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Bohr’s correspondence principle: The cases for which it is exact
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Two-dimensional central potentials leading to the identical classical and quantum motions are derived and
their properties are discussed. Some of zero-energy states in the potentials are shown to cancel the quantum
correctionQ5(2\2/2m)DR/R to the classical Hamilton-Jacobi equation. The Bohr’s correspondence prin-
ciple is thus fulfilled exactly without taking the limits of high quantum numbers, of\→0, or of the like. In this
exact limit ofQ50, classical trajectories are found and classified. Interestingly, many of them are represented
by closed curves. Applications of the found potentials in many areas of physics are briefly commented.
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I. INTRODUCTION

The quantum-classical correspondence has been a su
of intensive studies from the very beginning of quantum
scription in physics. If, as it is commonly believed, quantu
mechanics were correct, it would agree with classical m
chanics in the appropriate limit. The idea, namedthe corre-
spondence principle, was proposed by N.Bohr in the ear
days of quantum mechanics.

Latest development in laser technique has made pos
an experimental exploration of many fundamental quant
problems. The quantum-classical border is, no doubt, on
them. Quite strong activity in this field includes experimen
on studying quantum-classical regime for high quant
number states of Rydberg atoms@1# and also for circular
states of the hydrogen atom@2#. Worth mentioning are ex-
periments on the observation of environment-induced de
herence@3#, cold-atom collisions@4# or single-atom trajecto-
ries in cavity in real time@5#.

Recent research, including test of Wigner function@6#, an
analysis of quantum-classical transition in nonlinear dyna
cal systems@7# or discussion of the problem, how long cla
sical and quantum evolutions stay close@8#, also contribute
to better understanding of quantum-classical corresponde

In this context, we should emphasize that no commo
accepted definition of the correspondence principle exists
one, it means taking\→0, though the limit is not well-
defined mathematically unless some additional conditi
are specified. Moreover, the limit does not commute@9# with
another one,t→`, which is important for the systems, wit
chaotic classical counterparts. To other, it is correctly form
lated for the limit of large quantum numbers@10,11#. This
expectation was critically reviewed in the recent comme
@12,13# for the potentials of the form2Cn /r n with n.2.

An important approach to the quantum-classical cor
spondence is also given via expectation values for the p
tion and momentum, as in Ehrenfest’s theorem@14#. Yet, this
approach is known to be of a restricted validity, since
evolution of a wave packet is governed by Ehrenfest’s eq
tion for short times only@15,16#.

To have a full classical description emerging from qua
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tum mechanics, it would be necessary to formulate quan
systems in phase space. One can try to do this@17# with the
help of Wigner-transform formalism@18#. Though very use-
ful, the approach is also of a limited validity since in mo
cases the Wigner function is not positively determined. T
modification, due to Husimi@19#, removes the last disadvan
tage, but contrary to the Wigner function, now the margin
distributions in coordinates and momenta are not exact. N
ertheless, the phase-space approach to the quantum-cla
correspondence, appeared to be also very useful in stud
effects of interactions with a stochastic environment@20#, the
so-called decoherence@21#, since it is easily generalized t
the case of density matrix.

In conclusion, we can say that there is no commonly
cepted definition of the correspondence principle and ma
taining that classical mechanics is contained in quantum
chanics, or that the latter is an extension of the former,
too far-reaching simplifications. Therefore we should p
haps acknowledge after Ref.@22# that: ‘‘In its general con-
text, the correspondence principle requires that any two va
physical theories which have an overlap in their domains
validity must, to relevant accuracy, yield the same pred
tions for physical observations.’’

There can be situations when approaching the class
limit is not possible at all. Simple examples are provided
the Rydberg’s constantR`5me4/8ch3«0

2 and famous Ein-
stein’s formula for the photoelectric effectE5hn2P. Con-
temporary examples@22,23# are given by some classicall
chaotic models.

In contrast, there are interesting relations between
classical and quantum theories valid even for low quant
numbers and relatively small values of the classical acti
known as the correspondence identities@24#.

On the other hand, one can ask whether there are
potentials, states and energies, when without taking the lim
of \→0, of large quantum numbers, of small de Brog
wave length , or of the like, the quantum and classical
scriptions yieldexactly the same predictions. This way o
thinking was originated by Rosen@25# who found few ex-
amples of such potentials and states. Their number@26–30#
was greatly multiplied since and general formulas for su
potentials were also found@31–33#.

In this paper, we want to extend our recently obtain
results@34# for two-dimensional~2D! central potentials hav-
©2002 The American Physical Society03-1
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ing the property that some of their states have vanish
quantum correction~the Bohm’s potential! to the classical
Hamilton-Jacobi equation. In this way, the velocity field
and hence also the trajectories, are identical in both the c
sical and quantum descriptions.

The paper is organized as follows: Sec. II presents a
tematic search for the 2D potentials with the above prope
previously @34# found basing mostly on a ‘‘good guessin
method.’’ Thanks to that, some new potentials can be p
posed here. Section III gives a review of trajectories that
possible in the limit of vanishing the quantum or of th
Bohm potentialQ. Then Sec. IV presents the special wa
functions with the above property. The paper concludes w
Sec. V.

II. SPECIAL POTENTIALS

We consider a special class of potentials, derivable fr
the stationary Schro¨dinger equation, from which, we have

V5E1
\2

2m

Dc

c
. ~1!

Now, using the wave function in polar formc
5R exp@(i/\)S#, with real functionsR andS, we get

V5E2H ~“S!2

2m
2

i\

2m F 2

R
“R•“S1DSG2

\2

2m

DR

R J .

~2!

The vanishing of the square brackets in Eq.~2!, i.e., the
continuity equation, guarantees conservation of the proba
ity flux and reality of potentials. What is remaining is th
classical Hamilton-Jacobi equation supplemented with
quantum correction, called the inner or Bohm’s potentialQ
ª(2\2/2m)(DR/R). We look for special potentials with
the property that for some of their states the amplitudeR
obeys the Laplace equation. Thus, the quantum correctio
zero and the classical limit of quantum mechanics is attai
exactly, without taking large quantum numbers, or the lim
of \→0, or of the like. Finally, ifV in Eq. ~2! is to be a
central potential, then (“S)2 must be a function, sayf, of a
distance only.

In this way, one has to search for the solutions of the th
coupled partial differential equations,

“•~R2
“S!50, ~3!

DR50, ~4!

V5E2
1

2m
f , ~5!

for the three unknown functionsR, S, andV, where

~“S!25 f . ~6!

In what follows we restrict ourselves to the two
dimensional~2D! central potentials. The method that can
useful in this case, in tackling the problem of integration
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Eqs.~3!, ~4!, and~5!, is based on the observation that for a
solutions of Eq.~4!, the functionS must be such that (“S)2

in Eq. ~6! is independent of an angle. In polar coordinate
r5Ax21y2 and u5arctan(y/x), Eq. ~6! takes the form of
(]S/]x)21(]S/]y)25(]S/]r)21r22(]S/]u)25 f (r). We
are now able to distinguish the following cases.

First, let us start with

S~r,u!5Au1E Af ~r!2A2/r2dr. ~7!

This is a complete integral of Eq.~6! with the explicit form
for the function f (r) being for now unknown. It can be
determined afterS(r,u) is substituted into Eq.~3!. Then, we
have

4FA

r
Af 2

A2

r2

]R

]u
1rS f 2

A2

r2 D ]R

]r G1RS r
d f

dr
12 f D50.

~8!

The requirement for an independence off (r) on the angle
greatly restricts the number of acceptable solutions of E
~3! and ~4!. One possible solution of Eq.~8! is obviously
given by

f 5
A2

r2
. ~9!

Another solution of Eq.~8! is found if

R~r!5 ln~drc!, ~10!

which, of course, obeys the 2D Laplace equation~4!. Again,
we obtain the solution~9!, but additionally we can also get

f ~r!5
A2

r2
1

C1
2

r2ln4~drc!
, ~11!

where henceforth all undefined symbols stand for real c
stants.

Equation~8! can also be solved exactly if

R~r,u!5eauF~r!, ~12!

whereR(r,u) is to obey Eq.~4! which now simplifies to

r2
d2F

dr2
1r

dF

dr
1a2F50. ~13!

This is Euler’s type equation and its solution fora2.0, has
the form

F~r!5C2sin@ ln~bra!#. ~14!

Obviously, fora250 we would get the solution~10!. This
time, instead of Eq.~8!, we have to solve the equation
3-2
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4FaA

r
Af 2

A2

r2
F1rS f 2

A2

r2 D dF

dr G1FS r
d f

dr
12 f D50,

~15!

with the function F(r) given in Eq. ~14!. This nonlinear
equation can be reduced to a linear one, as

f ~r!5
A2

r2
1U2~r!. ~16!

Omitting details of further calculations, we shall write dow
the final result,

U~r!5
j2A ln~bra!1~A/2!sin@2 ln~bra!#

r sin2@ ln~bra!#
. ~17!

Equations~5!, ~16!, and ~17! give, for particular choices
of real constantsj, A, a, b, the new class of singular centra
2D potentials leading to identical classical and quantum
jectories.

Another possible choice for the phaseS is

S~r,u!5Carasin~au1Da!. ~18!

For this choice ofS(r,u), the functionf in Eq. ~6! will also
be dependent onr only, as it should be. Substituting th
function into Eq.~6!, we have

f ~r!5a2Ca
2r2(a21) ~aÞ0,1!. ~19!

Furthermore, one can verify easily that Eqs.~3! and ~4! are
fulfilled if

R~r,u!5Caracos~au1Da!. ~20!

The parametera is a real positive or negative constant, n
necessarily integer, and thus we extend again the clas
potentials derived previously@34#.

For the sake of further discussion let us gather the po
tials altogether as

V~r!5E2
1

2m

A2

r2
, ~21!

V~r!5E2
1

2mFA2

r2
1

C1
2

r2ln4~drc!
G , ~22!

V~r!5E2
1

2mFA2

r2
1U2~r!G , ~23!

Va~r!5E2
1

2m
a2Ca

2r2(a21) ~aÞ0,1!. ~24!

From their construction the potentials have eigenstates
longing to the continuous spectrum. When substituted to
stationary Schro¨dinger equation they correspond to th
threshold energyE50. Studying of the physical systems
between the bound-state regime and the continuum ha
06210
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tracted much attention recently@35–39#. It was, among other
reasons, motivated by an interest in cold atoms and t
interactions. The potentials found here are also widely u
in other physical applications. For instance,V1/2(r), derived
from Eq. ~24!, is a 2D Kepler problem@40#, andV2(r) rep-
resents an inverted 2D oscillator, the simplest model of
unstable system in quantum mechanics@39,41,42#. Worth of
mentioning are also application of the potentials2r63,
2r64,2r65 in the collision theory @43# and low-
dimensional quantum dots@44#. The potential singled out in
Eq. ~21! was also a subject of many studies, among them
a convenient model for an analysis of anomalous symm
breaking in quantum mechanics@45#.

III. TRAJECTORIES

For the potentials derived above, the quantum correc
Q to the classical Hamilton-Jacobi equation is exactly ze
Obviously, this is the case only for some states in the pot
tials. As a result of that, the notion of trajectory is identic
both in the classical and quantum descriptions. The or
can be found from the known relation

ṙ5
1

m
“S5

i\

2m

c“c* 2c*“c

ucu2
, ~25!

which, for the special states of our 2D potentials, is exac
integrable for all cases discussed here. For instance, for
potential~23!, we have, after using Eqs.~7!, ~16!, ~17!, and
~25!, the solution

u5
21

2a
lnUCH j2A ln~bra!1

A

2
sin@2 ln~bra!#J U,

~26!

whereu andr stand for the polar coordinates defined in Se
II. Much more interesting are potentials specified in Eq.~24!.
In this case, we can find for the orbits, using Eqs.~18! and
~25!, that

ra~u!5F L

aCacos~au1Da!G
1/a

. ~27!

The symbolL5A5m(xẏ2 ẋy) represents quantity of the
dimension of angular momentum which is, of course, a c
stant of the motion.

Very interesting feature of Eq.~27! is that closed orbits
are possible for some values of the parametera. To observe
this, it is convenient to take for arbitrary constantsL/aCa
51 andDa50. Then, it is not difficult to prove the exis
tence of closed orbits for negative values ofa. By all means,
when a521,22,23, . . . , we will get respectively, the
circle (x21/2)21y251/4, the Bernoulli lemniscate (x2

1y2)25x22y2, and then n-leaved roses (n523,24,
25, . . . ). Other sequence of closed orbits can be genera
when a521/k with k52,3,4, . . . . The simplest (k52)
member of the family is cardioid (x21y22x)25x21y2 and
the next curves are some deformations of the limacon
Pascal. The missing two conics can also be derived,
3-3
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indeed fora52 we can find from Eq.~27! the hyperbola
x22y251, and fora51/2 the parabolay254(12x).

In this connection, we should mention the nineteen
century theorem by Bertrand@46#, that asserts that the onl
central power-law potentials having closedboundedorbits
are the Coulomb potentialV(r )52a/r , a.0 and the iso-
tropic harmonic oscillatorV(r )5br 2, b.0. Our results
show that in the limit of vanishing Bohm’s potential, th
trajectories for a large class of 2D central potentials are gi
by closed curves, some of them being special curves stu
long ago by mathematicians.

The trajectories for positive values ofa are not very in-
teresting. Some of them have been discussed elsewhere@34#,
together with those for the potentials~21! and ~22!.

IV. CLASSICAL WAVE FUNCTIONS

All the states we have derived in the paper belong to
continuous spectrum and are not square-integrable functi
Since the practically important potentials are those given
Eq. ~24!, we shall restrict ourselves mostly to the discuss
of wave functions represented by the amplitudes~20! and
phases~18!, i.e., for the power-law potentials of Eq.~24!.
Eigenstates for one of them,V(r);2r2, are best known
and have been intensively studied both in the 1D@47–49#
and 2D@39,41,42# spaces. It follows from a recent remar
able observation by Kobayashi and Shimbori@39# that all the
wave functions for arbitrary values of the parametera, can
be, in suitable coordinates, represented by the same func
of the inverted 2D oscillator potential. Details can be fou
in Ref. @39#, and therefore we shall report here only nec
sary formulas.

Let us introduce the potentials~24! into the stationary
Schrödinger equation, then

Dc1a2ga
2r2(a21)c50, ~28!

where D5]2/]x21]2/]y2, r5Ax21y2 and ga
25Ca

2/\2

.0. Thus,c represents zero-energy states of the potent
V(a;r)52(a2Ca

2/2m)r2(a21). Now, using the conforma
mapping

~x1 iy !aeiD a5raei (au1Da)5ua1 iva , ~29!

with

ua5racos~au1Da!, ~30!

va5rasin~au1Da!,

we have for the transformation (x,y)→(ua ,va), that

D5a2r2(a21)Da , ~31!

whereDa5]2/]ua
21]2/]va

2 . In this way, we have from Eq
~28!

~Da1ga
2!c~ua ,va!50. ~32!

As already shown in Ref.@41#, zero-energy states of th
inverted 2D oscillator are infinitely degenerate and they c
06210
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respond to the complex eigenvalues of the type7 i (nx
2ny)\v, v52Ca /m, as nx5ny . Since the form of Eq.
~32! is the same for all values ofa, includinga52, solutions
of this equation can thus be written by the same functio
that are known for the inverted 2D oscillator@41#. They have
the form @39#

cn
6~va!5Na exp@6 igava~Da!# f n

6~ua ,va!

[Rn
(a)~ua ,va!exp@~ i /\!Sn

(a)~ua ,va!#, ~33!

wheren5N, the functionf 6(ua ,va) is a polynomial ofua

and va , and Rn
(a) and Sn

(a) are real functions of their argu
ments. The first four terms off n

6 are

f 0
651,f 1

654gaua , ~34!

f 2
654~4ga

2ua
21164igava!, f 3

6516gaua~4ga
2ua

219

612igava!. ~35!

For the solutioncn
6(ua) we should takef n

6(va ,ua), where
the symbolsua andva are exchanged.

When n>1 the solutions cannot be normalized in term
of Dirac d functions, and instead, we have to treat them
the eigenfunctions of the conjugate spaceS(R2)3 in the
Gel’fand triplets S(R2),L 2(R2),S(R2)3, where S(R2)
andL 2(R2) are, respectively, Schwartz space and Lebes
space in two dimensions. General properties of such fu
tions have been discussed in a series of elaborated pa
@39,41,42,47# and for the excellent introduction to the prob
lem we refer the reader to the papers.

Now, according to Eqs.~18!, ~20!, and ~30!, the wave
functions in our case, can be written as

c1
6~va!5Na exp@6 igava~Da!#ua~Da!. ~36!

It is thus clear that among the states~33! only those forn
50 and n51 lead to the identical classical and quantu
motions for the potentials~24!. Formally, Eq. ~36! is the
proper solution as well, if the roles ofva and ua are ex-
changed.

For an illustration, we present in two figures trajectori
related to the states given in Eq.~33!. In order to prepare the
plots, one needs to determine the phasesSn

(a)(ua ,va) and

then to solve the guidance equations for trajectories, i.eṙ
5(1/m)“Sn

(a) .
Using Eqs.~34! and~35!, we can find for few values ofn,

Sn
(a)56\H garasin~au1Da!

1p arctanS qgarasin~au1Da!

s14ga
2r2acos2~au1Da!

D J , ~37!

where forn50,1, we have to choosep50; for n52, we
have p51, q54, s51; and for n53, we havep51, q
512, ands59.
3-4
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The guidance equations can easily be integrated form
if one remembers thatm(xẏ2 ẋy)[L is a conserved quan
tity for central potentials. Then, with the help of the pol
coordinatesr and u, equations for trajectories can be r
duced to the simple relationL5(]Sn

(a)/]u). From this, we
have

L56\agauaH 11p
q~s14ga

2ua
218ga

2va
2!

q2ga
2va

21~s14ga
2ua

2!2J , ~38!

whereua andva are defined in Eqs.~30!. Now, the plots are
prepared usingL5\51 andaga51.

Whenp50 (n50,1), we have straight lines615ua on
the plane (ua ,va) for all potentials in Eq.~24!. For this case,
the quantum potentialQ50, and the classical and quantu
trajectories are identical.

In the Cartesian coordinates (x,y) the equation615ua
represents a circle fora521, a cardioid fora521/2 and
for example, a hyperbola fora52. Of course, the trajecto
ries are identical both in the classical and quantum theor
In Fig. 1 we present the departure from the hyperbola w
the states in Eq.~33! are used withn52 and n53. It is
somewhat surprising that some kind of a shape invarianc
the trajectories is preserved, even if the quantum correc
Q to classical equations of the motion is different from ze
A similar behavior we have observed for the curves relate
other values ofa. An example for a closed curve is given
Fig. 2, where the trajectories forn52 andn53 depart from
the circle.

From among the states~33! only those given in Eq.~36!,
when substituted to the Schro¨dinger equation, lead to th
classical Hamilton-Jacobi~HJ! equation without any quan
tum correction. We shall call the states~36! the classical
wave functions. The same HJ equation can be obtained if
Bohm’s potentialQ5(2\2/2m)DR/R is substracted in the

FIG. 1. The trajectories corresponding to the states in Eq.~33!
with n50,1,2,3 anda52. Only for n50 andn51, we have the
Bohm’s potentialQ50, and the classical and quantum motions a
identical. The curves forn52 andn53 deviate from the hyperbola
x22y251. The spatial coordinates are in dimensional units.
06210
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Schrödinger equation and then the wave functionc
5R exp@(i/\)S# is used as its solution@50#. This shows, what
crucial role is played by the Bohm potentialQ in attaining an
exact classical limit of quantum mechanics. Note, moreov
that vanishing ofQ does not depend at all on the intensity
wave functionc and only on the functional form of its am
plitude R.

In this connection, the last but not least comment of t
section concerns the wave function given in Eqs.~7!, ~12!,
~16!, and ~17!, i.e., for the potential~23!. Its peculiar prop-
erty is that the amplitudeR in Eq. ~12! is, for reala, under-
going a jump every 2p and thus the full wave function is no
invariant under rotation. Independently of that the conditi
of Q50 is obeyed exactly. This is becauseR appears both in
the numerator and in the denominator ofQ. In such a limit,
the quantum wave function becomes the classical one
the former itself plays no significant part in the determinati
of the classical state of a system~trajectories!. Besides, the
classicalS function may be well defined even in nodal r
gions whereR50, and in the quantum case theS function is
undefined at nodes. The classical wave function is thus
purely descriptive nature, and as such, it is not required
have properties of a ‘‘decent’’ quantum wave functions. W
have reported the case of potential~23! here to show that
even if there is no quantum correction to the HJ equation,
quantum and classical points of view lead to a number
subtle differences in both approaches.

V. CONCLUSIONS

We have discussed a class of the 2D central potentials
their special states leading to the identical classical and qu
tum motions. Many of them are shown to undergo alo
closed curves. This greatly extends the number of poten
having closed orbits that could have been considered in
known theorem@46# by Bertrand.

All the special states of our paper belong to the thresh
value ofE50 of the continuous spectrum and some of the

FIG. 2. As in Fig. 1 but fora521. Now, the curves forn52
andn53 depart from the circlex21y25x.
3-5
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are particular members of infinitely degenerated zero-ene
states of power-law potentials. The states have been fo
important @39# in creation vortices around nodal points
wave functions. Also the potentials considered here have
merous applications in physics. Examples were mentione
Sec. II.

The most important point of our paper was, howev
studying of the classical limit of quantum mechanics witho
taking particular values for\, for quantum numbers, and fo
other similar quantities. This was achieved by demand
that the quantum correctionQ to the classical HJ equatio
were zero. In consequence, we could contribute to the
not cleanly resolved problem of the crossover from quant
to classical. In spite of what is claimed in some books
n
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quantum mechanics, the passage from classical to quan
description involves much more than the introduction only
probabilistic arguments into classical mechanics. On
other hand, no simple classical limit of quantum mechan
exists in general as well. We can say that there can be q
tum systems with no classical analog and classical syst
with no quantum analog. Even in the case of vanishingQ the
classical and quantum points of view may be different. T
reason is that the conditionQ50 distinguishes one represen
tation of quantum mechanics, the position representation

With this restriction in mind, we can conclude after Ho
land @51# that: ‘‘The necessary and sufficient condition f
the classical limit is embodied in Q→0, which may be
thought of as a Correspondence Principle.’’
m.
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