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Solution of the relativistic Dirac-Woods-Saxon problem
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The Dirac equation is written for the special case of a spinor in a relativistic potential with the even and odd
components related by a constraint, and solved exactly with the even component chosen to be the Woods-
Saxon potential. The corresponding radial wave functions for the two-component spinor are obtained in terms
of the hypergeometric function, and the energy spectrum of the bound states is obtained as a solution to a given
equation with boundary constraints in which the nonrelativistic limit reproduces the usual Woods-Saxon po-
tential.
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The Woods-Saxon potential plays an essential role in
croscopic fields since it can be used to describe the inte
tion of a neutron with a heavy nucleus. Although the nonr
ativistic Schro¨dinger equation with this potential has be
solved for S states @1# and the single-particle motion in
atomic nuclei has been explained quite well, the relativis
effects for a particle under the action of this potential a
more important, especially for a strong-coupling system. T
relativistic Coulomb and oscillator potential problems, i
cluding their bound-state spectra and wave functions, h
already been established for a long time@2–9#, and their
nonrelativistic limits reproduce the usual Schro¨dinger-
Coulomb and Schro¨dinger-oscillator solutions, respectivel
Recently, Kennedy proposed a two-component approac
solving the one-dimensional Dirac equation, and obtain
the scattering and bound-state solutions for the Woods-Sa
potential@10#. However, we are still not aware of any sol
tions of the three-dimensional Dirac equation with t
Woods-Saxon potential, which may be more important in
field of nuclear structure. Fortunately, Alhaidari has just p
forward an approach to the three-dimensional Dirac equa
@11#, and solved a class of shape-invariant potentials
includes Dirac-Rosen-Mo¨rse, Dirac-Eckart, Dirac-Po¨schl-
Teller, and Dirac-Scarf potentials@12#, and presented the
relativistic bound-state spectra and spinor wave functio
Following the procedure used in@11#, we make an attempt
in this paper, to solve the three-dimensional Woods-Sa
potential problem. Suppose a spinor particle populates a r
tivistic potential with the even and odd componentsV(r ) and
W(r ), and the even component is chosen to be the sph
cally symmetric Woods-Saxon potential. We solve the Di
equation by employing the same strategy as that used
Alhaidari in the Dirac-Mo¨rse problem, namely, by adding
radial term to the odd part of the Dirac operator, and app
ing a unitary transformation to the Dirac equation such t
the resulting second-order differential equation becom
Schrödinger-like, and solvable.

For simplicity, atomic units (m5e5\51) are used, and
the corresponding speed of lightc5a21 is taken. It is well
known that the Hamiltonian for a charged Dirac particle in
four-component electromagnetic potential (A0 ,AW ) can be
written as

H5S 11aA0 2 iasW •¹W 1asW •AW

2 iasW •¹W 1asW •AW 211aA0
D , ~1!
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wherea is the fine structure constant andsW are the three 2
32 Pauli spin matrices. Replacing the two off-diagon
termsasW •AW in the Hamiltonian of Eq.~1! by 6 iasW •AW and
writing (A0 ,AW ) as„aV(r ), r̂W(r )…, we obtain the following
two-component radial Dirac equation:

S 11a2V~r ! aFkr 1W~r !2
d

drG
aFkr 1W~r !1

d

drG 211a2V~r !
D 5«S g~r !

f ~r ! D ,

~2!

whereV(r ) andW(r ) are the even and odd components
the relativistic potential,k is the coupling parameter define
ask56( j 1 1

2 ) for l 5 j 6 1
2 , and« is the relativistic energy.

This equation gives two coupled first-order differential equ
tions for the two radial spinor components. By eliminatin
the lower component we obtain a second-order differen
equation for the upper. Unfortunately, the resulting equat
may turn out to be not Schro¨dinger-like, i.e., it may contain
first-order derivatives. However, a general local unita
transformation may be applied to eliminate the first-ord
derivative as follows:

r 5q~x!

and

S g~r !

f ~r ! D5S cos@r~x!# sin@r~x!#

2sin@r~x!# cos@r~x!#
D S f~x!

u~x! D . ~3!

The stated requirement gives the following constraint:

dq

dx F2a2V1cos~2r!1a sin~2r!~W1k/q!1a
dr/dx

dq/dx
1«G

5const[hÞ0. ~4!

This transformation and the resulting constraint are
relativistic analog of a point canonical transformation in no
relativistic quantum mechanics. Here, we consider the c
of a global unitary transformation defined byq(x)5x and
dr/dx50. Substituting these in the constraint Eq.~4! yields
©2002 The American Physical Society05-1
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W~r !5
a

S
V~r !2

k

r
,

~5!
h5C1«,

where S5sin(2r) and C5cos(2r). This maps the radia
Dirac equation~2! into the following:

S C12a2V aF2
S

a
1

aC

S
V2

d

drG
aF2

S

a
1

aC

S
V1

d

drG 2C
D

3S f~r !

u~r ! D5«S f~r !

u~r ! D , ~6!

which in turn gives an equation for the lower spinor comp
nent in terms of the upper:

u~r !5
a

C1« F2
S

a
1

aC

S
V1

d

drGf~r !, ~7!

while the differential equation for the upper component re

F2
d2

dr2 1
a2

T2 V212«V2
a

T

dV

dr
2

«221

a2 Gf~r !50, ~8!

whereT5S/C5tan(2r).
Having given this brief review of the method proposed

Alhaidari @11,12#, let us consider the Dirac-Woods-Saxo
potential problem. In Eq.~8!, the independent even potenti
componentV(r ) is chosen to be the spherically symmet
Woods-Saxon potential:

V~r !52
V0

11e~r 2R!/b ~V0.0! ~9!

with b!R ~R is the nuclear radius, andb is the range of the
potential!. Consequently, we obtain the following secon
order differential equation for the upper spinor componen

H 2
d2

dr22
l

b2

2l1e~r 2R!/b

@11e~r 2R!/b#22
2«V0

11e~r 2R!/b2
«221

a2 J f~r !

50, ~10!

wherel5abV0 /T is a dimensionless parameter. In order
reproduce the nonrelativistic Woods-Saxon problem, we t
the nonrelativistic limit (a→0,«'11a2E), whereE is the
nonrelativistic energy. The above equation is then reduce
the following wave equation:

H 2
d2

dr22
l

b2

2l1e~r 2R!/b

@11e~r 2R!/b#22
2V0

11e~r 2R!/b22EJ f~r !50,

~11!

which is in the form of the Woods-Saxon problem only f
l521. In that case, Eq.~11! becomes the Schro¨dinger equa-
tion for the potentialV(r )52V0

NR @11e(r 2R)/b#21, where
V0

NR5V021/2b2. The energy spectrum for theS-wave non-
06210
-
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relativistic Woods-Saxon problem is already known~see, for
example, Ref.@1#!. In order to obtain the relativistic energ
spectrum easily and directly, we rewrite the relativistic E
~10!, for l521, as

F2
d2

dr222
«V021/2b2

11e~r 2R!/b2
«221

a2 Gf~r !50. ~12!

Comparing this with the nonrelativistic Eq.~11! for l
521, we arrive at the following parameter corresponden
map:

b→b, R→R,

VNR→«V021/2b2, ~13!

E→~«221!/2a2.

Using this parameter map we obtain immediately the re
tivistic energy spectrum

argG~2ig!22 argG~m1 ig!2tan21
g

m
1

gR

b

5~n11/2!p, n50,61,62,..., ~14!

and the upper spinor componentf(r )

fn~r !5eig~r 2R!/b@11e~r 2R!/b#2m2 igF~m1 ig,m1 ig

11,2m11;@11e~r 2R!/b#21!50, ~15!

where

m5bA~12«2!/a2

and

g5A~«221!b2/a212b2«V021.

The lower spinor component can also be derived from
~7! as

un~r !5
a

C1«n
H F2

S

a
2

m

b
1S m1 ig

b
2

V0a

T D
3

1

11e~r 2R!/bGfn~r !2
1

b S m2
211n2

2m11
1 ig D

3e~11 ig!~r 2R!/b@11e~r 2R!/b#2m222 ig

3FS m1 ig11,m1 ig12,2m12;
1

11e~r 2R!/bD J .

~16!

Moreover, we can also give the solution of the relativis
Dirac-Woods-Saxon problem with a generall as the defor-
mation parameter. In order to do that, a new variablex5@1
1e(r 2R)/b#21 is introduced. Now, the equation of the upp
spinor component has been transformed into a second-o
differential equation as follows:

x2~12x!2
d2f

dx2 1x~12x!~122x!
df

dx
2@m21l~l11!x2

2~l1n2!x#f50, ~17!
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where the parametersm25b2(12«)2/a2, n252b2«V0 , and
l5abV0 /T. Bound-state solutions of Eq.~17! satisfy the
boundary conditions f(0)50 (r→`) and f(1)50 (r
→0). Using the trial function

f~x!5xm~12x!dc~x! ~18!

with

d5Am22n21l2, ~19!

we find that Eq.~17! can be turned into the hypergeometr
differential equation

x~12x!c9~x!1@2m112~2m12d12!x#c8~x!2~m21d2

2l212md1m1d2l!c~x!50. ~20!

Taking into account the boundary conditionf(0)50, we get

f~x!5xm~12x!dF~m1l111d,m2l1d,2m11;x!.
~21!

In order to describe the behavior of the formula~21! in
the vicinity of x51, we transformf(x) into the following
form:

f~x!5xm~12x!d
G~2m11!G~22d!

G~m2l2d!G~m1l112d!

3F~m1l111d,m2l1d,112d;12x!1xm

3~12x!2d
G~2m11!G~2d!

G~m1l111d!G~m2l1d!

3F~m2l2d,m1l112d,122d;12x!. ~22!

Near the origin (x→1,r 50) the wave function behave
as

f~x!;~12x!d
G~2m11!G~22d!

G~m2l2d!G~m1l112d!

1~12x!2d
G~2m11!G~2d!

G~m1l111d!G~m2l1d!
.

~23!

To discuss formula~23! we note thatm22n21l2,0, so
that according to Eq.~19! d turns out to be imaginary:
06210
d5 ig, g5An22m22l2. ~24!

We then write

f~x!;
G~2m11!G~22ig!

G~m2l2 ig!G~m1l112 ig! F ~12x! ig

1
G~2ig!G~m2l2 ig!G~m1l112 ig!

G~22ig!G~m2l1 ig!G~m1l111 ig!

3~12x!2 igG . ~25!

In the neighborhood ofr 50, 12x5e2R/b approximately, so
we have

f~x!;
G~2m11!G~22ig!

G~m2l2 ig!G~m1l112 ig! Fe2 igR/b

1
G~2ig!G~m2l2 ig!G~m1l112 ig!

G~22ig!G~m2l1 ig!G~m1l111 ig!
eigR/bG .

~26!

The boundary conditionf(1)50 (r→0) leads to

G~2ig!G~m2l2 ig!G~m1l112 ig!

G~22ig!G~m2l1 ig!G~m1l111 ig!
eigR/b1e2 igR/b

50, ~27!

or

G~2ig!G~m2l2 ig!G~m1l112 ig!

G~22ig!G~m2l1 ig!G~m1l111 ig!
e2igR/b521.

~28!

Thus we obtain the quantum condition

exp$2i @argG~2ig!2argG~m2l1 ig!2argG~m1l11

1 ig!1gR/b#%521, ~29!

that is,

argG~2ig!2argG~m2l1 ig!2argG~m1l111 ig!

1gR/b5S n1
1

2Dp, ~n50,61,62,...! ~30!

or
argGS 2i
b

a
A«n

22112V0«na22V0
2a4/T2D2argGS b

a
A12«n

22baV0 /T1 i
b

a
A«n

22112V0«na22V0
2a4/T2D

2argGS b

a
A12«n

21baV0 /T111 i
b

a
A«n

22112V0«na22V0
2a4/T2D1

R

a
A«n

22112V0«na22V0
2a4/T2

5S n1
1

2Dp, ~31!
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and the upper spinor component is given by

fn~r !5eig~r 2R!/b@11e~r 2R!/b#2m2 igFS m1l111 ig,m2l1 ig,2m11;
1

11e~r 2R!/bD . ~32!

With Eq. ~7!, the lower spinor component is also obtained as

un~r !5
a

C1«n
H F2

S

a
2

m

b
1S m1 ig

b
2

V0a

T D 1

11e~r 2R!/bGfn~r !2
1

b S m2
l1n2

2m11
1 ig De~11 ig!~r 2R!/b@11e~r 2R!/b#2m222 ig

3FS m1l121 ig,m2l111 ig,2m12;
1

11e~r 2R!/bD J . ~33!

It can be easily seen that Eqs.~30!, ~32!, and~33! give the same results as Eqs.~14!–~16! with l521.
In conclusion, we have obtained the exact solution of the Dirac equation for the Woods-Saxon potential and prese

explicit form of the spinor wave function. The relativistic bound-state spectrum is also obtained through an equation t
be very useful to describe single-particle motion in nuclei, because spin-orbit coupling is involved automatically ther
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