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Solution of the relativistic Dirac-Woods-Saxon problem
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The Dirac equation is written for the special case of a spinor in a relativistic potential with the even and odd
components related by a constraint, and solved exactly with the even component chosen to be the Woods-
Saxon potential. The corresponding radial wave functions for the two-component spinor are obtained in terms
of the hypergeometric function, and the energy spectrum of the bound states is obtained as a solution to a given
equation with boundary constraints in which the nonrelativistic limit reproduces the usual Woods-Saxon po-
tential.
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The Woods-Saxon potential plays an essential role in miwhere « is the fine structure constant aadare the three 2
croscopic fields since it can be used to describe the interac<2 Pauli spin matrices. Replacing the two off-diagonal
tion of a neutron with a heavy nucleus. Although the nonrele g 4. A in the Hamiltonian of Eq(1) by *iad-A and
ativistic Schralinger equation with this potential has been .. N R . .
solved for S states[1] and the single-particle motion in WHtNg (Ag,A) as(aV(r),FW(r)), we obtain the following
atomic nuclei has been explained quite well, the relativistidWO-component radial Dirac equation:
effects for a particle under the action of this potential are
more important, especially for a strong-coupling system. The 1+ aV(r)
relativistic Coulomb and oscillator potential problems, in-
cluding their bound-state spectra and wave functions, have
already been established for a long tif#e-9], and their a
nonrelativistic limits reproduce the usual Sotirmger-
Coulomb and Schidinger-oscillator solutions, respectively. 2
Recently, Kennedy proposed a two-component approach to
solving the one-dimensional Dirac equation, and obtainedvhereV(r) andW(r) are the even and odd components of
the scattering and bound-state solutions for the Woods-Saxdhe relativistic potentialg is the coupling parameter defined
potential[10]. However, we are still not aware of any solu- as«=*(j+3) for |=j*3, ande is the relativistic energy.
tions of the three-dimensional Dirac equation with theThis equation gives two coupled first-order differential equa-
Woods-Saxon potential, which may be more important in thdions for the two radial spinor components. By eliminating
field of nuclear structure. Fortunately, Alhaidari has just putthe lower component we obtain a second-order differential
forward an approach to the three-dimensional Dirac equatioequation for the upper. Unfortunately, the resulting equation
[11], and solved a class of shape-invariant potentials thatay turn out to be not Schadinger-like, i.e., it may contain
includes Dirac-Rosen-Mse, Dirac-Eckart, Dirac-Rehl- first-order derivatives. However, a general local unitary
Teller, and Dirac-Scarf potentialgl2], and presented the transformation may be applied to eliminate the first-order
relativistic bound-state spectra and spinor wave functionsgerivative as follows:

Following the procedure used [A1], we make an attempt,

in this paper, to solve the three-dimensional Woods-Saxon r=q(x)
potential problem. Suppose a spinor particle populates a rela-

tivistic potential with the even and odd compone¥i{s) and  gng

W(r), and the even component is chosen to be the spheri-
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cally symmetric Woods-Saxon potential. We solve the Dirac cod (X si X
equation by employing the same strategy as that used by gf](r)):( _S[p( )] Lo )]) (Z(X)). (3)
Alhaidari in the Dirac-Mase problem, namely, by adding a () =sinp(x)] cogdp(x)]/\ 0(X)

radial term to the odd part of the Dirac operator, and apply- . , ) .
ing a unitary transformation to the Dirac equation such that he Stated requirement gives the following constraint:
the resulting second-order differential equation becomesd

Schralinger-like, and solvable. 9| _ 2+ cot 201+ a Sin( 20) (W x/a) + dP/dX+
For simplicity, atomic unitsifh=e=#=1) are used, and dx “ 42p)+asin2p)( «/q) adq/dx €
. . 71 . .
the corresponding speed of light o™~ is taken. It is well — const= 7#0. @

known that the Hamiltonian for a charged Dirac particle in a
four-component electromagnetic potentiah(A) can be This transformation and the resulting constraint are the

written as relativistic analog of a point canonical transformation in non-
1+ ahA, e S+ A relativistic quantum mechanics: Here,_we consider the case
H= R R (1) of a global unitary transformation defined logyx)=x and
—iad-V+adg-A —1+ahA dp/dx=0. Substituting these in the constraint E4) yields
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@ K relativistic Woods-Saxon problem is already kno(gee, for
W(r)= §V(r)— rx example, Ref[1]). In order to obtain the relativistic energy

spectrum easily and directly, we rewrite the relativistic Eq.
(5) (10), forA=—1, as

d> eVy—1/2b? £2-1
_W_Zl_l_e(r—R)/b 2 |¢(N=0. (12

n=C+eg,

where S=sin(2p) and C=cos(%). This maps the radial
Dirac equation(2) into the following:

S c d Comparing this with the nonrelativistic Eq11l) for \
C+2a?V al ==+ Sy D =—1, we arrive at the following parameter correspondence
[e% S dr map:
o _§+£V+i —C bﬂb, RHR,
a S dr
VR eV—1/2b2, (13
d(r)) _ [o(r)
X( o)~ an) | ©) E—(e2—1)/2a2.

Using this parameter map we obtain immediately the rela-

which in turn gives an equation for the lower spinor compo-,. .=
tivistic energy spectrum

nent in terms of the upper:

. : y R
a S aC d argl'(2iy)—2 argl'(u+iy)—tan =+ —
= T ot g VT oo b
N=cral ~ 2t s Vtgl|e. (@) Iz
. . _ . =(n+1/2mw, n=0*x1*2,., (14
while the differential equation for the upper component reads
and the upper spinor componegtr)
d e? ) adV e’-1 i7(r—R)/b (r=R)/by—pu—iy ; :
—W‘F?V +28V_?a_7 @(r)=0, (8) bn(r)=¢€"” [1+¢€ 1T #*""F(utiy,u+iy
+1,2u+1;[1+e" R =Q, 15)
whereT=S/C=tan(2). 2u [ 1) (
Having given this brief review of the method proposed bywhere
Alhaidari [11,12, let us consider the Dirac-Woods-Saxon w2
potential problem. In Eq@8), the independent even potential p=by(1=e%)la
componentV(r) is chosen to be the spherically symmetric and
Woods-Saxon potential:
y=(e2=1)b% a’+2b%eV,—1.
Y,
V(r)=— 1+<—r0—R)/b (Vo>0) (9)  The lower spinor component can also be derived from Eq.
€ (7) as
with b<R (R s the nuclear radius, artis the range of the a S u [(utiy Voa
potentia). Consequently, we obtain the following second- an(f)Z—CJrs _;_E+ b T
order differential equation for the upper spinor component: "
1 1 -1+
2 _ (r—R)/b 2_ - T,
_d__l Ate B 2eVy e°—1 (1) X1+e(r—R)/b}¢n(r) b(ﬂ 2u+1 +|'Y)
dr2” b2 [1+e(r—R)/b]2 1+ el RI/b P
Xe<1+iy)(r—R)/b[l+e(r—R)/b]—#—z—i«/
=0, (10
. . 1
where\ = abV, /T is a dimensionless parameter. In order to X F( priy+lutiy+22u+2; m) ]
reproduce the nonrelativistic Woods-Saxon problem, we take
the nonrelativistic limit ¢— 0,6 ~1+ «’E), whereE is the (16)

nonrelativistic energy. The above equation is then reduced to Moreover, we can also give the solution of the relativistic

the following wave equation: Dirac-Woods-Saxon problem with a genekaks the defor-
d2 N —a+e—RIb oV mation parameter. In order to do that, a new variabid 1
0 +e(~RP1=1 is introduced. Now, the equation of the upper
spinor component has been transformed into a second-order
differential equation as follows:

T A b2[1te PP 17w 2E[4(r)=0,
11
which is in the form of the Woods-Saxon problem only for d2¢ de
A= —1. In that case, Eq11) becomes the Schdinger equa- xz(l—x)zd—z— +x(1—x)(1—2x) e [w?+ NN+ 1)x?
tion for the potentiaV(r)=—Vgy~ [1+e~R/P]71 where X X
VR=V,—1/202. The energy spectrum for tf@wave non- — (N +12)x] =0, (17
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where the parametefs’=b?(1—¢)?/ a?, v>=2b%cV,, and
AN=abVy/T. Bound-state solutions of Eql7) satisfy the
boundary conditions ¢(0)=0 (r—=) and ¢(1)=0 (r
—0). Using the trial function

B(X) =x*(1—X)°h(x) (18)
with
5=\ u?—v’+2\?, (19

we find that Eq.(17) can be turned into the hypergeometric

differential equation

X(L=X) " (X)+[2u+1—(2u+ 28+ 2)x]yp' (X) — (u?+ 62
—N24+2u6+ u+6—N)(x)=0. (20
Taking into account the boundary conditigif0) =0, we get

d(X)=xX*(1—X)°F(u+N+1+6,u—N+382u+1;x).
(21)

In order to describe the behavior of the formytl) in
the vicinity of x=1, we transforme¢(x) into the following
form:

B I(2u+1)T(—20)
PO =X =) S ST (a i h T 1-9)

XE(uAN+14+ 8, u— N+ 8,1+ 281—x)+x*

) T(2u+ 1)T(26)
S e N P!

XE(p—N—8,u+N+1—8,1-281—Xx).

(22
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S=iy, y=Vr’—u’—\2 (24)

We then write
reu+1)Ir(=2iy)
Fp—A=ipT(p+tN+1-iy)
r2iyy(pu—A—iy)(ptN+1-ivy)
I'=2iy)(p—N+iy)(p+A+1+iy)

(x)~ [(1—X)”

><(1—x)—‘7}. (25)

In the neighborhood af=0, 1—x=e~ R approximately, so
we have

T(2u+1)T(—2iy)

~ —iyR/b
) Fw—x—iy)nwwl—iy){e "
PRiyT(p—A=ipT(u+r+1-iy)
I'(=2iy)T'(u—N+iy)T(u+N+1+iy) '
(26)

The boundary conditiob(1)=0 (r—0) leads to

TiPT(p—A—iPT(n+A+1—iy)

el 7RIb 4 a—iyR/b
=2iy)'(p—N+iy)I'(pu+N+1+iy)

=0, (27
or
Iriy)yl'(u—N—iy)'(p+r+1-iy) 2iyRib_ _ 4
I'=2iy)'(p—A+iy)T'(u+N+1+iy) -
(28)

Near the origin x—1r=0) the wave function behaves Thus we obtain the quantum condition

as
T(2u+1)T(~26)
S0~ (=X e S T (aan T 1=9)
) T(2u+1)T(25)
M A o e sy g e
(23

To discuss formulg@23) we note thatu?— v+ \?<0, so
that according to Eq(19) & turns out to be imaginary:

argl’ —argl’

b
2i . Vel—1+2Voena?—Via®/T?

exp2i[argl’(2iy)—argl'(u—N+iy)—argl'(u+A+1
+iy)+yR/Ib]}=—-1, (29
that is,

argl’(2iy)—argl'(u—A+iy)—argl'(u+N+1+ivy)

1
+7R/b=(n+—

5|m (n=0x1x2..)

(30

or

b b
. Vi—e2—baVo/T+i . Vel—1+2Voena?—Via®/T?

—argl’

L
"2

7T7

b b R
- \/1—szn+ baVo/T+1+i . Vel—1+2Voena’—Via*/T?| + - Vel—1+2Voena?—Via*/T?

(31)
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and the upper spinor component is given by

. . 1
Pp(r)=e 71 ~RIb[] 4 r=RIb=u—ivp M+x+LH%M—x+w2M+xIIgrmm) (32

With Eq. (7), the lower spinor component is also obtained as

utiy Voa 1

A+12
b T J1+el "R

bo(r)— %( +i 7) e(I+iIN(=RIb 1 | or=RIb)=p=2-1y

S n
Ko ou+1

a b

a
Ct+ey,

On(r)=

(33

. H 1
XF ,u+)\+2+l7,#‘7\+1+I7,2M+2;W)}'

It can be easily seen that Eq80), (32), and(33) give the same results as Eq$4)—(16) with A = — 1.

In conclusion, we have obtained the exact solution of the Dirac equation for the Woods-Saxon potential and presented the
explicit form of the spinor wave function. The relativistic bound-state spectrum is also obtained through an equation that may
be very useful to describe single-particle motion in nuclei, because spin-orbit coupling is involved automatically there.
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