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Complete functional theory for the fermion density of independent particles subject
to harmonic confinement ind dimensions for an arbitrary number of closed shells
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In earlier work, expressions have been constructed for the single-particle kinetic-energy furicfipndor
independent fermions subject to harmonic confinement in low dimensionsp hth particle density. Here, the
differential equation fop is first obtained ind dimensions for an arbitrary number of closed shells. Then, by
using the known Euler-Lagrange equation, the functional derivaiivg 6p(r) is constructedT [ p] itself is
proved to take the form of a linear combination of three pie¢gsa von Weizseker inhomogeneity kinetic
energy, but with the original coefficient reduced by a dimensionality facthr (i) a Thomas-Fermi kinetic
energy, andiii) a truly nonlocal contribution that, however, is shown to involve only the demsitgelf and
its first derivative. Thus, for this model, which is currently highly relevant to the interpretation of experiments
on the evaporative cooling of dilute, and hence almost noninteracting, fermions, a complete density-functional
theory now exists.
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Following earlier experimental studies of the Bose- 2 2 3 _ ,
Einstein condensation in ultracold trapped Bose gases, De- (A718Bm) (A ar)VEp () +[(M+ 2)hw = V(O] p'(r)
Marco and Jiri1] achieved the evaporative cooling of dilute, + [aV(r)lar] p(r)=0, )
and hence almost noninteracting, fermions. Further experi-
mental investigations in Ref§2—6] add to the motivation Where the confining potentia¥(r) = 3mw?r?. The results
for a full theoretical study of many-fermion assemblies that(1) and(2) are generalized td dimensions in the Appendix,
are harmonically confined. The foc%sglin tho% above experiwhere it is argued that
ments was on ultracold vapors of t anc’Li isotopes ,
populating hyperfine states inside magnetic traps. In current?*/8m)(d/ar)V2p(r) +{[M+ (d+1)/2]hw=V(r)}p'(r)
experimental approaches, based on axially symmetric mag- 4 (q/2)[oV/(r)/ar] p(r)=0. 3
netic traps, it proves possible to range from a quasi-one-
dimensional(1D) trap, through a quasi-2D trap, to a fully  To illustrate the basic approach underlying this Brief Re-
spherical 3D trap. port, let us immediately turn to the 2D case of RE8].
This background, and especially the possibility of exploit-There, a result for thésingle-particlé kinetic-energy density
ing magnetic confinement of many-fermion assemblies havt(r) was obtained, being expressed in terms of the Thomas-
ing different dimensionalityl, has been the prime motivation Fermi and von Weizsker functionals. Their explicit form
for the theoretical study to be reported here. The entire focug/as
is on the fermion density, and the theory will be presented
for an arbitrary number of closed shells, sayl € 1), for
general dimensionality of the isotropic harmonic confine- t(r)=§tw(r)+
ment. Thusp=p(r), wherer is the radial distance from the
origin of the confinement ird dimensions. As a starting 3p'(s)
point, Lawes and March7] in a very early study gave a )
third-order linear homogeneous differential equation in 1D, p(s)
namely

Cot
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S
16mJo p(s)®
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p*(r), 4

with C, a constant, where the von Weizgar functional is

— Lp()V'(X)— (£%8m) p" =[NAhw—V(x)]p'(X), tw(r)=(A%8m)[(Vp)?p], (5

while the Thomas-Fermi result is

vV _ 2 2/2' 1 - =
(= mo?x @ tre(r)=ci=22(r), cd~2= mhi2im. ®)

for N closed shells, where the primes denote spatial deriva©bviously by integrating Eq.(4) over the whole two-
tives throughout. For uniformity with the notation for dimen- dimensional space, one h@ig= ft(r)d?r in terms ofp(r).
sionality d>1 used belowN=1 being the lowest state of Our first objective therefore is to effect the generalization
Eqg. (1), N will be written asM+ 1. This equationl) was of this single-particle kinetic-energy expression tbr 2 to
subsequently generalized to 2D by Minguzzi, March, andgeneral dimensionality. To do so, we integrate E).as a
Tosi [8] to read[their Eq.(11)] first-order differential equation for the potential enekifyr).

1050-2947/2002/66)/0545014)/$20.00 66 054501-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW A6, 054501 (2002

Using an integrating factor, one is led to the result ¥at), Next one can reduce the order of the derivatives appear-
within an additive constant, is given in terms of the densitying in T by repeated integration by parts, and after some
p(r) for (M+1) closed shells by considerable manipulation one reaches the desired result for
T4 p] in d dimensions:
B p2/d r 1 ﬁZ J )
VID="%q) e mar P ”
" T{p]=C f (u)t*+2Mdgdy + f (u)d
ol 81, 9], , slPi=d | P smd) p(u)
+T wE r, ( ) ,2
d-1 (s)
where +—f p(u)t 2 — JO TR
V2=(5%ar?) + [(d—1)/r](alar) . (8)

d+1 (u p'{s) g
In fact Eq.(7) can be directly verified by differentiation to + 2d(d+2) ), (S)3+2,dd5 d°u, (19
yield Eq.(3). Integration by parts of the final term in E) p
then yields almost immediately

where
\Y M d+1h mﬁzj ! Vzd 9
=M+ o= Zg m) Jra gy P4 O s
co_ d ( d+1 " 1 h Vep
In the Appendix, the differential virial theorem i di- d+2 2 pr/d(O) 4m(d+2) | pt+2a |
mensions is derived as
2 2 72 2
atlor=—(dI2)p (aVIar)— (h218m)(dlar)V2p. (10) _ p (16)
8md| p2+2d| °
But p?dap/ar = (1+2/d) "1ap*T?d/4r, and hence one finds 0
for the single-particle kinetic energys=[t(r)d%, the re-
sult which is the central result of this Brief Report. This is the
single-particle  kinetic-energy  functional TJp] in
p(u)t+2d ru g ) d-dimensional harmonic confinement for an arbitrary number
Tdel= Janspace4(d+2) T2 s S Vpdsdu () (M+1) of closed shells.

The Euler equation of the variational principle for the

The constant of integration can be found after some manipd©t@l €nergye given by
lation involving the quotient’/p’ (see also the Appendixn
the form

E=Ts[p]+ijddr, (17
t'/p' ={[M+(d+1)/2]hw—V(r)}, (12)
and hence one finds is known to have the form10]
d,LL p(r)l+2/d p(r)1+2/d r 1 )
KT 2(0)%0 | A(d+2) fo pl+aH asV pds p=0Td op(r)+V(1), 18

22
_M, (13y and we shall next use the known forr(8) for the
4m(d+2) d-dimensional density to extradT¢/dp(r) from Eq. (18).

Obviously, from the Euler equation, we have, again apart
where u=[M+(d+1)/2]hw. As a check of EqQ(13), one  fom an additive constant,

can compare with the 1D result of March, Senet, and Van
Doren[9], namely

3 2 3 3 2 n oTs _pZ/d(r) ﬁ—z r ! —VZ ds (29
ty(r) = Nzw Pz(r) +h po(r) (T 31 5_#; . hp sp(r)  4d m] pl+2dcg) ds pas.
p?(0)  12m Jop3(s) gs 12m’
(14
Repeated integration by parts can be utilized once more to

which is indeed the special case of E4j3) for d=1. Obvi-  lower the order of the derivatives appearing in Eif). One
ously from Eq. (13), Ts[p]=fa||spac€t(r)ddr through  then finds for the integral appearing in E49) the equiva-
d-dimensional space. lent form
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J’f 1 J V2,4
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Hence we reach the desired form 8Fs/5p(r), which, we

must emphasize, we have extracted ugmghe Euler equa-
tion (18), and(b) the known differential equatio(8) for the

fermion densityp(r) for harmonic confinement id dimen-

sions. Evidently, combining Eq$19) and (20) yields

p

p'{s)(2+2/)

| (1+2id)
p3+2/d(s)

2

(20

6Ty h% VPp(r) (1+2/d) #*p?
p(r) amd p(r) | 2 m 2
2/ Z(S)
+(d—1)(1+2/d)p ()—f 770

12(1+2/d)
+ e —
2m

p qs)(2+2/d)

p3+2/d(s)

p2/d(r) fr
(21)

To confirm the structure of this equati¢2l) for the func-
tional derivativesTg/Sp(r) in d dimensions, let us write it
explicitly for the 1D case. Then we find

”(X) 3ﬁ2 )
am p<x>+_p_+6 P f

5T
Sp(x)

p's)

ds,
p>(s)
(22

which is readily shown by integrating the von Weizker
energy densityEq. (5)]

2
Tw= 8mf (Vo) ddr—jtw(r)ddr (23
to have the form
6T, 13ty oTw % (xp'¥s)
o i 00| R

which exhibits clearly the terms having their origin in the

von Weizsaker energy density23), plus a truly nonlocal
part involving, however, only the fermion densiptfx) and
its first derivative.

In summary, the experiment of DeMarco and [in on

harmonically confined fermions has motivated this theoreti-
cal study. What has emerged for harmonic confinement is the
exact resul(15) for the single-particle kinetic energy, which

requires only the fermion densip(r) for d dimensions with
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(18). Thus, it is fair to claim that the experiments in Refs.
[1-6] have motivated a full density-functional theory ih
dimensions for harmonically confined independent fermions,
for an arbitrary number of closed shells.

APPENDIX

The purpose of this appendix is to confirm the
d-dimensional resul3) for the ground-state densip(r) for
(M+1) closed shells with an isotropic harmonic confine-
ment. We find it instructive to consider the Slater sum
Z(r,B) defined as

Z<r,ﬁ>=a;i g (Dgi(nexp —Be), B=(kgT) L, (A

where they;(r) are the eigenfunctions, with corresponding
eigenvalues;, generated by the one-body Hamiltonikin

defined by
H,=— (A2/2m)V2+V(r). (A2)

The corresponding Dirac density matrXr,rg) used below
is the off-diagonal generalization

Y(Varo):i%C P (N (ro). (A3)

From the early work of Sondheimer and Wilddri], one can
then writeZ(r,B) exactly ford-dimensional harmonic con-
finement as
Z(r,B)=(mw/2mh)¥?[1/sintf? (Bhw)]
xexp[— (mw/h) r’tanh (Bhw/2)]. (A4)

It follows that the differential equation with solution given
by Eg.(A4) can be written as

h2 9 V27— J vir 9z (d-=2) ﬁVZ—O A
where here\/(r)zmwzrzlz. We next define the “canonical
kinetic-energy densityts(r,B) as
te(r,B)= (=h%12m) VIC(r,10,B)|ry=r,  (A6)
with C(r,rq,8) as the canonical density matrix. But since
C<r,ro,ﬁ)|rozr=ﬁfo VZy(r.ro)exp — BE)dE
mpg
=— ﬁ_ t(r E)exp—BE)dE, (A7)
it follows that
c(r,ﬁ)=/3f0 t(r,E)exp(—BE)dE, (A8)

and therefore, from the Bloch equatioR,C(r,rq,B)

(M+1) closed shells for its evaluation. We have also beer= —dC/dp and the definition oH,, it follows that

able to extract the functional derivativd s/ dp(r) by invok-

ing the known differential equation for the particle density, in

addition to the(constant chemical potentialEuler) equation

te(r,B)=—(9Z/B) —V(r)Z(r,B), (A9)

and thus
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dtelar =—NZ'=\'Z— (9Z2'19B) (A10)

for an arbitrary dimensionalitg. Using Eq.(A5) to elimi-
nate theB derivative in Eq.(A10), we find that

dtclar =— (h218m)(alar)V3Z— (d/2)V'Z. (A1l)

This can immediately, by inverse Laplace transform, be writ-

ten as a differential virial theorem relatingp, andV:

atlar =— (h218m)(alar) VZp— (dI2)V'p. (A12)

If we define for convenience an “averaged” kinetic-

energy densityt =t + (42/8m)V?2p (the average of they'|?
and V24 definitions of kinetic-energy densjtywe can
write the above as

atlar =— (dI2)V'p; (A13)

then it follows from Eq.(A1l) that we can also write corre-

spondingly
atelar =— (dI2)V'Z, (A14)
or, dividing by Z’,
atelorlz’ = — (di2)V'(Z/Z"). (A15)

But Z'/Z is found from the Sondheimer-Wilson for(&4)
for Z to be such that
Z'1Z=—-2wr tanh(Bw/2), (A16)

which is independent of the dimensionalityThus, from Eq.

(A15), t:'/Z' is proportional tod. This is a vital result for

establishing the desired ground-state equation fdr+(1)

closed shells, namely E(lL2), since it has already been veri-

fied ford=1,2, and 3 for arbitraryv.

We will establish, in concluding this appendix, the linear-
ity in d for two closed shells using the Dirac density matrices
v in Eg. (A3), calculated by inserting harmonic-oscillator

wave functions. These are readily obtainedder1—4 and
give
Irtrol fr=rol) _(me) ™ 1 me .,
2 2 har h

1+2$(§2— 7;2)}.

y(é&m=vy

+7?) (A17)
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Hence, for instance, the ratio of for d=4 to the result for
d=1is

va(§,m)!y1(&, 1) = const, (A18)

and thus

)3/2

palp1=(MwlhmT (A19)

The corresponding kinetic-energy density is readily obtained
from the differential virial theorem to yield

/1ty = dpalpy = dpylps, (A20)

with d=4. For this example, the linearity this established,
which is the counterpart of EqA15) for the canonical
kinetic-energy density.

To relate Eq.(A20) to Eq. (12) we need, from the line
below Eq.(A12), (£2%/8m)V?p to go fromt to t. This is
easily found by puttingy=0 in Eq. (A17) to find p(&). To
prove Eqg.(12) in this example, we use

ta'lpy = 4ti/p; (A21)
and insertt,, t;, and the associated Laplacian terms to ob-
tain

th ot |t A2 g, ty A% J_,
- T T WY Pa|\ T T, T T, VY P
ps p1 | ps 8mpy I p1  8mp; 9"
t7 k% 9 2 9 3w
-3 —V2p,+ —V2p =,
oy 8mpy o Pt omppart P12
(A22)

as predicted by Eq12). Thus, forM=1, this example re-
produces Eq(12) for d=1-4.
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