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Conditions for compatibility of quantum-state assignments
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SupposeN parties describe the state of a quantum system byN possibly different density operators. TheseN
state assignments represent the beliefs of the parties about the system. We examine conditions for determining
whether theN state assignments are compatible. We distinguish two kinds of procedures for assessing com-
patibility, the first based on the compatibility of theprior beliefs on which theN state assignments are based
and the second based on the compatibility ofpredictive measurement probabilities they define. The first
procedure leads to a compatibility criterion proposed by Brun, Finkelstein, and Mermin@BFM, Phys. Rev. A
65, 032315~2002!#. The second procedure leads to a hierarchy of measurement-based compatibility criteria
which is fundamentally different from the corresponding classical situation. Quantum mechanically none of the
measurement-based compatibility criteria is equivalent to the BFM criterion.
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I. INTRODUCTION

There are good reasons@1# to view a quantum state not a
representing a true state of affairs, but as a state of kno
edge or, more provocatively, astate of belief. This view cor-
responds to the Bayesian approach to probability theory,
cording to which probabilities are an agent’s necessa
subjectivedegrees of beliefabout a set of alternatives. Dif
ferent scientists can have different beliefs about the sa
physical system, resulting in different quantum-state ass
ments. This can arise for a variety of reasons. For insta
one of the scientists might have no access or only pa
access to another’s measurement results. In general,N scien-
tists, orparties, can assignN different states, pure or mixed
to a given system.

In this paper, we are not concerned with how to justify
particular state assignment. Instead, we start from a given
of N states, representing the beliefs ofN parties, and ask for
conditions for determining that theN quantum states ar
compatible~or, conversely, that they are contradictory!. The
conditions we derive can be viewed as criteria for the mut
compatibility of N quantum-state assignments.

There are two distinct procedures for assessing the c
patibility of quantum states~or, conversely, for uncovering
contradictions among the states!. The first procedure exam
ines the firm beliefs on which the parties base their s
assignments and asks whether these beliefs are compa
This procedure leads to the compatibility criterion propos
by Brun, Finkelstein, and Mermin~BFM! @2#. The second
procedure examines measurement probabilities predicte
the parties’ state assignments and asks whether these
abilities are compatible. We show that this second proced
leads to a hierarchy of measurement-based compatibility
teria. The two-party version of one of our criteria is equiv
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lent to a compatibility criterion proposed by Peierls@3,4#;
thus this criterion provides anN-party generalization of
Peierls’s criterion, which we callpost-Peierls~PP! compat-
ibility.

The BFM compatibility criterion is based on the compa
ibility of the beliefs of theN parties. We show that the BFM
criterion is not equivalent to any of the measurement-ba
compatibility criteria. This means that there is generally
way to use measurements to confirm the compatibility
states that are BFM compatible or to reveal the incompati
ity of states that are BFM incompatible.

The compatibility criteria we derive can be specialized
classical probabilities by considering density operators al
which are diagonal in a common eigenbasis—i.e., comm
ing density operators—and by restricting the allowed m
surement operators to be diagonal in the same basis. T
are interesting differences between the hierarchy
measurement-based criteria in the classical and quan
cases. Moreover, the classical version of BFM compatibi
is equivalent to the classical version of PP compatibility,
contrast to the quantum case.

The paper is organized as follows. In Sec. II, we revie
briefly the concepts of Dutch-book consistency and stro
Dutch-book consistency, which provide the foundations
Bayesian probability theory, and define the notions of co
tradictory beliefs and contradictory probability assignmen
~See the Appendix for an explanation of the term ‘‘Dut
book.’’! In Sec. III, we derive the BFM compatibility crite
rion for the quantum states ofN parties from the requiremen
that there be a state assignment that does not contradic
belief of any party. Section IV introduces our hierarchy
measurement-based compatibility criteria and highlights
surprising differences between the classical and quan
cases. We consider how the measurement-based compa
ity criteria change when one generalizes from measurem
described by one-dimensional orthogonal projectors to p
tive operator valued measurements~POVMs!. Section V fo-
cuses on PP compatibility, the only one of the compatibil
criteria for which—as far as we can tell—it is not possible
©2002 The American Physical Society11-1
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formulate a simple universal mathematical condition ap
cable to all sets of quantum states in all Hilbert-space dim
sions; we consider nontrivial examples of PP compatibi
for three states of a three-dimensional system. Section
closes the paper with a summary and discussion.

II. CONSISTENT PROBABILITIES
AND CONTRADICTORY BELIEFS

The notion of consistent beliefs has its roots in the
proach to Bayesian or subjective probability via consist
betting behavior. Bayesian probabilities quantify one’s d
gree of belief in the various alternatives from among a se
possibilities@5#. Bayesian probabilities are given an oper
tional definition in terms of betting behavior. Suppose thaA
is willing to place a bet at odds of (12p)/p to 1 on the
occurrence of some event. This means thatA is willing to
pay in astake px, with the promise of receiving apayoff xif
the event occurs and nothing otherwise. ThatA considers this
to be afair bet—she is willing to accept the bet at these od
no matter what the payoff, positive or negative—defines pto
be the probability thatA assigns to the event.

Suppose now thatA makes probability assignments to
set of events. We say thatA’s probability assignments ar
consistent~or Dutch-book consistent! if there exists no set o
bets which she regards as fair, but in which she loses
every outcome that she believes to be possible. Notice
this is a purely internal consistency criterion; it refers only
A’s subjective beliefs.

The so-called Dutch-book argument@6,7# shows that con-
sistency alone implies thatA’s probability assignment mus
satisfy the usual probability axioms:~i! p>0, ~ii ! p(E)51 if
A believes that eventE is certain to occur,~iii ! p(E~F)
5p(E)1p(F) if E and F are mutually exclusive, and~iv!
p(E`F)5p(EuF)p(F) ~Bayes’s rule!. In the Appendix we
first review the formulation of Bayesian probabilities
terms of betting behavior and then give the Dutch-book d
vation of the standard probability rules.

Consistency enforces the probability axioms, but it do
not dictate particular probability assignments, leaving th
to whatever wayA chooses to translate what she knows
believes into probabilities. The only exception is in the ca
of certainty, where consistency requires that all probabilit
be 0 or 1. Indeed, a consequence of the probab
axioms—it also follows directly from the Dutch-boo
argument—is thatp50 for any outcome thatA believes to
be impossible. We call the belief that an outcome is imp
sible afirm belief.

Surprisingly, consistency does not imply thatp.0 for
any outcome thatA believes to be possible. In other words,
A assigns probability zero to an outcome, one cannot in
from consistency alone thatA believes the event to be im
possible. To make this inference, we need a slightly stron
version of consistency: we say thatA’s probability assign-
ment isstrongly~Dutch-book! consistent@8,9# if there exists
no bet that she regards as fair in which there is at least
losing outcome but no winning outcomes among those o
comes she deems possible. IfA’s probability assignment is
strongly consistent, then an outcome has zero probabilit
06211
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and only if she believes it to be impossible~see, the Appen-
dix!.

Dutch-book consistency has to do with the beliefs a
probability assignments of a single party. Our concern in t
paper is compatibility among many parties. We say that
beliefs ofN parties about a set of alternatives arecompatible
if there is at least one alternative that all parties judge to
possible. Conversely, the beliefs ofN parties arecontradic-
tory ~or incompatible! if they are not compatible in the sens
just described, i.e., if every alternative is deemed imposs
by at least one party. Examining the alternatives to determ
which applies is thus guaranteed to contradict at least
party. Contradictory beliefs cannot be reconciled unless
least one party abandons a firm prior belief.

It is easy to imagine situations that give rise to compati
or to contradictory beliefs. Take a die as an example. S
poseA has seen the North face of the die, which shows
dots. She, therefore, believes that it is impossible for the
face of the die to show either 3 or 4 dots, but that it
possible for it to show 1, 2, 5, or 6 dots. SupposeB has seen
the East face of the die, which shows 1 dot. He believes
the top face can show 2, 3, 4, or 5 dots, but not 1 or 6. Th
beliefs are compatible since both parties believe that the
face can show 2 or 5 dots.

Now suppose thatC asserts that the South face of the d
shows 5 dots. He believes that it is impossible for the
face of the die to show 2 or 5 dots, thus contradicting
beliefs ofA andB. This situation could arise ifC’s assertion
was based on a mistaken observation from across the ro
the beliefs of the three parties could be reconciled byC’s
observing the South face again, finding that it shows 3 d
and thereby giving up his firm belief that the top face cou
not show 2 or 5 dots. Another possibility is that the die w
tossed after the initial observations byA andB; the beliefs of
the three parties could be reconciled ifA andB realized that
the die had been tossed after their observations, which wo
cause them to abandon their prior firm beliefs.

Under the assumption of strong consistency, where
firm belief that an alternative is impossible is equivalent
assigning zero probability, the conditions for contradicto
and compatible beliefs can be reexpressed in terms of p
abilities. The beliefs~or probability assignments! of N parties
are compatible if and only if there is at least one alternat
to which all parties assign nonzero probability, i.e., the
exists a probability assignment that does not contradict
firm beliefs of any of the parties. This is the classical vers
of BFM compatibility. The beliefs~or probability assign-
ments! of theN parties are contradictory~or incompatible! if
and only if every alternative is assigned zero probability
at least one party.

For ordinary consistency, the existence of one or m
alternatives to which all parties assign nonzero probability
sufficient for compatible beliefs, but it is not necessary, b
cause a party can assign zero probability to alternatives
party believes are possible. For ordinary consistency, pr
abilities do not carry enough information about firm belie
to allow compatibility to be determined from the partie
probability assignments. Since we are interested in the c
patibility of density operators, we need strong consistency
1-2
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that probabilities for measurement outcomes generated
the density operators allow one to determine the firm bel
of the parties. Therefore, we assume strong consiste
throughout the remainder of the paper, except where exp
itly noted.

There is a another stronger kind of compatibility for cla
sical probabilities. Suppose, for example, that in the cas
the die,A andB come together, combine their observation
and, thereafter, agree that the top face can show 2 or 5 d
but not 1, 3, 4, or 6 dots. They generally would not assign
same probabilities to 2 and 5 dots, but they do have the s
firm beliefs, a situation we capture by saying that their n
beliefs are in concord. Generally, we say that the beliefs~or
probability assignments! of N parties areconcordantif their
firm beliefs coincide, i.e., if they assign zero probability
the same alternatives. Concordant probability assignm
have the same support. It is not reasonable to demand
parties have concordant probabilities, but they arise natur
when parties with compatible beliefs share those beliefs.

With this background, we turn now to BFM compatibilit
for quantum state assignments.

III. BFM COMPATIBILITY

The system under consideration is described by
D-dimensional Hilbert spaceH. We label theN parties by an
index a5A,B,C, . . . ; their state assignments are denot
by r̂a . For a projective measurement in an arbitrary orth
normal basis$uk&,k51, . . . ,D%, i.e., a measurement de
scribed byorthogonal one-dimensional projectors@we call
such a measurement an~ODOP! for short#, the probability
assigned by partya to the outcomek is given by pk

(a)

5tr( r̂aP̂k)5^kur̂auk&, whereP̂k5uk&^ku. The case of clas-
sical probabilities is included automatically as the situat
in which all the r̂a are diagonal in the same orthonorm
basis$uk&%, and the only allowed measurement is a measu
ment in this basis.

Under the assumption of strong consistency, each p
assigns zero probability to precisely those outcomes he
lieves cannot occur; i.e., for eacha, ^cur̂auc&50 if and
only if party a believes that the outcome corresponding
uc& is impossible in any measurement containinguc&. There-
fore, each party assigns a density operatorr̂a whose null
subspaceN( r̂a) consists of all those vectors correspondi
to outcomes he believes cannot occur. The support of a
sity operator is the orthocomplement of the null subspa
All vectors not in the null subspace have a component in
support and thus have nonzero probability, so the party
lieves that the outcomes corresponding to all such vec
can occur.

A density operatorr̂ contradicts partya ’s firm beliefs if

^cur̂uc&.0 for someuc& that a believes to be impossible
Thus r̂ does not contradicta ’s beliefs if and only
if N( r̂a)#N( r̂). What we want to know is the cir
cumstances under which there is a density operator
does not contradict the firm beliefs of any of the parti
i.e., a density operatorr̂ such thatN( r̂a)#N( r̂) for all a.
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Since N( r̂) is a subspace, it follows thatM
[span„N( r̂A),N( r̂B), . . . …#N( r̂),H. Such ar̂ exists if
and only ifM is not the entirety ofH, which is equivalent to
saying that the orthocomplement ofM contains at least one
nonzero vector. Since the orthocomplement ofM is the in-

tersection of the supports of ther̂a , we have the result tha

there exists ar̂ that does not contradict any party’s prio
belief if and only if the intersection of the supports of all th

r̂a contains at least one nonzero vector. This is the criter
for BFM compatibilityof state assignments. In the classic
case the BFM criterion reduces to the condition that at le
one of the common eigenvectors has nonzero eigenvalue
all parties.

What we have shown is that BFM compatibility is equiv
lent to the existence of a density operator that does not c
tradict the firm beliefs of any party. Just as in the classi
case, the assumption of strong consistency, as oppose
ordinary Dutch-book consistency, is essential for this conc
sion. The reason is thatany set of consistent~but not neces-
sarily strongly consistent! state assignments can arise from
set of noncontradictory beliefs. Letr̂A ,r̂B , . . . beN arbi-
trary states. These are consistent state assignments forN par-
ties all of whom believe thatany outcome is possible, sinc
consistency alone allows a party to believe that a vecto
his null subspace corresponds to a possible outcome. O
ously, there is a posterior stater̂ that does not contradict th
firm beliefs of any party; indeed, any posterior stater̂ will
do. Merely consistent state assignments do not reveal eno
about the parties’ prior beliefs to rule out the existence o
noncontradictory posterior state assignment.

Suppose parties with BFM compatible state assignme
share their beliefs, each adopting the firm beliefs of all
others. BFM compatibility guarantees that there are den
operators that are consistent with the firm beliefs of all
parties. The parties will generally not end up assigning
same density operator, but they will assign density opera
that incorporate the same firm beliefs and thus have the s
support. We say such density operators areconcordantin the
same sense as for probability assignments.

Our derivation of the BFM criterion is different from th
one given by Brun, Finkelstein, and Mermin@2#. They show
that their criterion follows if one assumes that each of
state assignmentsr̂A ,r̂B , . . . ‘‘incorporates some subset o
a valid body of currently relevant information about the sy
tem, all of which could, in principle, be known by a particu
larly well-informed Zeno.’’ Their formulation suggests tha
each of theN-state assignments should be consistent w
some real state of affairs captured in Zeno’s stater̂. This
impression is reinforced shortly, thereafter, in their pap
where one of the explicit assumptions leading to the BF
criterion is that ‘‘if anybody describes a system with a de
sity matrix r̂, then nobody can find~the system! to be in a
pure state in the null space ofr̂. ’’ In contrast, our derivation
is couched wholly in terms of the beliefs of the parties a
does not appeal to a real state of affairs. It is, therefo
preferable in a Bayesian approach to quantum mechanic
1-3
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IV. MEASUREMENT-BASED COMPATIBILITY

A. Compatibility conditions

We turn our attention now to compatibility condition
based on the compatibility of measurement probabilities.
focus first on ODOP measurements, i.e., those describe
complete sets of one-dimensional orthogonal projec

$P̂k ,k51, . . . ,D%, the probability partya assigns to out-

comek being pk
(a)5tr( r̂aP̂k)5^kur̂auk&. Most importantly,

we assume that all parties agree on this description of
measurement. In Sec. IV C below we generalize the com
ibility conditions to the context of measurements describ
by POVMs.

Our hierarchy of measurement-based compatibility con
tions can be stated very simply as whether the parties’ m
surement probabilities are compatible or concordant
whether this holds for all measurements or for at least
measurement. In mathematical language the compatib
conditions are the following:

;$P̂ j% ;k „~;a:pk
(a).0!~~;a:pk

(a)50!… ~ES!, ~1!

;$P̂ j% 'k ;a:pk
(a).0 ~PP!, ~2!

'$P̂ j% ;k„~;a:pk
(a).0!~~;a:pk

(a)50!… ~W!, ~3!

'$P̂ j% 'k ;a:pk
(a).0 ~W8!. ~4!

Condition~1!, called ES for ‘‘equal support,’’ says that fo

all measurements and any outcomeP̂k , either all parties

assign nonzero probability toP̂k , or they all assign zero

probability to P̂k . In other words, the parties’ probabilitie
for all measurements are concordant. It is trivial to see t
ES is equivalent to all the density operatorsr̂a having the
same support, i.e., being concordant as defined in the pre
ing section. As a consequence, ES implies BFM. ES is a v
strong compatibility condition, which is violated in man
practical situations, but which arises naturally when par
with BFM compatible beliefs combine their beliefs.

Unlike ES and BFM, there are fundamental differenc
between the classical and quantum versions of the remai
three conditions. Condition~2!, called PP for ‘‘post-Peierls,’’
is implied by ES. It says that for all measurements, there i
least one outcome to which all parties assign nonzero p
ability; i.e., all measurements have compatible probabilit
It is often useful to think in terms of the conditions for vio
lating PP compatibility: PP is violated if there exists a me
surement such that at least one party assigns zero proba
to every outcome; for this measurement the measurem
probabilities are contradictory, the outcome, whatever it
guaranteed to contradict one or more parties. The two-p
version of PP is the original compatibility condition o
Peierls@3,4#; it is equivalent tor̂Ar̂BÞ0. As far as we can
tell, the conditions for multiparty PP compatibility cannot b
put in a simple universal mathematical form, unlike the oth
compatibility criteria. In Sec. V, we consider nontrivial e
amples of three-party PP compatibility in three dimension
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Condition ~3!, calledW for ‘‘weak,’’ says that there is at

least one measurement such that for any outcomeP̂k , either

all parties assign nonzero probability toP̂k , or they all as-

sign probability zero toP̂k . In other words, there exists
measurement whose measurement probabilities are con
dant.

Finally, condition~4!, calledW8, is implied byW. It states
that there is at least one measurement and at least one
come for that measurement to which all parties assign n
zero probability; i.e., there exists a measurement whose m
surement probabilities are compatible.

Summarizing the implications we have identified up t
now, we have

ES⇒BFM, ES⇒PP, W⇒W8. ~5!

The latter two relations involve only the logical structure
the compatibility conditions; all the relations hold for bo
the classical and quantum cases.

In the case of classical probabilities, there is only o
allowed measurement—a measurement in the basis tha
agonalizes all ther̂a—so it is clear that ES is equivalent t
W and PP is equivalent toW8. It is equally clear that PP and
W8 are equivalent to BFM. Summarizing the implications f
the classical case, we have

W⇔ES ⇒BFM⇔PP⇔W8 ~Classical!. ~6!

This chain reflects the two kinds of compatibility for class
cal probabilities:W and ES correspond to the parties havi
concordant probabilities, whereas BFM, PP, andW8 corre-
spond to the parties having compatible probabilities.

B. Relations among quantum compatibility conditions

In the quantum case, the relations~6! change in an inter-
esting way to

ES⇒BFM⇒PP⇒W8⇔W ~Quantum!. ~7!

Here, unlike the classical case, BFM is stronger than PP,
PP is stronger thanW8, but the most striking difference is
that W, the strongest condition classically, is the weak
condition quantum mechanically. As a matter of fact,W is
satisfied byany set of state assignments, as we show bel
The different structure of quantum implications in Eq.~7! is
due to the far greater freedom quantum mechanics allows
measurements.

We now prove the relations~7!. The first implication,
ES⇒BFM, is trivial: equal support implies that the suppor
have at least one state in common. It is also clear that
reverse implication does not hold.

To see that BFM implies PP, consider an arbitrary m

surement$P̂ j5u j &^ j u%. BFM compatibility is equivalent to
saying thatM[span„N( r̂A),N( r̂B), . . . … is not the entire
Hilbert-spaceH. Since the vectors$u j &% are an orthonorma
basis, at least one outcomeuk& lies outsideM and thus has a
nonzero projection onto the orthocomplement ofM, which
is the intersection of the supports of ther̂a . For this out-
1-4
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come we havêkur̂auk&5tr( r̂aP̂k).0 for all a. To see that
PP does not imply BFM, consider two nonorthogonal pu
states. There is no one-shot measurement that can disting
the two states reliably, so the two states satisfy PP, but s
the intersection of the supports of the two states conta
only the zero vector, the two states violate BFM.

A simple example shows thatW8 does not imply PP: two
orthogonal pure states violate PP, but they satisfyW8, as can
be seen by considering a measurement in a basis tha
cludes a vector that lies in the two-dimensional subsp
spanned by the two states, but is not equal to either of th

To show thatW8 is equivalent toW and is implied by PP,
we prove the stronger result thatany set of N states
r̂A ,r̂B , . . . satisfiesW, which shows thatW follows from
any of the other conditions. We construct a measurem

$P̂ j% each of whose projectors has nonzero overlap with
supports of all ther̂a . Let ufa& be an eigenvector ofr̂a with
nonzero eigenvaluela . We need to find an orthonormal ba
sis $uk&% such that 0,u^kufa&u2 for all k and a, since this

implies 0,lau^kufa&u2<^kur̂auk&5tr(P̂kr̂a) for all k and

a, whereP̂k5uk&^ku. LettingSbe the set of all state vector
that are orthogonal to at least oneufa&, we see that what we
need to do is to construct an orthonormal basis none
whose basis vectors is inS.

To do the construction, we begin by defining the distan
between two state vectors:

d~ uc&,ux&)[cos21u^cux&u, ~8!

which allows us to define the distance between an arbit
state vectoruc& and the setS by

d~ uc&,S)[ min
ux&PS

d~ uc&,ux&). ~9!

A state vectoruc& is in S if and only if d(uc&,S)50. Our
construction relies on the fact that, arbitrarily close to a
vector ux&PS, there exists a vectoruc& that is a finite dis-
tance away fromS; i.e., anye-ball aroundux&PS contains a
vector uc& such thatd(uc&,S).0.

Now choose an orthonormal basis$uk&% such that
d(u1&,S).0. Assume thatd(uk&,S)50 for at least one of
the basis vectors—otherwise we have the desired basis—
let um& be the first such basis vector in the list, i.e
d(um&,S)50 andd(uk&,S).0 for k,m. We now show that
the basis can be rotated in such a way thatd(uk&,S).0 for
k<m. Define

e5
1

2
min
k,m

d~ uk&,S). ~10!

Let um8& be a state such thatd(um8&,um&)[d,e and
d(um8&,S)5d.0. Then there exists a unitary operatorÛ

such thatum8&5Ûum& andd(uk&,Ûuk&),e for all k,m. To
see this, let um8&5um&eimcosd1um'&sind, with ^m'um&
50. We can use
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Û[um8&^mu1um'8 &^m'u112um&^mu2um'&^m'u,

whereum'8 &[2um&eimsind1um'&cosd, for which it follows

that cosd(uk&,Ûuk&)5u^kuÛuk&u5u12u^kum'&u2(12cosd)u>cosd.
Now defineuk8&5Ûuk& for all k. Then d(uk8&,S).e for k
,m, and, therefore,d(uk8&,S).0 for k<m. By repeating
this procedure, one arrives at a basis with the property
each basis state is a finite distance fromS, as required.

C. Generalized measurements

In this section we investigate how the compatibility crit
ria change if generalized measurements, described
POVMs, are included in the allowed measurements.
POVM is a collection of positive operators$Êb% satisfying
(bÊb51̂; the probability assigned by partya to outcomeb

is pb
(a)5tr( r̂aÊb).

It is clear that BFM is not affected by generalizing
POVMs, since it is phrased in terms of firm beliefs, not
terms of measurements. For the measurement-based cri
it is logically possible that states that areW or W8 incompat-
ible relative to ODOPs can be made compatible by includ
additional measurements; indeed, the uninformative m
surement with a single outcome does make all statesW and
W8 compatible. Since all states are alreadyW andW8 com-
patible under ODOPs, however, allowing POVMs makes
difference toW andW8. It is also possible that states that a
ES or PP compatible relative to ODOPs can be made inc
patible by including additional measurements. It is cle
however, that density operators with the same support sa
ES compatibility with POVMs included among the measu
ments; thus allowing POVMs makes no difference to
compatibility.

The only compatibility criterion that is affected by gene
alizing to POVMs is PP. We distinguish the two kinds
post-Peierls compatibility by using PP-ODOP to denote co
patibility relative to ODOPs and PP-POVM to denote co
patibility relative to POVMs. Clearly PP-POVM implies PP
ODOP. To investigate PP-POVM, it is easiest to focus on
conditions for violating PP-POVM: PP-POVM is violated
there exists a measurement, described by a POVM$Êb%,
such that at least one party assigns zero probability to ev
outcomeb.

Given any POVM, we can write the POVM elementsÊb
in terms of their eigendecompositions, thus obtaining a fin
grained POVM consisting of rank-one operators. If a POV

$Êb% shows that a set of density operators violates P
POVM compatibility, then the underlying rank-one POVM
reveals the same incompatibility. Thus, in investigating P
POVM, we can restrict attention to rank-one POVMs. Mor
over, since a rank-one POVM can be extended to an OD
in a higher-dimensional Hilbert space~the Neumark exten-
sion! @10#, the question of the PP-POVM compatibility of
set of states is equivalent to the question of whether
states are PP-ODOP compatible when they are embedde
a Hilbert space of arbitrary dimension.
1-5
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The condition for two-party PP-ODOP compatibilit
r̂Ar̂BÞ0, is independent of the dimension in which the tw
states are embedded, so it is also equivalent to PP-PO
compatibility @4#. The case of two nonorthogonal pure stat
which are PP-POVM compatible, but not BFM compatib
establishes that PP-POVM is not equivalent to BFM.

States of a two-state system~qubit! illustrate the differ-
ence between PP relative to ODOPs and POVMs. Since
sity operators of full rank give nonzero probabilities for a
measurement outcomes, they can be added to or rem
from a set of density operators without affecting the PP co
patibility of the other density operators in the set. For a qu
this means that we only need to consider the situation
which the parties assign pure statesr̂a5 1

2 (1̂1na•ŝ), a
51, . . . ,N, wherena is the~unit! Bloch vector for partya ’s
pure state. Two pure states are PP compatible, relativ
either ODOPs or POVMs, if and only if they are not o
thogonal. Three or more distinct pure states in two dim
sions are PP-ODOP compatible if and only if no two of t
states are orthogonal. PP-POVM compatibility is more co
plicated. The states are incompatible if and only if there i
POVM such that each outcome has zero probability for
least one of the states. Such a POVM must consist of ra
one positive operators, each of which is orthogonal to one
the pure statesr̂a , i.e., Êa5qa(1̂2na•ŝ), where 0<qa

<1/2. Requiring the POVM elements to sum to 1ˆ implies
that theqa’s are a normalized probability distribution an
that the Bloch vectors average to zero:

05(
a

qana . ~11!

The result is that a set of pure states in two dimension
PP-POVM compatible if and only if the convex set genera
by the Bloch vectors does not contain zero or, equivalen
the convex set generated by the statesr̂a does not contain
the maximally mixed state 1ˆ /2. These results for a two-stat
system establish that PP-ODOP is not equivalent to
POVM.

We are left with the following chain of implications:

ES⇒BFM⇒PP-POVM⇒PP-ODOP⇒W8⇔W ~Quantum!.
~12!

It is interesting to compare these relations to what happen
the classical relations~6! when one generalizes to the coars
grained measurements that are POVMs diagonal in the c
mon eigenbasis of the density operators. ES still correspo
to concordant probabilities, BFM and PP still correspond
compatible probabilities, but the uninformative measurem
makes all probabilities compatible underW and W8. Thus
we have the following classical implications when we allo
coarse-grained measurements:

ES⇒BFM⇔PP⇒W8⇔W ~Classical!. ~13!

When we generalize to coarse-grained classical meas
ments,W migrates from the strongest to the weakest comp
ibility condition.
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V. THREE-PARTY POST-PEIERLS COMPATIBILITY
IN THREE DIMENSIONS

PP seems to be the only one of our compatibility crite
for which there is no simple, general mathematical condit
for deciding whether a given set of density operators is co
patible. For two parties, however, it is easy to determ
whether the two density operators are PP compatible: M
min @4# showed that PP is satisfied if and only if the sta
are not orthogonal, i.e., tr(r̂Ar̂B)Þ0 or, equivalently,r̂Ar̂B
Þ0. This condition follows from the fact that two densit
operators are not PP compatible if and only if there is
measurement that can distinguish them reliably, and ther
such a measurement if and only if the two density opera
are orthogonal. This two-party PP compatibility condition
the same for ODOPs and POVMs, as can be shown dire
@4# or from the fact that as an ODOP condition, it is ind
pendent of the dimension of the Hilbert space in which
two states are embedded. Notice that if any two parties
sign PP incompatible states, then the states of all parties
PP-ODOP and PP-POVM incompatible.

In three or more Hilbert-space dimensions, the gene
condition for N states to be PP compatible, relative
ODOPs or to POVMs, is highly nontrivial. We report resu
in this section for the first interesting situation, three part
assigning states in three Hilbert-space dimensions. As n
above, full-rank density operators are irrelevant to questi
of PP compatibility, so we can assume that all the den
operators are either rank one or rank two. There are f
cases to consider, depending on how many of the states
pure. We consider the three cases where one or more o
states is mixed in Sec. V A and deal with the case of th
pure states in Sec. V B.

A. Mixed and pure states

Throughout this section, we investigate the conditions
constructing POVMs~or ODOPs! that show that the density
operators are PP incompatible. Such a POVM~or ODOP!
must be made up of the operators that give zero probab
for each density operator in turn. In doing this constructio
we adopt the following conventions. Ifr̂a is a rank-two den-
sity operator, we letSa denote the two-dimensional subspa
that is the support ofr̂a , with Ŝa being the projector onto

Sa , and we letP̂a5uea&^eau be the one-dimensional pro
jection operator that projects orthogonal toSa . A POVM
element that has zero probability givenr̂a must have the

form Êa5r aP̂a , 0<r a<1; if the POVM is to be an ODOP
we needr a51 or r a50. If r̂a5uca&^cau is a rank-one
density operator, we let

Êa5r a,1P̂a,11r a,2P̂a,25r a,1uea,1&^ea,1u1r a,2uea,2&^ea,2u,

0<r a,1 ,r a,2<1, ~14!

denote the general POVM element orthogonal tor̂a ; its
eigenvectorsuea,1& and uea,2& are orthogonal touca&. A
POVM element that has zero probability givenr̂a must have
1-6
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CONDITIONS FOR COMPATIBILITY OF QUANTUM- . . . PHYSICAL REVIEW A 66, 062111 ~2002!
the form ~14!. The operatorsÊa, j5r a, jP̂a, j , j 51,2, are
rank-one POVM elements that give a fine graining ofÊa . If
the POVM is to be an ODOP, we must haver a, j51 or r a, j
50.

The first ~and easiest! case is that of three rank-two den
sity operatorsr̂a . A POVM each of whose outcomes contr
dicts at least one of the parties must consist of positive m

tiples of the projectorsP̂a . The only way three such POVM
elements can sum to 1ˆ is if they are orthogonal projectors~an
ODOP!. Thus we have that three rank-two density operat
in three dimensions are PP-POVM incompatible if and o
if the vectors orthogonal to their supports are mutually
thogonal. Since the measurement that reveals incompatib
is an ODOP, there is no difference between PP-POVM
PP-ODOP for this case.

A straightforward way to generalize from two parties is
say thatN.2 density operators arepairwise PP compatible

if r̂ar̂bÞ0 for all pairs a,b. Though PP-POVM or PP
ODOP clearly implies pairwise PP, the converse does
hold, as is plain from the three states

r̂15
1

2
~ ue2&^e2u1ue3&^e3u!,

r̂25
1

2
~ ue1&^e1u1ue3&^e3u!,

r̂35
1

2
~ ue1&^e1u1ue2&^e2u!, ~15!

which are pairwise PP compatible even though they are
incompatible when considered together.

The next case is that of one pure stater̂15uc1&^c1u and
two rank-two density operators,r̂2 andr̂3. If r̂2 andr̂3 have
the same support, we are back in the situation of pairwise
compatibility, and the three states are PP incompatible if
only if uc1& is orthogonal to the common support ofr̂2 and
r̂3. Thus assume thatr̂2 and r̂3 do not have the same sup
port. Thenue2& and ue3& span a two-dimensional subspa
R; denote the projector ontoR by R̂. Let ux& be the unique
~up to a phase! pure state that lies in the intersection ofS2
and S3 ; ux& is orthogonal toR. In addition, let ufa&, a
52,3, be the unique~up to a phase! pure state inSa that is
orthogonal toux&; uf2& and uf3& lie in R.

With this setup, we can turn to formulating the conditio
for the existence of a POVM that shows the density opera
are incompatible. Such a POVM must consist of the POV
elementsÊa defined above. Since onlyÊ1 has support out-
sideR, the only way the POVM elements can sum to 1ˆ is to
have ux& be an eigenvector ofÊ1 with eigenvalue 1, i.e.,
ue1,1&5ux& and r 1,151. Consequently,uc1& and ue1,2& are
orthogonal vectors inR, andÊ1,25r 1,2ue1,2&^e1,2u is a rank-
one POVM element that acts only inR. The only remaining
requirement is thatR̂5Ê1,21Ê21Ê3. This means that we
are back to the question of constructing a POVM in tw
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dimensions, here the two-dimensional subspaceR. What we
have shown is that the PP incompatibility of the origin
three states is equivalent to the PP incompatibility of
three pure statesuc1&, uf2&, anduf3&, all of which lie in the
two-dimensional subspaceR.

Our conclusion is the following. The three statesuc1&, r2,
and r3, with S2ÞS3, are PP-POVM incompatible if and
only if ^c1ux&50 and the convex set generated byuc1&^c1u,
uf2&^f2u, and uf3&^f3u containsR̂/2. Similarly, the three
states are PP-ODOP incompatible if and only if^c1ux&50
and two of the statesuc1&, uf2&, anduf3& are orthogonal.

The third case is that of two pure states,r̂15uc1&^c1u and
r̂25uc2&^c2u, and one rank-two density operatorr̂3. We
have not been able to determine the conditions for P
POVM compatibility in this case, so we restrict ourselves
PP-ODOP compatibility. One projector in an ODOP that

veals the incompatibility of these states must beP̂3

5ue3&^e3u. The other two elements of the ODOP,P̂1

5ue1&^e1u andP̂25ue2&^e2u must operate inS3. The states
they contradict must be orthogonal to them. Thusuc1& must
lie in the subspace spanned byue3& and ue2&, and its projec-
tion ontoS3, i.e.,Ŝ3uc1&, must be proportional toue2&. Simi-
larly, uc2& must lie in the subspace spanned byue3& andue1&,
and its projection ontoS3, i.e., Ŝ3uc2&, must be proportional
to ue1&. Our conclusion is that the three states are PP-OD
incompatible if and onlŷ c1uŜ3uc2&50.

B. Three pure states

The final case is that of three pure states in three dim
sions. Again we have not been able to prove the conditi
for PP-POVM compatibility, although we have numeric
evidence that PP-POVM is equivalent PP-ODOP for t
case. We restrict our attention in this subsection to ODO

We can assume that the states are all different, since if
are the same, we are back in the two-party case. Moreo
since not being pairwise PP compatible implies not being
compatible, the interesting case is where the three states
pairwise PP compatible, i.e., no pair is orthogonal. Thus
address the following question: under what circumstance
there an ODOP whose outcome will definitely contradict o
of three distinct, nonorthogonal pure states? The criterion
derive is interesting in its own right, independent of comp
ibility considerations.

Let uc1&, uc2&, anduc3& be the three distinct, normalized
pairwise PP compatible, pure states, i.e.,

0,u^c1uc2&u,1,

0,u^c2uc3&u,1,

0,u^c3uc1&u,1. ~16!

The vectorsuc1&, uc2&, and uc3& violate PP-ODOP if and
only if there exist anglesuk , 0,uk,p/2, k51,2,3, such
that

a[u^c1uc2&u25~sinu1cosu2!2, ~17!
1-7
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CAVES, FUCHS, AND SCHACK PHYSICAL REVIEW A66, 062111 ~2002!
b[u^c2uc3&u25~sinu2cosu3!2,

c[u^c3uc1&u25~sinu3cosu1!2.

These conditions can be seen as follows. If the vec
violate PP-ODOP, there exists an orthonormal ba
$u1&,u2&,u3&% for the space spanned byuc1&, uc2&, anduc3&
such that

uc1&5eix1~cosu1u2&1eif1sinu1u3&), ~18!

uc2&5eix2~cosu2u3&1eif2sinu2u1&),

uc3&5eix3~cosu3u1&1eif3sinu3u2&),

where 0<xk,2p, 0<fk,2p, 0,uk,p/2 (k51,2,3).
Taking the inner products, we see that

^c1uc2&5ei (x22x1)eif1sinu1cosu2 , ~19!

^c2uc3&5ei (x32x2)eif2sinu2 cosu3 ,

^c3uc1&5ei (x12x3)eif3sinu3cosu1 .

The conditions~17! follow immediately.
Conversely, if the conditions~17! are satisfied, then it is

clear that we can find anglesxk andfk such that the inner
products^c i uc j& are given by Eqs.~19!. Since the pairwise
inner products specify the vectors up to a unitary transform
tion, there exists an orthonormal basis$u1&,u2&,u3&% such
that uc1&, uc2&, anduc3& have the form~18!. A measurement
in this basis shows that the vectors are PP-ODOP incom
ible.

To find a simpler criterion, definexk5sin2uk for k
51,2,3. The Eqs.~17! are then equivalent to

x1~12x2!5a,

x2~12x3!5b,

x3~12x1!5c. ~20!

Solving these equations for, e.g.,x2, we obtain

x25
12a1b2c6A~12a1b2c!224b~12a!~12c!

2~12c!

5
12a1b2c6A~a1b1c21!224abc

2~12c!
, ~21!

the expressions forx3 and x1 follow from cyclic permuta-
tions of a, b, and c. Equations~17! are equivalent to the
existence of solutions that satisfy 0,xk,1 for k51,2,3.
The first equality in Eq.~21! shows that, if there are two rea
solutions, both have the same sign. The existence of a s
tion 0,x2,1 is thus equivalent to the following three co
ditions:

12a1b2c.0, ~22!

~a1b1c21!2.4abc, ~23!
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12a1b2c2A~a1b1c21!224abc,2~12c!.
~24!

The third of these conditions is equivalent to

2~12b1a2c!,A~a1b1c21!224abc. ~25!

This is implied by the condition 12b1a2c.0, which is a
cyclic permutation of the inequality~22!. The full set of con-
ditions is therefore

12a1b2c.0,

12b1c2a.0,

12c1a2b.0,

~a1b1c21!2.4abc. ~26!

An equivalent form is

ua2bu,12c, ~27!

a1b,11c,

~a1b21!2

c
1

~a2b!2

~12c!
.1.

For fixedc, with 0,c,1, it is straightforward to show tha
the ellipse in thea-b plane defined by the last inequality ha
the following properties: it is centered at the pointa5b
51/2, and its principal axes, of lengthAc/2 andA(12c)/2,
form angles of 45° with thea and b axes. The ellipse has
exactly one point of intersection with thea axis ata512c
and exactly one point of intersection with theb axis at b
512c. The ellipse and the associated region of PP-OD
incompatibility are shown in Fig. 1.

From this it can be seen that the conditions~27! are
equivalent to the following, final set of conditions,

a1b1c,1,

~a1b1c21!2.4abc, ~28!

which are manifestly symmetric in the three squared in
products,a, b, andc. To summarize, the three pure states a
PP-ODOP incompatible if and only if their pairwise inn
products satisfy the conditions~28!.

VI. DISCUSSION

We have shown that the BFM criterion can be viewed
one member in a hierarchy of five compatibility criteria f
quantum-state assignments. Parties whose state assignm
are BFM compatible can come to agreement about a j
state assignment without any party having to abandon a
prior belief. By contrast, the four other criteria are based
measurements. They all have distinct roles, and none
equivalent to BFM.

The ES criterion can be applied to a situation where
parties have shared their available information. They m
1-8
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CONDITIONS FOR COMPATIBILITY OF QUANTUM- . . . PHYSICAL REVIEW A 66, 062111 ~2002!
still assign different states, but they agree on the nullsp
The states assigned by the different parties all have the s
support.

The PP criterion rules out the possibility of a measu
ment that all parties agree will, regardless of outcome, c
tradict one of their state assignments. In other words, if
states assigned by the parties are not PP compatible,
there exists a measurement that will definitely reveal d
agreement among the parties. The PP criterion is in so
ways the most interesting: it puts nontrivial constraints
the set of density operators, and it depends on whethe
generalized measurements, described by POVMs, are
lowed or the permitted measurements are restricted
ODOPs.

The W criterion ~which is equivalent toW8) shows that
there is no strictly necessary constraint on a finite set
density operators to be compatible. Any such set is com
ible in the sense that there exists a measurement that al
the parties to come to agreement. In this sense, the B
criterion is neither sufficient nor necessary.

It turns out that there are important differences betwe
the classical and quantum cases. Whereas the BFM crite
is stronger than the PP criterion quantummechanically,
two are equivalent classically. Curiously, the criterionW,
which is the weakest quantummechanically, is the strong
classically, at least for fine-grained~ODOP! measurements.

Finally, we identify strong Dutch-book consistency as
necessary assumption in the derivation of the BFM criteri
In particular, we show thatN parties who violate strong
Dutch-book consistency might come to agreement abo
joint state assignment without abandoning any of their fi
prior beliefs, even if their prior state assignments are
BFM consistent.

FIG. 1. Three pure states in three dimensions,uc1&, uc2&, and
uc3&, are PP-ODOP incompatible if there exists a measurem
described by three one-dimensional, orthogonal projectors such
each outcome rules out at least one of the three states. The in
patibility of the states depends only on the three squared inner p
ucts. For a fixed value of one squared inner product,c
5u^c3uc1&u2, the plot shows the region of PP-ODOP incompatib
ity in terms of the other two squared inner products,a
5u^c1uc2&u2 andb5u^c2uc3&u2. The ellipse is defined in Eq.~27!.
The region ofa and b corresponding to PP-ODOP incompatib
states, indicated by cross hatching, lies between the ellipse an
axes.
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APPENDIX: BAYESIAN PROBABILITIES
AND THE DUTCH-BOOK ARGUMENT

Bayesian probabilities are a measure of one’s degree
belief in or, equivalently, one’s degree of uncertainty abo
the various alternatives in a set@5#. Bayesian probabilities
receive an operational definition in decision theory@11#, i.e.,
the theory of how to decide in the face of uncertainty. T
Bayesian approach captures naturally the notion that p
abilities represent one’s beliefs about a set of alternative

The simplest operational definition of Bayesian probab
ties is in terms of betting behavior, which is decision theo
in a nutshell. To formulate this definition, letA be a bettor
who is willing to place a bet at odds of (12p)/p to 1 on the
occurrence of an eventE. These odds mean thatA is willing
to pay in an amountpx—thestake—up front, with the prom-
ise of receiving an amountx—the payoff—if E occurs and
nothing otherwise. To say thatA considers this afair bet is to
say that she is willing to accept the bet at these odds
matter what the payoff; in particular, the payoff can be eith
positive or negative, meaning thatA is willing to accept ei-
ther side of the bet. This situation is used todefineprobabili-
ties: that A considers it fair to bet onE at odds of (1
2p)/p to 1 is the operational definition ofA’s assigning
probability p to the occurrence of eventE.

The bookmaker who accepts the stakes and makes
payoffs is called theDutch bookie. In a betting situation with
A, he has the freedom to set the payoffs for the vario
outcomes at will.A’s probability assignment to the outcome
of a betting situation is calledinconsistentif it forces her to
accept bets on which she loses for every outcome that
deems possible. A probability assignment is calledconsistent
~or Dutch-book consistent, often called coherent in the lite
ture! if it is not inconsistent in this sense. Remarkably, r
quiring consistent behavior implies thatA must obey the
standard probability rules in her probability assignments:~i!
p>0, ~ii ! p(E)51 if A believes thatE is certain to occur,
~iii ! p(E~F)5p(E)1p(F) if E andF are mutually exclu-
sive, and ~iv! p(E`F)5p(EuF)p(F) ~Bayes’s rule!. A
probability assignment that violates any of these rules is
consistent in the above sense. This is the so-calledDutch-
book argument@6,7#, which we review below. We stress tha
it does not invoke expectation values or averages over
peated bets; a bettor who violates the probability rules pla
bets that, according to her own assessment of what is
sible, will result in a sure loss in a single instance of t
betting situation.
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Consider first the situation, whereA assigns probability
pE to E’s occurring and probabilityp¬E to E’s not occurring
~symbolized by¬E). This means that she will accept a b
on E with payoff xE ~stakepExE) and a bet on¬E with
payoff x¬E ~stakep¬Ex¬E). The net amountA receives is

G5H xE~12pE!2x¬Ep¬E if E occurs,

2xEpE1x¬E~12p¬E! if E does not occur.
~A1!

The Dutch bookie can always choosex¬E50, in which
caseA’s gains becomeG5xE(12pE) if E occurs andG5
2xEpE if E does not occur. To avoid all-negative gains r
quires that 12pE andpE have the same sign, which implie
0<pE<1, thus giving rule~i!.
a

ru

i.
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Suppose now thatA believes thatE is certain to occur. For
the only outcome she deems possible, her gain isG5xE(1
2pE)2x¬Ep¬E . The Dutch bookie can arrange this gain
have any value—in particular, any negative value by cho
ing xE,0 andx¬E.0—unlesspE51 andp¬E50. The re-
sult is rule~ii !: an outcome thought certain to occur must
assigned probability 1~and an outcome thought certain not
occur must be assigned probability 0!.

Now consider two mutually exclusive events,E and F,
and supposeA assigns probabilitiespE , pF , andpE~F to the
three outcomesE, F, andE~F (E or F). This meansA will
accept the following three bets: a bet onE with payoff xE
~stakepExE); a bet onF with payoff xF ~stakepFxF); and a
bet onE~F with payoff xE~F ~stakepE~FxE~F). The net
amountA receives is
G5H xE~12pE!2xFpF1xE~F~12pE~F! if E, but notF occurs,

2xEpE1xF~12pF!1xE~F~12pE~F! if F, but notE occurs,

2xEpE2xFpF2xE~FpE~F if neither E nor F occurs.

~A2!
ke
We need not consider the possibility that bothE andF occur,
since they are mutually exclusive. The Dutch bookie c
choose payoffsxE , xF , andxE~F that lead toG,0 for all
three outcomes unless

05detS 12pE 2pF 12pE~F

2pE 12pF 12pE~F

2pE 2pF 2pE~F

D 5pE1pF2pE~F .

~A3!

The probability assignment is thus inconsistent unless
~iii ! is satisfied, i.e.,pE~F5pE1pF .
n

le

Finally, we consider two events,E and F, which are not
necessarily exclusive. Suppose thatA assigns probabilitypF

to the occurrence ofF, probabilitypE`F to the occurrence of
E`F (E and F), and conditional probabilitypEuF to the
occurrence ofE, given thatF has occurred. This meansA
will accept the following three bets: a bet onF with payoff
xF ~stakepFxF); a bet onE`F with payoff xE`F ~stake
pE`FxE`F); and a conditional bet onE given thatF has
occurred, the payoff beingxEuF ~stakepEuFxEuF). If F does
not occur, the conditional bet is called off, with the sta
returned. The net amountA receives is
G5H 2xFpF2xE`FpE`F if F does not occur,

xF~12pF!2xE`FpE`F2xEuFpEuF if F, but notE occurs,

xF~12pF!1xE`F~12pE`F!1xEuF~12pEuF! if both E andF occur.

~A4!
o
rob-
-
h-

the
-

her
at
t it
The Dutch bookie can choose payoffsxF , xE`F , andxEuF
that lead toG,0 for all three outcomes unless

05detS 2pF 2pE`F 0

12pF 2pE`F 2pEuF

12pF 12pE`F 12pEuF

D 52pEuFpE1pE`F .

~A5!

Consistency thus requires that Bayes’s rule be satisfied,
pE`F5pEuFpF .
e.,

In our experience most physicists find it difficult first t
accept and then to embrace the notion that Bayesian p
abilities receive theironly operational significance from de
cision theory, the simplest realization of which is the Dutc
book argument in which probabilities aredefinedin terms of
betting odds for fair bets. In the Dutch-book approach,
structure of probability theory follows solely from the re
quirement of consistent betting behavior. There is no ot
input to the theory. It is worth emphasizing, for example, th
normalization is not a separate assumption, so trivial tha
1-10
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requires no justification. Rather it is a consequence of Du
book consistency, specifically of rules~ii ! and ~iii !, i.e., 1
5p(E~¬E)5p(E)1p(¬E).

Surprisingly, consistency does not imply the converse
rule ~ii !; i.e., we cannot conclude from consistency alone t
if pE51, thenA believes thatE is certain to occur. To see
this, return to Eq.~A2!, specializing topE51 andp¬E50
~the latter required by normalization!:

G5H 0 if E occurs,

2xE1x¬E if E does not occur.
~A6!

We can get no further with consistency because the zero
for outcomeE ensures thatA cannot be put in a situation
where all gains are negative.

To go further, we need the notion ofstrong consistency
@8,9# ~or strong Dutch-book consistency, often called stro
or strict coherence in the literature!: A’s probability assign-
ment is said to be inconsistent in the strong sense if she
be forced to accept bets on which, for outcomes she de
possible, no gain is positive, but some gains are nega
~she never wins, but sometimes loses!; a probability assign-
ment is strongly consistent if it is not inconsistent in t
strong sense. Since in Eq.~A6! the second gain can be mad
negative, strong consistency implies thatA must believe that
E is certain to occur. Thus strong consistency requires
p51 be assigned only to events thought certain to oc
~andp50 be assigned only to events thought certain no
occur!.

Dutch-book consistency requires a bettor to follow t
standard probability rules. That following the rules is suf
cient to avoid inconsistency has been shown by Kemeny@9#.
Kemeny reduces the most general betting situation to c
binations of conditional bets, as in Eq.~A4!, and bets on
exclusive alternatives, as in Eq.~A2!, and he then shows tha
the expected gain for each of these kinds of bets is zero
probabilities that satisfy the standard rules. The expec
gain for bets on the exclusive alternatives in Eq.~A2! is

pE@xE~12pE!2xFpF1xE~F~12pE~F!#

1pF@2xEpE1xF~12pF!1xE~F~12pE~F!#

1~12pE~F!@2xEpE2xFpF2xE~FpE~F#
m
n
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5~pE~F2pE2pF!@pExE1pFxF2~12pE~F!xE~F#.

~A7!

A similar result holds for the conditional bets of Eq.~A4!:

~12pF!@2xFpF2xE`FpE`F#

1~12pEuF!pF@xF~12pF!2xE`FpE`F2xEuFpEuF#

1pE`F@xF~12pF!1xE`F~12pE`F!1xEuF~12pEuF!#

5~pE`F2pEuFpF!@~12pF!xF1~12pEuF!xEuF

2pE`FxE`F#. ~A8!

Since the expected gains are zero for probabilities that sa
the standard rules, it is impossible to have all-negative ga
~or, in the case of strong consistency, for those outcomes
bettor deems possible, to have gains some of which are n
tive with the rest being zero!.

Unlike an ordinary bookie, who tries to balance wins a
losses and makes money off the fees charged for hand
the bets, a Dutch bookie exploits inconsistencies in a bett
behavior to win under all circumstances~or never to lose, yet
sometimes win in the case of strong consistency!. To avoid
inconsistency, a bettor simply has to follow the rules of pro
ability theory. The Dutch-book argument is not about a co
test between a bettor and a Dutch bookie. It is wholly ab
the internal consistency of the way a bettor translates be
into probability assignments. The Dutch bookie is simply t
agent who exposes inconsistencies in the bettor’s behav

In keeping with the notion that probabilities are subje
tive, the Dutch-book argument does not dictate a betto
probability assignments, which are based on whatever
bettor believes or knows about the situation at hand. T
only exception occurs in the case where the bettor is cert
Then Dutch-book consistency requires that all her probab
ties be 0 or 1. For quantum mechanics, this means that w
a bettor is certain about the outcome of some ODOP,
must assign the pure state corresponding to the certain
come. Only if the bettor is strongly consistent, however, c
we conclude that a pure state assignment means that the
ter is certain about the outcome of an ODOP that includes
pure state among its outcomes, and this conclusion is cru
for all the compatibility criteria developed in this paper.
n
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