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Consistent resolution of some relativistic quantum paradoxes

Robert B. Griffiths*
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

~Received 19 August 2002; published 5 December 2002!

A relativistic version of the~consistent or decoherent! histories approach to quantum theory is developed on
the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave
packet collapse, Bohm’s formulation of the Einstein-Podolsky-Rosen paradox, and Hardy’s paradox. It is
argued that wave function collapse is not needed for introducing probabilities into relativistic quantum me-
chanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic
time dependence can be used to construct a physical picture of the measurement process that is less misleading
than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description
in which particles move along trajectories, with behavior under Lorentz transformations the same as in clas-
sical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States
entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently
handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning
which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory,
and are resolved~or tamed! by using a proper quantum analysis. In particular, there is no need to invoke, nor
any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this
source, between relativity theory and quantum mechanics.
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I. INTRODUCTION

Three-quarters of a century after the establishment o
basic principles the physical interpretation of nonrelativis
quantum theory remains a controversial subject. The m
ematical structure of the theory, a suitable Hilbert space
gether with the unitary time evolution produced by Schro¨d-
inger’s equation, is universally accepted. The controve
has to do with the meaning to be assigned to a wave fu
tion, the role of measurements, the significance of w
function collapse, the interpretation of macroscopic quant
superpositions~Schrödinger’s cat!, a proper understanding o
entangled states—such as in the famous Einstein-Podo
Rosen~EPR! paradox—and similar topics@1#. While a fail-
ure to understand these matters has not prevented the a
cation of quantum theory to an enormous range
phenomena, it does make the subject confusing and diffi
for students, and for professional physicists who want to
ply quantum mechanics to a new domain, such as quan
information. A good physical theory requires both a sou
mathematical framework and a consistent physical interp
tation, and the latter is not entirely satisfactory in curre
quantum mechanics textbooks.

The situation does not improve upon going from nonr
ativistic to relativistic quantum mechanics and field theo
The mathematics is more elegant and harder to follow,
the same conceptual difficulties relating the mathematic
physical reality remain; indeed, they are worse. Wave fu
tion collapse, which is something of an embarrassment
the nonrelativistic theory, gives rise to serious concept
problems in the relativistic case, and there have been nu
ous discussions about this problem and how to deal with
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among them@2–12#. The original EPR argument@13# was
formulated without reference to relativity theory. Howeve
the fact that quantum theory predicts violations of Bell’s i
equality @14,15#, together with the experimental vindicatio
of this prediction,@16,17# is nowadays often interpreted t
mean that quantum mechanics is nonlocal in the sense
certain causes can produce immediate effects a long~macro-
scopic! distance away@7,18#. This, of course, calls into ques
tion a basic principle of relativistic physics. In addition the
are other quantum paradoxes, somewhat analogous to E
in which Lorentz invariance is an explicit part of the co
struction@6,19–21#, and their existence suggests some co
flict, or at least a certain tension, between quantum the
and relativity.

Most paradoxes of nonrelativistic quantum mechanics
closely linked to a single fundamental difficulty which th
founding fathers did not solve: introducing probabilities in
the theory in a fully consistent way. Conventional textbo
quantum theory, following the lead of von Neumann@22# and
London and Bauer@23#, employs a deterministic unitary tim
development based upon Schro¨dinger’s equation, and then
assumes that ameasurementwill, for some reason, have a
random outcome whose probability can be calculated, e
though its existence cannot be justified, using Schro¨dinger’s
wave function. Assigning measurements to this special r
in a fundamental theory seems rather odd, and generation
students have been just as perplexed by it as were t
teachers. To be sure, a bizarre idea that helps organize
experience should not be rejected out of hand, and the a
rithm by which a wave function is used to calculate pro
abilities of measurement outcomes has been extremely f
ful, with numerous results in very good agreement w
experiment. At the same time, the measurement approach
given rise to an enormous set of conceptual headaches. I
field of quantum foundations these are referred to coll
©2002 The American Physical Society01-1
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tively as themeasurement problem, and there has been ver
little progress in solving them@24–26#. In short, while in-
voking measurements makes it possible to calculate p
abilities which agree with experiment, in many other wa
this approach to a fundamental understanding of quan
theory causes more problems than it solves.

In the last two decades methods based upon the ide
quantum histories~consistent or decoherent histories! have
been used to introduce probabilities into quantum theory
consistent way without making any reference to measu
ment, by treating quantum dynamics as an inherently
chastic process@27–35#. This allows measurements to b
thought of not as something special, but as particular
stances of quantum processes to which quantum theory
signs probabilities using the same laws which apply to
other processes. The probabilities of measurement outco
obtained in this way are identical with those computed us
the older approach, and thus in complete agreement
experiment. But in the new approach measurements ar
longer necessary for interpreting quantum theory, and a
consequence the measurement problem disappears. This
not mean that quantum mechanics reduces to classical p
ics. Instead, its seeming oddities, when properly understo
are seen to be the consequences of a perfectly consi
mathematical and logical structure, applicable to both mic
scopic and macroscopic systems, which differs in crucial
spects from that of classical physics. In brief, quantum re
ity is different from classical reality, just as relativistic reali
differs from ~prerelativistic! classical reality.

Introducing probabilities in a consistent way without a
pealing to measurements makes it possible to resolve o
least tame the paradoxes of nonrelativistic quantum theo
as shown in detail in Chaps. 20 through 25 of@35#. The
notion of taming a paradox can be illustrated by referenc
the well-known twin paradox of relativity theory. Intuitivel
it seems surprising that the astronaut who has been trave
for many years at high speed returns to Earth biologica
much younger than his stay-at-home twin brother. But~spe-
cial! relativity provides a consistent framework which allow
us to understand, in both mathematical and physical ter
why this can be so. This explanation does not, and sho
not, remove our surprise when we first encounter the dif
ence between the relativistic idea of time and the notion
absolute time that seems much closer to our everyday e
rience. However, once we understand relativistic princip
the twin paradox is no longer a conceptual headache
unsolved mystery that calls into question our understand
of physical reality. Instead, it is a striking illustration of ho
that reality differs from what we naively expected befo
studying it more closely.

The goal of the present paper is to apply the same
proach, probabilities not based on measurement, to relat
tic versions of the nonrelativistic paradoxes which have b
successfully tamed by this method, in particular, to relativ
tic versions of wave function collapse, the EPR paradox,
Hardy’s paradox. Before presenting a brief outline of the r
of the paper, it is worth noting that there are numerous c
ceptual difficulties and paradoxes of relativistic quantum m
chanics and quantum field theory which are not addresse
06210
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the present paper. While there is no need to list all of the
one in particular is worth mentioning: the problem ofmi-
crolocality, to be distinguished~or so we believe! from that
of themacrolocalityneeded for discussing the paradoxes j
mentioned. Microlocality is associated, at least intuitive
with the idea that relativistic quantum particles cannot
well localized in regions with linear dimensions which a
too small, nor precisely localized, in a sense which wo
please a mathematician, in any finite region. For example
take the physicist’s point of view, it does not make sense
think of an electron localized in a region smaller than
Compton wavelength. Microlocality comes up in Newto
Wigner states and in Hegerfeldt’s results on nonlocalizati
see@36–38# for some representative literature. The pres
paper contains no attempt to resolve the mysteries of
crolocalization; instead the strategy, as in@3,4#, is to avoid
them by setting up relativistic quantum histories using
coarse-grained length scale: distances which, though not
essarily macroscopic, are always significantly larger than
relevant Compton or other length scale which might limit t
notion of locality employed in Sec. III B. The resulting fo
mulation can at best be a good approximation, but we beli
it is still sufficient for taming those paradoxes with which w
are concerned, for they involve quantum correlations wh
can exist over length scales of centimeters or even, in
case of light, meters or kilometers. Thus we take the attit
that the problems and paradoxes of macrolocality can
separated from issues of relativistic microlocality. Shou
this be false it would, needless to say, call into question
main results of this paper.~Note that the histories approac
has been applied to some microlocal problems by Om`s
@39#.!

In order to make the present work self-contained, Sec
contains a summary of the essential ideas of the nonrela
istic histories approach as formulated in@35#, and a specific
example is considered in Sec. II D, to make the presenta
a bit less abstract.~Here, and later, we omit the argumen
needed to show that various families of histories are con
tent or inconsistent, as they are not needed in order to fol
the presentation. A detailed discussion of consistency co
tions and methods for checking them will be found in Cha
10 and 11 of@35#; a more compact presentation is in@32#.!
The formulation of relativistic histories presented in Sec.
follows in the footsteps of earlier work by Hartle@40#. Most
of the ideas are not new, but the way in which they a
presented owes something to developments in the nonrel
istic theory during the last decade. There is one import
difference between our approach and Hartle’s. He emplo
regions with a finite extent in the time direction, whereas
use spacelike hypersurfaces which at each point in space
instantaneous in time. Given that the present formulation
as explained in the previous paragraph, coarse graine
space, there is no reason not to think of it as~in some sense!
coarse grained in time, so the difference with Hartle’s form
lation may not be all that significant. There is other wo
@39,41# which has made use of relativistic histories and it
we believe, consistent with the present formulation in so
as they overlap.

The discussion of relativistic paradoxes begins in Sec.
1-2
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CONSISTENT RESOLUTION OF SOME RELATIVISTIC . . . PHYSICAL REVIEW A66, 062101 ~2002!
with the collapse of the wave function of a single partic
emitted in a spherical wave as the result of some nuc
decay. This, or rather a one-dimensional analog which se
to illustrate the main points, is treated in some detail, for
resolving~or taming! this paradox one employs most of th
ideas needed to handle relativistic versions of the Einst
Podolsky-Rosen~EPR! paradox as formulated by Bohm
taken up in Sec. V, and a paradox due to Hardy, considere
Sec. VI. Studying these three paradoxes suffices, we beli
to expose the basic principles needed to tame other p
doxes of the same general sort, the kind which tempt on
think that the quantum world is inhabited by mysterious
fluences which can propagate at superluminal speeds. On
our main conclusions is that there are no such influen
belief in them seems to have arisen through confusion o
the proper rules for reasoning about the physical proper
of quantum systems, that is, logical difficulties which a
essentially the same in both the nonrelativistic and the r
tivistic theory, although relativity adds a few interestin
twists. Counterfactual forms of relativistic paradoxes a
strictly speaking, outside the scope of the present paper
cause analyzing them requires a relativistic generalizatio
the formulation of counterfactual reasoning in@42# and
Chap. 19 of@35#, and this is not yet available. A concludin
Sec. VII provides a summary both of the principles of re
tivistic histories in Sec. III and of the lessons learned throu
exploring and taming the paradoxes in Secs. IV to VI.

II. NONRELATIVISTIC QUANTUM HISTORIES

A. Kinematics

There are by now a number of treatments of the ba
principles of nonrelativistic quantum theory from a histori
perspective@29,31–35#. While these differ in some details
the basic strategy is the same; in what follows we use
notation in@35#, where the reader will find a detailed discu
sion of various points which, of necessity, are treated i
summary fashion in the present discussion.

The histories approach starts with the idea, which g
back to von Neumann, Sec. III.5 of@22#, that any property of
a quantum system at a given instant of time corresponds
subspaceof the quantum Hilbert space, and the negation
this property to the orthogonal complement of this subsp
@43#. Equivalently, a property is represented by a projectoP
~orthogonal projection operator! onto the subspace in que
tion, and its negation by the projectorI 2P, whereI is the
identity operator. Such properties cannot, in general, be c
bined with one another in the manner which is possible
classical physics. For example, for a spin-half particle
property that thez component of angular momentum be po
tive, Sz511/2 in units of \, corresponds to a one
dimensional subspace in the Hilbert space, as does its c
terpartSx511/2 for thex component of angular momentum
In classical physics one would then be able to make sens
the conjunction of these two properties:Sz511/2 AND Sx
511/2. But in quantum theory this is not possible, at le
without altering the rules of logic as suggested by Birkh
and von Neumann@44#: Sz511/2 AND Sx511/2 is not a
meaningful proposition, as it corresponds to no subspac
06210
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the Hilbert space, nor is its negationSz521/2 OR Sx

521/2 a meaningful proposition.~For more details, see
@33,35#.! In the histories approach two propositions whi
stand in such a relationship are calledincompatible, and the
basic strategy for avoiding the contradictions associated w
nonrelativistic quantum paradoxes is to insist that all va
quantum descriptions consist of compatible entities: prop
ties, histories, etc. In particular, properties corresponding
subspaces whose projectors do not commute with each o
are always incompatible.

A quantumhistory is a sequence of quantum properties
a succession of times, say

t0,t1,t2,•••,t f , ~1!

and has the form

Ya5P0
a0(P1

a1(P2
a2(•••(Pf

a f , ~2!

wherePj
a j is some projector representing a property of t

system at the timet j . Thea j is a label which differentiates
this projector from other projectors representing alternat
properties which the system might possess at this time.
collection of such projectors at timet j form adecomposition
of the identity$Pj

a j%, or

I j5(
a j

Pj
a j . ~3!

~The subscript on the identity operatorI can be ignored in the
nonrelativistic case, but is needed for the relativistic gen
alization.! The composite labela5(a0 ,a1 ,a2 , . . . ) onY in
~2! identifies the history as a whole, and the collection of
histories of this sort~for a fixed decomposition of the iden
tity at each time! form asamples spaceof histories. Note that
the superscripts in~2! and ~3! are labels, not powers. Thi
usage need not cause any confusion, since the square
projector is the projector itself, and thus there is never a
need to raise it to some power. One often considers histo
with a fixed initial stateof the form

Ya5C0(P1
a1(P2

a2(•••(Pf
a f , ~4!

with C0 a single projector~possibly onto a pure state! inde-
pendent ofa.

While the symbols( in ~2! and~4! can be regarded sim
ply as spacers, equivalent to commas, it is actually con
nient to think of them as a variant of̂ , the operator for a
tensor product, so thatYa is a projector on the Hilbert spac

H̆5H0(H1(H2•••(Hf ~5!

of histories, the tensor product off 11 copies of the Hilbert
spaceH of the system at a single time@45#. The product
YaYā of two projectors of the form~2! is zero ifaÞā, that
is, if a j is not equal toā j for somej. Projectors onH̆ of the
form
1-3
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Y5(
a

paYa, ~6!

where eachpa is either 0 or 1, form aBoolean algebraof
history projectors, all of which commute with one anoth
This Boolean algebra, or the sample space which gener
it, is called afamily of histories, and in the histories approa
represents theevent algebrafor a probability theory.

Whereas families of histories of the form~2! or ~4!, with
the projectors at any given time coming from a single d
composition~3! of the identity, are the simplest kind to thin
about, the histories formalism actually allows for much mo
general possibilities, see Chap. 14 of@35#, which are some-
times useful. Since including these more general families
a relativistic theory gives rise to no new problems or issu
the exposition below and in Secs. III and IV is restricted
the simpler type of family based on~3!. ~A further generali-
zation allowed by Isham’s formalism, projectors on the h
tory space~5! which cannot be written as a tensor product,
in ~3!, or as a sum of projectors which are themselves ten
products, are excluded from the present discussion, and
the relativistic generalization given below. Such histor
have yet to be given any physical interpretation.!

In ordinary probability theory one assumes that one a
only one of the mutually exclusive possibilities which ma
up a sample space~e.g., heads and tails for a tossed co!
actually occurs. Similarly, in the histories approach to qu
tum theory, one supposes that one and only one of the h
ries which make up the sample space actually takes plac
a given ‘‘experimental run.’’ In addition, if the historyYa for
a givena is the one which actually occurs, the success
projectors in~2! are thought of as representing actual sta
of affairs at the times in question. Thus the histories
proach, unlike textbook quantum theory, does not confine
physical interpretation to measurements or the results
measurements. Instead, measurements are physical proc
to be analyzed in the same way as all other physical p
cesses, by constructing appropriate histories of the t
quantum system including the measuring apparatus. This
paratus must be treated as a quantum mechanical sys
since the histories interpretation insists that everything
discussed in quantum terms without introducing classical
ements~except as approximations to quantum theory!. In this
way the histories approach eliminates paradoxical elem
of nonrelativistic quantum theory which arise out of treati
measurement as a fundamental concept.

B. Dynamics

The time development of a quantum system, in the his
ries perspective, is fundamentally a random or stocha
process, and the deterministic, time-dependent Schro¨dinger
equation is used as a tool to calculate the probabilities
different histories.~To be sure, the theory allows for dete
ministic histories in which later events follow with probab
ity one from some initial condition. But such ‘‘unitary’’ his
tories are exceptional cases; most histories which are
interest in connection with actual laboratory experiments
not of this form.! As is well know, by integrating Schro¨-
06210
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dinger’s equation for a closed quantum system one can
tain a collection of unitarytime development operators, de-
noted here byT(t8,t), where the timest8 and t serve as
labels. For a time-independent HamiltonianH these opera-
tors can be written as

T~ t8,t !5exp@2 i ~ t82t !H/\#. ~7!

Whether or notH depends on the time, as long as it is He
mitian the time development operators satisfy the followi
conditions:

T~ t,t !5I , T~ t9,t8!T~ t8,t !5T~ t9,t !,

T~ t8,t !5T†~ t,t8!5T21~ t,t8! ~8!

for all t, t8, andt9.
Given the time development operators, achain operator

for the historyYa in ~2! can be defined by writing its adjoin
in the form

K†~Ya!5P0
a0T~ t0 ,t1!P1

a1T~ t1 ,t2!

3P2
a2T~ t2 ,t3!•••T~ t f 21 ,t f !Pf

a f , ~9!

where the projectors appear in the same order as in~9!; the
operatorK(Ya) is then a similar product with the operato
in the reverse order, and the arguments of eachT(t8,t) inter-
changed. Theweightof a history is given by

W~Ya!5^K~Ya!,K~Ya!&, ~10!

where the operator inner product^,& is defined by

^A,B&5Tr~A†B!, ~11!

assuming the trace exists. In the case of a family of histo
involving just two times,t0 andt1, with an initial stateuc& at
t0 and a decomposition of the identity corresponding to
orthonormal basisufa& at t1, the weights are given by

W~C0(P1
a!5 z^fauT~ t1 ,t0!uc& z2, ~12!

where C05uc&^cu and Pa5ufa&^fau. In this case the
weights correspond to the usual Born transition probabiliti
and thus~10! can be thought of as a generalization of t
Born rule to the case of histories involving an arbitrary nu
ber of times.

The weights defined in~10! can be combined with what
ever initial information one has about the quantum system
order to assign probabilities to the various histories, in
same manner as for a classical stochastic process; see C
9 in @35#. Thus, in particular, if the system is known to hav
been in the initial stateuc&, the weight in~12! gives the
probabilities for the historyC0(P1

a or, equivalently, the
probability that the quantum system will be in the stateufa&
at t1, given that it was in the stateuc& at t0.

When three or more times are involved, the histories
proach imposes additional conditions. In order that a fam
of histories be acceptable as a possible stochastic descri
of a closed quantum system, so that one can assign proba
1-4
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ties to the different histories, the chain operators of the fo
~2! must bemutually orthogonal,

^K~Ya!,K~Yā!&50 for aÞā, ~13!

where ^,& is the operator inner product~11!. These are the
consistency conditionsor decoherence conditions, and the
left side of ~13! is often referred to as adecoherence func
tional. @Various alternative consistency conditions have be
proposed from time to time; the one encountered most o
is that in which the real part of the operator inner product
~17! rather than the product itself is set equal to 0.# A family
of histories for which~13! is satisfied is called aconsistent
family or framework. A meaningful description of a quantum
system in physical terms is always based upon some fra
work.

The weightsW and the consistency conditions can also
expressed in terms of Heisenberg projectors and chain op
tors, defined in the following way. Lett r be somereference
time; its value is unimportant as long as it is held fixed. Th
for each projector entering a history of the form~4!, let the
corresponding Heisenberg projector be defined by

P̂j
a j5T~ t r ,t j !Pj

a jT~ t j ,t r !. ~14!

The corresponding Heisenberg chain operator is

K̂†~Ya!5 P̂0
a0P̂1

a1P̂2
a2
••• P̂f

a f , ~15!

which is~formally! simpler than~9! in that time developmen
operators do not appear on the right side. It is then eas
check that~10! and ~13! are equivalent to

W~Ya!5^K̂~Ya!,K̂~Ya!&, ~16!

^K̂~Ya!,K̂~Yā!&50 for aÞā. ~17!

Note that the operators on the right-hand side of~15! do
not ~in general! commute with each other, and hence t
order is important. Interchanging this order by using,
example,P̂0

a0P̂2
a2P̂1

a1 in place of P̂0
a0P̂1

a1P̂2
a2 for a history

based on the three timest0,t1,t2 will ~in general! change
the value of the weight in~16!. Thus keeping track of the
temporal order of events is important if one wants to ha
physically meaningful results. On the other hand, writing
projectors on the right-hand side of~15! in reverse order,
with P̂f

a f at the left andP̂0
a0 at the right, merely replace

K̂†(Ya) with its adjoint K̂(Ya), and this does not alte
W(Ya) nor, if the change is made forall the histories in a
family, does it alter the consistency conditions~17!. Conse-
quently, the histories interpretation is invariant under a rev
sal of the direction of time.@Note that this is quite a differen
issue from time-reversal invariance of the Hamiltonia
which manifests itself in properties of the unitary operat
T(t8,t).#
06210
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C. Refinement and compatibility

Let F be a family of histories based upon decompositio
of the identity of the form~3! at a set of times given by~1!.
We shall say that a second familyG is a refinementof F ~or
F is acoarseningof G) provided two conditions are satisfied

C1. The collection of times at whichG is defined includes
all those at whichF is defined, and perhaps some addition
times.

C2. At each of the times for whichF is defined,G is based
upon the same decomposition of the identity~3! asF, or else
upon afiner decomposition of the identity, one in which a
least one, and possibly more, of the projectors in the orig
decomposition has been replaced by two or more projec
which sum up to the projector which has been replaced.

These two conditions can be collapsed into a single c
dition if one uses the following idea. A history of the form
~2! specifies certain properties at the times given in~1!, and
says nothing about what is happening at any other time. N
one can ‘‘extend’’ the history~2! to additional times without
changing its physical meaning if the identityI is used as a
projector for each added time becauseI represents the prop
erty which is always true, and therefore its occurrence t
us nothing we did not already know. Given two families
histories which are not initially defined at the same set
times, we can always extend the histories in the manner
indicated so that we have equivalent families defined a
larger set of times, which are now the same for both famili
If we allow for such an ‘‘automatic extension,’’ thenG is a
refinement ofF if and only if at each time where the histo
ries in both families~of extended histories! are defined, the
decomposition of the identity forG is the same or finer than
that forF. Note that according to this definition, a familyF
is always a refinement of itself. Also note that a refinemenG
of a consistent familyF may or may not be consistent.

Two frameworksF andF8 are said to becompatiblepro-
vided they possess acommon refinementwhich is itself a
consistent family or framework. That is, there must be so
family G which is both a refinement ofF and a refinement of
F8, and which satisfies the consistency conditions. Since
cording to the definition given above, a family is alwa
~formally! a refinement of itself,G could beF or F8. Indeed,
if one framework is a refinement of another, the two a
compatible. Frameworks which are not compatible are ca
incompatible. There are two slightly different ways in whic
two frameworks can be incompatible. The first is that,
families, they have no common refinement: this means
at least one of the times of interest the two decomposition
the identity contain projectors which do not commute w
each other. One might call this ‘‘kinematical incompatib
ity.’’ But even if a common refinement exists, it need n
satisfy the consistency conditions, leading to ‘‘dynamical
compatibility.’’

A central principle of histories quantum theory is th
single framework rule~or single family, or single set rule!: a
quantum description must be constructed using a single c
sistent family, and results from two or more incompatib
frameworks cannot be combined. This is an extension to
tories of the principle illustrated at the beginning of Sec. II
1-5
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 062101 ~2002!
using thex and z components of angular momentum of
spin-half particle, and in the case of kinematic incompatib
ity can be justified on precisely the same basis: the m
ematics of the Hilbert space structure of quantum theory
interpreted by von Neumann requires, if one takes it s
ously as representing physical reality, some changes in
way one thinks about that reality. Incompatibility in th
sense is a quantum concept that does not arise in clas
physics, and thus there is no good classical analogy for
single framework rule. Many paradoxes of nonrelativis
quantum theory involve some violation of the single fram
work rule~see the discussion in Chaps. 20 to 25 of@35#!, and
the histories approach avoids these paradoxes by strictly
forcing this rule, which plays an equally important role
relativistic quantum theory.

To complete this discussion, we note that when one u
the histories approach,wave function collapseis completely
absent from the fundamental principles of quantum theory
one treats quantum mechanics as a stochastic theory,
various physical consequences can be worked out by u
the standard tools of probability theory, in particular,
computing appropriate conditional probabilities. For e
ample, suppose that a measurement has a probability 1
turn out one way, the apparatus pointer directed to the
and 2/3 to turn out a different way, the pointer directed to
right. If the experiment is carried out and at the end
pointer points to the left, then probability theory allows o
to calculate various probabilities using ‘‘pointer points to t
left’’ as a condition. Wave function collapse as seen from
histories perspective provides a way~sometimes, but not al
ways, a useful way! to calculate certain conditional prob
abilities which can also be computed by alternative metho
In particular, wave function collapse is not a mysterio
physical phenomenon produced by an equally mysteri
measurement process. One should think of it as somet
which occurs in the theoretical physicist’s notebook, not
the experimental physicist’s laboratory.@In addition, we shall
sometimes use the term ‘‘collapse’’ in a metaphorical se
to indicate the point at which a family of histories branch
as in ~43!.#

D. Example using spin half

It is helpful to see how the formalism described abo
applies to a particular simple example, that of the spin deg
of freedom of a spin-half particle in zero magnetic field,
T(t8,t)5I , the identity operator. Suppose that the init
state att0 is uz1& corresponding toSz511/2 in units of\,
and that at later times we use a decomposition of the iden

I 5z11z2, ~18!

wherez1 is the projectoruz1&^z1u, andz2 the projector for
Sz521/2. Histories of the form~4! based on the initial state
z1 then form a family

F0 : z1($z1,z2%($z1,z2%(•••, ~19!

in which each history begins withz1, followed at later times
by one of the possibilitiesz1 or z2. BecauseT5I , every
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history has zero weight or zero probability, apart fro
z1(z1(z1(•••, which has probability one. In this ex
ample, and in many of those we will consider later, mo
histories have zero weight and only a few occur with pro
ability greater than zero. In such cases it is convenien
employ a shorthand in which rather than listing all possi
histories, as in~19!, one shows only those that have positi
probability, thesupportof the consistent family. In this short
hand~19! is replaced with

F0 : z1(z1(z1(•••, ~20!

and there is no harm in referring to it as the ‘‘frameworkF0’’
in place of the more precise ‘‘support ofF0.’’ ~While dis-
playing the support is usually adequate for indicating
family one has in mind, it does not always determine una
biguously the decompositions of the identity, and sometim
one has to be more specific about which histories of z
weight are to included in the family.! In the remainder of this
paper we will use this shorthand without further commen

The unitary family ~20! in which each of the projectors
~in the support! is equal to its predecessor under the unita
map produced by the time development operator is a ra
special sort of quantum description. In practice one usu
deals withstochasticframeworks, such as

F1 : z1(H x1(x1(x1(•••,

x2(x2(x2(•••,
~21!

wherex1 andx2 are projectors on the statesSx561/2. The
support of this consistent family consists of two historie
both having the same initial state, and each occurring w
the probability of 1/2. In the first historySz511/2 att0 and
Sx511/2 att1 and all later times. It is somewhat misleadin
to think of this history as one in which ‘‘the spin is pointin
in the z direction’’ at t0 and ‘‘the spin is pointing in thex
direction’’ at t1 and later times, for this suggests that there
some torque acting betweent0 and t1 to make the spin pre-
cess, whereas we are assuming there is no magnetic
present, and therefore no torque. Instead, the difference
tween F0 and F1 is that in the former one has chosen
describe thez component, and in the latter thex component,
of spin angular momentum at times later thant0. A descrip-
tion of a classical spinning object which specifies one co
ponent, sayLz of its angular momentum at an earlier tim
and a different component, sayLx , at a later time tells one
nothing about the direction of the total angular momentum
either time, and this is a helpful analogy in thinking abo
the quantum case, whereSz511/2 doesnot imply thatSx or
Sy is zero.

In F1 the two histories ‘‘split,’’ or diverge from each
other, att1, but there are other frameworks in which this sp
occurs later, such as

F2 : z1(z1(H x1(x1(•••,

x2(x2(•••,
~22!

where it occurs att2. In view of the remarks in the previou
paragraph, it is evident that the presence as well as the
1-6
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CONSISTENT RESOLUTION OF SOME RELATIVISTIC . . . PHYSICAL REVIEW A66, 062101 ~2002!
ing of such a split—one could also call it a ‘‘collapse’’—
not some sort of physical effect. Instead, it arises from
possibility of constructing various different, incompatible~in
the quantum sense! stochastic descriptions of the same qua
tum system starting in the same initial state. This doesnot
mean that one of these descriptions is correct and the ot
false, but rather that there is no way of combining them i
a single description. This is obvious in the case ofF1 andF2
because att1 the former assigns a value toSx and the latter a
value toSz , whereas the Hilbert space does not allow sim
taneous values of two different components of spin ang
momentum. In the same way, bothF1 andF2 are incompat-
ible with F0. The choice of which family to use in a particu
lar circumstance is made by the physicist on the basis
what aspects of the time development he wants to discus
it is Sx at t2, then eitherF2 or F1 can be used, but notF0,
whereas neitherF2 nor F1 can be used to describeSz at t2.
Also note that once a split or collapse of the kind one finds
F1 or F2 has occurred, it cannot be undone by, for examp
replacingx1 with z1 at t3 in both histories in~22! @or in
~21!#. Such a family would violate the consistency cond
tions, and hence not be a meaningful stochastic descrip
of the time development of this quantum system.

One can extend this example to include measureme
Let uX& represent the initial state of an apparatus designe
measureSx , and suppose that during the time interval fro
t1 to t2 the total system of particle plus apparatus underg
a unitary time evolution given by

ux1& ^ uX&→ux1& ^ uX1&,

ux2& ^ uX&→ux2& ^ uX2&. ~23!

Before and after this time both particle and apparatus rem
unchanged.~One can imagine that the particle passes thro
the apparatus betweent1 and t2, but that for simplicity we
have omitted the center of mass motion of the particle fr
our description.! It is helpful to think of uX1& and uX2& as
macroscopically distinct apparatus states, e.g., correspon
to two positions of a visible pointer. This is an oversimplifie
but not misleading description of a quantum measurem
see Sec. 17.4 of@35# for a more realistic approach.„Typical
laboratory measurements or quantum systems are destru
in the sense that the measured property is significantly
tered in the measurement process. The histories appr
handles these without difficulty, see Chap. 17 of@35#, but
~23! is a nondestructive model of measurement, which ma
it easier to compare with the usual textbook approach.…

Let us suppose that att0 the combined system is in a sta
z1

^ X, i.e.,Sz511/2 for the particle, and the apparatus is
its ‘‘ready’’ state. One possible framework is that of unita
time evolution of the total system:

G0 : C0(z1X(S(S(•••, ~24!

where the initial state is

C05z1X; ~25!
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omitting the ^ between the projectorsz1 and X onto the
statesuz1& and uX& does not lead to any ambiguity. Th
projectorS projects onto the state

uS&5~ ux1&uX1&1ux2&uX2&)/A2, ~26!

which, since the apparatus is of macroscopic size, is amac-
roscopic quantum superposition~MQS! or Schrödinger cat
state. As a consequence,G0, even though a perfectly correc
quantum description of the time development, is not of mu
use for discussing the measurement process in phys
terms. The reason is thatS does not commute with either o
the projectorsX1 or X2 describing the possible measur
ment outcomes, so if one uses the description provided bG0
it is meaningless to ascribe a position to the pointer after
measurement has taken place.

Of greater utility is the framework

G1 : C0(H x1X(x1X1(x1X1(•••,

x2X(x2X2(x2X2(•••,
~27!

which is the measurement counterpart ofF1 in ~21!. In this
family the apparatus is in its ready stateX and the particle is
in one of the two statesSx561/2 att1. At t2 and later times
the stateX6 of the apparatus reflects the earlier state of
particle, as one would expect given~23!. From the measure
ment outcomeX1 at any time aftert2, one can infer~condi-
tional probability equal to 1! that Sx511/2 both before and
after the measurement; similarlyX2 implies Sx521/2 at
earlier as well as later times.

The measurement counterpart ofF2 is the framework

G2 : C0(z1X(H x1X(x1X1(•••,

x2X(x2X2(•••.
~28!

It corresponds fairly closely to the traditional ‘‘collapse’’ pic
ture of the measurement process found in textbooks, s
one has unitary time development until the particle intera
with the apparatus, after which the particle state,x1 or x2, is
correlated with the measurement outcome stateX1 or X2.
However,G2 is only one of a collection of equally valid bu
mutually incompatible ways of using quantum mechanics
describe the measuring process. From the point of view
fundamental quantum theory there is no reason to prefeG2
to the unitary familyG0. To be sure, the latter cannot be us
to describe the measurement outcome, for, as pointed
earlier, S does not commute withX1 or X2. Thus from a
practical point of viewG2 is more useful thanG0. But there is
no reason to preferG2 to G1, andG1 has the advantage that
allows one to think of the measurement process as amea-
surementin the usual sense of that term: a procedure
which the macroscopic outcome reflects a property the m
sured system hadbefore the measurement takes place.
practice, most measurements on microscopic quantum
tems carried out in the laboratory can best be thought
using a viewpoint akin to that ofG1: a gamma ray is detecte
by destroying it, the momentum of a charged partic
emerging from a collision vertex is measured by changin
in a magnetic field, etc.@In these cases~23! is not an appro-
1-7
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 062101 ~2002!
priate model, because the measurements are destructive
the histories approach handles these equally well, Chap
of @35#, and shows that the measurement outcomes are
related with quantum states which existed before the m
surement interaction.# Descriptions analogous toG2 play
very little role in physics apart from their appearance in te
book lists of quantum axioms where they have confused g
erations of students, not because they are wrong, but bec
the corresponding ‘‘wave function collapse’’ has been mis
terpreted as a physical phenomenon, rather than just on
many ways of describing quantum time development. Re
fying that misinterpretation is, as we shall see, the key
untangling several relativistic quantum paradoxes.

III. RELATIVISTIC QUANTUM HISTORIES

A. Kinematics and dynamics

A plausible generalization of the histories approach
scribed in Sec. II can be carried out in the following wa
Introduce a collection$Sj%, j 50,1,2, . . . , of smooth, infi-
nite, nonintersecting three-dimensional spacelike hyper
faces, as suggested by the diagram in Fig. 1. They do
have to be ‘‘flat’’ hyperplanes, but the requirement that
two surfaces intersect means that if two or more hyperpla
belong to the collection, they must be parallel. As they do
intersect, the hypersurfaces can be ordered in time, and
assume thatSj is earlier thanSj 11, with S0 the earliest hy-
persurface.~These spacelike surfaces have no thickness
the time direction, unlike the open regions in space-time e
ployed by Hartle@40#, Blencowe@41#, and in algebraic quan
tum field theory@46#. This is consistent with our decision
Sec. I, to ignore problems of microlocality. Should it be ne
essary for technical mathematical reasons to introduc
small but finite thickness or duration in the time directio
that should not alter our conclusions.!

Next assume that for each hypersurfaceSj there is a Hil-
bert spaceHj with identity operatorI j . Given a decomposi-
tion ~3! of I j in projectors, one can define histories of t
form ~2! on the history Hilbert space~5!. The dynamical
laws can be expressed using a collection of time deve
ment operators$Tjk%, whereTjk is a unitary map~bijective
isometry! from Hk ontoHj , the analog of the nonrelativisti
T(t j ,tk). The conditions analogous to~8! are, obviously,

Tj j 5I j , Ti j Tjk5Tik , Tjk
† 5Tk j . ~29!

At this point one could introduce chain operators of t
form ~9!, but for our purposes it is more convenient to intr

FIG. 1. A possible collection of time-ordered spacelike hyp
surfaces.
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duce Heisenberg projectors on the Hilbert spaceHr of a
special reference hypersurface~or hyperplane! Sr . As we
shall ascribe nophysical significance to the Heisenber
projectors—they are only introduced as a convenience
mathematical calculations—the relationship betweenSr and
the collection$Sj% is arbitrary; in particularSr may intersect
the other hypersurfaces, or it could be identical to one
them. By means of the unitary time development operat
Tjr mappingHr to the other Hilbert spaces we define th
Heisenberg operator

P̂j
a j5Tr j Pj

a jTjr . ~30!

corresponding to the projectorPj
a j . Heisenberg chain opera

tors mappingHr to itself are then defined as a product
Heisenberg projectors~15!, and the weights and consistenc
conditions are expressed in terms of these chain opera
using ~16! and ~17!, with an appropriate definition of the
operator inner product̂,&.

Defining ^,& in terms of the trace, as in~11!, is only sat-
isfactory if the trace exists, which need not be the case, s
Hr is infinite. There is no problem if all the histories we a
interested in are of the form~4! with C0 a pure initial state
or a projector onto a finite subspace ofH0. Alternatively, one
can introduce a density operatorr0 ~with unit trace! on H0,
define its Heisenberg counterpartr̂5Tr0r0T0r as in ~30!,
and replace the operator inner product^,& in ~16! and ~17!
with

^A,B&r5Tr~ r̂A†B!. ~31!

~In this case it is best to regardr̂ as a pre-probability; see
Sec. 15.2 of@35#.! Of course, any otherHj could be used in
place ofH0, but physicists typically tend to employ an initia
condition ~we live in a thermodynamically irreversibl
world!. Given a family of histories satisfying the consisten
conditions ~17!, its physical interpretation is precisely th
same as in the nonrelativistic case: one and only one his
belonging to the family actually occurs in any given situ
tion. The probabilities of histories are determined by t
weights and whatever constitutes one’s information about
initial state or experimental setup; see, e.g., Sec. 9.1 of@35#.

Since histories with events on a finite set of spacel
hypersurfaces may seem odd to a reader accustomed t
continuous time trajectories familiar in classical physics,
following comments may be helpful. Just as in the nonre
tivistic case—see the discussion of refining a family in S
II C—it is always possible to introduce additional spaceli
hypersurfaces between~or before or after! those in the col-
lection $Sj%, and extend histories of the form~2!, without
changing their physical meaning, by introducing the triv
event I on these additional hypersurfaces. This shows t
defining histories on a finite collection of hypersurfaces do
not imply that the world ceases to exist at intermedi
space-time points, it simply means that these histories c
tain no information about what is happening elsewhere t
on these hypersurfaces. Think of being outside on a d
night during a thunderstorm, when flashes of lightening il
minate the landscape at certain times, but nothing can

-

1-8
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CONSISTENT RESOLUTION OF SOME RELATIVISTIC . . . PHYSICAL REVIEW A66, 062101 ~2002!
seen in the intervening intervals. In the nonrelativistic ca
one can, to be sure, produce histories which are describe
nontrivial ~not equal toI ) projectors at all times, thus ‘‘filling
in the gaps’’ in~2!; one method of doing this is discussed
Sec. 11.7 of@35#. However, different ways of filling the gap
lead to incompatible families, and since there is no limit
the number of times which enter a discrete history of
form ~2!, there is really no need to fill the gaps from th
point of view of providing an adequate physical descriptio
The same comment applies in the relativistic case, at leas
the purposes of the present paper.

Just as in Sec. II, a family of histories satisfying the co
sistency conditions will be called aconsistent familyor
framework. A refinementF8 of a frameworkF must include
among its hypersurfaces$Sk8% all the hypersurfaces assoc
ated withF, and on the latter the decomposition of the ide
tity used inF8 must be a refinement of the one used inF. In
order for it to be a framework,F8 must satisfy the consis
tency conditions. Two frameworksF andG will be said to be
compatible provided they possess a common refinem
which is itself a framework; otherwise they areincompatible.
This is the same definition employed in the nonrelativis
case. Thesingle framework ruleis also the same as for non
relativistic quantum theory: quantum descriptions must
ways be constructed using a single framework. If two fram
works are not identical but are compatible, a comm
description can be constructed using their common refi
ment. However, descriptions corresponding to incompat
frameworks cannot be combined.

B. Local regions and properties

For discussing macrolocality and quantum paradoxes
shall want to consider spacelike regionsRj of finite extent,
see Fig. 2~a!, each consisting of one or else a small numb
of connected pieces belonging to a spacelike hypersur
Sj , with each piece of ‘‘macroscopic’’ size, much larger th
a Compton wavelength, with ‘‘reasonable’’~e.g., piecewise
smooth! boundaries—imagine a sphere or a cube.~Much of
the following discussion is valid ifRj is an infinite piece of
Sj , but we shall be interested in cases in which it is finit!
By making eachRj part of someSj , with the collection$Sj%
satisfying the conditions given in Sec. III A, we ensure tha
is possible to impose a well-definedtime orderingon these
finite regions. One could also do this by working out a set

FIG. 2. ~a! Finite regionsRj , possibly consisting of more tha
one connected piece, belonging to infinite spacelike hypersurfa
~b! An alternative way of embedding the same finite regions
spacelike hypersurfaces.
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conditions applicable directly to the collection$Rj%, but re-
quiring that they be embeddable in a time ordered collect
of infinite hypersurfaces is a fairly simply and intuitive wa
to proceed.

The lowbrow way to think of a propertyPj as local to or
localized inRj is to imagine that the Hilbert spaceHj asso-
ciated withSj is a tensor productH j

r
^ H j

s , with H j
r associ-

ated withRj andH j
s associated with the complement ofRj

in Sj . Then suppose that on this tensor productPj is of the
form Pj

r
^ I j

s , with I j
s the identity onH j

s . Thus Pj
r , an op-

erator onH j
r , tells one something about the state of affa

inside Rj , while I j
s is totally uninformative about what is

going on elsewhere. Note that the usual physicists’ conv
tion allows the same symbolPj to representPj

r or Pj
r
^ I j

s ,
without ~much! risk of confusion, and we shall make use
this liberty. The highbrow way of thinking about a localize
property requires dealing seriously with the microlocal
problem, see Sec. I, and is outside the scope of the pre
paper. IfRj can be embedded in two different spacelike h
persurfacesSj and Sj8 , then the same local event will b
represented by two different projectors in the Hilbert spa
Hj and Hj8 . We shall make the plausible assumption th
these two projectors lead to one and the same Heisen
projector when mapped via~30! to the reference spaceHr
using the appropriate time development operatorsTr j and
Tr j8 .

Next we make the very important assumption that
dynamics embodied in the collection of unitary time tran
formationsTjk is local in the sense that wheneverRj andRk
are two regions which are spacelike separated~i.e., each
point in Rj is at a positive spacelike separation from ea
point in Rk), andPj andQk are projectors referring to physi
cal events~or properties! in Rj and Rk , respectively, the
corresponding Heisenberg operators commute:

P̂j Q̂k5Q̂kP̂j . ~32!

This is often referred to as the principle of causality@46#. For
our analysis it has the important consequence that in cas
which more than one time ordering is possible for a colle
tion of regions$Rj%, because some of the regions are spa
like with respect to each other—for example,R0 andR1 in
Fig. 2—these different time orderings will give rise to th
same chain operators~15!, since the corresponding Heisen
berg operators commute with each other.

Suppose thatRj consists of two or more disconnecte
subregions, e.g.,R3 in Fig. 2~a!. We shall say that a projecto
Pj which is local toRj is in additionlocalized with respect to
these subregionsif it is a product of projectors, one~possibly
the identity! for each subregion, i.e., local to this subregio
OtherwisePj is entangledwith respect to these subregion
The distinction is important, because, as we shall see la
one may wish to embed the subregions in distinct nonin
secting hypersurfaces, as in Fig. 2~b!, which are part of a
time-ordered collection. IfPj is localized, this construction
causes no difficulty, because each of the factors making
Pj is itself a local projector on the corresponding subregi
and the physical interpretation of this projector does not

s.
1-9
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 062101 ~2002!
pend on the hypersurface in which the subregion is emb
ded. But if Pj is entangled, one cannot change the emb
ding by placing the subregions~at least those among whic
Pj is entangled! in distinct hypersurfaces without violatin
the condition, fundamental to our construction of relativis
histories, that each projector representing a single event
history be associated with a particular hypersurface in
time-ordered collection of such surfaces. This difference
tween localized and entangled projectors will play a sign
cant role in the later discussion of quantum paradoxes.

C. Lorentz invariance

Lorentz invariance requires that the ‘‘laws of physics’’ b
the same in every Lorentz frame. In the preceding anal
the whole discussion has been carried out for a single L
entz frame; let us call itL. What should we expect if we us
a different Lorentz frameL8, thought of as a different choic
for a coordinate system?

Each spacelike hypersurfaceSj should be thought of as
consisting of a definite collection of space-time points wh
is unchanged when the new coordinate systemL8 is adopted.
All that happens is that the quartet of numbersr 5(t,x,y,z)
representing a particular space-time point is replaced b
new quartetr 85(t8,x8,y8,z8). The symbolSj8 can be used
to denote the same collection of space-time points asSj , but
relabeled using the new coordinates. If inL the hypersurface
Sj is specified by an equation

t5t j~x,y,z!, ~33!

then in L8 the same hypersurface, denoted bySj8 , will be
specified in the same manner, by settingt8 equal to a differ-
ent functiont j8(x8,y8,z8).

Let us assume that there are well-defined rules based u
the functiont for assigning a HilbertHj to the surfaceSj ,
and that these rules do not depend upon the Lorentz fra
Of course they will assign a different Hilbert spaceHj8 to Sj8
becauset8 is not the same function ast. However, we can
expect thatHj8 is related toHj by a unitary map~bijective
isometry! L j which carries someuc& in Hj onto auc8& in Hj8
representing the same physical property. Next assume
the unitary time transformationTjk mappingSk to Sj is de-
termined in a unique way by the two functionst j andtk , by
rules which do not depend upon the Lorentz frame o
these functions are given. In the same way,Tjk8 mappingSk8
to Sj8 will be determined by the functionst j8 and tk8 . The
Lorentz invariance of the dynamics is then expressed by
requirement

Tjk8 5L jTjkLk
† ~34!

for every pairj andk.
A history embodying the same physical events as in~2!

will, when expressed using the Hilbert spacesHj8 , be of the
form

Y8a5P08
a0(P18

a1(P28
a2(•••(Pf8

a f , ~35!

with
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Pj8
a j5L j Pj

a jL j
† . ~36!

It is then easy to show that the weights calculated using
chain operators~15! for such histories inL8 are the same as
their counterparts inL, and the consistency conditions~17!
hold in L8 if and only if they hold inL, using the operator
inner product defined in~11!, or the one in~31!, providedr̂
is replaced by a suitabler̂8. Thus the descriptions in the tw
Lorentz frames are physically equivalent to each other
final point has to do with locality and the condition~32! for
Heisenberg operators associated with regions which
spacelike separated from each other. All one needs to no
that regions which are spacelike separated in one Lore
frame are also spacelike separated in any other, and the t
formation rules in~36! ensure thatP̂j Q̂k is identical toQ̂kP̂j

if and only if P̂j8Q̂k8 is the same asQ̂k8P̂j8 .
To be sure, all the difficulties of Lorentz invariance ha

been ‘‘buried’’ in the assumption that appropriate transform
tions L j exist, and that the unitary time transformations s
isfy ~34!, whatever inertial frameL8 is employed. This, how-
ever, is as it should be: the present paper is not devoted to
difficult task of constructing a Lorentz-invariant relativist
theory. Instead, its purpose is to show how various quan
paradoxes are to be resolved, by the appropriate use of
tories, within the framework of such a theory, assuming
exists.

IV. WAVE FUNCTION COLLAPSE

A. Introduction

Imagine a particle emitted in a nuclear decay, movi
outwards as a spherical wave packet. When detected b
detector some distance away, its wave function, accordin
textbook quantum theory, collapses instantaneously to z
everywhere outside the detector, since that is where the
ticle is now located. This collapse helps explain why t
particle cannot be detected later by a second detector loc
further from the original decay. But the notion of such
collapse has troubled many physicists ever since the ear
days of quantum theory@47#. It is troubling because, amon
other things, what is instantaneous in one Lorentz frame
not instantaneous in another, and therefore in some Lor
frames the collapse will travel faster than the speed of lig
or even backwards in time, placing the effect earlier than
cause. In addition, if after a suitable time the detector hasnot
detected the particle, the probability increases that the
ticle will be detected by another detector located furth
away, unless this second detector is shadowed by the firs
even nondetection can alter~collapse?! the particle’s wave
function. ~This has led to the rather confusing idea of
‘‘interaction-free’’ measurement; see@49# and pp. 495ff of
@48#.!

In order to focus on essentials and simplify the discuss
of how a histories approach resolves~or tames! these prob-
lems, it is useful to consider the analogous situation in o
spatial dimension, as shown in Fig. 3, where the wave fu
tion of the particle~oneparticle, not two! is given by a linear
superposition
1-10
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uc~ t !&5@ ufa~ t !&1ufb~ t !&]/A2 ~37!

of two wave packets moving outwards from a central sou
S towards two detectorsA andB, with A closer toS thanB.
If A detects the particle, then at that instant of time~accord-
ing to the collapse idea! theb part of the wave packet in~37!
vanishes, whereas ifA doesnot detect the particle, the supe
position~37! is to be instantly replaced byufb(t)&. Figure 3
is only schematic; we are interested in situations in which
distances separating source and detectors are very m
larger than the widths of the wave packets, perhaps la
enough that it takes light a significant amount of time
travel fromS to A or B @50#.

B. Without detectors

As in Sec. II D, it is helpful to begin our analysis b
considering a situation in which there are no detect
present. The dashed lines in Fig. 4~a! represent the centers o
the wave packetsufa(t)& andufb(t)& in the Lorentz frameL
where their velocities are equal and opposite. Unitary ti
development then corresponds to a familyF0 with support
~as defined in Sec. II D! consisting of the single history

F0 : c~ t0!(c~ t1!(c~ t2!(•••, ~38!

wherec(t) is the projector ontouc(t)&. To discuss the loca
tion of the particle, and in particular whether it is to the le
or to the right of the source, we introduce at timet j a de-
composition of the identity

I j5(
l j

Pj
l j , ~39!

where the projectorsPj
l j project onto nonoverlapping inter

vals of thex axis chosen so that they are large in comparis
to the widths of the individual wave packetsfa andfb , but
small compared to the macroscopic length scales in Fig
They are also chosen so that at each timet j both fa(t j ) and

FIG. 3. Wave packets representing a single particle, moving
and right from a sourceS towards detectorsA andB.

FIG. 4. ~a! Wave packet trajectories~dashed! and constantt lines
in the L space-time diagram.~b! Additional constantt8 lines for
Lorentz frameL8. ~c! Alternative hypersurfaces replacing the co
stantt lines.
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fb(t j ) are well inside one of the intervals and not on t
boundary between two of them. This way the family

F1 : c~ t0!($P1
l1%($P2

l2%($P3
l3%(••• ~40!

will be consistent, and its support contains just two histori

F1 : c~ t0!(H P1
a1 (P2

a2 (P2
a3 (•••,

P1
b1 (P2

b2 (P2
b3 (•••,

~41!

with equal weight. The first history says that as time
creases the particle is in a series of intervalsa1 ,a2 , . . .
falling along the dashed linea in Fig. 4~a!, and the second
that it is in a series of intervals falling alongb. Thus they are
coarse-grained quantum descriptions that approximate c
sical trajectories. The two histories are mutually exclus
possibilities: either the first occurs, so the particle follow
trajectory a, or the second, so the particle followsb. The
particle cannot follow both trajectories, or hop from one
the other. If at timet2 it is, say, in the intervala2, then earlier
it was in a1, and later it will be ina3.

The familiesF0 andF1 are incompatible, becausePj
aj and

Pj
bj do not commute withc(t j ), as follows from~37! and

Pj
aj uc~ t j !&5ufa~ t j !&/A2,

Pj
bj uc~ t j !&5ufb~ t j !&/A2. ~42!

To suppose that att j the particle is in the physical statec(t j )
and that it is located in one of the two intervalsPj

aj or Pj
bj is

as meaningless as saying that a spin-half particle is in
stateSz511/2, and at the same time ascribing to it values
Sx .

Next consider a familyF2 with support consisting of

F2 : c~ t0!(c~ t1!(H P2
a2 (P3

a3 (•••,

P2
b2 (P3

b3 (•••.
~43!

Until t1 the particle is in a nonlocal superposition, and the
after it either follows the~coarse-grained! a trajectory or the
b trajectory, two mutually exclusive possibilities, with prob
ability 1/2. One could, if one wants to, say that the initi
description in terms ofc(t) ‘‘collapses’’ betweent1 and t2
onto another sort of description in which the particle follow
one of two distinct trajectories. However, one should n
think of this ‘‘collapse’’ as a physical process. Instead it
the analog of a description of a spin-half particle in terms
Sz followed at a later time in terms ofSx , as in ~22!. The
familiesF0 , F1, andF2 are mutually incompatible in much
the same way as their counterparts in Sec. II D. Each
valid way of describing the quantum particle, and there is
‘‘law of nature’’ that specifies that one of them is the ‘‘co
rect’’ description. However, there is a law of mathemat
which prevents one from combining them, since there is
way of representing in the quantum Hilbert space a com
nation of events corresponding to noncommuting projecto

ft
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 062101 ~2002!
There are always many incompatible ways of describin
quantum system, and the choice among them depend
what one wants to discuss. The use ofF2 makes it possible
to ascribe at timet1 a relative phase to the sum of the wa
packets making upuc&, in the sense that a1 sign occurs
rather than a2 sign on the right side of~37!, but does not
allow one to assign a position to the particle, even to
extent of saying that it is to the right or to the left of th
sourceS. Assigning a coarse-grained position at this tim
requires that one useF1, or something like it, in which case
the relative phase of the wave packets becomes a mea
less concept. Incidentally, once the ‘‘split’’ has occurred
the familyF2 the histories cannot be ‘‘joined’’ at a later time
replacingP3

a3 andP3
b3 in ~43! with c(t3) violates the consis-

tency conditions, and the same comment applies toF1. In
these respects the situation is analogous to that of the s
half particle considered in Sec. II D.

C. Different Lorentz frames

Consider a Lorentz frameL8 moving with respect to the
frameL we have employed thus far, with constant-time s
faces shown in Fig. 4~b! superimposed on the space-tim
diagram of 4~a!. Let

uc8~ t8!&5@ ufa8~ t8!&1ufb8~ t8!&]/A2 ~44!

represent the wave function as it develops unitarily in time
the new Hilbert space. The obvious analogsF08 , F18 , andF28
of the families considered previously can be obtained
adding primes to the appropriate symbols in~38!, ~41!, and
~43!, and the remarks made above about the physical in
pretations of theFj apply equally to theFj8 .

The three familiesF08 , F18 , andF28 are not only incom-
patible with one another, each is also incompatible with e
of the three familiesF0 , F1, andF2, because the constan
time hyperplanes ofL8 intersect those ofL, and there is no
way of placing them in a time-ordered sequence. Howe
the incompatibility ofF1 andF18 is only apparent, and can b
removed by employing the ‘‘trick’’ shown in Fig. 4~c!. Here
the finite regions, shown with heavy lines, where the part
can be located att1 andt2 in F1 have been embedded into a
alternative set of hypersurfaces which do not intersect,
are thus compatible with, the hyperplanes used inF18 . This
construction is possible, as indicated at the end of Sec. II
provided we are interested in properties which are locali
in the separate subregions, rather than entangled am
them. In the familyF1 we are concerned with local prope
ties: whether the particle is located in thea subregion or in
theb subregion, rather thanc(t1) andc(t2), which occur in
the unitary familyF0, and are entangled between thea and
the b subregions.

But doesP1
a1, whose physical interpretation is that ‘‘th

particle is in the~small! intervala1,’’ really represent alocal
property? There is a subtlety here, for in the lowbrow a
proach outlined in Sec. III A a local property is represen
by a projector on the Hilbert space of a~macro!local region,
times the identity on another Hilbert space for the rest of
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universe. In a Hilbert space of one-particle wave pack
P1

a1 is not of this form, because it tells us both that t
particle is ina1 and that it is not in some distant region; i.e
this projector provides more than local information. The w
to get around this is to employ a many-particle Hilbert spa
defineP1

a1 to be the projector that tells us there is exactly o
particle ina1, and use the initial statec(t0) to specify that
the universe contains only one particle, as well as giving
wave packet for this one particle. In a history whose init
state isc(t0), and given a dynamical law that the partic
cannot disappear or other particles appear, the eventP1

a1 will
allow us to infer that the particle is ina1 and therefore not
elsewhere, even though the projectorP1

a1 by itself provides
only local information. The reader for whom this argument
unnecessary should ignore it, while he who finds it ina
equate is invited to construct a better version.

We conclude that in terms of their actual physical co
tents,F1 andF18 are compatible, with a common refinemen
call it F1* , that uses the time ordering associated with
collection of hypersurfaces in Fig. 4~c!. The support ofF1*
again consists of two histories, one with the particle follo
ing trajectorya in a coarse-grained sense, described som
times by anL and sometimes by anL8 projector, and the
other following trajectoryb in a similar fashion. Aside from
the subtleties associated with coarse graining, in both sp
and time, the trajectories agree with the picture provided
classical physics, even though they arise from a fu
quantum-mechanical description.

On the other hand, the trick just discussed cannot be u
in order to combineF1 with F28 . While one can introduce a
common set of hypersurfaces as in Fig. 4~c!, the common
refinement will not satisfy the consistency conditions. T
trouble is that the particle can be localized on theb trajectory
at t1 in F1, and this precedes~in the time ordering of the
hypersurfaces! the entangled state betweena and b at t18 in
F28 . As noted above, trying to ‘‘uncollapse’’ a quantum d
scription in this manner violates the consistency requ
ments. It is like introducing anSz description into~21! after
anSx description has appeared. In addition, one cannot c
bine F2 with F28 , for in this case the events att1 in the
former and att18 in the latter are both entangled, so the co
lection of hypersurfaces in Fig. 4~c! is no longer of any use
~It is possible, see the comments near the beginning of S
VII A, that some consistent generalization of the rules giv
in Sec. III might allow one to construct a common refin
ment in this case, but possible extensions of these rules
outside the scope of the present paper.!

D. Detectors

Most of the tools required to resolve~or tame! the para-
dox of wave function collapse are now in hand; all that
mains is to introduce measurements. This we do using a f
quantum-mechanical description of the two particle detec
shown in Fig. 3. Let their states when ready to detect a p
ticle be denoted byuA(t)& anduB(t)&, respectively, and sup
1-12



r

th
o
s

s
or

he

al
im
rt

te
o

ee

-

icle

e
tor,

ref-
nse-

re,
de-
rk

ions

n

le
d

the

,’’

h a
.’’
ime

d in
e-

to
er

o
p-
hem
,
e-

e

of
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pose that the detection event for the particle when rep
sented by wave packetufa& is given by a unitary time
development

ufa&uA&→uA* &. ~45!

Here uA* & is a state in which this detector has detected
particle, as indicated by the position of a large pointer,
some other macroscopic change that clearly distinguishe
from the untriggered or ready stateuA&. The time arguments
have been omitted in~45!; one should think of the left side a
at a time t8 before the particle interacts with the detect
while the right side as at a timet9 after the interaction, when
the particle is trapped inside the detector. If, on the ot
hand, the particle is represented by wave packetufb&, it will
not interact with detectorA, and the counterpart of~45! is

ufb&uA&→ufb&uA&. ~46!

The analogous expressions for theB detector are:

ufa&uB&→ufa&uB&, ufb&uB&→uB* &. ~47!

With both detectors initially in the ready state, the over
unitary time development corresponding to the space-t
diagram in Fig. 5~a! is represented by a family with suppo

G0 : C0(C1(C2(C3(•••, ~48!

where

uC0&5uc~ t0!&uA&uB&,

uC1&5uc~ t1!&uA&uB&,

uC2&5@ uA* &1ufb~ t2!&uA&] uB&/A2, ~49!

uC3&5@ uA* &uB&1uA&uB* &]/A2,

and time arguments have again been omitted from the de
tor states. Note that since the detectors are macroscopic
jects, bothuC2& and uC3& are examples of MQS states; s
~26! and the comments following it.

The family G1 with support

G1 : C0(H P1
a1AB(A* B (A* B (•••

P1
b1AB(AB(AB* (•••

~50!

FIG. 5. ~a! Wave packet trajectories~sloping dashed lines! and
detector trajectories~vertical dashed lines! in theL space-time dia-
gram.~b! Additional constantt8 lines for Lorentz frameL8.
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is analogous toF1 in Sec. IV B. In the first history the par
ticle follows thea trajectory and is detected byA, while the
B detector is unaffected. In the second history it is theA
detector that remains in its ready state while the part
moves along trajectoryb and triggersB. Note, in particular,
that from the fact that detectorA triggers one can conclud
that the particle was earlier moving towards this detec
rather than towardsB, while if at t2 detectorA has not de-
tected the particle, one can infer that the particle is~and was!
moving towards detectorB, and will later be detected byB.
Such inferences are not at all mysterious, and make no
erence to wave function collapse. Instead, they are co
quences of the fact that the two histories in~50! are the only
two possibilities; all others have zero probability. There a
to be sure, many other frameworks that can be used to
scribe this situation in quantum terms, but any framewo
that contains the events needed to draw the conclus
stated above will assign them the same probabilities asG1;
see Sec. 16.3 of@35#.

Another familyG2 with support

G2 : C0(c~ t1!AB(H A* B (A* B (•••,

fb~ t2!AB(AB* (•••

~51!

is analogous toF2 in Sec. IV B in that the particle remains i
a superposition statec at time t1, whereas att2 there has
been a ‘‘collapse’’ into two possibilities: either the partic
has been detected byA, the first history, or, in the secon
history, it has not been detected byA and is still on its way to
towardsB, which will have detected it byt3. @In the second
history one could use the interval projectorP2

b2 at time t2 in
place of the wave packet projectorfb(t2); for our purposes
it makes no difference.# Note that just as the ‘‘collapse’’ in
F2 is not a physical process, but represents a change in
type of description being employed, so also inG2 it is not
something which is brought about by some ‘‘law of nature
as is evident from the fact thatG0 andG1 are equally good
descriptions, and in neither of them does interaction wit
measuring apparatus produce a corresponding ‘‘collapse

Introducing another description based on constant t
~hyper!surfaces in a second Lorentz frameL8, Fig. 5~b!,
leads to no new principles beyond those already discusse
Sec. IV C. There is a formal incompatibility between d
scriptions based upon constantt and constantt8 hyperplanes,
but if one is concerned with local properties it is possible
adopt a common refinement in which the particle eith
moves along thea trajectory to be detected byA, or along the
b trajectory to be detected byB, and can be seen to do s
using eitherL or L8 projectors, provided that these descri
tions are interleaved and one does not try and impose t
simultaneously at the same~macro!point in space-time. Note
in particular, that if one is using such a local quantum d
scription, the fact that inL8 the particle can reachB earlier
than it can reachA, the reverse fromL, is no more paradoxi-
cal than in classical relativistic physics. It is only if on
insists upon employing a collapse picture usingG2, ~51!,
along with its counterpartG28 in L8, that difficulties arise.
These two families are incompatible according to the rules
1-13
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 062101 ~2002!
Sec. III, and it makes no sense to ask which of them
correct, or when it is that the collapse ‘‘really’’ occurs, etc

E. Summary

It is useful to summarize the lessons provided by the p
ceding analysis by restating its conclusions as they appl
the situation which initiated our discussion: a particle mo
ing outwards in a spherical wave, which may later encoun
a detector~or perhaps several detectors!. The spherical wave
corresponds to unitary time development~solving Schro¨d-
inger’s equation!, and if unitary time development is applie
to the full quantum system of particle plus detector, the re
will be a MQS state of a triggered and untriggered detec
While this, the analog ofG0 in ~48!, is a perfectly valid
quantum description, it is not useful for answering questio
such as: Did the detector detect the particle? Where was
particle before it was detected? Posing these questions
quires using projectors which do not commute with the p
jector C(t) on the stateuC(t)& resulting from unitary time
evolution, and hence they are meaningless within that fra
work. Instead, one must use a family of stochastic histo
in which at an appropriate time the detector has or has
detected the particle, something analogous toG1 or G2 in ~50!
and~51!. In families which are the analogs ofG1, the particle
follows a coarse-grained trajectory, the quantum counter
of a ‘‘classical’’ description, moving in a straight line from
the source of the decay until it reaches~in some histories! or
misses~in others! the detector. This is the type of descriptio
actually used by physicists when thinking about decays
unstable particles, especially when designing equipment w
collimators and detectors, or considering sources of unde
able background~see, e.g., pp. 123f in@31#!. Because the
events in these families arelocal in a coarse-grained sens
relative to macroscopic length scales, their behavior un
Lorentz transformations is~essentially! the same as in clas
sical relativistic physics.

Wave function collapse isneverneeded in order to pro
duce physically meaningful quantum descriptions, since
can always assign probabilities within a consistent family
framework using the Born rule and its consistent extens
and then use these to calculate appropriate conditional p
abilities. There are, to be sure, families of histories, the a
logs of G2, which can be thought of as exhibiting a ‘‘co
lapse.’’ While these are perfectly legitimate quantu
descriptions, the collapse can occur in the absence as we
in the presence of a measurement, and represents a chan
the type of quantum description employed, not some sor
physical process. It is analogous to the physicist’s choice
describe an isolated spin-half particle during a certain ti
interval usingSz , and during a subsequent time interval u
ing Sx , even though the unitary time development is trivi
see the comments following~21!.

V. EPR PARADOX

A. Introduction

The celebrated Einstein-Podolsky-Rosen@13# ~EPR! para-
dox is usually discussed nowadays using the formulation
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troduced by Bohm@51# in which two spin-half particlesa
andb prepared in a spin-singlet state

us0&5~ uza
1&uzb

2&2uza
2&uzb

1&)/A2, ~52!

whereuza
1& is the stateSaz511/2 of particlea, etc., fly apart

from each other, and the spin of one of the particles is la
measured. IfSaz is measured and the outcome is11/2, this
means thatSbz521/2 for particleb, while an outcome of
21/2 implies thatSbz511/2. Similarly, if Sax is measured,
thenSbx will have the opposite value:Sbx52Sax . The para-
dox is that one seems able to assign a value to eitherSbz or
to Sbx depending upon which measurement is carried out
particle a, and since the measurement should not influe
particle b, this seems to mean that bothSbz and Sbx have
well-defined values, contrary to the principles of quantu
theory.

Neither the original EPR formulation nor that of Boh
make use of relativistic quantum theory. But the parad
becomes a bit sharper in a relativistic context, for particlea
and b could be spacelike separated when a measureme
made ona, so that any influence onb would seem contrary to
the principles of relativity theory. In addition, if the parado
is formulated in terms of wave function collapse—the sp
stateus0& changes instantly to eitheruza

1&uzb
2& or uza

2&uzb
1&

when Saz is measured—one encounters the same prob
noted in Sec. IV A: the collapse is not Lorentz invariant,
well as ~or because of! being instantaneous between spac
like separated points.

Rather than a single measurement on particlea, one can
imagine separate spin measurements ona andb, and if they
are of the same component, saySz , then they will always
give opposite results,Sbz52Saz . It is worth emphasizing
that this sort ofcorrelation, even when the measurements a
carried out in spacelike separated regions, is not in its
paradoxical, as can be seen from a simple classical exam
A pair of opaque envelopes is prepared, one containing a
and the other a green slip of paper. One envelope, chose
random, is taken by astronaut Alice on a voyage to Ma
while the other remains behind on the desk of Bob at miss
control. By opening her envelope and observing~‘‘measur-
ing’’ ! the color of the slip of paper, Alice at once knows th
color of the slip of paper in Bob’s envelope, and thus t
color that Bob will observe~or perhaps has already ob
served! when he opens it, even if that event occurs a
spacelike separation. As with every classical analogy,
one is not adequate for illustrating all aspects of the quan
situation, but it does help clarify what is and is not specific
quantum theory.

B. Without measurements

As in Sec. IV, we shall first analyze what happens in t
absence of measurements, assuming the two-particle w
function satisfying Schro¨dinger’s equation is given at timet
by

uc~ t !&5uv~ t !&us0&, uv~ t !&5ufa~ t !&ufb~ t !&, ~53!
1-14
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where ufa(t)& and ufb(t)& are wave packets of the so
shown in Fig. 3, except that now they refer totwo distinct
~and distinguishable! particles. Their trajectories in a spac
time diagram are shown by the dashed lines in Fig. 4, wh
once again we assume that the distances are macrosc
much larger than the microscopic extent of a wave pac
Since we are interested in the spins rather than the posit
of the particles, it is convenient to ignore the latter, and th
of

F0 : c0(s0(s0(••• ~54!

as a unitary history, withc0 the projector on the initial state
uc(t0)& and s0 on the spin singlet stateus0&. In this family
nothing can be said about any component of the spin ang
momentum of particlea or of particleb, since the projectors
for individual spin states, such asuza

1&, do not commute with
s0.

More information about properties of individual spins
provided by the family

F1 : c0(H za
1zb

2(za
1zb

2(•••,

za
2zb

1(za
2zb

1(•••,
~55!

where each history occurs with probability 1/2. The physi
interpretation is straightforward: in the first history, particlea
has Saz511/2 and particleb has Sbz521/2 at all times
later thant0, whereas in the second historySaz521/2 and
Sbz511/2. In either case the spins are opposite,Sbz5
2Saz , in the same way as the colors of the slips of pape
the envelopes belonging to Alice and Bob.

Still another consistent family

F2 : c0(s0(H za
1zb

2(za
1zb

2(•••,

za
2zb

1(za
2zb

1(•••

~56!

is analogous toF2 in Sec. IV B: up tot1 the spins are in the
entangled singlet state, but thereafter they ‘‘collapse’’ in
states in which each particle has a well-defined value ofSz .
Of course this collapse, just like those discussed in Secs.
and IV B, has nothing to do with any physical process, a
instead reflects a change in the choice of basis in which
describe the spins of the two particles; the comments follo
ing ~43! apply equally in the present case. The framewo
F0 , F1, andF2 are mutually incompatible. In addition, con
sistency conditions mean that one cannot ‘‘uncollapse’’
histories inF2 ~or in F1) by replacing theSz projectors at,
say, t3 with s0; again, the situation is analogous to that d
cussed in Sec. IV B.

There is nothing special about thez direction. The family

F3 : c0(H xa
1xb

2(xa
1xb

2(•••,

xa
2xb

1(xa
2xb

1(•••

~57!

is as good a quantum description asF1, and replacingz by x
everywhere in~56! results in yet another consistent famil
All of the frameworks discussed thus far are mutually inco
patible, which doesnot mean that using one of them to co
struct a correct quantum description of the particle’s ti
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evolution makes the others false, or that one must inv
some hitherto unknown law of nature to decide which fram
work is ‘‘correct.’’ Instead, think of each one as describing
somewhat different ‘‘aspect’’ of the time development of t
quantum system, viewing it from a somewhat different p
spective, and thus each framework allows one to answ
different set of physically sensible questions about the s
tem. How are the values ofSax andSbx related to each othe
at some particular time? This can only be answered by
ploying a framework in which the relevant projectors occ
at the time of interest; e.g.,F3 must be used rather thanF1.

One does not have to use the same component of
angular momentum for particlesa andb. In the framework

F4 : c0(5
za

1xb
1(za

1xb
1(•••,

za
1xb

2(za
1xb

2(•••,

za
2xb

1(za
2xb

1(•••,

za
2xb

2(za
2xb

2(•••

~58!

the four histories occur with equal probability, and there
no correlation betweenSaz and Sbx . For additional com-
ments on this and other examples, see Sec. 23.3 of@35#.

C. Measurements

The spin measuring devices introduced in Sec. II D c
also be employed in the present context if supplied with
subscript to indicate which particle is being measured.
example, the device to measureSaz has an initial stateuZa&,
and we assume that the unitary time development whe
interacts with particlea has the form

uza
1&uZa&→uza

1&uZa
1&, uza

2&uZa&→uza
2&uZa

2&. ~59!

For an Sax measurement replaceZ with X and z with x.
Nondestructive measurements are not essential, but they
plify drawing connections with traditional discussions usi
wave function collapse.

If we assume world lines as in Fig. 5~a!, but with theB
detector eliminated, unitary time development starting w
an initial state

uC0&5uC~ t0!&5uv~ t0!&us0&uZa&, ~60!

in which the detector is ready to measureSaz , results in a
succession of states

uC~ t1!&5uv~ t1!&us0&uZa&,

uC~ t2!&5uv~ t2!&~ uza
1&uzb

2&uZa
1&2uza

2&uzb
1&uZa

2&)/A2,
~61!

and so forth; fort3 and all later times the spin and detect
states are the same as foruC(t2)&.

Now uC(t2)& is an MQS state, so that the unitary fami
that contains it, the analog ofG0 in ~48!, cannot be used to
discuss the outcomes of measurements. Instead, we
something like
1-15
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G1 : C0(H za
1zb

2Za(za
1zb

2Za
1(za

1zb
2Za

1(•••,

za
2zb

1Za(za
2zb

1Za
2(za

2zb
1Za

2(•••,
~62!

where the two histories occur with equal probability. In t
first of theseSaz511/2 andSbz521/2 at timest1 and later,
and the measurement outcome isZa

1 at timest2 and later, as
one would expect, while in the other history1 and 2 are
interchanged. This family corresponds to the classical a
ogy introduced in Sec. V A, where astronaut Alice’s open
the envelope and seeing a red~or green! slip of paper reveals
a prior state of affairs, and enables her to conclude that
one in Bob’s envelope is of the opposite color. Of cour
this is not surprising given our earlier discussion of the fa
ily G1 in Sec. II D andG1 in Sec. IV D.

One can construct a familyG2, the analog of~51!, in
which the spin state in both histories isus0& at timet1 and the
‘‘collapse’’ occurs in the same time step as the measurem

G2 : C0(s0Za(H za
1zb

2Za
1(za

1zb
2Za

1(,•••,

za
2zb

1Za
2(za

2zb
1Za

2(,•••.
~63!

An equally good family is

G4 : C0(s0Za(5
za

1xb
1Za

1 (za
1xb

1Za
1 (•••,

za
1xb

2Za
1 (za

1xb
2Za

1 (•••,

za
2xb

1Za
2 (za

2xb
1Za

2 (•••,

za
2xb

2Za
2 (za

2xb
2Za

2 (•••,

~64!

the measurement counterpart ofF4, where the collapse oc
curs at the same time, but now the properties of particleb are
uncorrelated with those of particlea. The existence of frame
works such asG1 andG4 as alternatives toG2 helps prevent
one from drawing the erroneous conclusion that a meas
ment carried out on particlea has some mysterious long
range influence on particleb.

D. Different Lorentz frames

Consider a Lorenz frameL8 moving with respect to the
frame L we have used up till now, with constant time (t8)
surfaces as shown in Fig. 4~b!. FrameworksFj8 analogous to
the Fj of Sec. V B can be defined by introducing primes
the appropriate symbols in~53!–~58!, just as in Sec. IV C,
and all comments made above on the physical interpreta
of these families apply equally to these new descriptions.
in Sec. IV C, eachFk8 is incompatible with eachFj accord-
ing to the rules of Sec. III A, but in the case ofF18 andF1,
which refer to local properties, one can use the ‘‘trick’’ in
Fig. 4~c! in order to produce a common refinement whi
includes the events of both frameworks for allt j andt j8 with
j .0, with eitherc0 or c08 ~choose one or the other! as the
initial state. That is, the relative time ordering of events w
spacelike separation is of no concern provided they are
deed, spacelike separated and not represented by enta
projectors, such ass0.

There is, however, a complication not present in the e
lier discussion in Sec. IV C, where we were only concern
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with the presence or absence of a particle in some regio
space. Here we are~at least potentially! interested in differ-
ent properties, always of the same particle, represented
noncommuting projectors, such asSaz andSax . Suppose, for
example, we are interested in intercalating into the two h
tories inF1 in ~55! at some time betweent1 and t2 a ~local!
property of particlea. If this is anL event, in the sense o
one defined using a projector on a hyperplane which is
constant time inL, then it must satisfy the consistency co
ditions; in particular, if it is a projector onto a spin state
particlea, it must be eitherza

1 or za
2 . If, instead, we inter-

calate anL8 event, then it, too, must satisfy the consisten
conditions. In either case these are determined, see~17!, by
modified Heisenberg chain operators in which the additio
event is represented by its Heisenberg projector at an ap
priate point in the defining product~15!. That is to say, there
are restrictions on whichL8 properties can be consistent
incorporated into anL history, but they are of precisely th
same form governing the addition ofL events to that history.
While relativity theory adds technical complications, the b
sic rules for consistency are exactly the same as in nonr
tivistic quantum theory.

When one is interested innonlocalproperties represente
by projectors on entangled states between particlesa andb,
then, as noted in Sec. IV C, the ‘‘trick’’ of introducing new
hypersurfaces, Fig. 4~c!, will not work, and one must pay
attention to the rules of Sec. III A in order to avoid a situ
tion in which one entangled state inL8 ‘‘occurs’’ both before
~for particlea) and after~for particleb) another~entangled
or product! state inL. It is meaningless to combine two suc
descriptions, in the precise sense that the theory as for
lated in Sec. III cannot assign a meaning to the combinat
even though the individual events are themselves part
sensible quantum descriptions.

Including measuring apparatus in the discussion lead
nothing new beyond what has already been noted at the
of Sec. IV D. In particular, if a measurement outcome
being used to infer a property of some particle in a localiz
region, such an inference is possible whether or not the
ticle is moving relative to the measuring apparatus.
course, if one is interested in a property of the particle in
own rest frame, this must be appropriately related to
frame in which the calculation is carried out. Such transf
mations, and their analogs in classical relativistic phys
are not trivial, but these are technical issues not directly c
nected with the paradoxes associated with wave function
lapse. The latter are best disposed of by abandoning the
tion of collapse, at least as some sort of physical process,
instead using appropriate conditional probabilities ba
upon histories.

VI. HARDY’S PARADOX

A. Statement of the paradox

Hardy’s paradox@21# resembles the EPR paradox in th
it involves two well-separated particles in an entangled st
However, it is more striking in that certain assumptions,
cluding Lorentz invariance, seem to lead to a contradicti
something is shown to be true that is known to be false.
1-16
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well as the relativistic paradox discussed here, Hardy’s or
nal paper contains a slightly different paradox whose disc
sion requires the use of counterfactuals, and for that rea
lies outside the scope of the present paper. Our expos
differs in some unimportant ways from Hardy’s original, a
makes use of the nonrelativistic analysis in Chap. 25 of@35#
~which also discusses the counterfactual paradox!.

Imagine a sourceS, Fig. 6, that simultaneously emits tw
particlesa andb into the arms of two interferometers, in a
initial state

uc0&5~ ucc̄&1ucd̄&1udc̄&)/A3, ~65!

where ucc̄& denotes a state in which particlea is moving
through thec arm of its interferometer on the left side of th
figure, andb is moving through thec̄ arm of the interferom-
eter on the right. Note that~65! has noudd̄& term, so it is
never the case thata is in thed arm at the same time thatb

is in the d̄ arm.
The two beam splitters give rise to unitary time transf

mations

uc&→~ ue&1u f &)/A2, ud&→~2ue&1u f &)/A2, ~66!

uc̄&→~ uē&1u f̄ &)/A2, ud̄&→~2uē&1u f̄ &)/A2, ~67!

where for convenience we have chosen real phases~unlike
@21#!. Unitary time development results in a state

uc2&5~2ueē&1ue f̄&1u f ē&13u f f̄ &)/A12, ~68!

at a time t2, Fig. 7~a!, when both particles have passe
through the beam splitters. Note thatueē& occurs with a finite
amplitude, implying thata andb will be simultaneously de-
tected byE and Ē with a probability of 1/12.

FIG. 6. Apparatus for Hardy’s paradox; see text.

FIG. 7. Space-time diagram for Hardy’s paradox. The op
circles represent the points where the particles pass through
beam splitters, the solid circles att2 ~in L) represent measuremen
which in L8 andL9 are simultaneous with the corresponding poin
at t1. In ~b! these points are on nonintersecting hypersurfaces.
06210
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If the interferometers are sufficiently large there will be
Lorentz frameL8 in which particleb is detected byĒ or F̄
before particlea has reached the beam splitter on the left.
is then plausible that just before detection occurs at the t
t18 in L8, see Fig. 7~a!, the wave function for the two par
ticles is obtained by applying~67! but not~66! to ~65!, with
the result

uc18&5~2uc8 f̄ 8&1ud8 f̄ 8&1ud8ē8&)/A6, ~69!

where the primes indicate wave packets at constant tim
L8. From this one can infer~e.g., by collapsinguc18& to

ud8ē8&) that if b is detected byĒ, then att18 particlea is in
the d arm of its interferometer. Similarly, there will be
Lorentz frameL9 in which a is detected byE or F beforeb
reaches its beam splitter, and the counterpart of~69! is

uc19&5~2u f 9c̄ 9&1u f 9d̄9&1ue9d̄9&)/A6. ~70!

From this it follows that if particlea is detected byE, then at
t19 particleb is in the d̄ arm of its interferometer.

Next assume that the presence of particlea in arm d at a
point on its trajectory indicated byd1 in Fig. 7~a! does not
depend upon whether one describes it usingL or L8 or L9,
and that there is a similar invariance for particleb relative to
arm d̄, and for which of two detectors has detected a partic
Hardy calls this assumption theLorentz invariance of ele-
ments of reality, and it seems physically plausible, especia
if one thinks of extremely large interferometers, so that
different Lorentz frames can be moving rather slowly w
respect to each other. Assuming Lorentz invariance of
form, the inferences based on~69! and ~70! can be trans-
ferred to the Lorentz frameL, and one arrives at the disqu
eting conclusion that in those cases~occurring with probabil-
ity 1/12! in which a andb are simultaneously~in L) detected
in E andĒ at timet2, these particles were earlier, att1, in the
d and d̄ arms of their respective interferometers. But th
conclusion is inconsistent with the initial state~65!, since, as
noted previously, it lacks audd̄& component.

B. Resolution of the paradox

It is helpful to analyze the logical structure of the arg
ment leading to the paradox in a bit more detail. Using
space-time ‘‘points’’~regions small compared to the distan
between beam splitters! labeled in Fig. 7~a!, the inferences
based upon~69! and ~70! can be written in the form

Ē28⇒d18 , E29⇒d̄19 , ~71!

whereĒ28 means that in the Lorentz frameL8 particleb has

been detected byĒ at L-time t2, an event which inL8 is
simultaneous with the eventd18 : particlea is in thed arm of
its interferometer atL-time t1. In a similar way, the double-
prime events refer toL9. The assumption of Lorentz invari
ance of elements of reality implies that these inferences
still valid if we add or delete primes from any of the symbo
in ~71!. Combining the two inferences with primes elim

n
he
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nated is what leads to the paradox. What can one say a
this in terms of relativistic quantum histories?

The inferences in~71! refer to two hyperplanes which
cross, and therefore combining them is a violation of
single family rule as formulated in Sec. III. But, as alrea
noted in Secs. IV C and V D, one can get around this pro
bition when considering local properties, such as those
~71!, by the device of introducing curved hypersurfaces, a
Fig. 7~b!. What is essential is the time order in whichd1

precedesE2, andd̄1 precedesĒ2, which is true in any Lor-
entz frame~e.g.,d19 precedesE29), while the relative tempo-

ral order of spacelike separated events, such asd1 andĒ2, is
irrelevant, because we are not concerned with entan
states connecting two spacelike separated regions. To
sure, the wave functions in~69! and~70! are entangled state
in the sense just mentioned. However, their only role in
argument is that they are a way of calculating~via wave
function collapse! certain probabilities of local properties
probabilities which could be calculated just as well by oth
methods which make no reference to entangled states. In
terminology of Sec. 9.4 of@35#, the entangled wave func
tions in ~69! and~70! are pre-probabilities, and one need n
think of them as representing physical reality. Thus each
the inferences in~71! can be justified by appeal to the appr
priate conditional probabilities, quite apart from the ma
ematical method used to calculate the probabilities.

Nevertheless, despite the fact that one is dealing with
cal properties and hence the crossing of hyperplanes is o
concern, one can only, as pointed out in Sec. V D, interca
~local or nonlocal! events at additional times into a quantu
history if the consistency conditions are satisfied. This i
feature of both nonrelativistic and relativistic quantu
theory, and in the present instance it prevents one from c
bining the two inferences in~71!. Each of these inferences
valid by itself, in the sense that the events to the left a
right of the ⇒ ’s can be placed in a consistent family th
confirms the correctness of the inference through assigni
value of 1 to the corresponding conditional probability. Ho
ever, the family required to justify the first inference is i
compatible with that required to justify the second, and
two cannot be combined, as one one would have to do
reach a contradiction.

To be more specific, any consistent history based on
initial stateuc0& of ~65! which includes the eventd1 ~or d18
or d19) cannot also include the later eventE2 ~or E28 or E29).
That is, it makes no sense to say that particlea is earlier in
the d arm of its interferometer and later detected byE. And
what is meaningless—an ‘‘element of unreality’’—in on
Lorentz frame is equally meaningless in another. Each in
ence in~71! refers to events which are spacelike separa
so their Heisenberg projectors commute, and for this rea
they are compatible with the consistency conditions. Ho
ever, the conclusion of the first inference is incompatible
the quantum-mechanical sense, with the premise of the
ond inference, so putting the two together is not possi
and this blocks the path to a logical contradiction.

In summary, Hardy’s relativistic paradox is resolved~or
tamed! by paying careful attention to using rules of reaso
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ing that are compatible with the mathematical structure
quantum theory. In particular, chaining arguments togethe
a manner which is perfectly acceptable in classical phys
cannot be done in the quantum context without first check
that they belong to a single framework. That is the ba
lesson to be learned from the Bell-Kochen-Specker re
@52#, and from the extensive discussion of quantum pa
doxes in@35#. Indeed, the procedure used here for resolv
the relativistic Hardy paradox is, in its essentials, identica
that used for its nonrelativistic counterpart in Sec. 25.3
@35#, to which the reader is referred for additional detai
including detailed arguments for consistency and incomp
ibility of certain families.

By contrast~and contrary to the conclusion of Hardy
original paper!, the assumption of Lorentz invariance of loc
elements of reality gives rise to no problems: certain thin
one might expect to be the same in different Lorentz fram
such as the presence or absence of a particle, are indee
same, or at least the assumption that this is true is not
origin of the paradox.

VII. SUMMARY AND CONCLUSIONS

A. Relativistic histories

The rules of nonrelativistic quantum kinematics summ
rized in Sec. II A have a straightforward generalization to t
relativistic theory provided one adopts the condition, S
III A, that the spacelike hypersurfaces used to build a re
tivistic family of histories be time ordered, or, equivalentl
cannot intersect each other. In the nonrelativistic theory
proper time ordering of events represented by Heisenb
projectors in the product~15! defining the chain operator i
essential if one wants physically reasonable results, and
seems to demand nonintersecting hypersurfaces in the
tivistic version, unless one wishes to construct an entir
new theory. However, if the Heisenberg operators associ
with two intersecting hypersurfaces commute with one
other for the histories one is interested in, the chain oper
will not depend upon their order. In particular, this is true
the Heisenberg operators are identical, and that suggests
combining certain unitary families~e.g.,F0 andF08 in Sec.
IV C! may make sense. Whether an extension of the rule
Sec. III A allowing this sort of thing is worthwhile, and if s
how best to formulate it, are open questions.

Locality and local properties are important concepts b
for formulating and for resolving quantum paradoxes. T
approach in Sec. III B seems adequate for the purpose
this paper, but could undoubtedly be improved, especially
making its technical assumptions more precise and less
pendent on lowbrow intuition. Part of this task is to give
proper mathematical characterization of macrolocality, som
thing which does not look trivial given the difficulties ass
ciated with microlocality, as mentioned in the Introductio
though work by Omne`s @39# may be pointing in the right
direction. Another nontrivial task is that of constructing si
nificant Lorentz-invariant theories satisfying the conditio
stated in Sec. III C, in a way which can be applied to gene
hypersurfaces and not just to hyperplanes. The present p
contains nothing useful for this task, unless it be a clarifi
1-18
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tion of what it is that one is after.
Such unresolved issues should not obscure the fact

the histories approach extends in a very natural way fr
nonrelativistic to relativistic quantum theory. The basic fo
mulas defining histories, Heisenberg chain operators, wei
or probabilities, and consistency conditions are formally
same in the nonrelativistic approach as summarized in Se
and in the relativistic extension in Sec. III. Not only are t
symbols the same, the associated concepts are extre
close if not completely identical: the occurrence of eve
and histories, consistent families or frameworks, refineme
incompatible frameworks, the single framework rule, a
probabilities. Even the examples are similar.

This close connection is hardly surprising given the fa
pointed out in the Introduction, that relativistic versions
the histories approach have been around for some t
Nonetheless it is gratifying that some more recent deve
ments first formulated in a nonrelativistic context—e.g., p
probabilities and fully consistent schemes for assigning pr
abilities based on different sorts of data—can
‘‘relativized’’ without any difficulty. This straightforward
compatibility stands in marked contrast to the major diffic
ties which beset attempts to construct relativistic version
some other ‘‘observer-free’’ quantum interpretations@53,54#.

B. Resolving paradoxes

The three paradoxes resolved, or at least tamed, in S
IV, V, and VI, are all connected with the idea that a measu
ment which takes place in some localized region can h
effects at a distant place spacelike separated from the re
in question. And they all invoke some form of wave functio
collapse in order to calculate probabilities or make inferen
about the state of affairs at this distant place.

The basic strategy by which the histories approach
arms these paradoxes is by getting rid of wave function c
lapse. How to do this is shown in detail for the examp
considered in Sec. IV; see the summary in Sec. IV E. T
conclusion is that wave function collapse is not needed
quantum theory, and that if it is used it shouldnever be
thought of as a physical effect produced by a measurem
Because of its misleading connotations it might be best to
rid of wave function collapse altogether. There is nothi
that can be calculated or~correctly! inferred using collapse
which cannot be calculated or inferred equally well usi
conditional probabilities based on fundamental quant
principles that make no reference to measurements or to
lapse. The histories approach can supply physical desc
tions that resemble those of collapse~theG2 families of Secs.
IV D or V C!, and which help explain why the use of co
lapse as a calculational procedure yields correct answers
it also supplies alternative descriptions~theF1 andG1 fami-
lies in these same sections! which are much more useful fo
thinking about measurements from a physical point of vie
because they show how a measurement outcome is relat
some property of the microscopic system before the m
surement took place. It is, in fact, this latter type of descr
tion that experimental physicists use for designing th
equipment and analyzing their data. It is to be regretted
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textbooks which include the rather unrealistic model of no
destructive measurements going back to von Neumann
the basic concepts needed to understand, from a quan
perspective, the devices actually used in practice.

The use of families of theF1 or G1 type, with macrolocal
properties both before as well as after a measurement~if any!
takes place, has the further advantage that it simplifies
discussion of how the description of a quantum system m
be altered in a relativistic theory if one uses a moving co
dinate system. For families of this type, with an appropri
coarse graining in space and time, the quantum descrip
becomes ‘‘classical’’~as one would anticipate from the wor
of Gell-Mann and Hartle@28,30#!, and Lorentz transforma
tions of particle trajectories behave the same way as in c
sical relativistic physics. States which are entangled o
macroscopic distances, such as the pre-measurement pr
ties in theG2 families, are not as easy to analyze, but t
histories approach provides the tools needed for using
tangled descriptions in a manner consistent with the ba
principles of quantum theory, or combining entangled a
local states at different times in histories in the same fram
work.

While there are many good reasons for removing wa
function collapse from nonrelativistic quantum mechani
the case is even stronger for a relativistic theory. The use
collapse understood as some sort of physical phenomeno
one of the main sources of the widespread notion that
quantum world is inhabited by superluminal influences, le
ing to a prima facie conflict with relativity theory. It is the
necessary to prove theorems to the effect that these in
ences cannot carry information, i.e., they are completely
observable phenomena. While a detailed discussion of
~supposed! nonlocality of quantum theory lies outside th
scope of the present paper, it seems clear that to the ex
that unobservable superluminal influences arise from thi
ing of wave function collapse as a physical phenomen
disposing of the latter will get rid of the former. In any cas
if collapse is not a physical phenomenon, discussions
when it actually occurs@2# are irrelevant to the physica
theory.

Once wave function collapse is out of the way~or has
been tamed, should one wish to continue using it!, the reso-
lution of the relativistic EPR and Hardy paradoxes is fai
straightforward, using methods similar to those used e
ployed for their nonrelativistic counterparts in Chaps. 23
25 of @35#. As long as one limits oneself to a single fram
work, there is nothing paradoxical about EPR correlations
and of themselves, for they have a simple classical ana
Sec. V A. The notion that a measurement on particlea some-
how influences particleb can be effectively undermined b
noting some of the different frameworks that provide equa
valid descriptions of the quantum time development. In
case of Hardy’s relativistic paradox the source of the di
culty is not a failure of the Lorentz invariance of elements
reality, such as the presence or absence of a particle
given region of space, but instead a process of reaso
which combines results from incompatible frameworks.
particular, the problem has to do with what one can me
ingful say about the time dependence of the state of asingle
1-19
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particle, rather than measurements on a second par
spacelike separated from the first, and thus relativistic c
siderations are actually irrelevant to the fundamental conc
tual difficulty. Classical modes of reasoning easily give r
to contradictions if imported into the quantum domain wit
out regard to the way in which the mathematics of quant
theory differs from that of classical physics.

We believe that the paradoxes considered in this pape
representative of a larger class, those in which traditio
ideas of measurement and wave function collapse give ris
contradictions, or to nonlocal influences in apparent confl
with relativity theory. If that is true, then the methods us
here for resolving the paradoxes of wave function collap
EPR, and Hardy should work equally well for this larg
collection, and help assuage the concern, seemingly w
spread in the quantum foundations community, that quan
theory and relativity are fundamentally incompatible. T
analysis in this paper indicates that the two go together v
J.,

-

,

s

s.

.
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well when proper account is taken of the rules which a
needed to make even nonrelativistic quantum mechanic
consistent theory.

There remain, of course, the problems of microlocali
understanding the quantum vacuum, constructing field th
ries using honest mathematics, and the like, whose resolu
is not brought any nearer by anything in this paper. Unles
be indirectly through allowing a redirection of intellectu
energy away from enigmas whose ultimate origin is the
satisfactory manner in which probabilities have traditiona
been introduced into quantum theory, both nonrelativis
and relativistic, and which disappear when this is done i
fully consistent way.
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