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Coherent phase locking, collective oscillations, and stability in coupled vertical-cavity-surface
emitting laser arrays
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Closely packed vertical-cavity-surface emitting laser arrays support collective modes via nearest-neighbor
interactions. Nonlinear cavity-lattice dynamic equations are introduced through the derivation of intercavity
coupling coefficients based on microscopic transition probabilities and the tight-binding approximation for
lattice eigenstates. Ultrafast numerical simulations show array relaxation to phase-locked steady-state configu-
rations, of fixed phase difference among nearest neighbors. Linear stability analysis derives the dispersion
relation of the collective modes excited over the cavity lattice, their stability regimes, and transitions to limit
cycles and chaotic behavior at high coupling strengths. Spontaneous phase selection is also analyzed.
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[. INTRODUCTION conditions the arrays settle to the phase-locked steady state,
with the same fixed phase differende between any two
Vertical-cavity-surface emitting las€w¥CSEL) arrays[1] neighbors.

are recently finding a variety of applications ranging from (2) Perturbations about the steady-state propagate as col-
interconnects and optical switch fabrics to phased arrays andctive oscillations(Bloch-type modulation wavever the
beam steering. As the packing density increases, lateral irarray, and are characterized by a given dispersion relation.
teractions among cavities become important and influence (3) For high values of the coupling constant, instead of
system performance. Induced cross-channel talk and BER isteady state we have limit cycle oscillations and finally cha-
a subject of concern for optical interconnects. On the otheotic array behavior under applied cavity biases constant in
hand spontaneous phase locking offers the opportunity fofime and uniform in space.
phased array operation for coherent high power generation
and beam steering applications. Phase-locked VCSEL arralhe first conclusion implies that VCSEL arrays ander-
operation has been experimentally obsenj@d-4]. The ently phase lockedorovided the mutual interaction strength
steady-state eigenmode structure, involving the pagsdzd  is not too strong but exceeds some environmental random-
diffraction index coupling among either guided cavity ization floor. ForL,, Ly-periodic boundary conditions the
eigenmodes through their evanescent fi¢idsor antiguided phase shift among adjacent cavities settlesAgt=K - b,
modes through laterally “leaking” radiatiof6], has been whereb is the lattice period an& may assume any of the
analyzed. However little attention has been paid to the dygiscrete valuesi(27/L,)%+ m(2m/L,)y. In effect we have
namic array aspects, such as the transition to steady statg, «crystallization” of the individual cavity modes into a
stability of the phase locking, and the possibility of dynamicstanding Bloch wave. The second conclusion predicts the
control of the locked phase. In additioactive coupling  excitation of stable photonic “vibrations” over a phase-

stemming from the mutually induced polarization among adygckeq lattice. Since we deal with low-frequency coherent

jacent cavities and amounting to the complex gain contribug, 4 iations of the electron-photon densities we may designate

tion to the diffract!on inde?< has bee?‘ neglected. A dynam.'cthese modes as photonic sound. Finally, a steady state is
system ap_proac_:h introducing the actively coupled mterc_a V'%issolved at high coupling strengths, i.e., at very close array
rate equations is employed here to address the above issues. o

Periodic arrangements of VCSEL microcavities separateﬁaCkmg.' T.h'st.'s constlstent V\;]'t[hhtge gelnenc b?h?wor of ?on;
by distances comparable to thee?transverse length of the inear dissipafive systems which develop spatiotemporal pat-

cavity mode intensity interact with their fringe fields. Such terns undgr an external driving bias uniform in space and
interactions, caused by induced cross polarization durin&onStant n time. o )
stimulated transitions, include cross gain and cross-hole We clarify that the above phase-locking interactions and
burning among nearest-neighbor cavities. Since each VCSEe related low-frequency(gigahertz range modulation
possesses a cavity oscillation frequeficythe cavity array ~Waves result from_ictl\(ecawty coupling, dlstlr}ctl\_/e!y differ- _
constitutes a coupled oscillator lattice admitting collective®nt from the passive interference due to periodic index varia-
oscillation modes. A systematic analytic derivation of thetion responsible for the photonic band-gap dispergidh
cross-coupling terms and the resulting coupled rate equatiorf§stead of multicavity photon interference due to coherent
describing the dynamics of one-dimensioftD) or 2D pe- dlffractlon', the examined ph(_anomenon res_ult_s from c_:oherent
riodic arrays of identical cavities is performed. Our numeri-Cross-cavity photon absorption and reemission. Active cou-
cal simulations and analytic investigation of the derived *“lat- Pling among laterally confined modes applies to guided cav-

tice dynamics” equations demonstrate the following. ity modes as well as band-gap modes in active photonic de-
fects [9], and occurs through the overlapping of the

(1) Under constant drive current and for random initial evanescent lateral fields, without fast wave propagation in
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N(”:izj N;; (D) x(r—Ryj), 1)

whereN;; is the cross-section averaged density gd) its
normalized profile. Without loss of generality a cylindrically
uniform step-function profiley(r)=1, r<a and zero other-
wise, is chosen so that (#42)[dr2y(r)=1. For weakly
coupled cavities, characterized by laterally confined modes
interacting through their fringe fields, the radiation field is
expressed as a linear superposition of isolated cavity modes.
(a) (b) Since the paraxial approximatiok, /k,<1 holds for the
guided cavity modegor for gap modes in active photonic
FIG. 1. (8 Schematic 2D array configuration. When phasedefect$ the total radiation is given by a paraxial mode su-
locked, the same phase difference applies between any two neigperposition of slowly varying complex amplitudé€g(t) and

bors in thex and in they direction (in general,Ap,#A¢,). (b)  eigenmode envelopés™P(T) centered around lattice vectors
Schematic cross-gain and cross-hole burning interactions among=r — R;
near neighbors.

jo

— mp Mmpr — R..) el ¥mn(2) gl (kK= omgh)
the lateral(transversgdirection? An analogy can be drawn = IEJ 5:? (t)mEp VT Ry e ¢ - @
from solid-state physics, whereby photonic modes are simi
lar to “free” electron (propagating wave functions coupled In addition to the usual orthonormality among same cavity
through the lattice periodicity, while the present cavity latticeparaxial modes,d2rU™"" (r)u"9(r) = Smndpq, SPatial or-
modes are similar to the tight-binding wave functions resultthonormality holds among same modal profilesp around
ing from the near-neighbor coupling of confined orbitals. Indifferent lattice sitegAppendix A),
addition, in this approach, the steady-state modal parameters,
such as peak amplitude and average dens_ity at each site, d2rU*(r—Rij)U(r— )= 8008
emerge from the zeros of the dynamic equations, rather than
from steady-state perturbation theory.

Cross-current leakage among neighboring cavities as well
as long-range thermal coupling are neglected, since the char-
acteristic times for carrier and heat diffusion are much longer
than the optical coupling time and theQLperiod. We assumed the same electric-field polarizatéofor all

An earlier lattice mode[10] neglected the steady-state cavities, aligned wittk. The uniform medium dispersion is
phase coupling, assuming that all phase-dependent intera@mp= mpC/\/E whereky,, is defined by the cavity reso-
tions come during the perturbations about a zero-phaséance Kp,=(27+ elfmp)/L including the correctionyy,,
shifted A ¢, =0 lattice equilibrium. The earlier obtained dis- =(1+ 2m+ p)L/2b from the slow phase paraxial envelope
persion for lattice oscillations corresponds to the,=0  ¥mp(L)=L(k—k;,). The sought after photonic modulation
limit of the general dispersion relation E@i4) here. How-  frequency is near the natural cavity oscillation frequency,
ever, only theab initio introduction of the phase coupling in (d/dt)in&=Q, usually much smaller than the frequency
this paper allows for the spontaneous phase locking at stead@gparation among cavity modes,,— wn ' . Thus one can
state. ignore resonant coupling between cross-modal bedting,

and lattice oscillations, and pick a single made; without
loss of generality we choose the fundamentet 0, p=0,
Il. RATE EQUATIONS FOR COUPLED VCSEL CAVITIES andU=U,,

Substituting Eq.(2) in the paraxial wave equation and
keeping lowest-order terms in the time derivatidé/dt
yields

J 1

f der*(r_Rij)X(r_Rirjr):5i’i75j'j/. (3)

In Fig. 1 we assume tha¥IN identical cavities are ar-
ranged in thex-y plane with axes along the direction and
thin circular active areas centered at the lattice vecRy[s
=ib,+jby, with by, b, being thex andy period (basis
vectors. Hence, we are dealing with radiation propagation in
a medium of uniform dielectric constart caused by the
bound carrier response, and a superimposed periodic com-
plex gain distribution reflecting the periodic electron-hole
pair densityV'in the active regions,

. w2
é}J-U(r—Rij)e"/’(Z)( —k2+ Ez—e)

+ &

V2+2ik )U(r—R )el @

‘U R, 0(2) 2iw  9&;
r— e —5 €
( i) c® " ot
Iparaxial cavity eigenmodes, such as the GL modes, involve a 2
small nonevanescent transveise/k,<1, however their Gaussian _ 4w . (4
decay in the transverse direction qualifies as fringe field interaction. c? v
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Use of the zeroth-order dispersion in the first line and the , i
defining relation for the paraxial eigenmodegr)e'*? in .2 U(r_Rij)e“MZ)_t
the second leaves the slow envelope equation )

2

27Tw
o9& A _ _R.
Z U(r_Rij)e”/,(Z)TJ:_Zlélwpij(r)' (5) he |A0)+F2 MJ t)glj( )X(r R”)
1]
XU(r—R;)e'?. (7

The polarizatiori? on the right-hand side reflects the induced
electron-hole dipole moment during stimulated emission. It

is given by The evolution for the population inversioN=pee— ppp IS
p-E 1 given by
P=ppen=P 7“1 N (6)
2
wherep=(e|er|h) is the microscopic transition dipole mo- ﬂ/’ J 7/\/—( ) -E*L/\/ @)
ment between the electrdd and holgh) statesp=p-&and gt ed, Aw®+T?

N represents the population inversion, i.e., the overequilib-
rium excess of the electron-hole pair density. Substitution of
Egs.(1) and(2) on the right-hand sidérhs) of Eq. (6) casts  whereby the use of Eq$l) and(2) and the definition of the

Eqg. (5) as pump strengtm ;;=J;; /ed,, yields
p\> T
2 (- R.,) =2 X =R =2 X(T=RN = | 7| 3oz 2 M(Ox(T-Ry)
X E Sij(t)Ei*,j,(t)U(r—Rij)U*(r—Ri,j,)Jrc.c.]. 9
i’

Equations(7) and(9) describe spatially distributed interactions over the cavity lattice. They are reduced to equations for the
field amplitude and the average density evolution atiflte cavity by a projection onto the local profiles. The complex

electric-field amplitude evolution is obtained from the integral projection ontdJitre- R;;) wave function, taking advantage
of the orthonormality(3), and yielding

(?S,J 27p? (I —iAw)
ot h Aw?+I?

i #]

In a similar manner, the integral projection of the global carrier deriSjtyvith x(r —R;;) yields the carrier evolution in the
ijth cavity,

ON; i p r
7] edJW ')/N (%) HQ-I-_FZ MJ(S”(ET;JF 2 Aij;irerjgirjrg* + 2 (Yij;i’j’Mjgi'j’gr}+C‘C') y (11)

i"#i,j #] P70, #]

where the step-function property?(r)=x(r) for the uniform carrier density profile in each cavity was used. Above,
{=(dy/L) [5d?rU* (r) x(r)U(r) is the gain confinement factord,, being the quantum well thickness amhdthe mirror
separation. The intercavity coupling strengths are given by the following terms:
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Air,i’jr,j:fo dzru*(r_Rij)X(r_Ri/jr)U(r_Rij) B
:f d?rU* () x(r—AR;_js j—;)U(r)
0
” 201 1% Pr s
= 0 d<ru (r+ARi,il'j,j/)X(r) / |
|
XU(r‘f‘ARi_ir’j_jr), (12) I
|
Yi,_i’j,_j:fo der*(r—Rij)x(r—Rij)U(r—Ri/j,)
:f der*(r))((l’)U(l’—ARi_i/’j_j/)
0
:f der*(r‘i‘ARi_i/’j_J‘/)
0 FIG. 2. Schematic illustration of intercavity interactiofa. Po-

lar representation of the unperturbed electric-field vectops and
the mutually induced polarizationglown). (b) Cross polarization
12 effect. Spatial profile of the electric field in cavity 1 and the
Due to the periodicity the coupling coefficients depend onlyself-polarization in cavity 2. Also shown, the square density profile
on the separation distanc®R; i/ ;_j»=Rj;—R;:j; among for cavity 2 and the shaded area of t&gP, integral. Mirror image
lattice cites, implying Ajjirj=Ap -5, Yijirg interaction 2-1 shown below(b). Up: cross gain, where the elec-
=Y;,_; jr—j. The Hermitian property is also satisfied, taking tric field of cavity 1 overlaps with is own induced polarization in
,=Aji_ij—j, etc. We pause to note that cavity 2. Its mirror image below is also interpreted as cross-hole

the form A} |, | Y < AT :
the use of radially truncated carrier densities without overPurning induced by cavity 2 into cavity 1.
lapping diffusion tails, evident in the asymmetry

XX(r‘FARi,i/'j,j/)U(r). (13)

d(,Dij . 1 (95,
- dt  2iE2 (‘2*1 at _C'C')' (17
fd2rU(r)f(r)U(r—ARi,i,’j,j/)qéO, (14 !
0 Substituting Egs(10)—(12) into the rhs of Eqs(16) and(17)
yields
fder(r)f(r)X(r_ARi—i',j—j’)zo (15 dE;,
0 W:R%g(u}){MIE”"‘ 2 {AijJi’j’M’j’Eij
i"#0,j #]

for arbitrary f (r) # 1, means neglecting cavity interaction by
carrier leakage. In_tercawty goup_llng is domlnate_d by_ radia- i (N Eirjr+/\/}r,-rEirjr)e'("’i’i”"’ii)} ,
tion overlap, a valid approximation, given the disparity be-
tween the radiative and the much slower diffusion time

scales’ (18)
doj;
Ill. NEAREST-NEIGHBOR COUPLED ARRAY MODEL <t~ Imi G(w) Ni+ 2 (AN
i"#0Lj #]
The evolution of the compleX;; =E;; exp(¢;) is finally £ E
separated into amplitude and phase evolution according to +Yij;i’j’(Mj ém AL E.r,r)ei(goi,j,ﬂpij)]H’
ij ij
= ~ +c.c. 1 19
at 28, |G e 18 19
where
2 -
2A most general treatment including carrier leakage with diffuse Glw)= 2mp° o(I'—iAw) (20)
density profilesy’(r)# x(r) adds nonzero current coupling terms h Aw?+T?
from Eq. (15) in the carrier balance equatiofi2); also y'?(r) S _ o
#x'(r) causes modified\’ and Y’ terms in the carrier balance The distinctive physical origin of\;;.;;; and Yj;;i/j» be-
equation(12), breaking the coupling coefficient symmetry between comes transparent from the above equations, as illustrated in
carrier and radiation rate equations. Fig. 2. The total induced polarization in each cavity is the
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2(b), and introduce the phase dependence. The cross-gain
termsAj;.i/;» mitigate interactions where the polarization in-
duced by one site to its neighbors couples back into the gain
0.01 of the original site, Fig. &), and is phase independent.
Defining the photon flux densitf=P/%® and the pho-
ton densityN,=F/vy, whereP=uv,eEE*/87 is the Poyn-
0.001 ting vector andv is the group velocity, it follows by multi-
plying both sides of Eq(18) by vyeE;j/4mfhw that both the
photon and carrier ratesN/dt, dN,/dt are proportional to
0.0001 the stimulated emission rate
alw=1 Y PE\2 T
R‘(? Aw?+T? @D
2 2.2 2.4 2.6 2.8 3
b/a The densityVj; in fact represents the carrier density of states
over a resonant intervale =AI" around the transition en-
ergye,=fiw,
E r
0.01 A=A RM,—>—E (D(Q) ) o 22
Y
~ wherefiq is the electron-hole crystal momentum avidthe
0.0001 I~ N aw=1.5 active volume. For practical calculations the prodi;;
™ ~ \w.. assumes the forrll]
1x10°8 NN = ~ N N;;
‘\.‘?f/\w 2 ~ N RN;j=8on| .~ |vkNp, =don N_ljr Fij, (23
alw=2.5 \‘\‘ \\\ ~ ~
N\ N whereN is the total(resonant plus nonresonarmver equi-
2 2.2 2.4 2.6 2.8 3 librium carrier density and the parametegs and N, are
given in terms of the material properties and temperaiure
b/a Due to the fast spatial decay of the radiation profiles away
from each lattice center, only the nearest-neighbor interac-
tionsi’=i*1,j’=j*1 in Egs.(12), (18), and(19) matter
for practical purposes. Switching from amplituBéo photon
0.01 flux F the coupled-cavity rate equations involving the
nearest-neighbor interactions are
dN; J N;
0.0001 dt dN — N~ goln( r) Fi
Y
1x10°6 —goln( ”)A Z 2 Firjr
I —I*l] —]+1
, o —goln(N )Y > X 2JFFip
1.6 1.8 2 2.2 2.4 2.6 2.8 3 o isiEL i
b/w xcod ¢ij—¢irj], (29
FIG. 3. Dependence of coupling coefficient strength on lattice Fij Nij
geometry(a) A andY vs cavity separatiob/a for the fixed cavity a9t Vet In(N—“) Fij—vgaFij+vglgoA
radius-to-mode waist/w=1. (b) Y vs separatiorb/a for various
relative waist sizes/w. (c) Y vs b/w at various cavity separations N; o
b/a. X E 2 In N_ Fij+Ug§goY
i'=ix1j'=j*1 tr
vector sum of the response to its own electric field plus its Nj; '
adjacent cavity phase-shifted fields, Fig. 3. The cross polar- XE _ 2 |n<|\| +in ( N ”
N . . . i"=ixlj'=j=x1 tr tr
izationYj;.i/;» terms involve the coupling of the self-induced
polarization in one site to the fields of its neighbor cites, Fig. FijFirjr cod ¢ij— ¢irj ], (25
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d‘PlJ
dt

+vggg°AE >

iI"=ixlj'=j=x1

gEN

(Nlljr)
Ne

+vg§ Sy > >

i"=ix1j'=j=1
N

i,j,) \/MS"‘[SP“—@' ']
Nir Fij b

whereJ; ; is the drive current densityy is the nonradiative
recombination factorg, is the gain coefficientN,, is the

+1In (26)

transparency density~=d,, /L is the gain confinement fac-

tor, ande=—InR./2L. is the loss coefficient, wheig in-
cludes diffraction, scattering, and reflection losgEg|. The

coupling strength between the nearest sites is parametrize

by the geometrical overlap factor,

1 27 a
Aile=—zf daJ' drru(r)x(r)U(r—b),
W= Jo 0
27
1 27 a )
Yﬂ:Y—W . defodrru (rx(r—b), (28

depending on the active radias cavity separatiorb, and
mode waistw, and normalized so that=1 for b=0. Sub-
stituting the fundamental mode  profile Ugg(r)
= \2/7w? exp(~r?mA) into Egs.(27) and(28) and integrat-
ing over cylindrical coordinatésjields

1 a
vay:4efbiy/W2V7JA dppe*ZPZIWZIO(ZbX’yp/WZ)’
0
(29)
2 .21 [a o 22
oy = v JO dppe™ 2P I (4by  plw?).
(30)

Because of the very short axial cavity lengthuch smaller
than the beam diffraction lengthve have employed the
zero-mode curvature at the waist 0. We have also gener-
alized the result for rectangular lattices wih+ b, .

Intercavity coupling strengths depend primarily on the ra-

tio of cavity center separatiob to the 16> mode waistw.
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FIG. 4. Spontaneous phase lock in a 1B 12 periodic array
from uniformly distributed random initial conditions and for con-
stant bias current=1.6d,,. (8 Circulating cavity power.(b)
Phase difference among adjacent cavities. Intercavity coupling
strengthY=0.0011.

7200

In general, for separationsw>2 we haveA =Y?<Y<1,
and the phase-dependenterms dominate.

IV. MODE-LOCKED ARRAYS
The description of interacting VCSEL arrays by coupled

Also, for givenb/w, there is a weaker dependence on thedifferential equationg24)—(26) greatly reduces simulation

cavity separation to diameter ratida (whereb/a=2 cor-
responds to cavities with touching active areas bhe=2
to cavities with touching mode waigtsA comparison be-
tweenA andY vs b/a is shown in Fig. 8) for fixed a/w

time and opens the door for fast and effective numerical
studies of generic array behavior. First we investigate the
existence of collective steady states under a unifayr)

=Jy, constant in time current, which turns on everywhere at

=1. Coupling strengths diminish rapidly with increasing t=0. Equations(24)—(26) are integrated starting from ran-

separation and is always smallerQ(Y?). Figure 3b) plots
Y vs separatiorb/a for various relative waist sizea/w.
Figure 3c) plotsY vs b/w at various cavity separatiotga.

SUsing (r —b,)?=(x—b,)2+Yy?, (r—by)?=(y—by)?+x?,
converting tox=p cos¢, y=p sin ¢.

and

dom initial conditions for the carrier density and radiation
intensity in each cavity. Spontaneous steady state with uni-
form amplitudeF usually develops shortly after, as shown in
the example runs in Figs(d and Ja), respectively, for a 1D
1x12 and a 2D X5 array. Figures @) and 3b), respec-
tively, show the corresponding evolution of the phase differ-
ence among neighbord,g;=¢; — ¢; 1, for each lattice site
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i dt 9> 2
@.138 - T , N

Yo ( iy’ )
L 1 +ul = A In| ————

=i+l =j+1

@.173 T T T T T T T T T dA L. ! N
T 5%'”(N : )
i,j—1

P.19a
o N;iN;/ i/
PI] +095%Y > 2> (In(—” 7 )
@ .90 i"=ix1j'=j=1 Ntr
X [ ’—2’_
S F SinA gj In( NZ
®.90a b — — Firjr- SinA ¢; ; (31
T ° 3600. 7204 1989¢ 14480  10@R0. Fij-1 Li=if-
t (ps) _ _ o _ _
Notice that a uniform distribution of amplitudes and densi-
o 13 ties Nj;=const, F;;=const over the array yields a mode-
: b ' locked steady stateA ¢;; /dt=0 for any uniform phase dif-
ference between adjacent cites.

5,151 Of the most general set of steady stdtesro right-hand
side of Egs.(24), (25), and (31)] we are interested in the
uniform solutions subset, with constant density and ampli-

3.803 tude over the array given, respectively, Ry =N, and F;;

Aq)yij =Fo=(A=YNy)/(al{), where
2.5758 '}} Iy N N a/{
=N, ex ,
o go[1+4A +4Y cosA X+ 4Y cosA ¢!]
1.288 (32)
! . R . . . 4 0 Y
s 7260  10808. 14400. 1B02¢ FO_gZ[equ_ ;Ntr
t (ps)
all
; O X ex .
FIG. .5. SponFangous phase loc.k.'.n a 2&§ periodic array go[ 1+ 4A +4Y cosA ‘P)(;+4Y CosA (pg]
from uniformly distributed random initial conditions and for con-
stant bias current=1.68,,. (a) Circulating cavity power.(b) (33
Phase difference among adjacent cavities. Intercavity coupling
strengthY =0.0007. Any value of Ag), AgY, yields a steady state. Periodic

boundaries everil and M sites, and the Bloch requirement

for the solutions imposé ¢:=K-b,=m(27)/N and A ¢}

=K-by=n(27)/M corresponding to wave vectorX
array. Clearly a phase-locked state is reached with constartt (Km:Kpn) of the inverse lattice. Henceforth we will label
andequalphase difference between nearest sites. The radige steady statée by the corresponding Brillouin-zone vec-
tion amplitude and carrier density settle to the same value iter K,
all cites. Thus, a VCSEL array with close cite coupling is
naturally phase locked. The time lapsed before phase locking Apmm=(A05,4¢5)=(Kyb,Kpb). (34)
depends on the coupling strength, and is shorter for higher
Analytic steady-state solutions for the density and amplitud
are obtained from the zeros of E@4) and(25). A constant — B M _
phase conditiomle;; /dt=0 at each site cannot be mieix- E(Kmp)=1+4A+4Y COSA ¢, +4Y CoSApo=1+4A
cept in trivial cases Instead we look for a constant phase +4Y cosK b+ 4Y cosK b, (35)
difference among neighboring cites, manifesting mode lock-
ing. The phase difference evolution is obtained by subtractwhich will enter subsequent relations. PlotsNyf andF, vs
ing Egs.(26) among any two neighboring sites far: ¢; | A, for various coupling strengthé (and A set toY?) are
=¢;j—¢iz1; andAY=¢; |~ ¢; j+1. Because of lattice pe- shown in Fig. 6 for givern=1347 cm?l, go=1117 cm %,
riodicity A% ¢; ; and A% ¢, ; are related through the Bloch y=1.882x10°sec?, B=3x10 'sec'cn?, d,,=30nm,
condition, thus it is sufficient to reco¥” ¢; ;, given by and current =3.090 mA over active radiuga=3 um.

ézor convenience we also define the lattice dispersion factor
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FIG. 7. Snapshot of the radiation profile over the 5 array of

A(I)o Fig. 5 att=18 ns.(a) Radiation intensity(b) Radiation amplitude.
The antiphase locking is evident.
FIG. 6. Dependence of steady-state quantities on phase-lock dif-

ference and coupling strengtkie) Density, normalized to stand cur as final steady-state configurations. An explanation of the

alone lasing thresholdll,. (b) Radiation intensity, normalized to preference for ther phasing will be given in Sec. V, drawing

stand alone saturatidf, formal analogy with the minimum energy of a mechanical

system with frictior: We will also see that for increasingly
It appears that the\¢, ,— 7 steady statgantiphasing stronger coupling the system first evolves itituias) peri-

among near sitgds favored for highN andM regardless of  gdic limit cycles, wherebyd¢;;, &;, andN;; undergo co-

the initial conditions.(For even values oM or N, Ag,,  herent oscillations about some average values, and finally

settles to the nearest @ allowed 27m/(M —1), namely, exhibit chaotic behavior.

m=M/2* 1, with equal probability.Figure 7 shows the final ~ Numerical simulations of finite-size arrays, performed by

intensity profiles and radiation envelopes of x5 array  removing the appropriate coupling terms at the boundary lat-

with periodic boundary conditions, starting from random ini- tice sites, also resulted in phase-locked states. Since finite

tial phasesA¢ distributed in the(O—m) interval and with  boundaries destroy periodicity, the phase shift among adja-

coupling strengthy =0.0007. The snapshot at 18 ns showscent sites is not uniform and given by the zeros of the full

the antiphased configuration where the array remained afteran x 3M tridiagonal system. Finite large size 2D arrays may

spontaneous mode locking occurred at 12 ns from launchingiso accommodate a coherent phase lock into 1D surface

The tendency for antibiasing is better demonstrated in Fig. 8tates, forming boundary layers. It was finally verified that in

showing the evolution of an array originally prepared nearthe zero-coupling limit the phase differences among neigh-

the steady-state valueg32),(33) corresponding toK,b  bors settle to constant in time, but random values. Since the

= /2 andK,b=3m/2. After an initial quiescent period, an same steady-state density and intensity values result for iden-

instability erupts that relaxes to the preferred steady statgcal cavities we also have; /dt—de;/dt—0 among any

with K,b=K b=7. In nonlinear dissipative systems, a

given final steady state can be reached from an entire set of ——

initial conditions (basin of attraction due thecollapsing of “The approach may lack general validity since we are not dealing

the phase-space volume. It will be subsequently shown thatith a system in thermodynamic equilibrium, relaxing to a mini-

steady states corresponding to any of &e,,, values(34) mum energy, but with a steady state maintained under external drive

are stable against perturbations and should occasionally oand tending towards minimumntropy production rate
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b 43p

where SA stands for either density or radiation amplitude.
Equation(36) also implies that the perturbed phase differ-
ence among any adjacent sites is fixed, shifting from the
equilibrium value toA¢'—A¢,+ kAR;j;=K-b+«b. Re-

placing independent phase shifts by a periodic phase differ-

3.18p

9.863 ence over lattice sites manifests the transition to collective
Aq)y.. behavior with long-range coherentélhe description re-
ij . X C :
sembles the dynamic behavior of a periodic spring-coupled
2.57b mass system, a model finding wide applications in lattice
dynamics. Due to the periodicity, linearization of E¢&4)—
' z00 [ (26) about any site leads to identical stability equations.
’ Picking an arbitranR;; =R, , expanding around equilibrium
and the use of Eq(36) yields the following equation for
v.o02 . : ' + perturbations about the steady state:
» vapd  1ZowW. 19zWW  zoegR.  J2uUeN
t(ps) d(sN) (5N _[~Dnn Dar (6N 3
dtloF) "16F) | Dgy —Dgg)\6F) (37
& 436
The element® yv= &(X)/aY with X, Y being either olN, &,
» 148 Ag are fpund from the rhs of Eq$24)—(26) at steady state
(Appendix B),
3.861 9oFo al{
Dyn=7v+2BN,+ , 39
Adr =Y ZBNo I NN
2.574
Der=v4ddoIN(No/Ny)2Y
\ 2a7 X [cosK ub—coskyb+ cosKb—coskb],
(39
¢ ] ‘ oapp | 12098, 19209  2509@  I2008 Dne=—al{+9oIN(No/Ny)2Y
t (ps) X[ cosK yb—coskyb+cosK b—cosk,b],
FIG. 8. Spontaneous transition to the antiphased configuration in (40
a 5x5 periodic array initiated with coherent initial phas&sg,
=m/2, Ap,=3m/2 and the same density and amplitudes.Cir- JoFo all
culating cavity power(b) Phase difference among adjacent cavities. Den=vg{ N, goIn(Ng/N;)'’ (41)
Intercavity coupling strengtlf =0.0007 and the rest of parameters o =0 ol
as in Fig. 5.

wherexy =K, n+ Ky - Note (Appendix B that the linear-
ization of the phase difference equati¢®l) yields D gy
i, J, hence the final constant phase differercg;; merely =Dgr=Dg¢e=0, consistent with the freedom to choose a
reflects the difference in initial conditions. fixed, arbitrary phase differenceb among adjacent sites.
Diagonalization of
V. COLLECTIVE LATTICE OSCILLATIONS de{ —Dan—A Dnr 0 42
AND STABILITY Den —Dee—A\

Further understanding of the array behavior results b
analyzing the stability of small oscillations around the stead
state. Assume for simplicity that a steady state with;
=Ag,, &j=E&,, Nijj=N, has been reached and examine the
evolution of small perturbations about these values. ACCOdehereby letting® =\, , yields the dispersion relation for

ing to the Bloch theory, collective modes over a periodiccg|iective modes over the cavity lattice, written in the form
lattice must also be of the form

ields the eigenvalue equation

A?+(Dnn+Dep)N + (DynDee—DneDen) =0, (43)

SDuring the evolution towards a steady state, or in a situation far
5A=Aoe“2 e« Rij (36) from equilibrium, the phase differences among sites are treated as
i independent variables according to E26) or (31).
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O(k";K)=—T(x":K)

+iQ (" K)V1-T?(«";K)/Q?%(";K),
(44

where QE\/DNFlDFN|_DFFDNN and FE(DNN+DFF)/2
The obtained dispersion branches form the propagating
bands of an active photonic lattice. They depend on the
steady-state period and the total perturbation wave number

k'=K+«k. (45)

Using the steady-state values in the rhdXik) we obtain

Q" K)=Q(K){1-2YZ,

cosK b — cosky b+ cosK b — cosk,b]|

E(K) '
(46)

X

where Q= \Dyr|Dgy| is the coupled-cavity oscillation fre-
quency

Q(K)=Q,VE(K), (47)
Q. beina th illati laxation f . FIG. 9. Dispersion relation for the modulation waves at cou-
o being the oscillationrelaxation frequency for an iso- pling strengthY=0.0002. 3D plots of théa) frequencyQ=Im ©

lated cavity, and (b) decay ratd” (normalized over the isolated cavify,) over

wave-number spacé and k= k' —K.

9oFo N;/No—1 . . .
Qo= \Jvga N, VNN (48)  rections soon become important at low coupling strength
° on ~Y<1 due to the factop ja/¥>1 multiplying the last cou-
The factorZ, =1+ 1/Z + In(Ny /Ny ) N, /(Fo). The oscilla- pling term in Eq.(_49). The large size pf this term ref_lects the
tion decay ratd’ is related to the stimulategl.=goFo/N, fact that the radiation growth rate is the algebraic sum of

and the total nonstimulatégl= y+ 2BN, decay rates by Iqrge numbers, thus a small imbalance cggsed by a phase
difference among perturbed adjacent densities has a big ef-

fect in the growth rate. Whe¥ exceeds a stability threshold,

, 1 Vs —
F(K)—E’y 1+7H(K) -
Lk cosK nb—coskyb+cosK b —coskyb
¥ E(K) ' /2
(49)
In the A=Y =0 uncoupled limit[" tends to the single-cavity Ky b 0

decay ratel',=(¥+ y)/2 from the combined nonradiative

and stimulated emission. For very small couplings much

smaller than(), scaling asl’/Q=I",/Q,=ylvgla<1, so -7/2
one may set the square root in Eg4) to unity. Plots of()

and I vs kb for given Y=0.0003 and varioud ¢,=Kb

(where agairK,=K,) are shown in Fig. 9. Here we have set -
Kky=Ky= k' to limit the parameter space. For any given '
andK Eq. (46) yields two solutions<;, «, corresponding to U’ -n/2 0 /2 T
the roots of coKb—cosK+«)b=C,. Figure 10 shows the Ky b
general dispersiof) over thex,, «, space for giverkb.
An excited lattice wave of the real wave numberis a FIG. 10. Contour plots of the frequenéy=Im © (normalized

stable perturbation of real frequen€y(«') that decays in  over the isolated cavitf),) over the 2D first Brillouin zonex,
time with decay ratd’(«"). However, cross-coupling cor- # «, for fixed Y=0.0002 and = .
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FIG. 11. Loss of fixed-phase stability threshold vs steady
stateA ¢, for various drive current valued(=1.81 mA).

6 . 444
Y=t T =(a )(1+VSE(A ) (50)
S_4vga~ Po 7»~ Po) | 5,132
I" turns negative, and perturbations within the range 1.804
. Ys Ady
kb=<cos *| cosA ¢,+ v —Ag,, (51 1.576
Y
CosA po=<1— VS (52 1-208
becomeunstable [Relation (52) yields the A ¢, range for LA L
which inequality(51) admits solutions fokb.] The stability e ame zzw: ( 3“" “ovep Ao
thresholdY g is plotted in Fig. 11 v ¢, . Ygis minimum for P
A¢,=m and phase locking with ¢,= 7 is destabilized first FIG. 12. Spontaneous transition to a limit cycle behavior in a

to long-wavelength fluctuationsb<1; Ap,=0 is the last 5x5 periodic array at coupling streng=0.0009 and the rest of
to lose stability, forY>YE=Yg(0) due to Eq.(52). No  parameters as in Fig. %a) Circulating cavity power(b) Phase
phase locking with fixed\ ¢, between cavities exists above difference among adjacent cavities.

%, since there is always an unstable range of excited fluc-
tuations forany value of Ag,. A new coherent pattern of We will not investigate chaotic behavior in detail. How-

behavior emerges whereby the amplitudes and relative phaswer, the inspection of the dispersion relatidd) shows that
differences settle into a periodic orlifp,(t). The old(and  a transition to an absolute instability occurs, crossing the
now unstablgfixed pointsA ¢, lie inside this orbit. The new parameter boundardy/Q > 1, whereby® becomes pure real,
behavior is illustrated in Fig. 12 showing the time evolution

Fij(t) andA ¢;;(t) for the same parameters as Fig. 5, except 02 02

that hereY=0.0009>Y,. The stable “attracting” orbit is e(K,;K)ZF[li \/1 —= :F[li(l 2”

better observed in Fig. 18 by plottingF; (t) againstN;; (t) I 2l

for the boxed area data of Fig. 12. Remarkably, the plot (53
Agfi(t) againstA ¢¥(t) in Fig. 13b) shows that the phase ) o o )

differences in thex andy array directions remain mutually 1he absolute instability limilY,ps is given, using Eqs(49)
equal as they change in time. The phase does not enter 1j@d (46),(47), by

regimeA ¢(t)>cos {(1—Yg/Y), where fixed phase solutions

are, in principle, possible due to E(p2). The same phase- oFo

space trajectory occurs for all cavities, and perturbations Qo\/% Y+ N, =(K)

away from that cycle converge back to it. It represents a Yaps= 5 1- — . (54
generic example of Hopf bifurcation, where the loss of sta- Vg% 20,VE(K)

bility of a fixed point leads to a stable limit cycle. Pushing
the couplingY even higher leads to cycles of increasing com-SinceY s> Yg we also havd <0 for Y>Y,,s, thus both
plexity and longer periods until chaotic behavior settles in. roots in Eq.(53) yield pure exponential growth. Foy,/¥y
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[ FIG. 13. Parametric plot
0.40 2.00 oo Y (*surface of section) of the limit
0.42 Ad cycle using the data in the boxed
N (t) X area of Fig. 12.(a) Ng(t,) vs
Fo(t,) for a given cavity. (b)
0.60 (c) Phase difference Ag}(t,) Vs
[ AgY(t,) for a given cavity.(c)
1 AccumulatedN,(t,) vs Fq(ty,) for
0.55 . all cavities.
—_ [ ]
Z 050} i
we | ]
0.45 ]
0'48.4é 04> 043 043 043
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<1 the absolute threshold valug,,. is minimunf at Ag,  locked fixed points in the linear coupling reginé small)

=0 and maximum at\ ¢,=m. For Y>Y5 =Y.,{7) we Figure 15, corresponding to 1/100 of the cavity losses and
havel'/Q)>1 regardless ofA ¢,. While theY>Yg, I'>0 material gain, and 1/100 of the group velocity, with same
threshold of the preceding paragraph allows for the existencether parameters as Fig. 5, exhibits phase-locked behavior at
of stable periodic orbits after the destabilization of the origi-five times higher coupling strengtif=0.003. For typical

nal fixed points, we conjectur@dppendix Q thatI'/QA>1  valuesy in the nanosecond randg®, must drop well below

implies complete absence of stable coherent orbits, leadinghe gigahertz range to achieve this scaling, evident in the
to “lattice turbulence.” Figure 14 is a 3D plot of the real part |ong-time scale of Fig. 15.

Re() over the 2D parameter spateand «, for given A ¢,
= . The parameter area with Re=0 is the absolute insta-
bility range; its boundaries iY —A ¢, mark the parameter
space boundaries for instability.

So far, we have employed the scalify,/y=\vqaly We have dealt with the behavior of fluctuations of real
>1 falling within the usual range of manufactured VCSEL using the dispersion relatio¥4). It applies to an initial-
parameters. The opposite linfit,/y=\vqa/y<1, regard- value problem, following the time evolution from an arbi-
ing combinations of low group velocity and/or very high trary initial superposition of real wave-number modes,
cavity quality (small @=—InR,),” is also interesting. In  whereby all modes subsequently decay in time with rates
that regime we always had& ) >1, and Eq(44) with pure  I'(x). The related boundary-value problem is also of interest,
real © holds regardless of. In addition, we always have where we specify a boundary condition in tineay, drive
I'>0 [the threshold value Eq54) for I'<<O now yieldsYs  selected members of the arjand record evolution in space.
>1, while the overlap factoly cannot exceed unifythus A real driving frequency now leads to complex wave num-
both roots correspond to negati®emeaning pure damping bers k— «+i7 and evanescent waves in space. The decay
of fluctuations and unconditional stability of the phase-constant;(Q) is found by solving Eq(44) for Im O(«+i»)

=0 under given Q=ReO(xk+in). For I''Q=vy/Q,<1,

and for Y<Yg (i.e., stable steady state; is also small;
5The opposite is valid wheny,/3<1. an expansion of cogb+inb)=cos(b)cosh@b)
"Large carrier decay ratg is of little practical interest. —isin(xb)sinh(zb) and letting coshgb)=1 yields

VI. EVANESCENT LATTICE WAVES
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FIG. 14. 3D plots of the frequenc2=Im O over thex= k' 2.B76
—K andY space foa) Kb=0 and(b) Kb= 7. The zero-frequency
area marks the absolute instability parameter sgacee real©
with positive ReO=—1">0). 1.29p
¢ e
1 . 1 ¥E(K)
n=—sinh | o
b Y 40,7,
Vs Vg COosA ¢,— Cog A, + kb) FIG. 15. Spontaneous phase lock for high intercavity coupling
1+ ;:(K)+4 5 Z(K) strengthY=0.003 in a 2D 55 periodic array in thel,<vy re-
X - . gime. (a) Circulating cavity power(b) Phase difference among ad-
SiMAg,+ kb]

jacent cavities. Parameters are the same as in Fig. 5, except that the
(55) gain and loss coefficients and the group velocity are reduced by

1/100. Uniformly distributed random initial conditions are used.
Figure 16 plotsyb vs b for variousY values. For the con-
sidered parameter values the decay lengthl/» is shorter
than the lattice spacingb=Db/l4>1. Even so, the induced
coherence length for the phase interaction is much longer 10
Figure 17 plots the space-time evolution of a 21-cavity peri-
odic 1D array, where all cavities are held at constant bias 5
=1.67,,, while the central cavityj=11 is excited by a b
superimposed modulated bias of amplitudt®.12,,, near n 0
the resonant array frequen€y=1.32x 10 rad/s. Evanes- 5
cent waves propagating away from the center are obvious ir
Fig. 17. The intensity amplitude plot, Fig. &, shows rapid -10
decay of the excited amplitudes across only few sites of the
array span. However, a persistent long-range coherence i -15 !
evident from the phase plot of Fig. ®J, showing the slow -7 -1t/2 0 /2 n
oscillating phase (not the phase differencky) in each site. Kb
Wave fronts propagating over the entire array at the group
velocity y=v 4t are evident, hence the coherence length ex- FIG. 16. Plot of decay constanb vs the real wave numberb
ceeds the amplitude decay distance. We found that the peridgr various values of the steady state, for coupling strengthy
is not equal tom, i.e., the phase difference among adjacent=0.0011.
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final approach to the steady state the optical modulations are
described by the linearized EqR7). If one were to ignore

the dissipation described by the diagonal matrix elements,
the undamped modulations would be described by a Hamil-
tonian system

d dH

dt AN’ (56)
d JH
i IN=DnedF = =, (57)
where the Hamiltonian is given by
H(6N,8F)=3DypoF2+ 3 |Dey| SN2 (58)

The power and density fluctuatio@®, SN play a role simi-
lar to the “position” and “momentum” in a mechanical sys-

tem. Performing the canonical transformatiorF
=6F/\|[Den],  N=6N\[Dgy] and  noticing  that

VDnelDen| = defined in Eq.(47) puts the above in the
more transparent form

A(RLE)= 102821 1R2. (59

So, a density fluctuatiof moves in an effective potential
V(F)=1/202F2 with A= const. The oscillationsI(t), F(t)
30 are 90° out of phase so thel,=1/2N2 = 1/202F2 . If the
centers of the oscillationB,(A ¢,) were far apart, the mo-

FIG. 17. Time evolution of evanescent lattice waves. Cavities,[ion from an arbitrary initiaE would be an oscillation about
maintained at constant bias, plus the central cayityll, are Y

driven with superimposed modulated bi&a). Power perturbation. the C.Ioses(“resonarlt”)AvalueFO(Agoo), with qrblts formlng.
(b) Phase cosine recorded at each gitd'he envelope over all an “island” in the N-F phase space. Nonlinear saturation
points t, and P; is plotted. The amplitude perturbation decays terms added to E¢59) limit the island widthAF and AN.
quickly to the steady-state value over most of the array, but phasgor example, if OZIZ)IAZZ were the first term in the expan-

erturbations propagate throughout. . . P ~ .
P propag g sion of a harmonic potentiaf)?(cosF—1), the maximum

sites is notrr as in the spontaneous mode locking of Fig. 7,€Xcursions would b&F=*m, AN=xv2€. We will stil

nor is it the same among all site pairs. assumeAF ~ 7 without imposing harmonic conditions on
The decay length for driven oscillations is of obvious in- Ed. (59).

terest to the performance of VCSEL array based intercon- Observe now, according to Egé32) and (33), that the

nects since it invites cross talk and BER when adjacent caviocations of the steady-state valugg(A ¢) cluster close to

ties are switched on. Of particular interest is the effect on the€ach other for small coupling factos<Ygs. The relative

turn-on jitter, related with the effect of cavity cross coupling separation between the fir§t,(A¢=0) and lastF,(A¢

on the density rise and radiation rise times. Such consider= ) center is given by

ations set an upper limit on the array packing dengli§]

t [ns] 24

and will be investigated in future work. On the other hand Fo(m)—Fo(0) all 1
strongly coupled arrays may be desirable for phased array Fo(m) =1- a 1+4A+8Y
beam steering. In that case controlling the phase difference
through the applied driving frequency can offer a way of fast B 1
and effective steering without micromechanical actuators. 1+4A-8Y
all
VIl. PHASE SELECTION =8(Y-A) %’ (60)

The observed tendency for spontaneous antiphase lock- R
ing, whereby adjacent cavities phase lock in an out-of-phastus the island width\F ~ 77 exceeds the separation among
A o= configuration can be understood from a free-energypossible center§,(0)—F,(7)~Y F,(0)<1. Therefore one
point of view. In the preceding section we saw that near thenay choose an¥,(A ¢,) as a reference point for the total-
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Use of the definitions folF (A ¢,), Q(Agoo), and the ex-
pansion formulaX!~€=X—eIn X yields

-0.02 Qg 7
V(F'Aq)o) V(F:A%):ZU 5 (F—FO—WNO[4A+4Ycos(Acp’(§)
’ 97Ys
-0.04 2
+4Ycos{Acp{,)]) , (63)
-0.06

whereF,, N, are the uncoupled cavity steady-state values.
Thus, once the system is brought near steady sté&te,
—Fo(0)|/F4(0)<1, the final “rest” at the deepest potential
well occurs for the antiphased locke,= 7 regardless of
initial F. That can also be thought of as maximizing the free

FIG. 18. Effective potentiald/(F) of various A¢p as control energyV(Ago) released during the transition to a phase-
locked steady state.

parameter. The same energy value applies at the initial location
F/F,=1.15. Maximum depth occurs fdx¢ == at the bottom lo-
cationF=F,(Ap=). VIIl. CONCLUSION

F/Fo

- N o N N Coupled microlaser cavities were analyzed and shown to
energy H definition,” writing the initial conditions asF,  exhibit long-range coherence and modulation waves charac-
=F—Fy(A@y)=Fmnx andN,=0. Now, let us turn dissipation terized by a lattice dispersion. For low coupling strengths
on by reviving the diagonal elements. Becailsg>Dgg, (low packing density, spontaneous phase lock into a “crys-
it is the density equation which is being mostly affected, tal” state is numerically observed. Oscillations about this

g steady state are stable for modest coupling strengths. The
referred locked phase is determined by an effective “lattice
dt ON=—DnnON—|Dye| SF. (62) gotential” minimu?n. The generic behav?/or of nonlinear dis-
sipative systems anticipates transitions from the above solu-

The dissipative term bears analogy to friction, proportionaltions regular in space and independent of time, to quasiperi-
to the momentum in a mechanical system, furthering thedic and finally chaotic spatiotemporal lattice oscillations
analogy offl as momentum. The motion now becomes Simi_under increasing driving curredt Here we observed these

lar to a “ball” in a potential well with friction, where the transitions for increasingoupling strength Yunder a bias
) L N ’ . constant in time and uniform in space. Therefore the lattice
final location is the bottom of the welk =0. The potential

stability boundaries are curves in theJ parameter space
depth depends oA ¢, as shown in Fig. 18. Since the invari- y P P

¢ X he fall wil that can be crossed in either direction. Interestingly the lat-
ants of motion are destroyed and nébw const, the fall will oo crystallization fails for high coupling strengtiisery

not stop un-til the deepest well bottom is reached. Iln othegma” cavity separationplacing a stability limit on the pack-
words, the final rest phasky, corresponds to the maximum g gensity. The inclusion of longer-range interactions

potential depthF—F.(A¢,), i.e, the lowest value for ,mong further than next neighbor cites may modify those

Fo(Aeo), stability boundaries. Coherence may also be destroyed at
very low coupling strengths due to spontaneous phase noise,
£ _1aae0 but the noise floor is not analyzed here.
V(F;A@,)=5Q°F

The present analysis suggests two methods, one static and
one dynamic, of controlling the phase difference in phase-

:EQZE(A(P )[F_Fo(A%)]z locked arrays without individual addressing. For example,
2°° " vgysE(Apg) one could impose the desired Bragg condition in a phase-
2 locked array and use it for beam steering. In the static ap-
__""o [F—Fo(Agy)]% (62) proach the minimum-energy phase for the lattice potential
2v4Ys oo can be tailored by interlacing two lattices, each with different

cavity properties, as in lattices with two kinds of atoms. A
A crucial detail here is that the phase difference equatiorstudy of how a binary array may spontaneously settle into a
(31), which has not been included in EG9) but neverthe- selected phase will be the subject of future work. In the
less determines the value farp, is satisfied for an\A¢, as  dynamic approach one may control the phase difference
long as the adjacent site densities and intensities are equalmong the phase-locked neighbors by driving a collective
array mode of frequencf)(x) corresponding to the desired
kyy=A¢lb, . In principle, that can be achieved by impos-
®The familiar from nonlinear dynamics “island overlap” situation, ing a small oscillating current component on top of the con-
whereF(t) can “hop” from island to island, does not apply here stant bias driving the array as in Figs 17. A sub-micron time
because only one potential term enters &§). for mode locking and change in the beam direction could be
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achieved. One advantage of both methods is that they do not goF,
rely on moving mechanical parts, such as mirrors. Dnn= =77 2BNo— = —[(1+4A)+2(4Y cosAe,)],
(o]
(B1)
APPENDIX A: ORTHONORMAL BASIS
Strictly speaking the original GL basis functions are not _ &
lattice orthogonal, Dne=goln Nir (1+4A cosih)
® 1
f d2rU* (r—Ry)U(r—Ry/;1) + 5 (4Y cosApo+4Y co§ Apo+ kb]) |, (B2)
0
— [ gzrur R VES S F
fo drUTUr =R i ) #8107 - DFN=vgg—gf\’| O[(1+4A coskb)+2(4Y cosA )],
o
(A1) (B3)

An orthonormal basi§) — U is readily constructed following o
the Gramm-Smith orthogonalization procedure, yielding Dep=—vga+vglgoin W
,

A 1
Upn(n=Ugn~- X 2 hPur-Ry), X| (1+44) + 5 (4Y cosA g, +4Y cof A o + kb]) |
iI"=ixlj'=j=x1
(A2) (B4)
Un(N =01 (- hiPU(r—R;)), When taking the partial derivatives, we usetF,/F.
i"=ixn j'=j=n

=\JF.,/Fy=\F,/F,=1 due to the uniformity of the

steady state, and the fact th#..; introduces the additional
phase shift=«b. Above we used the samAgj=A ¢}
=A¢,=Kb and k= ky= «; generalizing forK,#K,, let-
. P ting 4 cosQg,)—2 cosKb)+2 cosKyb), 4 cosQe,+ «b)

hij” = fo drUf -y (NU(r=Ryj). (A4) -2 cosKqb+Kb)+2cosKp+rb) and then using the
steady-state relationi82) and(33) in Eqgs.(B1)—(B4) yields

Each iteration imposes orthogonality among further awa)EqS-(38)_(41)-

sites. Note thah;; are small(of order Y<1) and thath(" It may appear that a complete analysis of the three
~h®" For nearest-neighbor interaction only the first step isCOUpled. equ_atlo.n$24), (25), and (.31) requires a simulta-
P neous linearization of Eq.31) subject toAe—Agp,+ de.
needed, whereupddy, is divided by\/1—8hz, for normal-  However, in order to conform with the Bloch condition, the
ization. Using the hatted badisinstead ofU in the coupling  phase shift among adjacent sites is not an independent vari-
coefficients definitionsY, A, Egs. (27) and (28) cause a able but a parameter assuming a fixed vafiye= xb; the
second-order correctio®(Y?), comparable to the second complex perturbationsA, exp(+ixb) used in Egs(24) and
nearer site coupling strength, which is neglected in thg25) already involved ararbitrary large §¢=«b. It is also
nearest-neighbor model. The frequency is not affected by th@orth noting that, if one still elects to linearize E(B1)
orthogonalization, and the spatial eigenfunctiﬁn,sn(r) cor- choosing a smalbg<1, the phase corrections enter to the
respond to the same frequenay,, as the paraxial eigen- second order and the linear stability is still determined by
modesU ,(r). Egs. (B1)—(B4). Indeed we must havefAq.;=05A.1,
= 5Ag exf =idp] (i.e., not SAg+ Ay exd *ide]), and since
all amplitude terms in the phase evolution Eg1) are like
Ag/A. 1, the perturbation yields

(A3)

with U gy=U, andh;; given by

APPENDIX B: STABILITY EQUATIONS AROUND FIXED

POINTS

Equations(24) and (25) are expanded around the steady- Ao Ay(1+ 5A)
state values;;=F,, N;; =Ny, Ag;; =A¢,. Due to period- — 75
> i~ oy T j _ e Ar1o Ao(l+sAe %)
icity, an arbitrary(i,j) is chosen as reference; we takej :
=0 with near neighborg’'= =1, |’ =+ 1. The perturbations =1*i5ASp+ 6A?
are themselves Bloch waves, meaning that the next site per- 5
turbations are phase shifted p relative to the reference =1+0(6A%). (BS)

cite, 6Ag 1= 6A. 1 o= 6A, exp(Fikb), whereA stands forF

or N. Letting cosAg,=[expiAg,)+c.c]/2 and taking the That, and the uniform steady-state densities, yield zero par-
varia_tion with respect taSF, SN, using the notatioDyy  tial derivatives d(A¢)/IN= (A @)/IF = (A p)/dA@=0.
=9(X)/9Y with X, Y being either6N or &€ yields Hence the X 3 stability matrix reduces to a>22 case,
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—Dnn—A Dnr Do d (AN)_ ~Dwn Dwr (AN) 1
det Den —Drr—M  Dro dt|AF/ Dy —Dee/ \AF) )
0 0 0—A
—Dyn—\ Dne where the tilde symbol now implies that the partial derivative
=—\de D Do) =0, (B6) Dyy=3(X)/4Y is given by the primitive expressions for ar-
FN FF

bitrary F, N in Appendix B[i.e., not substituting the fixed-
phase values in Eq$C1)—(C4)]. After diagonalization, the
énfinitesimal evolution of the orbit separation &X(t,
aLAt)zAXO exp(\,At), whereAX is the orthonormal base
corresponding ton,. For A,>0 nearby orbits diverge,
AX(to+At)/AX(t,)=1+\,At>1. One can repeat the pro-
cess and define the local orbit divergenceX(t,
+At)/AX(t,) at any phase-space point and time. If the ma-
trix (C1) is positive definitex ;>0 for everyn, meaning that
Although regular orbits are absent in the chaotic regionthe instability criterionY>Y, in Eq. (54) is satisfied for
the stability relation is useful in the following sense. Con-anyF, N over the phase-space area considered, the Liapunov
sider an arbitrary trajectory passing through an arbitranexponenth=Ilimy_..(1/N)In H§=1(Axn+1/AXn) of the sys-
(nonfixed point F(t,), N(t,) att=t, and a nearby orbit tem is greater than unity leading to chaotic orbits, justifying
passing fronF(t,)+AF, N(t,) + AN. For short time inter- the conjecture of Sec. V. That is a sufficient but not necessary
vals t,+ 6t the time evolution of the trajectory separation condition, sinceh can exceed unity without alk, being
SF(t), AN(t) is still given by an expression similar to Eq. positive (i.e., not every ¥ \,At>1); in fact we observe
(37), chaotic behavior below the limit 4.

even thougtD o= 3d(N)/dA ¢ andDgq, = d(F)/dA ¢ are not
zero. Here, the entire system stability is determined by th
stability of theF, N dynamic subspace; the subspace spanne
by A¢ is the center manifold of marginal stability, contribut-
ing the trivial eigenvalue.=0 in Eq. (B6).
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