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Complete functional theory for the fermion density of independent particles subject
to harmonic confinement in d dimensions for an arbitrary number of closed shells
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In earlier work, expressions have been constructed for the single-particle kinetic-energy functionalTs@r# for
independent fermions subject to harmonic confinement in low dimensions, withr the particle density. Here, the
differential equation forr is first obtained ind dimensions for an arbitrary number of closed shells. Then, by
using the known Euler-Lagrange equation, the functional derivativedTs /dr(r ) is constructed.Ts@r# itself is
proved to take the form of a linear combination of three pieces:~i! a von Weizsa¨cker inhomogeneity kinetic
energy, but with the original coefficient reduced by a dimensionality factor 1/d, ~ii ! a Thomas-Fermi kinetic
energy, and~iii ! a truly nonlocal contribution that, however, is shown to involve only the densityr itself and
its first derivative. Thus, for this model, which is currently highly relevant to the interpretation of experiments
on the evaporative cooling of dilute, and hence almost noninteracting, fermions, a complete density-functional
theory now exists.
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Following earlier experimental studies of the Bos
Einstein condensation in ultracold trapped Bose gases,
Marco and Jin@1# achieved the evaporative cooling of dilut
and hence almost noninteracting, fermions. Further exp
mental investigations in Refs.@2–6# add to the motivation
for a full theoretical study of many-fermion assemblies th
are harmonically confined. The focus in the above exp
ments was on ultracold vapors of the40K and6Li isotopes
populating hyperfine states inside magnetic traps. In cur
experimental approaches, based on axially symmetric m
netic traps, it proves possible to range from a quasi-o
dimensional~1D! trap, through a quasi-2D trap, to a full
spherical 3D trap.

This background, and especially the possibility of explo
ing magnetic confinement of many-fermion assemblies h
ing different dimensionalityd, has been the prime motivatio
for the theoretical study to be reported here. The entire fo
is on the fermion densityr, and the theory will be presente
for an arbitrary number of closed shells, say (M11), for
general dimensionality of the isotropic harmonic confin
ment. Thus,r[r(r ), wherer is the radial distance from th
origin of the confinement ind dimensions. As a starting
point, Lawes and March@7# in a very early study gave a
third-order linear homogeneous differential equation in 1
namely

2 1
2 r~x!V8~x!2 ~\2/8m! r-5@N\v2V~x!#r8~x!,

V~x!5 mv2x2/2 , ~1!

for N closed shells, where the primes denote spatial der
tives throughout. For uniformity with the notation for dime
sionality d.1 used below,N51 being the lowest state o
Eq. ~1!, N will be written asM11. This equation~1! was
subsequently generalized to 2D by Minguzzi, March, a
Tosi @8# to read@their Eq.~11!#
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~\2/8m!~]/]r !¹2r~r !1[( M1 3
2 )\v2V~r !]r8~r !

1 @]V~r !/]r # r~r !50, ~2!

where the confining potentialV(r )5 1
2 mv2r 2. The results

~1! and~2! are generalized tod dimensions in the Appendix
where it is argued that

~\2/8m!~]/]r !¹2r~r !1$@M1 ~d11!/2#\v2V~r !%r8~r !

1 ~d/2!@]V~r !/]r # r~r !50. ~3!

To illustrate the basic approach underlying this Brief R
port, let us immediately turn to the 2D case of Ref.@8#.
There, a result for the~single-particle! kinetic-energy density
t(r ) was obtained, being expressed in terms of the Thom
Fermi and von Weizsa¨cker functionals. Their explicit form
was

t~r !5
1

2
tW~r !1FC21

\2

16mE
0

r

ds
r8~s!2

r~s!3 S 2

s

1
3r8~s!

r~s! D Gr2~r !, ~4!

with C2 a constant, where the von Weizsa¨cker functional is

tW~r !5~\2/8m!@~“r!2/r# , ~5!

while the Thomas-Fermi result is

tTF~r !5ck
d52r2~r !, ck

d525p\2/m . ~6!

Obviously by integrating Eq.~4! over the whole two-
dimensional space, one hasTs5* t(r )d2r in terms ofr(r ).

Our first objective therefore is to effect the generalizati
of this single-particle kinetic-energy expression ford52 to
general dimensionality. To do so, we integrate Eq.~3! as a
first-order differential equation for the potential energyV(r ).
©2002 The American Physical Society01-1
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Using an integrating factor, one is led to the result thatV(r ),
within an additive constant, is given in terms of the dens
r(r ) for (M11) closed shells by

V~r !52
r2/d

4d E
r 1

r112/d F\2

m

]

]r
¹2r

18S M1
d11

2 D\v
]r

]r Gdr, ~7!

where

¹25~]2/]r 2! 1 @~d21!/r #~]/]r ! . ~8!

In fact Eq. ~7! can be directly verified by differentiation t
yield Eq.~3!. Integration by parts of the final term in Eq.~7!
then yields almost immediately

V~r !5FM1
d11

2 G\v2
r2/d

4d

\2

mE r 1

r112/d

]

]r
¹2rdr. ~9!

In the Appendix, the differential virial theorem ind di-
mensions is derived as

]t/]r 52~d/2!r ~]V/]r !2~\2/8m!~]/]r !¹2r. ~10!

But r2/d]r/]r 5(112/d)21]r112/d/]r , and hence one find
for the single-particle kinetic energyTs[* t(r )ddr , the re-
sult

Ts@r#5E
allspace

r~u!112/d

4~d12!
Eu 1

r112/d

]

]s
¹2r ds du. ~11!

The constant of integration can be found after some man
lation involving the quotientt8/r8 ~see also the Appendix! in
the form

t8/r85{[ M1~d11!/2]\v2V~r !}, ~12!

and hence one finds

t~r !5
dm

d12

r~r !112/d

r~0!2/d
1

r~r !112/d

4~d12!
E

0

r 1

r112/d

]

]s
¹2rds

2
\2¹2r~r !

4m~d12!
, ~13!

wherem5@M1(d11)/2#\v. As a check of Eq.~13!, one
can compare with the 1D result of March, Senet, and V
Doren @9#, namely

t1~r !5
N\v

3

r3~r !

r2~0!
1

\2r3~r !

12m E
0

r 1

r3~s!

]3r

]s3
ds2

\2r9

12m
,

~14!

which is indeed the special case of Eq.~13! for d51. Obvi-
ously from Eq. ~13!, Ts@r#5*allspacet(r )ddr through
d-dimensional space.
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Next one can reduce the order of the derivatives app
ing in Ts by repeated integration by parts, and after so
considerable manipulation one reaches the desired resu
Ts@r# in d dimensions:

Ts@r#5CdE r~u!112/dddu1
\2

8mdE r82~u!

r~u!
ddu

1
\2

mE r~u!112/dF d21

4d E
0

u r82~s!

sr212/d
ds

1
d11

2d~d12!
E

0

u r83~s!

r~s!312/d
dsGddu, ~15!

where

Cd5
d

d12 S M1
d11

2 D\v
1

r2/d~0!
2

\2

4m~d12! F ¹2r

r112/dG
0

2
\2

8md
F r82

r212/d
G

0

, ~16!

which is the central result of this Brief Report. This is th
single-particle kinetic-energy functional Ts@r# in
d-dimensional harmonic confinement for an arbitrary num
(M11) of closed shells.

The Euler equation of the variational principle for th
total energyE given by

E5Ts@r#1E rVddr , ~17!

is known to have the form@10#

m5dTs/dr~r !1V~r !, ~18!

and we shall next use the known form~3! for the
d-dimensional density to extractdTs /dr(r ) from Eq. ~18!.
Obviously, from the Euler equation, we have, again ap
from an additive constant,

dTs

dr~r !
5

r2/d~r !

4d

\2

mE r 1

r112/d~s!

]

]s
¹2rds. ~19!

Repeated integration by parts can be utilized once mor
lower the order of the derivatives appearing in Eq.~19!. One
then finds for the integral appearing in Eq.~19! the equiva-
lent form
1-2
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E r 1

r112/d~s!

]

]s
¹2rds

5
¹2r~r !

r112/d~r !
1~d21!~112/d!E r r82~s!

sr212/d
ds

1
~112/d!

2
F r82

r212/d
1E r r83~s!~212/d!

r312/d~s!
dsG . ~20!

Hence we reach the desired form fordTs /dr(r ), which, we
must emphasize, we have extracted using~a! the Euler equa-
tion ~18!, and~b! the known differential equation~3! for the
fermion densityr(r ) for harmonic confinement ind dimen-
sions. Evidently, combining Eqs.~19! and ~20! yields

dTs

dr~r !
5

\2

4md

¹2r~r !

r~r !
1

~112/d!

2

\2

m

r82

r2

1~d21!~112/d!r2/d~r !
\2

mE r r82~s!

sr212/d
ds

1
\2~112/d!

2m
r2/d~r !E r r83~s!~212/d!

r312/d~s!
ds.

~21!
To confirm the structure of this equation~21! for the func-

tional derivativedTs /dr(r ) in d dimensions, let us write it
explicitly for the 1D case. Then we find

dTs

dr~x!
5

\2

4m

r9~x!

r~x!
1

3\2

2m

r82

r2
16r2~x!

\2

mEx r83~s!

r5~s!
ds,

~22!

which is readily shown by integrating the von Weizsa¨cker
energy density@Eq. ~5!#

TW5
\2

8mE ~“r!2

r
ddr[E tW~r !ddr ~23!

to have the form

dTs

dr~x!
5

13

8

tW

r
2

dTW

dr~x!
16r2~x!

\2

mEx r83~s!

r5~s!
ds, ~24!

which exhibits clearly the terms having their origin in th
von Weizsa¨cker energy density~23!, plus a truly nonlocal
part involving, however, only the fermion densityr(x) and
its first derivative.

In summary, the experiment of DeMarco and Jin@1# on
harmonically confined fermions has motivated this theor
cal study. What has emerged for harmonic confinement is
exact result~15! for the single-particle kinetic energy, whic
requires only the fermion densityr(r ) for d dimensions with
(M11) closed shells for its evaluation. We have also be
able to extract the functional derivativedTs /dr(r ) by invok-
ing the known differential equation for the particle density,
addition to the~constant! chemical potential~Euler! equation
05450
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~18!. Thus, it is fair to claim that the experiments in Ref
@1–6# have motivated a full density-functional theory ind
dimensions for harmonically confined independent fermio
for an arbitrary number of closed shells.

APPENDIX

The purpose of this appendix is to confirm th
d-dimensional result~3! for the ground-state densityr(r ) for
(M11) closed shells with an isotropic harmonic confin
ment. We find it instructive to consider the Slater su
Z(r ,b) defined as

Z~r ,b!5(
all i

c i* ~r !c i~r !exp~2be i !, b5~kBT!21, ~A1!

where thec i(r ) are the eigenfunctions, with correspondin
eigenvaluese i , generated by the one-body HamiltonianH r
defined by

H r52 ~\2/2m!¹ r
21V~r !. ~A2!

The corresponding Dirac density matrixg(r ,r0) used below
is the off-diagonal generalization

g~r ,r0!5 (
i occ

c* ~r !c~r0!. ~A3!

From the early work of Sondheimer and Wilson@11#, one can
then writeZ(r ,b) exactly ford-dimensional harmonic con
finement as

Z~r ,b!5(mv/2p\)d/2 [1/sinhd/2 ~b\v!]

3exp [2 ~mv/\! r 2tanh (b\v/2)]. ~A4!

It follows that the differential equation with solution give
by Eq. ~A4! can be written as

\2

8m

]

]r
~¹2Z!2F ]

]b
1V~r !G]Z

]r
2

~d22!

2

]V

]r
Z50, ~A5!

where hereV(r )5mv2r 2/2. We next define the ‘‘canonica
kinetic-energy density’’tC(r ,b) as

tC~r ,b![ ~2\2/2m! ¹ r
2C~r ,r0 ,b!ur05r , ~A6!

with C(r ,r0 ,b) as the canonical density matrix. But since

¹ r
2C~r ,r0 ,b!ur05r5bE

0

`

¹ r
2g~r ,r0!exp~2bE!dE

52
2mb

\2 E
0

`

t~r ,E!exp~2bE!dE, ~A7!

it follows that

tC~r ,b!5bE
0

`

t~r ,E!exp~2bE!dE, ~A8!

and therefore, from the Bloch equationH rC(r ,r0 ,b)
52]C/]b and the definition ofH r , it follows that

tC~r ,b!52 ~]Z/]b! 2V~r !Z~r ,b!, ~A9!

and thus
1-3
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]tC/]r 52VZ82V8Z2 ~]Z8/]b! ~A10!

for an arbitrary dimensionalityd. Using Eq.~A5! to elimi-
nate theb derivative in Eq.~A10!, we find that

]tC/]r 52 ~\2/8m!~]/]r ! ¹2Z2 ~d/2!V8Z. ~A11!

This can immediately, by inverse Laplace transform, be w
ten as a differential virial theorem relatingt, r, andV:

]t/]r 52 ~\2/8m!~]/]r ! ¹2r2 ~d/2!V8r. ~A12!

If we define for convenience an ‘‘averaged’’ kinetic
energy densityt̄ 5t1(\2/8m)¹2r ~the average of theuc8u2
and c¹2c definitions of kinetic-energy density!, we can
write the above as

] t̄ /]r 52 ~d/2!V8r; ~A13!

then it follows from Eq.~A11! that we can also write corre
spondingly

]t C̄/]r 52 ~d/2!V8Z, ~A14!

or, dividing byZ8,

]t C̄/]r /Z852 ~d/2!V8~Z/Z8! . ~A15!

But Z8/Z is found from the Sondheimer-Wilson form~A4!
for Z to be such that

Z8/Z 522vr tanh~bv/2!, ~A16!

which is independent of the dimensionalityd. Thus, from Eq.
~A15!, t C̄8/Z8 is proportional tod. This is a vital result for
establishing the desired ground-state equation for (M11)
closed shells, namely Eq.~12!, since it has already been ver
fied for d51,2, and 3 for arbitraryM.

We will establish, in concluding this appendix, the linea
ity in d for two closed shells using the Dirac density matric
g in Eq. ~A3!, calculated by inserting harmonic-oscillato
wave functions. These are readily obtained ford5124 and
give

g~j,h!5gS ur1r0u
2

,
ur2r0u

2 D5S mv

\p D d/2

expF2
mv

\
~j2

1h2!GF112
mv

\
~j22h2!G . ~A17!
05450
-

s

Hence, for instance, the ratio ofg for d54 to the result for
d51 is

g4~j,h!/g1~j,h! 5const, ~A18!

and thus

r4/r1 5~mv/\p!3/2. ~A19!

The corresponding kinetic-energy density is readily obtain
from the differential virial theorem to yield

t 4̄8/t 1̄8 5 dr4/r1 5 dr48/r18 , ~A20!

with d54. For this example, the linearity ind is established,
which is the counterpart of Eq.~A15! for the canonical
kinetic-energy density.

To relate Eq.~A20! to Eq. ~12! we need, from the line
below Eq. ~A12!, (\2/8m)¹2r to go from t̄ to t. This is
easily found by puttingh50 in Eq. ~A17! to find r(j). To
prove Eq.~12! in this example, we use

t 4̄8/r48 5 4 t̄ 18/r18 ~A21!

and insertt48 , t18 , and the associated Laplacian terms to o
tain

t48

r48
2

t18

r18
5F t 4̄8

r48
2

\2

8mr48

]

]r
¹2r4G2F t 1̄8

r18
2

\2

8mr18

]

]r
¹2r1G

53
t18

r18
2

\2

8mr48

]

]r
¹2r41

\2

2mr18

]

]r
¹2r15

3v

2
,

~A22!

as predicted by Eq.~12!. Thus, forM51, this example re-
produces Eq.~12! for d51 –4.
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