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Quantum-information entropies for highly excited states of single-particle systems
with power-type potentials
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The asymptotics of the Boltzmann-Shannon information entropy as well as the Renyi entropy for the
quantum probability density of a single-particle system with a confirtireg, bounded belowpower-type
potential V(x) =x%¢ with ke N andxe R, is investigated in the position and momentum spaces within the
semiclassicalWKB) approximation. It is found that for highly excited states both physical entropies, as well
as their sum, have a logarithmic dependence on its quantum number not onlkwheiarmonic oscillator,
but also for any fixedk. As a by-product, the extremal case>« (the infinite well potentialis also rigorously
analyzed. It is shown that not only the position-space entropy has the same constant value for all quantum
states, which is a known result, but also that the momentum-space entropy is constant for highly excited states.
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[. INTRODUCTION particle systems in central potentials. See Ré&f)] for a
recent survey, where emphasis is laid on the harmonic oscil-
The essential reason for the probabilistic character of théator and Coulomb potentials.

quantum theory of physical systems relies upon the uncer- The Schrdinger equation of aD dimensional single-
tainty relation. This relation may be mathematically ex-particle system characterized by the Hamiltonian operédtor
pressed by means of the Boltzmann-Shannon information eris
tropy (the entropic uncertainty relatipin a much more _
appropriate and accurate way than by the standard deviation HWY(r)=EW¥(r), r=(Xy,...Xp), 1)

(th nljuer:qses?nbﬁg (;rrt?é;ndfgga%“ﬁergﬂgzti;esl%tr:mg]éit};hnean dwhere\If(ﬂ is the wave function assumed to be normalized
d gle-p P Y P 0 unity. Then, the position density of the systempi@)

momentum spaces are not necessarily Gaussian or quasi- 2 . :
Gaussian, but they can take an arbitrary shape; so, in gener%\_lc)m,mt| anq b _a;ssouated Bo(;tz?ar&nt-)Shannon informa-
the standard deviation is not a useful measure of spreadin N entropy in position space Is defined by
[3]. The information entropy is an appropriate measure of
spreading, and then of quantum uncertainty, a property of S(p)==—f p(M)Inp(r)dr, 2

fundamental relevance for the adequate characterization of

the position and momentum single-particle densities, the bayhich measures the uncertainty in the spatial localization of
sic variables of the modern density-functional thepty-6]  the particle[11]. The lower this quantity is, the more con-
in the two complementary spaces. Additionally, these entrocentrated is the wave function, the smaller is the uncertainty,
pies have been used for numerous practical purposes such agd the higher is the accuracy in predicting the localization
for example, to measure the squeezing of quantum fluctugsf the particle. Analogously, in momentum space the normal-
t!on [7]and to reconstruct the charge and momentum dens'i'zed wave function¥ (), which is the Fourier transform of
ties of atomic and molecular systeri8,9] by means of W(r), and its associated Born probability densig(p)

maximum-entropy procedures. —1¥/(5)12 has the following inf . .
The analytical determination of the information entropies_| (P)|* has the following information entropy:

of physical systems is a formidable project which is now in
its infancy. This project has been initiated by the consider- S(y) :=—f y(p)In y(p)dp, (3
ation of simple quantum system£-dimensional single-

which measures the uncertainty in predicting the momentum
of the particle.

*Corresponding author. Electronic address: dehesa@ugr.es These two physical entropies satisfy the inequality
"Electronic address: andrei@ual.es
*Electronic address: VNSORMM@nw.math.msu.su S(p)+S(y)=D(1+In), (4
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which is called by entropic uncertainty relatiphl—13. It  tum spaces of the wave functions of one-dimensional single-
means that the total uncertainty in position and momentunparticle systems with power-type potentials; that is, the
cannot be decreased beyond the given value I(l7)D. eigenfunctions of the wave equatidh) with the potential
Nowadays it is well known that this inequality is stronger V(x) given by
than the Heisenberg uncertainty relation; see, e.g.,[R&f.
Most efforts have been concerned with one-dimensional V(x)=&£x%, xeR, keN, &£>0 (11
systems D=1) whose Schidinger equation,
in the framework of the semiclassicd/KB) approximation
[19,20. These potentials, which play an important role in
quantum field theory and molecular physics, include as spe-
cial cases the harmonic oscillatde€ 1) and the square well
Eg<E;<E,<---- (6) (k—). They belong to a subclass of potenti&éx) with
two turning points, whose position-space information en-
Then, the information entropy of the corresponding wavetropy has been recently analyzg2il]; therein it is found a
functions¥ ,(x) satisfying the normalization condition, simple relation between the quantum and classical entropies
in position space. With an appropriate scaling we may as-
200 sume thatt,=1 in what follows.
JRW”(X)l dx=1, ™ It is well known that the spectrum of these smoothly vary-
ing potentials consists of a discrete set of eigenvalGefor
will be denoted as which nontrivial L2(R) solutionsW, exist. Notice, in addi-

tion, that the Fourier transform¥ of the solution of the
S(V,):= lellfn(x)|2|n|\Iin(X)|2dx, (8)  Schralinger equation of these systems,

—P"+V(X)V=EV, (5

has a discrete spectrum of eigenvalues,

- . , — W+ X2V =EV, (12)
and similarly for the momentum-space information entropy

S(¥,) of the normalized-to-unity wave function in momen- that is, the momentum wave function
tum spacel,,. According to Eq(4), the entropic uncertainty
relation for this case reads as

- 1 .
V(p)=—= | ¥(x)e *Pdx (13
S(V)+S(V,)=1+In, (9) N fR

which indicates that the entropy sum is bounded from belovsatisfies the equation
by the value 2.1447....

Recently, it has been showi0,14,15 that for the har- (— 1)k (204 p2§r = EXfr, (14)
monic oscillator and Coulomb potentials, the functionals

S(¥,,) andS(‘¥,,) boil down to the integrals of certain clas-  We are interested in the behavior when-= of the se-
sical orthogonal polynomialgHermite, Laguerre, Gegen- quences of the position-space entropigs=S(¥,) and

bauey given by momentum-space entropied,=S(¥,) defined in accord
with Eq. (8) for the solutions¥,, and ¥,, of Egs.(12) and
S(pn)::_f P2(X) IN[py(x) JPw(x)dX, (100 (14), respectively, keeping in mind the normalization condi-

tion (7) for both functions. For this purpose, we shall follow

wherep,(x) are the polynomials orthogonal with respect to & two-step procedure that consists in estimating firstLthe
the weight functionw(x). These entropylike integrals, which norm of the corresponding WKB solution and then using the
are closely related to the® norm of the involved polynomi- ~appropriate limit to arrive at the desired asymptofi§].
als[16], cannot be expressed in a simple form, save for thd his is done in Sec. Il for the position-space entr&gyand
class of Chebyshev polynomialsvhich are particular in- in Sec. Il for the momentum space entrogy.
stances of Gegenbauer polynomjdl$4,15. The asymptot- It is found that both physical entropies have a logarithmic
ics of these integrals, which corresponds to the casec, is  dependence on the quantum numipefor all the excited
of special interest for both mathematical and physical reastates of the semiclassical region. Also, as an important by-
sons. Indeed, the asymptotical behavior of tHenorm of  product, the extremal casés=1 (harmonic oscillator and
classical orthogonal polynomials is under confrbb]. The  k— o (the infinite wel) are considered in Sec. IV; in particu-
computation of the asymptotical values 8{p,) [10,17] lar, we find the known asymptotical behavior of the position
opens the way to determine the information entropies of thend momentum entropies of the harmonic oscillator
highly excited (quasiclassicalstates as well as to gain in- [14,15,17,22 and the position entropy of the infinite well
sight into the structure and spectroscopy of the recently prg21]. The asymptotics of the momentum entropy of the infi-
duced Rydberg atomd 8. nite well potential is also found here without the requirement
In this paper, we shall analyze the semiclassical asympto any plausible and/or numerical arguments in contrast to a
totics of the information entropies in position and momen-recent work{23]. Finally, let us point out that the asymptot-
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ics of the entropy SUI’TSn'i-ASn is explicitly given for the
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where the definition of,, and the substitutiom—x,t have

general case as well as for the two special cases mentioné&gen used. Here and below we write tgt-b, whena,

above.

II. ASYMPTOTICS IN THE POSITION SPACE

Here the asymptotic behavior of the position-space infor-
mation entropyS,=S(¥,) of the WKB solutions of the

Schralinger equatior(10) of the power-type potentiaV(x)

=b,[1+0(1)], n—ce.
The function

1
e(t)= n+—1/2q)n(xnt)

is continuous and monotone ome[0,1], and ¢(t)

=x?¢ is investigated in detail. For this purpose, we shall €[0,7/2]. Thus, the inverse functiom=¢* on [0, m/2]

estimate first the.% norm of these WKB solutions.
According to the WKB quantization rul¢19,20, E,
=E&P+0(1), where

1
;f VEPP—xZdx=n+1/2, n=0,1,2,...

and the integration is ovexe R; x?<E"". This relation
becomes exacf24] as n—». See also Ref[25]. It is
straightforward to see that

E,=x2*+0(1), (15)
where
k 1/(1+K)
Xn= T(n-i- 1/2) , (16
B(z’ 2k

andB(x,y)=T(X)I'(y)/T'(x+y) is the beta function.
If we denote

Fa(0 = Vg = x*

and

p(x)= f Ot

X

— X <X<Xp,

then the WKB solution of Eq(5) has the form

coq @, (x) — w/4} N

Va(X)

Va(x)=C, o(1), 7

exists and the integral in E@18) is

Jﬂ/2|005{(n+1/2)¢>— ml4]*[1- 0®(@)]" Y (¢)|de,
0

We can use the analog of the Fejer’'s lemma, established in

Lemma 2.1 of Ref[16], by which this integral tends to
w2 2 (1
f |COS(p|2qd(,o—f (1—1t2k)~92gt,
0 mJo
Thus, by Eq.(198),
N )~ 1 {C2x; KN* ()
n 7Tk n*n ’
where

N*(q)=B (19

11 81 qg 1
922 22k
Takingg=1 and keeping in mind thatl,(1)=1, we get

B(1/2,1( 2k
1 BURUZK)

from where the asymptotics &, follows. Finally, we arrive
at

Xn [Zk 1

q

It is known and easy to verify that the entroBy is related
[16] to the normN,(q) by

where C, is a normalization constant. Let us compute the

L29 norm to the power g of this function,

Nn(q)= lewn<x)|2qu-

From Eq.(17) it is easy to obtain that

Nn(q)Nfxn

—Xp

cog P, (x)— 77/4}’ qux
0 |

n

1
zzcﬁqxﬁ’kqf |cog @ (xpt) — 77/4]|%
0

X (1—12K)~92gt, (18)

P P
S =S(¥,)=—-—Np(q)] =-—InNy(q)
n aq " - aq n -
Thus,
. 2k 1 .
~SEIM S Baz iy TX o),
where
~inN*(q)
=—In
gV @]
We have
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Then the oscillating part o is
X=\|¥la+ 5] —¥(q+1)
- codd,(p)— wl4
+2 gl 1+ — 5k 2 - 1—5 n

-2l w(%)“w@)wé}, nnere

wherey(x)=I""(x)/I'(x) is the digamma function. With ac-
count of Eq.(16),

B o(p) = f:”gnmdt.

The eigenvalueE,, is obtained from the Bohr-Sommerfeld

1 1 K B(1/2,142K)) guantization rule,
S,= In(2n)— = ——In &+ In :
1+k 21+k 1+k 2k E, 1
1 T k fo gn(t)dtZE +E),
+ mm(z T) —x+o(l)
so that
Since ¢(2)— ¢(3/2)=2In2-1, we finally obtain the fol- KI(14+K)
lowing asymptotics for the position-space entropy of a _ 7m(n+1/2) +o(1)
single-particle system submitted to the potentiék) = x2, " 1 1
keN, B 2K + 1
S,= n - k|n(2n)+gk+ 0(1), n—om, (21)  Which agrees with Eq(15). Now we estimate the norm
where

Nn<q>:JRI\i'n<p)|2‘4dp

1 | o k+1 2In2
+_HZT+ n

Uk:—1+k|n —B(1/2 1:(2k)) 1+k fp” c COE{‘Dn(p)—W/‘l}‘Zq
. . . ) (1 - o n(pﬁ_pz)(zk—l)/(4k)|
“1-=|¢gl=+=|—ul=
2[7\2 2k 2 Proceeding as in Eq18) we get
ll. ASYMPTOTICS IN THE MOMENTUM SPACE N, (q)~2C29pi-a2k-Dkg (q) (23
n 1

Here, we shall discuss in detail the asymptotics of the
momentum-space information entropy of the WKB momen-with
tum wave functions of single-particle system with the power-
type potentialV(x)=x%¢, ke N. Once again, we use the
WKB method, looking for the solution in the form ”(q)_J |cOg @ (put) — /4|29 1 — t2) ~ A2k DI gt

= iS(p)
V(p)=A(p)e™". o 5
Direct substitution yields that in the first approximation, - fo [cod (n+ 1/2)w— m/4]|
(S')**=E-p?, X[1—t3(w)] 92 DIt (@)|do,

A’ 2k-19 o
—_—=—— . where the substitution=®,(p,t)/(n+1/2) has been used.

A 2 g Again, by Lemma 2.1 in Ref6], the last integral tends to
Thus,
/2 1
S'(p)=(E—p»)"™*, A(p)=(E—p?) Z DM f |COSw|2qdw%f (1—1t2) 9@k gy
0 0
Denot
snee RES 1)3(1 2k—1 1)
9n(P)=(Eq—p) Y%, py=1Ey, 270097202 92k 2
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Thus, that the level ordering of the power-type potentials is exactly
L 11 identical for the entropy sum and the single-particle energy.
Nn(a)~ —Catpn V8| a+ 3, 5)
IV. SPECIAL CASES: HARMONIC OSCILLATOR AND
B 1_qZk—l }) INFINITE WELL

2k "2 In this section we particularize the preceding results for

Using the normalization conditiohl,(1)=1, we obtain as the extremal cases: the harmonic oscillater=() and the

above the asymptotics f@,, , infinite well (k—). . .
For the harmonic oscillator, one obtains from E¢&1)
c 2piK- Bk and (24) that both entropieS(¥,) and S(¥,) asymptoti-
n 1 1\° cally behave as
B
Ln(2n)+In7—1, 26
Finally, 2In(zm) +lnm (26)
1 2 q . L
= 1-q - - so that its sum is given by
Bl2k 2 -
S(Vy)+S(V,)~In(2n)—2+2In (27
2k—-1 1
XBl1-q——, =|.
2k "2 for high values of the quantum numherThese results were

previously calculated by use of the entropylike integrals of
Hermite polynomialg14,15,17 and by the WKB approxi-
mation applied to a general one-dimensional potential with
, two turning pointg21]; see also Ref.22].
q=1 Let us now consider the infinite well potential. In this
case, the potential(x) in Eq. (5) becomes

It remains to recall that

n " J
Sq=S(‘I’n)=—£In Nn(q)

from where it is straightforward to obtain the asymptotics for
the entropy in the momentum space,

. 1 11 Ved 0 if [x<1 28
A X)= .
Sn—mln(Zn)+ m'ﬂ{ZB(ﬂ,§>] +oo f |X|>1
+——In[(k+1)7m]—1 Now Eqg.(5) describes the motion of a particle confined to an
1+k infinite potential well,
2k—1 1 1 1 1 24
ok |2k " Ya T )| o). (24 W) =EW(x), |x|<1, W(+1)=0.
Finally, we can gather the resul{2l) and(24) in order to . ) )
find the following estimate for the entropy su®(¥,  The solution of this problem is well known,
+S(V,):
2
an
- y k+1 [1 1 En=<_) . nel,
S(\Ifn)+S(an)—In(2n)—2—§+ln WTB ﬂi)} 2
1 1 1 3 1 1 1 and
) 2w Mkt 2
+0(1), (25 mnx\ . _
cog ——| if n is odd
(where y=0.5722 ... is theEuler's constantwhich cer- T, (x)= 2 (29)
tainly fulfils the entropic uncertainty relatio®). n fmnx|) . _
We notice that both position-space and momentum-space sin —— if n is even.

entropies as well as their sum increase logarithmically with

the quantum numban of the state. The latter is most inter-

esting because of the invariance property of the entropy sufihe corresponding entropy is also easily computed;rfor
under uniform scaling of the coordinates. Our results shoveven,
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1 _ tends to the half sum of Dirac deltasat = 1. Hence, the
S(¥y) f sir?(arnx)In[ sir(nx)Jdx momentum-space entropy of a particle in the infinite well
potential on the interval- 1<x=<1 has the value

:—Ersinz@ln(sin2 o)de .
T Jo S(¥,)=In(27)+o0(1). (3D

2T I7=1 Notice that the result31) is not recovered by a formal limit
k—o in Eq. (24). For completeness, let us mention that the
1 dz recent computation of this quantity by Majerngk al. [23]
uses an interchange of the order of operations limit and in-
tegration[see Eq(17), p. 2212 of Ref[23]). As the authors
recognize, this is not justified for their integral with Fejer-
type kernel and variable limits of integration; in fact, this
procedure leads to a wrong value of the entropy.
=2In2-1. Finally, let us remark that the entropy sum for the infinite
well is

The same result is obtained for the odd values.dfhen, the

position-space entropy of a particle submitted to an infinite

well potential does not depend on the quantum nunmber S(¥,)+S(¥,)~3In2—1+In7=1+Inm,
that is, it has the same value for all quantum states of the

system as already showg1,26. Therein, it is shown that

this quantity is given by in compliance with the entropic uncertainty relationstop

which is valid for any wave function of one-dimensional
S(¥,)=In(4a)-1 (30)  systems.

for an infinite well potential defined on the intervala<x
<a.

We should point out that the entropy for the infinite well  \We have calculated the position and momentum informa-
case cannot be computed taking formal limit in formu2®  tion entropies for the highly excited states of the power-type
and(24), because there the(1) term actually depends do  potentialV(x) = x?* with integerk by means of the semiclas-
Nevertheless, it is interesting to observe that the constarfical (WKB) approximation. Our results show that the posi-
termoy in Eq. (22) tends to 2 In2-1 ask— +, giving the  tion entropy grows ask+ 1) *Inn and the momentum en-
right answer in the position space. tropy increases as(k+ 1)~ Inn when the quantum number

In the momentum space the wave functions are also wely characterizing the state tends to infinity. Since the entropy
known. Indeed, taking the Fourier transform of B89 we  sum is invariant under uniform scaling of the single-particle
obtain that coordinates, it is most interesting to realize that this quantity,
) which has the net information content of the system, also
Y.(p) increases logarithmically as the quantum number grows. As a

consequence, the ordering of the quantum levels is exactly
(— 1)(n+l)/2\/_ 2 cosp if n is odd ide_ntical for the entropy sum and_ the single-particle energy.
4 This property of the entropy sum is shared by other physical
(—1)"2 n/2 _ _ _ systems of different dimensionalities such as the two-
: 27— 2,22 SINP if n is even. dimensional harmonic oscillat¢27] and circular membrane
P [28], and the neutral atonj29,30. Then, our results support
the idea to develop a new maximum entropy procedure based
on the maximization of the entropy sum subject to some
known position and momentum constraints, which would ex-
tend the Jaynes’ maximum entropy method to the case in-
S(V,,) = f [P 50 (p) 2N 50 (p)|2dp volving constraints in the two complementary spaces. This
procedure has been already propof&H, but still remains

V. SUMMARY, OPEN PROBLEMS, AND CONCLUSION

The entropy in the momentum space for evefthe same
result is obtained for the odd values s

1 largely unexplored.
= _f j:n(x)m(_j:n(x))dx, It is well known that the entropic uncertainty relatiof)
R mn is stronger than the Heisenberg uncertainty relafibm],
which is closely connected to the fact that the entropic mea-

where the Fejer-type kernel sure of dispersion expresses more adequately the intuitive
) concept of uncertainty than the variari@&2]. Nevertheless,

F(x)= 2 sin(mnx) it would be an interesting open problen to calculate the
n m2n (x2—1)2 Heisenberg position and momentum uncertaintles and
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Ap, and to contrast their behaviors with the aforementionednomentum entropy which up to now was not rigorously
logarithmic growth of the information entropy in correspond- known in spite of some efforts based on some plausible
ing spaces. On the other hand, we are still looking for aand/or numerical argumenf&3]. Needless to say, that the
measure that allows us to explain the qualitative property oentropy sum(which is a joint measure of the position-
increasing concentration of the wave function on classicamomentum uncertainpyfulfills the entropic uncertainty rela-
periodic orbits as excitation grows. Which is the measure ofionship(9) for all the systems considered in this work, what
concentration which decreases as the quantum number is a further check of our calculations.

grows? Might Fisher’'s measure be a good candidate?
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