-
either ODOPs or POVMs, if and only if they are not or- nendent of the dimension of the Hilbert space in which the
thogonal. Three or more distinct pure states in two dimensyg states are embedded. Notice that if any two parties as-

sions are PP-ODOP compatible if and only if no two of thegjgn pp incompatible states, then the states of all parties are
states are orthogonal. PP-POVM compatibility is more compp_opop and PP-POVM incompatible.

plicated. The states are incompatible if and only if there isa |4 three or more Hilbert-space dimensions, the general
POVM such that each outcome has zero probability for agongition for N states to be PP compatible, relative to
least one of the states. Such a POVM must consist of rankspops or to POVMS, is highly nontrivial. We report results
one positive operators, each of which is orthogonal to one of, his section for the first interesting situation, three parties
the pure statep,, i.e., E,=q,(1—n, o), where O<q, assigning states in three Hilbert-space dimensions. As noted
<1/2. Requiring the POVM elements to sum toirtiplies  above, full-rank density operators are irrelevant to questions
that theq,’s are a normalized probability distribution and of PP compatibility, so we can assume that all the density
that the Bloch vectors average to zero: operators are either rank one or rank two. There are four
cases to consider, depending on how many of the states are
pure. We consider the three cases where one or more of the
states is mixed in Sec. V A and deal with the case of three
pure states in Sec. V B.

The result is that a set of pure states in two dimensions is

PP-POVM compatible if and only if the convex set generated A. Mixed and pure states

by the Bloch vectors does not contain zero or, equivalently, ) , , ) .
Throughout this section, we investigate the conditions for

the conyex set Qe”era‘ei‘ by the staigsdoes not contain constructing POVMgor ODOP$ that show that the density
the maX|ma”y mixed state/2. These results for a two-state operators are PP incompatible. Such a POW ODOB
system establish that PP-ODOP is not equivalent to PPmyst be made up of the operators that give zero probability
POVM. for each density operator in turn. In doing this construction,

We are left with the following chain of implications: we adopt the following conventions.ﬁfa is a rank-two den-

ES=BFM= PP-POVM= PP-ODOR> W' &W (Quantum. sity operator, we le§, denote the two-dimensional subspace
(12)  that is the support op,, with S, being the projector onto

S,, and we Ietf[a=|ea)(ea| be the one-dimensional pro-

It is interesting to compare these relations to what happens . .
the classical relation®) when one generalizes to the coarsej%Ctlon operator that projects orthogonal & . A POVM

grained measurements that are POVMs diagonal in the cor‘r?—'em?”t that has zero probability given must have the
mon eigenbasis of the density operators. ES still correspondsrm E=r II,, O=r ,=<1; if the POVM is to be an ODOP,
to concordant probabilities, BFM and PP still correspond toye needr,=1 or r,=0. If p,=|¢,)(#,| is a rank-one
compatible probabilities, but the uninformative measuremengiensity operator, we let

makes all probabilities compatible undéf and W’'. Thus

we have the following classical implications when we allow g =y lﬁa 11, Zﬁa 2=Ta1l€a (a1l T a2l 2)(€nl,
coarse-grained measurements: o T o ’ o ’

0=, q,N,. (11

ES=BFM«PP=W'<W (Classical. (13) 0<ro1.fas<1, (14)

When we generalize to coarse-grained classical measuréenote the general POVM element orthogonalptp; its
mentsW migrates from the strongest to the weakest compat€igenvectorsje, ;) and |e, ;) are orthogonal to|#,). A
ibility condition. POVM element that has zero probability givep must have
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the form (14). The OpefatOTSEaj:rajﬁaj. j=1,2, are dimensions, here the two-dimensional subspgac&Vhat we

rank-one POVM elements that give a fine grainingSgf. If ~ nave shown is that the PP incompatibility of the original
the POVM is to be an ODOP, we must havg,=1 or r,, three states is equivalent to the PP incompatibility of the
-0, ’ ' three pure statgs),), | #,), and|¢3), all of which lie in the

two-dimensional subspade.
Our conclusion is the following. The three statés), p-,
and p;, with S,#S;, are PP-POVM incompatible if and

The first(and easiegtcase is that of three rank-two den-
sity operatorsf)a. A POVM each of whose outcomes contra-

d.|cts at least on_e of trle parties must consist of positive mu'bnly if (1] x)=0 and the convex set generated|iy){ 1],
tiples of the projector$l ,. The only way three such POVM o) bol, and | ) b containsR/2. Similarly, the three

elements can sum tois if they are orthogonal pro_jecto(an states are PP-ODOP incompatible if and only if; | x)=0
ODOP. Thus we have that three rank-two density operatorgnd two of the statelg);), |¢,), and|¢3) are orthogonal.
in three dimensions are PP-POVM incompatible if and only The third case is that of two pure staté§=|z,bl>(z,bll and

if the vectors orthogonal to their supports are mutually or-~ ) ~
thogonal. Since the measurement that reveals incompatibilit§2=|#2){#2|, and one rank-two density operatpg. We

is an ODOP. there is no difference between PP-POVM and@ve not been able to determine the conditions for PP-
PP-ODOP f(;r this case. POVM compatibility in this case, so we restrict ourselves to

A straightforward way to generalize from two parties is to PP-ODOP compatibility. One projector in an ODOP that re-

say thatN>2 density operators afgairwise PP compatible veals the incompatibility of these states must bl
if paps#0 for all pairs @,8. Though PP-POVM or PP- =|e;)(e;|. The other two elements of the ODOPI,

ODOP clearly implies pairwise PP, the converse does noL|e (e, | andil,=|e,)(e,| must operate is;. The states
hold, as is plain from the three states they contradict must be orthogonal to them. Thig) must

o lie in the subspaf:e spanned Jgg) and|e,), and its projec-
p1:§(|e2><ez|+|e3><e3|), tion ontoSs, i.e.,_83_| 1), must be proportional tfe,). Simi-
larly, |,) must lie in the subspace spanned &y) and|e;),

1 and its projection ont®s;, i.e.,§3|¢//2>, must be proportional

132=§(|91><el| +|es)(es)), to |e;). Our conclusion is that the three states are PP-ODOP

incompatible if and only ;| S;],)=0.

~ 1
P3:§(|31><91| +ey)(e,)), (15) B. Three pure states

The final case is that of three pure states in three dimen-
which are pairwise PP compatible even though they are PPIONS. Again we have not been able to prove the conditions
incompatib|e when considered together_ for PP-POVM Compatlblllty, although we have numerical

The next case is that of one pure state= and evidence that.PP-POVM is equwglent PP-QDOP for this
. -~ P -~ Al - |¢1><lf1| case. We restrict our attention in this subsection to ODOPs.
two rank-two density operatorg, andps. If p, andp; have

. o L We can assume that the states are all different, since if two
the same support, we are back in the situation of pairwise Pg

g . o re the same, we are back in the two-party case. Moreover,
compatibility, and the three states are PP incompatible if an ince not being pairwise PP compatible implies not being PP

only if |41) is orthogonal to the common supportef and  compatible, the interesting case is where the three states are
p3. Thus assume that, and p; do not have the same sup- pairwise PP compatible, i.e., no pair is orthogonal. Thus we
port. Then|e,) and |e;) span a two-dimensional subspace address the following question: under what circumstances is
R; denote the projector ont& by R. Let|x) be the unique there an ODOP whose outcome will definitely contradict one
(up to a phasepure state that lies in the intersection®f  ©f three distinct, nonorthogonal pure states? The criterion we
and S;; |y) is orthogonal toR. In addition, let|¢,), «  deriveis interesting in its own right, independent of compat-
=2,3, be the uniquéup to a phasepure state inS, that is  Iility considerations. o _
orthogonal td x); |¢,) and|¢s) lie in R. .Let.|¢1>, | r2), anq|¢3) be the three distinct, normalized,
With this setup, we can turn to formulating the conditionsPairwise PP compatible, pure states, i.e.,
for the existence of a POVM that shows the density operators 0<|(| )| <1
are incompatible. Such a POVM must consist of the POVM w2 ’

elementsE,, defined above. Since only; has support out- 0<|( | ha)| <1,
sideR, the only way the POVM elements can sum tiso
have |x) be an eigenvector of; with eigenvalue 1, i.e., 0<[(¢slyn)|<1. (16)

= dr;=1. C tl d . .
lel'hﬁ |X>Ian f11= o(r;:équen Yig) an _|e1,2> arke The vectors|¢;), |#,), and|ys3) violate PP-ODOP if and
orthogonal vectors iR, andE; ;=ryJerz)(e; s is a rank-— only if there exist angle®,, 0<6,<=/2, k=1,2,3, such
one POVM element that acts only . The only remaining that

requirement is thaR=E, ,+ E,+E;. This means that we
are back to the question of constructing a POVM in two a=|(y|)|>=(sin,c0s6,)?, (17
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b=|( ;| 3)|?= (sin 6,c0865)?,

c=[(y3|¢h1)|?=(sin B3c0s6,)2.

PHYSICAL REVIEW 466, 062111 (2002

l1-a+b—c—(a+tb+c—1)>—4abc<2(1-c).
(24)

The third of these conditions is equivalent to

These conditions can be seen as follows. If the vectors

violate PP-ODOP, there exists an orthonormal
{11),]2),|3)} for the space spanned by, ), [,), and|ys)
such that

|4,) =€'X1(cosh,|2) + e'%1sin 6,3)), (18
|h,) = €'X2(cosb,|3) + €' #2sin 6, 1)),
|ih3) = €'X3(cosh|1) + e'?ssin 6;5]2)),

where 0<y,<2w, 0<¢<2w, 0<6,<w/2 (k=1,2,3).
Taking the inner products, we see that

(1| ghp) =€ 2" xDel b1sin 9, cosb,, (19)
(o] h3) =€ X3~ XDl P2sin 9, cosb,
(3| gpy) = €' 1™ Xl Y3sin g;c0s0),; .

The conditiong17) follow immediately.

Conversely, if the conditionfl7) are satisfied, then it is
clear that we can find angleg, and ¢, such that the inner
products(¢;|4;) are given by Eqs(19). Since the pairwise

basis

—(1-b+a-c)<\(a+tb+c—1)°—4abc. (25

This is implied by the condition +b+a—c>0, which is a
cyclic permutation of the inequalit§22). The full set of con-
ditions is therefore

l-a+b—c>0,

1-b+c—a>0,

l1-c+a—b>0,

(a+b+c—1)>>4abc. (26)
An equivalent form is
la—b|<1l-c, (27
at+b<l+c,
(a+b—1)2 . (a—b)2>1'
c (1-c¢)

inner products specify the vectors up to a unitary transformaFor fixedc, with 0<c<1, it is straightforward to show that

tion, there exists an orthonormal bagid),|2),|3)} such
that|¢1), |#,), and|i3) have the forn{18). A measurement

the ellipse in thea-b plane defined by the last inequality has
the following properties: it is centered at the poetb

in this basis shows that the vectors are PP-ODOP incompat=1/2, and its principal axes, of lengtfc/2 and+/(1—c)/2,

ible.
To find a simpler criterion, definex,=sirfg, for k
=1,2,3. The Eqgs(17) are then equivalent to

Xl(l_XZ) - a,
Xz(l_X3) = b,
X3(1—X;)=cC. (20

Solving these equations for, e.g,, we obtain

_l-atb-c*y(1-a+b—c)’~4b(1-a)(1-c)
X2= 2(1-¢)

_1l-atb—c*(atb+c—1)*-4abc
B 2(1—c) ’

(21)

the expressions fox; and x; follow from cyclic permuta-
tions of a, b, and c. Equations(17) are equivalent to the
existence of solutions that satisfy<(,<1 for k=1,2,3.

form angles of 45° with the andb axes. The ellipse has
exactly one point of intersection with treeaxis ata=1—c¢
and exactly one point of intersection with tieaxis atb
=1-c. The ellipse and the associated region of PP-ODOP
incompatibility are shown in Fig. 1.

From this it can be seen that the conditiof®) are
equivalent to the following, final set of conditions,

a+b+c<1,

(a+b+c—1)%2>4abc, (29
which are manifestly symmetric in the three squared inner
productsa, b, andc. To summarize, the three pure states are
PP-ODOP incompatible if and only if their pairwise inner
products satisfy the conditior(28).

VI. DISCUSSION

We have shown that the BFM criterion can be viewed as
one member in a hierarchy of five compatibility criteria for

The first equality in Eq(21) shows that, if there are two real guantum-state assignments. Parties whose state assignments
solutions, both have the same sign. The existence of a sol@€ BFM compatible can come to agreement about a joint
tion 0<x,<1 is thus equivalent to the following three con- State assignment without any party having to abandon a firm

ditions:
l1-a+b—c>0, (22

(a+b+c—1)?>4abc, (23

prior belief. By contrast, the four other criteria are based on
measurements. They all have distinct roles, and none is
equivalent to BFM.

The ES criterion can be applied to a situation where all
parties have shared their available information. They may
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FIG. 1. Three pure states in three dimensiduis), |#,), and APPENDIX: BAYESIAN PROBABILITIES
|3), are PP-ODOP incompatible if there exists a measurement AND THE DUTCH-BOOK ARGUMENT

described by three one-dimensional, orthogonal projectors such that

each outcome rules out at least one of the three states. The inco

patibility of the states depends only on the three squared inner progiellef In or, equwalgntly,_one’s degree Of. uncertalnty_ "?‘b"“t
ucts. For a fixed value of one squared inner product, the various alternatives in a sgi]. Bayesian probabilities

=|( 3 ¢1)|2, the plot shows the region of PP-ODOP incompatibil- receive an operational definition in decision theb‘ry],_ ie.,

ity in terms of the other two squared inner producis, the theory of how to decide in the face of uncertainty. The
= (| 2)|2 andb=|(yp,|3)|2. The ellipse is defined in Eq27). Ba_y¢5|an approach capturgs naturally the notion tha; prob-
The region ofa and b corresponding to PP-ODOP incompatible abilities represent one’s beliefs about a set of alternatives.
states, indicated by cross hatching, lies between the ellipse and the The simplest operational definition of Bayesian probabili-

axes. ties is in terms of betting behavior, which is decision theory
in a nutshell. To formulate this definition, |1ét be a bettor

still assign different states, but they agree on the nullspacélyho is willing to place a bet at odds of (1p)/p tolon the

The states assigned by the different parties all have the sans <o o oo of an eveii. These odds mean thatis willing

; 9 y P 6 pay in an amounpx—the stake—up front, with the prom-

support. ise of receiving an amount—the payoff—if E occurs and

The PP criterion rules out the possibility of a measure+,ing otherwise. To say thatconsiders this 4air bet is to

ment that all parties agree will, regardless of outcome, CONgay that she is willing to accept the bet at these odds no
tradict one of their state assignments. In other words, if thg,atter what the payoff: in particular, the payoff can be either
states assigned by the parties are not PP compatible, th%sitive or negative, meaning thatis willing to accept ei-
there exists a measurement that will definitely reveal disther side of the bet. This situation is usedi&fineprobabili-
agreement among the parties. The PP criterion is in somges: that A considers it fair to bet orE at odds of (1
ways the most interesting: it puts nontrivial constraints on—p)/p to 1 is the operational definition oi’s assigning
the set of density operators, and it depends on whether afirobability p to the occurrence of evelit
generalized measurements, described by POVMs, are al- The bookmaker who accepts the stakes and makes the
lowed or the permitted measurements are restricted tpayoffs is called thé®utch bookieIn a betting situation with
ODOPs. A, he has the freedom to set the payoffs for the various
The W criterion (which is equivalent toN') shows that outcomes at willA’s probability assignment to the outcomes
there is no strictly necessary constraint on a finite set obf a betting situation is calleshconsistenif it forces her to
density operators to be compatible. Any such set is compatccept bets on which she loses for every outcome that she
ible in the sense that there exists a measurement that allovedeems possible. A probability assignment is cattedsistent
the parties to come to agreement. In this sense, the BFNbr Dutch-book consistent, often called coherent in the litera-
criterion is neither sufficient nor necessary. ture) if it is not inconsistent in this sense. Remarkably, re-
It turns out that there are important differences betweermuiring consistent behavior implies thé&t must obey the
the classical and quantum cases. Whereas the BFM critericstandard probability rules in her probability assignmefits:
is stronger than the PP criterion quantummechanically, the=0, (ii) p(E)=1 if A believes thaE is certain to occur,
two are equivalent classically. Curiously, the criterigw (iii) p(E\/F)=p(E) +p(F) if E andF are mutually exclu-
which is the weakest quantummechanically, is the strongegtive, and (iv) p(E/\F)=p(E|F)p(F) (Bayes's rulg¢. A
classically, at least for fine-graind®DOP) measurements. probability assignment that violates any of these rules is in-
Finally, we identify strong Dutch-book consistency as a consistent in the above sense. This is the so-cdllatth-
necessary assumption in the derivation of the BFM criterionbook argument6,7], which we review below. We stress that
In particular, we show thalN parties who violate strong it does not invoke expectation values or averages over re-
Dutch-book consistency might come to agreement about peated bets; a bettor who violates the probability rules places
joint state assignment without abandoning any of their firmbets that, according to her own assessment of what is pos-
prior beliefs, even if their prior state assignments are nosible, will result in a sure loss in a single instance of the
BFM consistent. betting situation.

Bayesian probabilities are a measure of one’s degree of
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Consider first the situation, wher assigns probability
pe to E’s occurring and probabilityp_ g to E’s not occurring

PHYSICAL REVIEW 466, 062111 (2002

Suppose now tha believes thaE is certain to occur. For
the only outcome she deems possible, her gai@ isxg(1

(symbolized by—E). This means that she will accept a bet —pg) —X-gp-g. The Dutch bookie can arrange this gain to

on E with payoff xg (stakepgxg) and a bet on-E with
payoff x_g (stakep_gx-g). The net amouna receives is

Xe(1l—Ppg) —X-gP-g if E occurs,

| =Xepe+x_g(1—p-g) if E does notoccur.

(A1)

The Dutch bookie can always choosez=0, in which
caseA’s gains becom&=xg(1—pg) if E occurs andc=

have any value—in particular, any negative value by choos-
ing xg<0 andx_g>0—unlesspg=1 andp_g=0. The re-
sult is rule(ii): an outcome thought certain to occur must be
assigned probability tand an outcome thought certain not to
occur must be assigned probability. 0

Now consider two mutually exclusive events,and F,
and suppos@ assigns probabilitiepg , pg, andpg, ¢ to the
three outcomek, F, andE\/F (E or F). This means will
accept the following three bets: a bet Bnwith payoff xg

—Xgpe if E does not occur. To avoid all-negative gains re-(stakepgxg); a bet onF with payoff xg (stakepgxg); and a
quires that - pg andpg have the same sign, which implies bet onE\/F with payoff xg, r (Stakepg, eXg, ). The net

0<pe=<1, thus giving rule(i).

Xe(1—Pe) = XgPe+Xe r(1—Peyr) if
G={ —XgPet+Xg(1l—pp)+Xg r(1—peye) if

~XePe= XEPr— Xg\ FPEVF

We need not consider the possibility that b&kandF occur,

amountA receives is

E, but notF occurs,
F, but notE occurs, (A2)

if neither E nor F occurs.

Finally, we consider two event§ andF, which are not

since they are mutually exclusive. The Dutch bookie camecessarily exclusive. Suppose t#aassigns probability

choose payoffsg, Xg, andxg, ¢ that lead toG<<0 for all
three outcomes unless

1-pe =P 1-DPeyr
O=def —Pe 1-Pr 1-Peyr|=petpPr—Peyr.
—“Pe P T PeyF

(A3)

to the occurrence df, probability pg g to the occurrence of
E/\F (E andF), and conditional probabilitypgr to the
occurrence ofg, given thatF has occurred. This mears
will accept the following three bets: a bet énwith payoff

Xg (stakepgxg); a bet onE/\F with payoff xgAp (Stake
PerrXeng); and a conditional bet ot given thatF has
occurred, the payoff beingg e (stakepgexg). If F does
not occur, the conditional bet is called off, with the stake

The probability assignment is thus inconsistent unless rulesirmed. The net amoudt receives is

(iii) is satisfied, i.e.pg, r=Pe+ Pk

~XePr = XenrPEAF

G=1 Xe(1=Pr) = XeArPenr — Xg|rPelF if
Xe(1=pPe) +Xenr(1—Penr) + Xgr(1— Pgr)

The Dutch bookie can choose payoKs, Xgar, andXxgr
that lead toG<<0 for all three outcomes unless

—Pr —Penr 0
O=detl 1-Pr  —Penr  —PefF | =—PgrPet Penk-
1-pr 1-penr 1-PgF

(A5)

if F does not occur,
F, but notE occurs,
if both E andF occur.

(A4)

In our experience most physicists find it difficult first to
accept and then to embrace the notion that Bayesian prob-
abilities receive theionly operational significance from de-
cision theory, the simplest realization of which is the Dutch-
book argument in which probabilities adefinedin terms of
betting odds for fair bets. In the Dutch-book approach, the
structure of probability theory follows solely from the re-
quirement of consistent betting behavior. There is no other

Consistency thus requires that Bayes’s rule be satisfied, i.enput to the theory. It is worth emphasizing, for example, that

PeArF= Pg|FPE -

normalization is not a separate assumption, so trivial that it
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requires no justification. Rather it is a consequence of Dutch-

book consistency, specifically of rulg#) and (iii), i.e., 1 =(Peyr—Pe~ Pr)LPeXet PeXe = (1~ Peyr)Xe Fl.

= p(E\/~E)=p(E)+p(-E). (A7)
Surprisingly, consistency does not imply the converse of

rule (ii); i.e., we cannot conclude from consistency alone thafb‘

if pe=1, thenA believes thak is certain to occur. To see (1—pg)[ —XgPr—XeArPEAE]

this, return to Eq(A2), specializing topg=1 andp_g=0

similar result holds for the conditional bets of E@\4):

(the latter required by normalizatipn + (1= pgjr) PELXE(1— Pr) = XeArPenr — Xg/rPee]
0 if E occurs, T Penr[Xe(1—Pr) + Xenr(1=Penr) + Xgr(1—Pgr)]
G= . A6
—xg+X.g if E does notoccur. (A6) =(Penr— Pe[rPR) (1= Pr)Xe+ (1 - Pgjp) Xgr
We can get no further with consistency because the zero gain ~ PenrXenrl- (A8)
for outcomeE ensures thafA cannot be put in a situation  gince the expected gains are zero for probabilities that satisfy
where all gains are negative. the standard rules, it is impossible to have all-negative gains

To go further, we need the notion sfrong consistency (o in the case of strong consistency, for those outcomes the

[8,9] (or strong Dutch-book consistency, often called strongyetior deems possible, to have gains some of which are nega-
or strict coherence in the literatyreA’s probability assign- e with the rest being zejo

ment is said to be inconsistent in the strong sense if she can ypjike an ordinary bookie, who tries to balance wins and
be forced to accept bets on which, for outcomes she deemgsses and makes money off the fees charged for handling
possible, no gain is positive, but some gains are negativge pets, a Dutch bookie exploits inconsistencies in a bettor’s
(she never wins, but sometimes loses probability assign-  pehavior to win under all circumstancs never to lose, yet
ment is strongly consistent if it is not inconsistent in the sometimes win in the case of strong consistendy avoid
strong sense. Since in EG\6) the second gain can be made jconsistency, a bettor simply has to follow the rules of prob-
negative, strong consistency implies thamust believe that  gpjjity theory. The Dutch-book argument is not about a con-
E is certain to occur. Thus strong consistency requires thakst petween a bettor and a Dutch bookie. It is wholly about
p=1 be assigned only to events thought certain to oCCUfe internal consistency of the way a bettor translates beliefs
(andp=0 be assigned only to events thought certain not tqnto probability assignments. The Dutch bookie is simply the
occup. _ _ agent who exposes inconsistencies in the bettor’s behavior.
Dutch-book consistency requires a bettor to follow the | keeping with the notion that probabilities are subjec-
standard probability rules. That following the rules is suffi- e the Dutch-book argument does not dictate a bettor’s
cient to avoid inconsistency has been shown by Keni®hy  propability assignments, which are based on whatever the
Kemeny reduces the most general betting situation to compettor believes or knows about the situation at hand. The
binations of conditional bets, as in EGA), and bets on  gnly exception occurs in the case where the bettor is certain.
exclusive alternatives, as in EGp2), and he then shows that Then Dutch-book consistency requires that all her probabili-
the expected gain for each of these kinds of bets is zero fo§es pe 0 or 1. For guantum mechanics, this means that when
probabilities that satisfy the standard rules. The expecteq pettor is certain about the outcome of some ODOP, she
gain for bets on the exclusive alternatives in E&2) is must assign the pure state corresponding to the certain out-
come. Only if the bettor is strongly consistent, however, can
PelXe(1=Pe) = XePr+Xey r(1 = Peyr)] we conclude that a pure state assignment means that the bet-

+ Prl = XePe+ Xp (1= Pr) +Xe r (1= Peyr) ] ter is certain about the outcome of an ODOP that includes the
pure state among its outcomes, and this conclusion is crucial
+ (1= peyr)[ —XePe— XFPF—XeyFPeyF] for all the compatibility criteria developed in this paper.
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