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Bohr’s correspondence principle: The cases for which it is exact
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Two-dimensional central potentials leading to the identical classical and quantum motions are derived and
their properties are discussed. Some of zero-energy states in the potentials are shown to cancel the quantum
correctionQ=(—7%2%/2m)AR/R to the classical Hamilton-Jacobi equation. The Bohr's correspondence prin-
ciple is thus fulfilled exactly without taking the limits of high quantum number,-ef0, or of the like. In this
exact limit of Q= 0, classical trajectories are found and classified. Interestingly, many of them are represented
by closed curves. Applications of the found potentials in many areas of physics are briefly commented.
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[. INTRODUCTION tum mechanics, it would be necessary to formulate quantum
systems in phase space. One can try to do[thf$ with the
The quantum-classical correspondence has been a subjdwlp of Wigner-transform formalisifil8]. Though very use-
of intensive studies from the very beginning of quantum de{ul, the approach is also of a limited validity since in most
scription in physics. If, as it is commonly believed, qguantumcases the Wigner function is not positively determined. The
mechanics were correct, it would agree with classical memadification, due to Husin{i19], removes the last disadvan-
chanics in the appropriate limit. The idea, nantked corre-  tage, but contrary to the Wigner function, now the marginal
spondence principlewas proposed by N.Bohr in the early distributions in coordinates and momenta are not exact. Nev-
days of quantum mechanics. ertheless, the phase-space approach to the quantum-classical
Latest development in laser technique has made possib®rrespondence, appeared to be also very useful in studying
an experimental exploration of many fundamental quantuneffects of interactions with a stochastic environm&t, the
problems. The quantum-classical border is, no doubt, one ofo-called decoherend@1], since it is easily generalized to
them. Quite strong activity in this field includes experimentsthe case of density matrix.
on studying quantum-classical regime for high quantum In conclusion, we can say that there is no commonly ac-
number states of Rydberg atorfis] and also for circular cepted definition of the correspondence principle and main-
states of the hydrogen atof2]. Worth mentioning are ex- taining that classical mechanics is contained in quantum me-
periments on the observation of environment-induced decoshanics, or that the latter is an extension of the former, are
herencd 3], cold-atom collisiong4] or single-atom trajecto- too far-reaching simplifications. Therefore we should per-
ries in cavity in real timg5]. haps acknowledge after R¢22] that: “In its general con-
Recent research, including test of Wigner functjiéh an  text, the correspondence principle requires that any two valid
analysis of quantum-classical transition in nonlinear dynamiphysical theories which have an overlap in their domains of
cal systemg7] or discussion of the problem, how long clas- validity must, to relevant accuracy, yield the same predic-
sical and quantum evolutions stay cld§s, also contribute tions for physical observatioris
to better understanding of quantum-classical correspondence. There can be situations when approaching the classical
In this context, we should emphasize that no commonlylimit is not possible at all. Simple examples are provided by
accepted definition of the correspondence principle exists. Tthe Rydberg’s constariR,,= me4/8ch3sg and famous Ein-
one, it means takingi—0, though the limit is not well- stein’s formula for the photoelectric effeEt=h»—P. Con-
defined mathematically unless some additional conditionsemporary examplef22,23 are given by some classically
are specified. Moreover, the limit does not comm@ewith chaotic models.
another onet—oo, which is important for the systems, with In contrast, there are interesting relations between the
chaotic classical counterparts. To other, it is correctly formu-<lassical and quantum theories valid even for low quantum
lated for the limit of large quantum numbef$0,11. This  numbers and relatively small values of the classical action,
expectation was critically reviewed in the recent commentknown as the correspondence identifi24].
[12,13 for the potentials of the form-C,/r" with n>2. On the other hand, one can ask whether there are any
An important approach to the quantum-classical correpotentials, states and energies, when without taking the limits
spondence is also given via expectation values for the posif #—0, of large quantum numbers, of small de Broglie
tion and momentum, as in Ehrenfest’s theolfdd]. Yet, this  wave length , or of the like, the quantum and classical de-
approach is known to be of a restricted validity, since thescriptions yieldexactlythe same predictions. This way of
evolution of a wave packet is governed by Ehrenfest’s equathinking was originated by Rosd®5] who found few ex-
tion for short times only15,16. amples of such potentials and states. Their nurfip@30Q
To have a full classical description emerging from quan-was greatly multiplied since and general formulas for such
potentials were also found@1-33.
In this paper, we want to extend our recently obtained
*Email address: amak@phys.uni.torun.pl results[34] for two-dimensional2D) central potentials hav-
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ing the property that some of their states have vanishind:gs.(3), (4), and(5), is based on the observation that for any

quantum correctiorithe Bohm’s potentialto the classical solutions of Eq(4), the functionS must be such that{S)?

Hamilton-Jacobi equation. In this way, the velocity fields,in Eq. (6) is independent of an angle. In polar coordinates:

and hence also the trajectories, are identical in both the clagr= x>+ y? and = arctan{/x), Eq. (6) takes the form of

sical and quantum descriptions. (8S19x)2+ (9SI ay) 2= (Sl dp)?+ p~?(3SI30)°=f(p). We
The paper is organized as follows: Sec. Il presents a sysare now able to distinguish the following cases.

tematic search for the 2D potentials with the above property, First, let us start with

previously [34] found basing mostly on a “good guessing

method.” Thanks to that, some new potentials can be pro-

posed here. Section Ill gives a review of trajectories that are S(P,3)=A6’+f Vf(p)—A%p*dp. 7

possible in the limit of vanishing the quantum or of the

Bohm potentialQ. Then Sec. IV presents the special waveThjs js a complete integral of E¢6) with the explicit form

functions with the above property. The paper concludes Withy the function f(p) being for now unknown. It can be

Sec. V. determined afte8(p, §) is substituted into Eq3). Then, we
have
Il. SPECIAL POTENTIALS
We consider a special class of potentials, derivable from 4 A /f_ Ajﬁ+ f_A_2 IR YR ﬂ+2f -0
the stationary Schabnger equation, from which, we have p p2 0 P p?) ap pdp e
12 Ay ®
V=E+-——. 1) , -
2m The requirement for an independencd @) on the angle

] ) ) greatly restricts the number of acceptable solutions of Egs.
Now, using the wave function in polar formy (3) and (4). One possible solution of E48) is obviously

=Rexf(i/#)S], with real functionskR andS, we get given by
V_E (VS)? ih 2VR VSrAS h? AR A2
“ET 2m Ta2m|RVRVITAS Tom R [ f=—. )
2 P
The vanishing of the square brackets in E2), i.e., the Another solution of Eq(8) is found if
continuity equation, guarantees conservation of the probabil-
ity flux and reality of potentials. What is remaining is the R(p)=In(dp®), (10)

classical Hamilton-Jacobi equation supplemented with the
quantum correction, called the inner or Bohm’s potenal which, of course, obeys the 2D Laplace equatién Again,

:=(—#2/2m)(AR/R). We look for special potentials with we obtain the solutiori9), but additionally we can also get
the property that for some of their states the amplitide

obeys the Laplace equation. Thus, the quantum correction is A2 c2
zero and the classical limit of quantum mechanics is attained f(p)=—+ ﬁ, (11
exactly, without taking large quantum numbers, or the limit p°  p7In*(dp®)

of 2#—0, or of the like. Finally, ifV in Eqg. (2) is to be a
central potential, then¥{S)? must be a function, safy of a  Where henceforth all undefined symbols stand for real con-
distance only. stants.
In this way, one has to search for the solutions of the three Equation(8) can also be solved exactly if
coupled partial differential equations,

R(p,0)=e*"F(p), (12)
V- (R?VS)=0, (©))
whereR(p, 0) is to obey Eq(4) which now simplifies to
AR=0, (4)
1 2d2F+ ¥ wF=0 (13
V=E- o1, (5) Papr Pdp '

This is Euler’s type equation and its solution fef>0, has

for the three unknown functiorR, S, andV, where
the form

(VS)?=f. (6)
F(p)=CssinIn(Bp®)]. (14
In what follows we restrict ourselves to the two-
dimensional(2D) central potentials. The method that can beObviously, for«?=0 we would get the solutiof10). This
useful in this case, in tackling the problem of integration oftime, instead of Eq(8), we have to solve the equation
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A PSRy
P p2 P

with the functionF(p) given in Eq. (14). This nonlinear
equation can be reduced to a linear one, as

dp =0,

(15

. AZ) dF
p?

df
+F p%+2f

2

A
f(p)=E+U2(p)- (16)
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tracted much attention recenfl§5—39. It was, among other
reasons, motivated by an interest in cold atoms and their
interactions. The potentials found here are also widely used
in other physical applications. For instantg,,(p), derived
from Eq.(24), is a 2D Kepler problenj40Q], andV,(p) rep-
resents an inverted 2D oscillator, the simplest model of an
unstable system in quantum mecharjis,41,43. Worth of
mentioning are also application of the potentiatsp™2,
—p*4—p=% in the collision theory [43] and low-
dimensional quantum dof4d4]. The potential singled out in
Eqg. (21) was also a subject of many studies, among them, as

Omitting details of further calculations, we shall write down 5 ~qnvenient model for an analysis of anomalous symmetry

the final result,

E—AIN(Bp®) + (A2)siN 2 In(Bp%)]
p sire[In(Bp)] '

U(p)= 17

Equations(5), (16), and (17) give, for particular choices

breaking in quantum mechanif45].

Ill. TRAJECTORIES

For the potentials derived above, the quantum correction
Q to the classical Hamilton-Jacobi equation is exactly zero.

of real constantg, A, «, B, the new class of singular central Obviously, this is the case only for some states in the poten-
2D potentials leading to identical classical and quantum tratials. As a result of that, the notion of trajectory is identical

jectories.
Another possible choice for the phaSés

S(p,0)=C,p?sin(@af+D,).

For this choice ofS(p, 6), the functionf in Eq. (6) will also

(18

be dependent op only, as it should be. Substituting the

function into Eq.(6), we have

f(p)=a?C2p?@ Y  (a+0,1). (19
Furthermore, one can verify easily that E(3). and (4) are
fulfilled if

R(p,0)=C,p%cogad+D,). (20

The parametea is a real positive or negative constant, not
necessarily integer, and thus we extend again the class

potentials derived previoushB4].

For the sake of further discussion let us gather the pote

tials altogether as

\Y E LA 21
(P)=E= 75—, (21)
V(p)=E LA i (22)

= _—— __|._— ,

P am| 2 pint(dpo)
V(p)=E ! A2+u2() (23

p)=ET 5|5 P

2m p2
1

Va(p)=E—ﬁa2C§p2(a_l) (a#0,1). (24)

both in the classical and quantum descriptions. The orbits
can be found from the known relation

o1 ih YV —y*V
STl

m' > 2m
which, for the special states of our 2D potentials, is exactly
integrable for all cases discussed here. For instance, for the
potential (23), we have, after using Eqé7), (16), (17), and
(25), the solution

: (25

0= 1|
= 2"

C[ §—AIn(Bp®) + gSin[Z |n(ﬁp")]]
(26)

ﬁ\fherea andp stand for the polar coordinates defined in Sec.

Much more interesting are potentials specified in &24).
In this case, we can find for the orbits, using E@8) and

"25), that

1/a

pal )= (27

aC,cogaf+D,)

The symbolL=A=m(xy—xy) represents quantity of the
dimension of angular momentum which is, of course, a con-
stant of the motion.

Very interesting feature of E(q27) is that closed orbits
are possible for some values of the paramatefo observe
this, it is convenient to take for arbitrary constaht&aC,
=1 andD,=0. Then, it is not difficult to prove the exis-
tence of closed orbits for negative valuesaoBy all means,
when a=—-1-2,—3,..., we will get respectively, the
circle (x—1/2)?+y?=1/4, the Bernoulli lemniscate x¢
+y?)?2=x2—y? and then n-leaved roses n=-3,—4,

From their construction the potentials have eigenstates be-5, . . . ). Other sequence of closed orbits can be generated

longing to the continuous spectrum. When substituted to thevhen a=—1/k with k=2,3,4.... The simplest k=2)
stationary Schidinger equation they correspond to the member of the family is cardioidxf+ y2—x)?=x2+y? and
threshold energf=0. Studying of the physical systems in the next curves are some deformations of the limacon of
between the bound-state regime and the continuum has @ascal. The missing two conics can also be derived, and
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indeed fora=2 we can find from Eq(27) the hyperbola
x?—y?=1, and fora=1/2 the parabolg?=4(1—x).
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respond to the complex eigenvalues of the type(ny
—ny)ho, 0o=2C,/m, asn,=ny. Since the form of Eq.

In this connection, we should mention the nineteenth{32) is the same for all values @f includinga=2, solutions
century theorem by Bertrand6], that asserts that the only of this equation can thus be written by the same functions

central power-law potentials having closedundedorbits
are the Coulomb potentidl(r)=—a/r, «>0 and the iso-
tropic harmonic oscillato®V(r)=8r?, B>0. Our results

show that in the limit of vanishing Bohm’s potential, the
trajectories for a large class of 2D central potentials are given
by closed curves, some of them being special curves studied

long ago by mathematicians.

The trajectories for positive values afare not very in-
teresting. Some of them have been discussed else\\s¥re
together with those for the potential@l) and(22).

IV. CLASSICAL WAVE FUNCTIONS

All the states we have derived in the paper belong to the f5=4(4y202+ 1+ 4iyw,),

that are known for the inverted 2D oscillaferl]. They have
the form[39]

U (V) =Naexd £iywa(Da)f, (Ua,va)

=R (u,,v)exd (i71)SP(ua,va)], (33

wheren=N, the functionf*(u,,v,) is a polynomial ofu,

andv,, andR® and S are real functions of their argu-

ments. The first four terms df, are
f(-)::]-!ff:‘l')’aua’ (34)

f3=16y,uq(4y2u2+9

continuous spectrum and are not square-integrable functions.

Since the practically important potentials are those given in

+12 yv,). (35

Eq. (24), we shall restrict ourselves mostly to the discussion

of wave functions represented by the amplitud28) and
phases(18), i.e., for the power-law potentials of E§24).
Eigenstates for one of thenV,(p)~ — p?, are best known
and have been intensively studied both in the [UZ3-49

For the solutiony, (u,) we should takef,, (v4,Us), Where
the symbolsu, andv, are exchanged.

Whenn=1 the solutions cannot be normalized in terms
of Dirac ¢ functions, and instead, we have to treat them as

and 2D[39,41,43 spaces. It follows from a recent remark- the eigenfunctions of the conjugate spaSgi?)* in the

able observation by Kobayashi and Shimi{@&8)] that all the
wave functions for arbitrary values of the paramedgecan

Gel'fand triplets S(R?) C £?(R?)CS(R?)*, where S(R?)
and £2(R?) are, respectively, Schwartz space and Lebesgue

be, in suitable coordinates, represented by the same functiogpace in two dimensions. General properties of such func-
of the inverted 2D oscillator potential. Details can be foundtions have been discussed in a series of elaborated papers
in Ref. [39], and therefore we shall report here only neces{39,41,42,47 and for the excellent introduction to the prob-

sary formulas.
Let us introduce the potential4) into the stationary
Schralinger equation, then
Ay+atysp®@ Dy=0, (28)

where A=d% x>+ d?lay?, p=+x*>+y? and y2=C2/h?

lem we refer the reader to the papers.
Now, according to Egs(18), (20), and (30), the wave
functions in our case, can be written as
'pli(va):NanF[ii')’aUa(Da)]ua(Da)- (36)

It is thus clear that among the statg8) only those forn

>0. Thus, ¢ represents zero-energy states of the potentials-g andn=1 lead to the identical classical and quantum

V(a;p)=—(a?C2/2m)p?@~1). Now, using the conformal
mapping

(x+iy)2ePa=p2el@*Pa =y, +iy,, (29
with
u,=picogad+D,), (30
va=p3sin(ad+D,),
we have for the transformatiorxy) — (u,,v,), that
A=a?p2@ DA, (3D

whereA .= #?/u3+ % gvZ. In this way, we have from Eq.

(28)
(32

motions for the potential§24). Formally, Eq.(36) is the
proper solution as well, if the roles af, andu, are ex-
changed.

For an illustration, we present in two figures trajectories
related to the states given in E®3). In order to prepare the
plots, one needs to determine the phasﬁ’%(ua,va) and

then to solve the guidance equations for trajectories, p.e.,
=(1m)Vs®.
Using Egs(34) and(35), we can find for few values of,

S = th[ yap?sin(af+D,)

dyap?sin@d+D,)
s+4y2p?2cog(af+D,)

+p arctar( ] , (37

(Mgt 72)¥(Uq,va)=0.
where forn=0,1, we have to choosp=0; for n=2, we
As already shown in Ref41], zero-energy states of the havep=1, q=4, s=1; and forn=3, we havep=1, q
inverted 2D oscillator are infinitely degenerate and they cor=12, ands=9.
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FIG. 1. The trajectories corresponding to the states in(&8g). FIG. 2. As in Fig. 1 but fom=—1. Now, the curves fon=2
with n=0,1,2,3 anda=2. Only forn=0 andn=1, we have the andn=3 depart from the circlex2+y2=x.
Bohm's potentialQ=0, and the classical and quantum motions are
identical. The curves fon=2 andn= 3 deviate from the hyperbola
x2—y?=1. The spatial coordinates are in dimensional units. Schralinger equation and then the wave functiof
=Rexd(i/#)S] is used as its solutiofb0]. This shows, what
The guidance equations can easily be integrated formallgrycial role is played by the Bohm potent@lin attaining an
if one remembers thah(xy—xy)=L is a conserved quan- exact classical limit of quantum mechanics. Note, moreover,
tity for central potentials. Then, with the help of the polar that vanishing ofQ does not depend at all on the intensity of
coordinatesp and #, equations for trajectories can be re- wave functiong and only on the functional form of its am-
duced to the simple relatioh=(r9sga)/a0). From this, we plitudeR.

have In this connection, the last but not least comment of this
section concerns the wave function given in EGB, (12),
q(s+ 4y§u§+8y§v§ (16),.and(17), ie., fqr the'potentia[2_3). Its peculiar prop-
L=*fayala) 1+p5 55 225 (38  ertyis that the amplitud® in Eq. (12) is, for reala, under-
q“yavat(St4yau; going a jump every z and thus the full wave function is not

) . invariant under rotation. Independently of that the condition
whereu, andv, are defined in Eq30). Now, the plots are ¢ 5= is obeyed exactly. This is becauRappears both in
prepared using =A=1 anday,=1. the numerator and in the denominator@fIn such a limit,

Whenp=0 (n=0,1), we have straight lines1=u, 0n  he quantum wave function becomes the classical one and
the plane @, ,v,) for all potentials in Eq(24). For this case,  he former itself plays no significant part in the determination
the quantum potenti@=0, and the classical and quantum qf the classical state of a systenajectorie. Besides, the
trajectories are identical. . classicalS function may be well defined even in nodal re-

In the Cartesian coordinates,§) the equation=1=u,  gions whereR=0, and in the quantum case tBdunction is
represents a circle foa=—1, a cardioid fora=—1/2 and  yndefined at nodes. The classical wave function is thus of a
for example, a hyperbola fa=2. Of course, the trajecto- pyrely descriptive nature, and as such, it is not required to
ries are identical both in the classical and quantum theorieg,gqye properties of a “decent” quantum wave functions. We
In Fig. 1 we present the departure from the hyperbola whemaye reported the case of potenti@B) here to show that
the states in Eq(33) are used withn=2 andn=3. Itis  eyen if there is no quantum correction to the HJ equation, the
somewhat surprising that some kind of a shape invariance Qfuantum and classical points of view lead to a number of
the trajectories is preserved, even if the quantum correctiogyptle differences in both approaches.

Q to classical equations of the motion is different from zero.

A similar behavior we have observed for the curves related to V. CONCLUSIONS

other values of. An example for a closed curve is given in

Fig. 2, where the trajectories for=2 andn=3 depart from We have discussed a class of the 2D central potentials and
the circle. their special states leading to the identical classical and quan-

From among the staté¢83) only those given in Eq(36),  tum motions. Many of them are shown to undergo along
when substituted to the Sclilinger equation, lead to the closed curves. This greatly extends the number of potentials
classical Hamilton-JacokiHJ) equation without any quan- having closed orbits that could have been considered in the
tum correction. We shall call the stat€36) the classical known theoreni46] by Bertrand.
wave functions. The same HJ equation can be obtained if the All the special states of our paper belong to the threshold
Bohm’s potentialQ=(—#2/2m)AR/R is substracted in the value of E=0 of the continuous spectrum and some of them

062103-5



A. J. MAKOWSKI AND K. J. GORSKA PHYSICAL REVIEW A 66, 062103 (2002
are particular members of infinitely degenerated zero-energguantum mechanics, the passage from classical to quantum
states of power-law potentials. The states have been foundkscription involves much more than the introduction only of
important[39] in creation vortices around nodal points of probabilistic arguments into classical mechanics. On the
wave functions. Also the potentials considered here have nwther hand, no simple classical limit of quantum mechanics
merous applications in physics. Examples were mentioned iexists in general as well. We can say that there can be quan-
Sec. Il tum systems with no classical analog and classical systems
The most important point of our paper was, however,with no quantum analog. Even in the case of vanisl@rhpe
studying of the classical limit of quantum mechanics withoutclassical and quantum points of view may be different. The
taking particular values fat, for quantum numbers, and for reason is that the conditiad@=0 distinguishes one represen-
other similar quantities. This was achieved by demandindation of quantum mechanics, the position representation.
that the quantum correctio® to the classical HJ equation With this restriction in mind, we can conclude after Hol-
were zero. In consequence, we could contribute to the stilland [51] that: “The necessary and sufficient condition for
not cleanly resolved problem of the crossover from quantunthe classical limit is embodied in 0, which may be

to classical. In spite of what is claimed in some books ornthought of as a Correspondence Princigle
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