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A secret key shared through quantum key distribution between two cooperative players is secure against any
eavesdropping attack allowed by the laws of physics. Yet, such a key can be established only when the
guantum channel error rate due to eavesdropping or imperfect apparatus is low. Here, a practical quantum key
distribution scheme by making use of an adaptive privacy amplification procedure with two-way classical
communication is reported. Then, it is proven that the scheme generates a secret key whenever the bit error rate
of the quantum channel is less than 8®&1,5~27.6%), thereby making it the most error resistant scheme
known to date.
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Quantum key distributiofQKD) is the process of sharing cedure with two-way communication increases the error tol-
a secret bit string, known as the key, between two cooperarant level of a QKD scheme. In particular, they proved that
tive players, commonly called Alice and Bob, by exchangingthe six-state QKD scheme introduced by Br{#3] tolerates
guantum signals. Since an unknown quantum state cannot g to about 23.7% bit error rater equivalently up to about
perfectly cloned[1,2], any eavesdropping attempt by Eve 35.5% channel error rat¢11]. Recently, Gottesman and Lo
will almost surely disturb the transmitted quantum statesfurther improved their two-way communication protocol and
Thus, by carefully estimating the error rate of the transmittedshowed that it generates a provably secure key up to 26.4%
quantum states, Alice and Bob know with great confidenceit error rate[12]. (Here, the channel error rate and bit error
the quantum channel error rate, which in turn reflects thQate refer to the rate of guantum and Sp|n-f||p errors occur-
eavesdropping ratéln contrast, Alice and Bob can never be ring in the insecure noisy quantum channel, respectively.
sure if Eve has eavesdropped in classical key distribution Here, | report an adaptive privacy amplification procedure
because classical signals can be copied without being caugh¥; the six-state scheme. Then, | prove that this procedure
in principle) If the estimated eavesdropping rate is high, gnapjes the six-state scheme to generate a provably secure

they abort the scheme and start all over again. On the oth?g'ey up to 0.5-0.1/5~27.6% bit error ratéor equivalently

hand, if the estimated eavesdropping rate is low, privacy am-

plification procedure such as quantum error correction or en- 10 0.75-0.15/5~41.4% quantum channel erfpbreak-

tanglement purification can be used to distill out an almost"9 the 26'4%_ bit error rate record .o.f Gottesman and Lo.
perfectly secure kef3—5]. This scheme is also practical, requiring no quantum com-

It is instructive to devise a secure QKD scheme that tolPuter or search for asymptotically good quantum codes.
erates as high a quantum channel error rate as possible afce no BB84-based scheme can tolerate more than 25% bit
Subject that scheme to a Vigorous Cryptana'ysis_ |ndee@rr0r rate[lZ], the 27.6% bit error rate tolerable six-state
Mayers[5] and Bihamet al. [6] proved the security of the Scheme reported here convincingly demonstrates the advan-
so-called Bennett-Brassard 1988B84) QKD scheme[7] tage in error tolerability of the six-state scheme over BB84.
against all kinds of attack allowed by the laws of quantum Before reporting the adaptive procedure, let me briefly
physics. Following Mayers’ proof, a provably secure key isreview the privacy amplification procedure introduced by
established whenever the channel error rate is less than abd@bttesman and L11]. In the first step of the Gottesman-Lo
7%. Lo and Chau proved the security of an entanglementprivacy amplification procedure, Alice and Bob perform en-
based QKD schemég3]. By scrambling the qubits before tanglement purification with local quantum operation and
transmission and using the quantum Gilbert-Varshamov artwo-way classical communicatidhOCC2 EB. Specifically,
gument for a general quantum stabilizer c¢8k the Lo and  they randomly pair up their corresponding bits in the string
Chau scheme tolerates up to about 18.9% channel erraand compare the result of a bilateral exclusive BXOR) in
Nonetheless, the Lo and Chau scheme requires quantueach pair. They keep their corresponding control bits in each
computers and hence is not practical at the present momergair only if their parities agree. In the second step, Alice and
By properly combining the essences of the Mayers as well aBob apply thd 3,1,3], phase error correctiofPEQ. This is
Lo and Chau proofs, Shor and Preskill gave an ingeniougquivalent to randomly forming trios of the remaining bits
security proof of the BB84 scheme that applies up to 11.0%and replacing each trio by their corresponding parifies.
channel errorf9]. The most error resistant QKD scheme Alice and Bob apply LOCC2 EP and PEC alternatively until
known to date was recently found by Gottesman and Lothe error rate of the resultant signal can be handled by an
Built upon the Shor-Preskill proof, Gottesman and Loasymmetric Calderbank-Shor-SteaffeSS quantum code
showed that a carefully designed privacy amplification pro{13,14] with great confidence. Then, they apply the Shor-

Preskill error correction proceduf8] to the remaining bits
using the above CSS code. By doing so, they end up sharing
*Electronic address: hfchau@hkusua.hku.hk a secret key with exponentially close to 100% confidence.
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Gottesman and Lo further showed that their procedure bringsrror operator acting on the original control and target qubits

down the error rate whenever the channel error rate is lessqualo,® oy Or oy® 0y, 0x® 0y Of T,® 0y, andl® o, or

than about 23.7%11]. o,®1, respectively. Since error suffered by each qubit is
The Gottesman-Lo two-way privacy amplification proce-independent of the other, hence Efj) holds. The indepen-

dure reviewed above can be improved in two ways. Firstdence of resultant error rates after the LOCC2 EP procedure

there is no reason why one must apply LOCC2 EP and PE@llows directly from the independence of channel error for

alternately. Instead, Alice and Bob should devise a suitabl¢he qubits received by Bob. |

privacy amplification procedure based on the estimatgd By Proposition 1 and mathematical induction, it is straight

oy, ando, error rates of the qubits transmitted through theforward to check that the error rates of the resultant qubits

insecure noisy channel. Besides, they may [usér], for  after going througtk rounds of LOCC2 EP are given by

somer >3 as their phase error correction code. In fact, using

this approach, Gottesman and Lo proved that the six-state prEpz[(pl+pz)2k+(p|_pz)2k]/2D,

scheme can tolerate a bit error rate up to 26[4%}. Second,

although the asymmetric CSS code used by Gottesman and KEP_ 2K 2k

Lo is known to exist using Gilbert-Varshamov type of argu- P = LRt Py) ™+ (P Py)” /2D,

ment[13], explicitly finding that it may be difficult, in gen- . . v @)

eral. Fortunately, concatenated quantum CSS code is already Py F=[(pxt+py)? —(Px—Py)? 112D,

sufficient in handling the final error correction in the privacy

amplification procedure. More importantly, various concat- p'Z(EP=[(p.+pz)2k—(p|—pz)2k]/2D,

enated quantum CSS codes and their decoding algorithms

are known. where D=(p,+ p,) 2+ (py+ py)zk. So whenevemp,>1/2,

Before | report my six-state scheme, | first call upon two _y gp K EP KEP -KEP
propositions below to study the effects of LOCC2 EP andpL EP> i/EZP’ and p; "< 1/2. Fur.ther,p, Pz _>1./2 .and
Py~ —0 ask—=. That is, repeated application of

PEC on the error rates of the signal. x
Proposition 1 Suppose Alice sends Bob several qubitstOCC2 EP reduces, anda, errors at the expense of pos-

through a quantum channel whosg, o, and o, error sibly increasings, and perhaps also the overall error rates.
rates due to either noise or eavesdroppying mrep,, and Proposition 2 We use the notations in Proposition 1. Sup-
p,, respectively. Letp,=1—p,—p,—p,. If the err¥)r suf- Pose Alice and Bob divide their shared pairs inteets each

Z . X y zZ" A .
fered by each qubit is independent of the other then the errdfontainingr shared pairs. And then they perform one round
rates of the resultant qubits after going through one aroung’ PEC using thér,1r], majority vote phase error correc-

of LOCC2 EP are given by tion code. The re;ultant error rates of the signal after one
round of PEC satisfy
2 2
pi+p
pEP Lz pREC+ pPEC<r(py+py),

(P PPt (pytpy)?

2 2 p;’EC_’_ pEEcg [4( pl + pz)( px+ py)]r/2$ e—2r(0.5— p,— py)zy
p2-+p? .

EP.
Px = ,
© (Pt PP (Pt py)? . .
(1) provided thatp,>1/2. Also, the error rate in each of the
2p,p resultant qubit after PEC is independent of each other.
p5P= 5 Y 5 Proof. The idea of the proof is the same as that in Propo-
(P1+P) "+ (PxtPy) sition 1. Recall that the error syndrome of fhelr], phase
error correction code is given by
EP 2p|pz
pZ = 2 2" l l
(P1+P2)°+ (Pt Py) . .
Furthermore, the error rate in each of the resultant qubit after . . . (4)
the LOCC2 EP is independent of each other. ’ ’
Proof. Recall that in the LOCC2 EP, Alice and Bob ran- 1 1

domly pair up their corresponding shares of the qubits and

apply BXOR to each pair. During thexor operation, anyr,  So, after measuring this error syndrome, dheerror stays on
error in the control qubit remains unaltered. In contrast, thehe control qubit while ther, error propagates from the con-
o, error of the resultant control qubit is inherited from both trol as well as all target qubits to the resultant control qubit
the original control and the target qubits5]. Since Alice [15]. Therefore, upon PEC, the resultant control qubit is
and Bob reject the pair if the measurement results of theispin-flip error-free whenever there is an even number of qu-
share of target qubit differ, hence the remaining control qubibits amongst the of them in the same set suffering spin-flip
is error-free if the error operator acting on the original con-error. Hence, the first inequality in E¢3) holds. Similarly,

trol and target qubits equalz| or o,®0,. Similarly, the the resultant control qubit suffers from phase-shift error pro-
remaining control qubit suffers,, o, ando, errors if the  vided that at leag{(r —1)/2] out of ther qubits are suffering
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from phase-shift error. Such a probability of occurrenceclaim can be found in Refl4].) If the estimated channel
equals Eaz[(r,l),z](;)(pyjt P3P +py)' 2 Combining error rate is too high, they abort the scheme and start all over

with the inequality] 16] again.
(3) Using the convention that0), |0)—|1), and |O)
A —i|1) represent a logical O while thgl), |0)+]|1), and
2 (k> ph(1—p)" k<A AL —n) A7 Mn |0)+i|1) represent a logical 1, Alice and Bob convert their
k=0 untested measured qubits into secret strings. Then, they per-
X pA(1—p)E—rn (5) form the following privacy amplification procedure on their

secret bit strings.

(@) They apply the LOCC2 EP procedure proposed by
Gottesman and Lo in Ref11]. Specifically, they randomly
pair up their corresponding secret bits and announce the pari-
jes of each pair. They keep the control bit in each pair only

satisfied. To arrive at the second line, one simply considerI their announced parities for the pair agree. They repeat the
i ; o0 — 1Y+ .
the Taylor-series expansion of [l (2pi+2p,~L)ItIn[L o Vo) 5000 Ep procedure until there is an integei0

+(2p,+2p,—1)] and uses the observation that all odd power . .
teEmpsy in ?ﬁe e)>]<pansion are canceled p. such that the estimated quantum channel error given by Eq.

. 0 :
Proposition 2 tells us that if 0:5p,— p,> \/prpy the (3) is less than 5%. They abort the scheme either when such

phase error can be greatly reduced after one round of PEC kﬁ/n integer is greater than the number of remaining bits they

choosingr ~0.01/(p,+ p,). Specifically, with this choice of ave or when they have used up all their bits in this proce-

L ) . dure.
r, Eq. (3) implies thatp[™+p;=" is exponentially small (b) They apply the PEC procedure introduced by Gottes-
while p; ="+ py "~ is at most about 1%.

: Py : _ man and Lo in Ref[11] using the[r,1r], majority vote

Alice and Bob may exploit the dynamics of LOCC2 EP yhase error correction code once. Specifically, Alice and Bob
and PEC to perform their privacy amplification. Specifically, randomly divide the resultant bits into sets each containing
they first repeatedly apply LOCC2 EP until 8:5,—py  pjts. They replace each set by the parity of thits in the
>/px+ py. Then, applying PEC once will bring the overall get,
error ratep,+py+p, down to an acceptable value. And  (¢) Alice and Bob randomly permute the order of their
then, Alice and Bob may choose to use the concatenate@maining bits and apply the Shor-Preskill privacy amplifi-
Steane’s seven-qubit code in the Shor-Preskill procedure. Reation procedurg9] to these bits with the concatenated Ste-
call that Steane’s seven-qubit code corrects one error out @fne’s seven qubit code. The level of concatenation depends
seven qubit$1.4]. Thus, as qug as Alice and Bol_a randomly on the estimated worst cape+ p,+ P, given by Eq.(3) and
permute the bits before applying the Shor-Preskill procedurene final required fidelity of the state. Specifically, suppose
the overall error rate that is almost surely tolerated by thghat the concatenated Steane’s seven qubit code is con-
concatenated Steane’s seven-qubit code is equal to the smadkrycted from two binary classical cod€s and C, satisfy-

for 0<A<p, we conclude that the probability of having a
phase error is upper bounded b#(p;+ p,)(py+p,)]1"2
Thus, the first line of the second inequality in E®) is

est positive root of the equation ing C,CC;. Alice randomly picks a codeworde C; and
publicly announces the sum afand her remaining bit string
1-A=(1-N)"+7(1-\)°\, (6)  modulo 2. Bob subtracts Alice’s announced bit string from

his own remaining bit string modulo 2; and then he applies
namely, about 5.8%. The upshot is that the error correctiothe C, error correction to recover the codeware C,. They
algorithm for the concatenated Steane’s seven-qubit code isse the coseti+ C, as their secret key.

known and can be carried out efficiently. To prove the security of the above scheme, | follow the
With these two improvements in mind, | write down my arguments of Refd3,9,11,17. First, since this is a prepare-
modified six-state scheme below. and-then-measure scheme, any Eve’s quantum cheating strat-

(1) Alice preparesN qubits each randomly chosen from egy can be reduced to a classical d8¢l7]. Second, Eve
[0), |1), |0)=|1), and|0)=i|1) and sends them to Bob does not know how Alice and Bob group the qubit pairs in
[10]. Bob acknowledges the reception of the qubits and meacOCC2 EP and PEC beforehand. Hence, the resultant error
sures each of them randomly and independently along one eéite after going through either LOCC2 EP or PEC depends
the following three baseg|0),|1)}, {|0)=|1)}, and{|0)  only on the probabilities ofr,, o, and o, errors and the
*i|1)}. Then, Alice and Bob publicly announce the basesnumber of qubits transmitted3,11]. Thus, to study the
they have used to prepare or measure each qubit. They keagymptotic error tolerable rate of the above scheme, it suf-
only those qubits that are prepared and measured in the sarfiees to consider cheating strategies characterized only by
basis. Px. Py andp, respectively. Since Alice chooses the six states

(2) Alice and Bob estimate the channel error rate by sacrandomly and uniformly, the untested qubits can be regarded
rificing a few qubits. Specifically, they divide the qubits into as having passed through a depolarizing chafiig! Hence,
three sets according to their bases of measurement. Thélice and Bob almost surely know that=p,=p, for their
randomly pickO(In[1/€]) qubits from each set and publicly untested qubits.
compare the preparation and measurement results of each From Eq.(3) in Proposition 2, | know that after applying
chosen qubit. In this way, they know the estimated channelOCC2 EP k times, PEC will bring the quantum error rate
error rate with standard deviatian (A detailed proof of this  down to, say, 5% ifr=0.04/(p} "+ pk®) and 2 (0.5
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— pkEP— pt Ed>1. Puttingp,= p,=p,=(1—p,)/3 into Eq. number of QKD schemes. For instance, the above adaptive
(2), | conclude that this is possible whéa—~ and (o privacy amplification procedure enables the BB84 to gener-
—p,)2>(p+py) (Pyt+ py). This condition implies that ate a provably secure key whenever the bit error rate is less
20p7—10p,—1>0 or p,>0.25+0.15/5. In other words, than 20.0%or equivalently, a quantum channel error rate of
the above scheme tolerates a bit error rate uptep, less than 39.9% Besides, one can show the existence of a
=0.5-0.1,/5~27.6% (which corresponds to a quantum biased entanglement-based QKD scheme requiring quantum
channel error rate gb,+ p,+ p,=0.75-0.15/5~41.4%). computers, whose key is provably secure whenever the bit
Besides, once Alice and Bob estimate the channel errogrror rate is less than 33.3pA8].
rates, then they can efficiently compute the number of ) ) ) )
LOCC2 EP to be applied as well as the level of concatena- s work was financially supported in part by the HKU
tion for the Steane’s seven qubit code to be used. Finally, thénd the RGC Grant No. HKU 7095/97P of the HKSAR gov-
error syndrome of the concatenated Steane’s seven-quiifnment. | would like to thank H.-K. Lo for explaining his
code as well as the corresponding Shor-Preskill procedur@ork with Gottesman on applying two-way classical com-
are straight forward to compute. munication to quantum key distribution and for discussing
The 27.6% bit error rate bound reported here shows thavith me his recent work with Gottesmdd 2] prior to its
the six-state scheme is more noise resistant than the BBgaublic dissemination, D. Gottesman and H.-K. Lo for their
scheme since no BB84 scheme can tolerate more than 25%aluable discussions on privacy amplification, and D. W. C.
bit error[12]. In addition, the adaptive privacy amplification Leung and H.-K. Lo for their critical reading of this manu-
idea can be applied to increase the error tolerant level in acript.
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