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Coherent phase locking, collective oscillations, and stability in coupled vertical-cavity-surface
emitting laser arrays

S. Riyopoulos
Science Applications International Corporation, McLean, Virginia 22102

~Received 17 June 2002; published 26 November 2002!

Closely packed vertical-cavity-surface emitting laser arrays support collective modes via nearest-neighbor
interactions. Nonlinear cavity-lattice dynamic equations are introduced through the derivation of intercavity
coupling coefficients based on microscopic transition probabilities and the tight-binding approximation for
lattice eigenstates. Ultrafast numerical simulations show array relaxation to phase-locked steady-state configu-
rations, of fixed phase difference among nearest neighbors. Linear stability analysis derives the dispersion
relation of the collective modes excited over the cavity lattice, their stability regimes, and transitions to limit
cycles and chaotic behavior at high coupling strengths. Spontaneous phase selection is also analyzed.
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I. INTRODUCTION

Vertical-cavity-surface emitting laser~VCSEL! arrays@1#
are recently finding a variety of applications ranging fro
interconnects and optical switch fabrics to phased arrays
beam steering. As the packing density increases, latera
teractions among cavities become important and influe
system performance. Induced cross-channel talk and BE
a subject of concern for optical interconnects. On the ot
hand spontaneous phase locking offers the opportunity
phased array operation for coherent high power genera
and beam steering applications. Phase-locked VCSEL a
operation has been experimentally observed@2–4#. The
steady-state eigenmode structure, involving the passive~real
diffraction index! coupling among either guided cavit
eigenmodes through their evanescent fields@5#, or antiguided
modes through laterally ‘‘leaking’’ radiation@6#, has been
analyzed. However little attention has been paid to the
namic array aspects, such as the transition to steady s
stability of the phase locking, and the possibility of dynam
control of the locked phase. In addition,active coupling
stemming from the mutually induced polarization among
jacent cavities and amounting to the complex gain contri
tion to the diffraction index has been neglected. A dynam
system approach introducing the actively coupled interca
rate equations is employed here to address the above is

Periodic arrangements of VCSEL microcavities separa
by distances comparable to the 1/e2 transverse length of the
cavity mode intensity interact with their fringe fields. Su
interactions, caused by induced cross polarization du
stimulated transitions, include cross gain and cross-h
burning among nearest-neighbor cavities. Since each VC
possesses a cavity oscillation frequency@7# the cavity array
constitutes a coupled oscillator lattice admitting collect
oscillation modes. A systematic analytic derivation of t
cross-coupling terms and the resulting coupled rate equat
describing the dynamics of one-dimensional~1D! or 2D pe-
riodic arrays of identical cavities is performed. Our nume
cal simulations and analytic investigation of the derived ‘‘la
tice dynamics’’ equations demonstrate the following.

~1! Under constant drive current and for random init
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nd
n-
e
is
r

or
on
ay

-
te,

-
-

c
y
es.
d

g
le
L

ns

-

l

conditions the arrays settle to the phase-locked steady s
with the same fixed phase differenceDw between any two
neighbors.

~2! Perturbations about the steady-state propagate as
lective oscillations~Bloch-type modulation waves! over the
array, and are characterized by a given dispersion relatio

~3! For high values of the coupling constant, instead
steady state we have limit cycle oscillations and finally ch
otic array behavior under applied cavity biases constan
time and uniform in space.

The first conclusion implies that VCSEL arrays areinher-
ently phase locked, provided the mutual interaction streng
is not too strong but exceeds some environmental rand
ization floor. ForLx , Ly-periodic boundary conditions th
phase shift among adjacent cavities settles atDw5K•b,
whereb is the lattice period andK may assume any of the
discrete valuesn(2p/Lx) x̂1m(2p/Ly) ŷ. In effect we have
a ‘‘crystallization’’ of the individual cavity modes into a
standing Bloch wave. The second conclusion predicts
excitation of stable photonic ‘‘vibrations’’ over a phas
locked lattice. Since we deal with low-frequency cohere
variations of the electron-photon densities we may design
these modes as photonic sound. Finally, a steady sta
dissolved at high coupling strengths, i.e., at very close ar
packing. This is consistent with the generic behavior of no
linear dissipative systems which develop spatiotemporal
terns under an external driving bias uniform in space a
constant in time.

We clarify that the above phase-locking interactions a
the related low-frequency~gigahertz range! modulation
waves result fromactivecavity coupling, distinctively differ-
ent from the passive interference due to periodic index va
tion responsible for the photonic band-gap dispersion@8#.
Instead of multicavity photon interference due to coher
diffraction, the examined phenomenon results from coher
cross-cavity photon absorption and reemission. Active c
pling among laterally confined modes applies to guided c
ity modes as well as band-gap modes in active photonic
fects @9#, and occurs through the overlapping of th
evanescent lateral fields, without fast wave propagation
©2002 The American Physical Society20-1
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the lateral~transverse! direction.1 An analogy can be drawn
from solid-state physics, whereby photonic modes are s
lar to ‘‘free’’ electron ~propagating! wave functions coupled
through the lattice periodicity, while the present cavity latti
modes are similar to the tight-binding wave functions res
ing from the near-neighbor coupling of confined orbitals.
addition, in this approach, the steady-state modal parame
such as peak amplitude and average density at each
emerge from the zeros of the dynamic equations, rather
from steady-state perturbation theory.

Cross-current leakage among neighboring cavities as
as long-range thermal coupling are neglected, since the c
acteristic times for carrier and heat diffusion are much lon
than the optical coupling time and the 1/V period.

An earlier lattice model@10# neglected the steady-sta
phase coupling, assuming that all phase-dependent inte
tions come during the perturbations about a zero-pha
shiftedDwo50 lattice equilibrium. The earlier obtained dis
persion for lattice oscillations corresponds to theDwo50
limit of the general dispersion relation Eq.~44! here. How-
ever, only theab initio introduction of the phase coupling i
this paper allows for the spontaneous phase locking at ste
state.

II. RATE EQUATIONS FOR COUPLED VCSEL CAVITIES

In Fig. 1 we assume thatMN identical cavities are ar
ranged in thex-y plane with axes along thez direction and
thin circular active areas centered at the lattice vectorsRi j
5 ibx1 j by , with bx , by being thex and y period ~basis
vectors!. Hence, we are dealing with radiation propagation
a medium of uniform dielectric constante, caused by the
bound carrier response, and a superimposed periodic c
plex gain distribution reflecting the periodic electron-ho
pair densityN in the active regions,

1Paraxial cavity eigenmodes, such as the GL modes, involv
small nonevanescent transversek' /kz!1, however their Gaussian
decay in the transverse direction qualifies as fringe field interact

FIG. 1. ~a! Schematic 2D array configuration. When pha
locked, the same phase difference applies between any two n
bors in thex and in they direction ~in general,DwxÞDwy). ~b!
Schematic cross-gain and cross-hole burning interactions am
near neighbors.
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N~r !5(
i , j

Ni j ~ t !x~r2Ri j !, ~1!

whereNi j is the cross-section averaged density andx(r ) its
normalized profile. Without loss of generality a cylindrical
uniform step-function profile,x(r )51, r<a and zero other-
wise, is chosen so that (1/pa2)*dr2x(r )51. For weakly
coupled cavities, characterized by laterally confined mo
interacting through their fringe fields, the radiation field
expressed as a linear superposition of isolated cavity mo
Since the paraxial approximationk' /kz!1 holds for the
guided cavity modes~or for gap modes in active photoni
defects! the total radiation is given by a paraxial mode s
perposition of slowly varying complex amplitudesEi j (t) and
eigenmode envelopesUmp( r̄ ) centered around lattice vector
r̄5r2Ri j ,

E5(
i , j

Ei j
mp~ t !(

m,p
Ump~r2Ri j !e

icmn~z!ei ~kz2vmpt !. ~2!

In addition to the usual orthonormality among same cav
paraxial modes,*d2rUmp* (r )Unq(r )5dmndpq , spatial or-
thonormality holds among same modal profilesm, p around
different lattice sites~Appendix A!,

E d2rU* ~r2Ri j !U~r2Ri 8 j 8!5d i ,i 8d j , j 8 ,

E d2rx* ~r2Ri j !x~r2Ri 8 j 8!5d i ,i 8d j , j 8 . ~3!

We assumed the same electric-field polarizationê for all
cavities, aligned withx̂. The uniform medium dispersion i
vmp5kmpc/Ae, where kmp is defined by the cavity reso
nance kmp5(2p1cmp)/L, including the correctioncmp
5(112m1p)L/2b from the slow phase paraxial envelop
cmp(L)[L(k2kz). The sought after photonic modulatio
frequency is near the natural cavity oscillation frequen
(d/dt)ln E.V, usually much smaller than the frequenc
separation among cavity modesvmp2vm8p8 . Thus one can
ignore resonant coupling between cross-modal beatingDvmp
and lattice oscillations, and pick a single modemp; without
loss of generality we choose the fundamentalm50, p50,
andU[U` .

Substituting Eq.~2! in the paraxial wave equation an
keeping lowest-order terms in the time derivativedE/dt
yields

Ei j U~r2Ri j !e
ic~z!S 2k21

v2

c2 e D
1Ei j S ¹'

2 12ik
]

]zDU~r2Ri j !e
ic~z!

1U~r2Ri j !e
ic~z!

2iv

c2 e
]Ei j

]t

5
4pv2

c2 Pi j . ~4!

a

n.

h-

ng
0-2



th

ed
.

-

ilib
o
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Use of the zeroth-order dispersion in the first line and
defining relation for the paraxial eigenmodesU(r )eic(z) in
the second leaves the slow envelope equation

(
i j

U~r2Ri j !e
ic~z!

]Ei j

]t
52

4p i

2e
vPi j ~r !. ~5!

The polarizationP on the right-hand side reflects the induc
electron-hole dipole moment during stimulated emission
is given by

P5preh5p
p•E

i\

1

2 iDv2G
N, ~6!

wherep5^euer uh& is the microscopic transition dipole mo
ment between the electron^eu and holeuh& states,p5p•ê and
N represents the population inversion, i.e., the overequ
rium excess of the electron-hole pair density. Substitution
Eqs.~1! and~2! on the right-hand side~rhs! of Eq. ~6! casts
Eq. ~5! as
05382
e
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-
f

(
i j

U~r2Ri j !e
ic~z!

]Ei j

]t

5
2pv

\e

p2

iDv1G(
i j

Ni j ~ t !Ei j ~ t !x~r2Ri j !

3U~r2Ri j !e
ic~z!. ~7!

The evolution for the population inversionN5ree2rhh is
given by

]N
]t

5
J

edw
2g N2S p

\ D 2

E•E*
G

Dv21G2 N, ~8!

whereby the use of Eqs.~1! and~2! and the definition of the
pump strengthL i j [Ji j /edw yields
for the
ex

e

ve,
(
i j

x~r2Ri j !
]Ni j

]t
5(

i j
x~r2Ri j !L i j 2g(

i j
x~r2Ri j !Ni j 2S p

\ D 2 G

Dv21G2 (
i j

Ni j ~ t !x~r 2Ri j !

3H(
i 8 j 8

Ei j ~ t !Ei 8 j 8
* ~ t !U~r2Ri j !U* ~r2Ri 8 j 8!1c.c.J . ~9!

Equations~7! and ~9! describe spatially distributed interactions over the cavity lattice. They are reduced to equations
field amplitude and the average density evolution at thei j th cavity by a projection onto the local profiles. The compl

electric-field amplitude evolution is obtained from the integral projection onto theU(r2Ri j ) wave function, taking advantag
of the orthonormality~3!, and yielding

]Ei j

]t
5

2pp2

\

v~G2 iDv!

Dv21G2 FNi j Ei j 1 (
i 8Þ i , j 8Þ j

L i j ; i 8 j 8Ni 8 j 8Ei j 1Yi j ; i 8 j 8~Ni j Ei 8 j 81Ni 8 j 8Ei 8 j 8!G . ~10!

In a similar manner, the integral projection of the global carrier density~9! with x(r2Ri j ) yields the carrier evolution in the
i j th cavity,

]Ni j

]t
5

Ji j

edw
2gNi j 2S p

\ D 2 G

Dv21G2 FNi j Ei j Ei j* 1 (
i 8Þ i , j 8Þ j

L i j ; i 8 j 8Ni j Ei 8 j 8Ei 8 j 8
* 1 (

i 8Þ i , j 8Þ j
~Yi j ; i 8 j 8Ni j Ei 8 j 8Ei j* 1c.c.!G , ~11!

where the step-function propertyx2(r )5x(r ) for the uniform carrier density profile in each cavity was used. Abo
z5(dw/L)*0

`d2rU* (r )x(r )U(r ) is the gain confinement factor, dw being the quantum well thickness andL the mirror
separation. The intercavity coupling strengths are given by the following terms:
0-3
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L i 82 i , j 82 j5E
0

`

d2rU* ~r2Ri j !x~r2Ri 8 j 8!U~r2Ri j !

5E
0

`

d2rU* ~r !x~r2DRi 2 i 8, j 2 j 8!U~r !

5E
0

`

d2rU* ~r1DRi 2 i 8, j 2 j 8!x~r !

3U~r1DRi 2 i 8, j 2 j 8!, ~12!

Yi 82 i , j 82 j5E
0

`

d2rU* ~r2Ri j !x~r2Ri j !U~r2Ri 8 j 8!

5E
0

`

d2rU* ~r !x~r !U~r2DRi 2 i 8, j 2 j 8!

5E
0

`

d2rU* ~r1DRi 2 i 8, j 2 j 8!

3x~r1DRi 2 i 8, j 2 j 8!U~r !. ~13!

Due to the periodicity the coupling coefficients depend o
on the separation distanceDRi 2 i 8, j 2 j 85Ri j 2Ri 8 j 8 among
lattice cites, implying L i j ; i 8 j 8[L i 82 i , j 82 j , Yi j ; i 8 j 8
[Yi 82 i , j 82 j . The Hermitian property is also satisfied, takin
the formL i 2 i 8, j 2 j 8

* 5L i 82,i , j 82 j , etc. We pause to note tha
the use of radially truncated carrier densities without ov
lapping diffusion tails, evident in the asymmetry

E
0

`

d2rU~r ! f ~r !U~r2DRi 2 i 8, j 2 j 8!Þ0, ~14!

E
0

`

d2rx~r ! f ~r !x~r2DRi 2 i 8, j 2 j 8!50 ~15!

for arbitrary f (r )Þ1, means neglecting cavity interaction b
carrier leakage. Intercavity coupling is dominated by rad
tion overlap, a valid approximation, given the disparity b
tween the radiative and the much slower diffusion tim
scales.2

III. NEAREST-NEIGHBOR COUPLED ARRAY MODEL

The evolution of the complexEi j [Ei j exp(iwij) is finally
separated into amplitude and phase evolution according

dEi j

dt
5

1

2Ei j
S Ei j*

]Ei j

]t
1c.c.D , ~16!

2A most general treatment including carrier leakage with diffu
density profilesx8(r )Þx(r ) adds nonzero current coupling term
from Eq. ~15! in the carrier balance equation~12!; also x82(r )
Þx8(r ) causes modifiedL8 and Y8 terms in the carrier balanc
equation~12!, breaking the coupling coefficient symmetry betwe
carrier and radiation rate equations.
05382
y
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dw i j

dt
5

1

2iEi j
2 S Ei j*

]Ei j

]t
2c.c.D . ~17!

Substituting Eqs.~10!–~12! into the rhs of Eqs.~16! and~17!
yields

dEi j

dt
5ReH G~v!FNi j Ei j 1 (

i 8Þ i , j 8Þ j
$L i j ; i 8 j 8Ni 8 j 8Ei j

1Yi j ; i 8 j 8~Ni j Ei 8 j 81Ni 8 j 8Ei 8 j 8!e
i ~w i 8 j 82w i j !%G J ,

~18!

dw i j

dt
5ImH G~v!FNi j 1 (

i 8Þ i , j 8Þ j
H L i j ; i 8 j 8Ni 8 j 8

1Yi j ; i 8 j 8S Ni j

Ei 8 j 8
Ei j

1Ni 8 j 8

Ei 8 j 8
Ei j

Dei ~w i 8 j 82w i j !J G J ,

~19!

where

G~v![
2pp2

\

v~G2 iDv!

Dv21G2 . ~20!

The distinctive physical origin ofL i j ; i 8 j 8 and Yi j ; i 8 j 8 be-
comes transparent from the above equations, as illustrate
Fig. 2. The total induced polarization in each cavity is t

e

FIG. 2. Schematic illustration of intercavity interactions.~a! Po-
lar representation of the unperturbed electric-field vectors~up! and
the mutually induced polarizations~down!. ~b! Cross polarization
1→2 effect. Spatial profile of the electric field in cavity 1 and th
self-polarization in cavity 2. Also shown, the square density pro
for cavity 2 and the shaded area of theE1P2 integral. Mirror image
interaction 2→1 shown below~b!. Up: cross gain, where the elec
tric field of cavity 1 overlaps with is own induced polarization
cavity 2. Its mirror image below is also interpreted as cross-h
burning induced by cavity 2 into cavity 1.
0-4
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COHERENT PHASE LOCKING, COLLECTIVE . . . PHYSICAL REVIEW A 66, 053820 ~2002!
vector sum of the response to its own electric field plus
adjacent cavity phase-shifted fields, Fig. 3. The cross po
izationYi j ; i 8 j 8 terms involve the coupling of the self-induce
polarization in one site to the fields of its neighbor cites, F

FIG. 3. Dependence of coupling coefficient strength on latt
geometry.~a! L andY vs cavity separationb/a for the fixed cavity
radius-to-mode waista/w51. ~b! Y vs separationb/a for various
relative waist sizesa/w. ~c! Y vs b/w at various cavity separation
b/a.
05382
s
r-
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2~b!, and introduce the phase dependence. The cross-
termsL i j ; i 8 j 8 mitigate interactions where the polarization i
duced by one site to its neighbors couples back into the g
of the original site, Fig. 2~c!, and is phase independent.

Defining the photon flux densityF[P/\v and the pho-
ton densityNp5F/vg , whereP5vkeEE* /8p is the Poyn-
ting vector andvk is the group velocity, it follows by multi-
plying both sides of Eq.~18! by vkeEi j /4p\v that both the
photon and carrier ratesdN/dt, dNp /dt are proportional to
the stimulated emission rate

R5S pE

\ D 2 G

Dv21G2 . ~21!

The densityNi j in fact represents the carrier density of sta
over a resonant intervalD«5\G around the transition en
ergy «o5\v,

RNi j →
1

Vc
(

q
S p~q!E

\ D 2 G

Dv21G2 , ~22!

where\q is the electron-hole crystal momentum andVc the
active volume. For practical calculations the productRNi j
assumes the form@11#

RNi j 5g0 lnFNi j

Ntr
GvkNpi j

5g0 lnFNi j

Ntr
GFi j , ~23!

whereN is the total~resonant plus nonresonant! over equi-
librium carrier density and the parametersg0 and Ntr are
given in terms of the material properties and temperatureT.

Due to the fast spatial decay of the radiation profiles aw
from each lattice center, only the nearest-neighbor inter
tions i 85 i 61, j 85 j 61 in Eqs.~12!, ~18!, and ~19! matter
for practical purposes. Switching from amplitudeE to photon
flux F the coupled-cavity rate equations involving th
nearest-neighbor interactions are

dNi j

dt
5

Ji j

edw
2gNi j 2BNi j

2 2g0 lnS Ni j

Ntr
DFi j

2g0 lnS Ni j

Ntr
DL (

i 85 i 61
(

j 85 j 61

Fi 8 j 8

2g0 lnS Ni j

Ntr
DY (

i 85 i 61
(

j 85 j 61

2AFi j Fi 8 j 8

3cos@w i j 2w i 8 j 8#, ~24!

dFi j

dt
5vgzg0 lnS Ni j

Ntr
DFi j 2vgaFi j 1vgzg0L

3 (
i 85 i 61

(
j 85 j 61

lnS Ni 8 j 8
Ntr

DFi j 1vgzg0Y

3 (
i 85 i 61

(
j 85 j 61

F lnS Ni j

Ntr
D1 lnS Ni 8 j 8

Ntr
D G

3AFi j Fi 8 j 8 cos@w i j 2w i 8 j 8#, ~25!

e
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dw i j

dt
5vgz

g08

2
lnS Ni j

Ntr
D1vgz

g08

2
L (

i 85 i 61
(

j 85 j 61

lnS Ni 8 j 8
Ntr

D
1vgz

g0

2
Y (

i 85 i 61
(

j 85 j 61
F lnS Ni j

Ntr
D

1 lnS Ni 8 j 8
Ntr

D GAFi 8 j 8
Fi j

sin@w i j 2w i 8 j 8#, ~26!

whereJi , j is the drive current density,g is the nonradiative
recombination factor,g0 is the gain coefficient,Ntr is the
transparency density,z.dw /Lc is the gain confinement fac
tor, anda52 ln Rc /2Lc is the loss coefficient, whereRc in-
cludes diffraction, scattering, and reflection losses@12#. The
coupling strength between the nearest sites is paramet
by the geometrical overlap factor,

L61[L5
1

pw2 E
0

2p

duE
0

a

drrU ~r !x~r !U~r2b!,

~27!

Y61[Y5
1

pw2 E
0

2p

duE
0

a

drrU 2~r !x~r2b!, ~28!

depending on the active radiusa, cavity separationb, and
mode waistw, and normalized so thatL51 for b50. Sub-
stituting the fundamental mode profile U00(r )
5A2/pw2 exp(2r2 /w2) into Eqs.~27! and~28! and integrat-
ing over cylindrical coordinates3 yields

Yx,y54e2bx,y
2 /w2 1

w2 E
0

a

drre22r2/w2Io~2bx,yr/w2!,

~29!

Lx,y54e22bx,y
2 /w2 1

w2 E
0

a

drre22r2/w2Io~4bx,yr/w2!.

~30!

Because of the very short axial cavity length~much smaller
than the beam diffraction length! we have employed the
zero-mode curvature at the waistz50. We have also gener
alized the result for rectangular lattices withbxÞby .

Intercavity coupling strengths depend primarily on the
tio of cavity center separationb to the 1/e2 mode waistw.
Also, for given b/w, there is a weaker dependence on t
cavity separation to diameter ratiob/a ~whereb/a52 cor-
responds to cavities with touching active areas andb/w52
to cavities with touching mode waists!. A comparison be-
tweenL and Y vs b/a is shown in Fig. 3~a! for fixed a/w
51. Coupling strengths diminish rapidly with increasin
separation andL is always smaller,O(Y2). Figure 3~b! plots
Y vs separationb/a for various relative waist sizesa/w.
Figure 3~c! plotsY vs b/w at various cavity separationsb/a.

3Using (r2bx)
25(x2bx)

21y2, (r2by)
25(y2by)

21x2, and
converting tox5r cosf, y5r sinf.
05382
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In general, for separationsb/w.2 we haveL.Y2!Y!1,
and the phase-dependentY terms dominate.

IV. MODE-LOCKED ARRAYS

The description of interacting VCSEL arrays by coupl
differential equations~24!–~26! greatly reduces simulation
time and opens the door for fast and effective numeri
studies of generic array behavior. First we investigate
existence of collective steady states under a uniformJi j (r )
5J0 , constant in time current, which turns on everywhere
t50. Equations~24!–~26! are integrated starting from ran
dom initial conditions for the carrier density and radiatio
intensity in each cavity. Spontaneous steady state with
form amplitudeF usually develops shortly after, as shown
the example runs in Figs. 4~a! and 5~a!, respectively, for a 1D
1312 and a 2D 535 array. Figures 4~b! and 5~b!, respec-
tively, show the corresponding evolution of the phase diff
ence among neighbors,Dw i[w i2w i 21 , for each lattice site

FIG. 4. Spontaneous phase lock in a 1D 1312 periodic array
from uniformly distributed random initial conditions and for con
stant bias currentI .1.66I th . ~a! Circulating cavity power.~b!
Phase difference among adjacent cavities. Intercavity coup
strengthY50.0011.
0-6
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COHERENT PHASE LOCKING, COLLECTIVE . . . PHYSICAL REVIEW A 66, 053820 ~2002!
array. Clearly a phase-locked state is reached with cons
andequalphase difference between nearest sites. The ra
tion amplitude and carrier density settle to the same valu
all cites. Thus, a VCSEL array with close cite coupling
naturally phase locked. The time lapsed before phase loc
depends on the coupling strength, and is shorter for higheL.
Analytic steady-state solutions for the density and amplitu
are obtained from the zeros of Eq.~24! and~25!. A constant
phase conditiondw i j /dt50 at each site cannot be met~ex-
cept in trivial cases!. Instead we look for a constant pha
difference among neighboring cites, manifesting mode lo
ing. The phase difference evolution is obtained by subtra
ing Eqs.~26! among any two neighboring sites forD6

x w i , j

[w i , j2w i 71,j andD6
y [w i , j2w i , j 71 . Because of lattice pe

riodicity D6
x w i , j and D6

y w i , j are related through the Bloc
condition, thus it is sufficient to recordD2

y w i , j , given by

FIG. 5. Spontaneous phase lock in a 2D 535 periodic array
from uniformly distributed random initial conditions and for co
stant bias currentI .1.66I th . ~a! Circulating cavity power.~b!
Phase difference among adjacent cavities. Intercavity coup
strengthY50.0007.
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dDw i j

dt
5vgz

g08

2
lnS Ni j

Ni , j 21
D

1vgz
g08

2
L (

i 85 i 61
(

j 85 j 61

lnS Ni 8 j 8
Ni 8 j 821

D
1vgz

g0

2
Y (

i 85 i 61
(

j 85 j 61
H lnS Ni j Ni 8 j 8

Ntr
2 D

3AFi 8 j 8
Fi j

sinDw i j 2 lnS Ni , j 21Ni 8, j 821

Ntr
2 D

3AFi 8 j 821

Fi , j 21
sinDw i , j 21J . ~31!

Notice that a uniform distribution of amplitudes and den
ties Ni j 5const, Fi j 5const over the array yields a mode
locked steady statedDw i j /dt50 for any uniform phase dif-
ference between adjacent cites.

Of the most general set of steady states@zero right-hand
side of Eqs.~24!, ~25!, and ~31!# we are interested in the
uniform solutions subset, with constant density and am
tude over the array given, respectively, byNi j 5No and Fi j
5Fo5(L2g̃No)/(a/z), where

No5Ntr expH a/z

g0@114L14Y cosDwo
x14Y cosDwo

y#J ,

~32!

Fo5z
g

a H Jo

edwg
2

g̃

g
Ntr

3expF a/z

g0@114L14Y cosDwo
x14Y cosDwo

y#G J .

~33!

Any value of Dwo
x , Dwo

y , yields a steady state. Period
boundaries everyN andM sites, and the Bloch requiremen
for the solutions imposeDwo

x5K•bx5m(2p)/N and Dwo
y

5K•by5n(2p)/M corresponding to wave vectorsK
5(Km ,Kn) of the inverse lattice. Henceforth we will labe
the steady stateDw by the corresponding Brillouin-zone vec
tor Kmn,

Dwmm[~Dso
x ,Dwo

y!5~Kmb,Knb!. ~34!

For convenience we also define the lattice dispersion fac

J~Kmn!5114L14Y cosDwo
x14Y cosDwo

y5114L

14Y cosKmb14Y cosKnb, ~35!

which will enter subsequent relations. Plots ofNo andFo vs
Dwmn for various coupling strengthsY ~andL set toY2) are
shown in Fig. 6 for givena51347 cm21, g051117 cm21,
g51.8823109 sec21, B53310211sec21 cm3, dw530 nm,
and currentI 53.090 mA over active radiusa53 mm.

g
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S. RIYOPOULOS PHYSICAL REVIEW A66, 053820 ~2002!
It appears that theDwx,y→p steady state~antiphasing
among near sites! is favored for highN andM regardless of
the initial conditions.~For even values ofM or N, Dwx,y
settles to the nearest top allowed 2pm/(M21), namely,
m5M /261, with equal probability.! Figure 7 shows the fina
intensity profiles and radiation envelopes of a 535 array
with periodic boundary conditions, starting from random in
tial phasesDw distributed in the~0–p! interval and with
coupling strengthY50.0007. The snapshot at 18 ns sho
the antiphased configuration where the array remained af
spontaneous mode locking occurred at 12 ns from launch
The tendency for antibiasing is better demonstrated in Fi
showing the evolution of an array originally prepared ne
the steady-state values~32!,~33! corresponding toKxb
5p/2 andKyb53p/2. After an initial quiescent period, a
instability erupts that relaxes to the preferred steady s
with Kxb5Kyb5p. In nonlinear dissipative systems,
given final steady state can be reached from an entire s
initial conditions~basin of attraction! due thecollapsingof
the phase-space volume. It will be subsequently shown
steady states corresponding to any of theDwmn values~34!
are stable against perturbations and should occasionally

FIG. 6. Dependence of steady-state quantities on phase-lock
ference and coupling strength.~a! Density, normalized to stand
alone lasing thresholdNo . ~b! Radiation intensity, normalized to
stand alone saturationFo
05382
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cur as final steady-state configurations. An explanation of
preference for thep phasing will be given in Sec. V, drawing
formal analogy with the minimum energy of a mechanic
system with friction.4 We will also see that for increasingl
stronger coupling the system first evolves into~quasi! peri-
odic limit cycles, wherebyDw i j , Ei j , andNi j undergo co-
herent oscillations about some average values, and fin
exhibit chaotic behavior.

Numerical simulations of finite-size arrays, performed
removing the appropriate coupling terms at the boundary
tice sites, also resulted in phase-locked states. Since fi
boundaries destroy periodicity, the phase shift among a
cent sites is not uniform and given by the zeros of the f
3N33M tridiagonal system. Finite large size 2D arrays m
also accommodate a coherent phase lock into 1D sur
states, forming boundary layers. It was finally verified that
the zero-coupling limit the phase differences among nei
bors settle to constant in time, but random values. Since
same steady-state density and intensity values result for i
tical cavities we also havedw i /dt2dw j /dt→0 among any

4The approach may lack general validity since we are not dea
with a system in thermodynamic equilibrium, relaxing to a min
mum energy, but with a steady state maintained under external d
and tending towards minimumentropy production rate.

if-

FIG. 7. Snapshot of the radiation profile over the 535 array of
Fig. 5 att518 ns.~a! Radiation intensity.~b! Radiation amplitude.
The antiphase locking is evident.
0-8
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COHERENT PHASE LOCKING, COLLECTIVE . . . PHYSICAL REVIEW A 66, 053820 ~2002!
i, j , hence the final constant phase differenceDw i j merely
reflects the difference in initial conditions.

V. COLLECTIVE LATTICE OSCILLATIONS
AND STABILITY

Further understanding of the array behavior results
analyzing the stability of small oscillations around the stea
state. Assume for simplicity that a steady state withDw i j
5Dwo , Ei j 5Eo , Ni j 5No has been reached and examine
evolution of small perturbations about these values. Acco
ing to the Bloch theory, collective modes over a period
lattice must also be of the form

dA5Aoelt(
i , j

ek•Ri j , ~36!

FIG. 8. Spontaneous transition to the antiphased configuratio
a 535 periodic array initiated with coherent initial phasesDwx

5p/2, Dw253p/2 and the same density and amplitudes.~a! Cir-
culating cavity power.~b! Phase difference among adjacent caviti
Intercavity coupling strengthY50.0007 and the rest of paramete
as in Fig. 5.
05382
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where dA stands for either density or radiation amplitud
Equation~36! also implies that the perturbed phase diffe
ence among any adjacent sites is fixed, shifting from
equilibrium value toDw8→Dwo1kDRi j 5K•b1kb. Re-
placing independent phase shifts by a periodic phase di
ence over lattice sites manifests the transition to collec
behavior with long-range coherence.5 The description re-
sembles the dynamic behavior of a periodic spring-coup
mass system, a model finding wide applications in latt
dynamics. Due to the periodicity, linearization of Eqs.~24!–
~26! about any site leads to identical stability equation
Picking an arbitraryRi j 5Ro , expanding around equilibrium
and the use of Eq.~36! yields the following equation for
perturbations about the steady state:

d

dt S dN
dF D5lS dN

dF D5S 2DNN DNF

DFN 2DFF
D S dN

dF D . ~37!

The elementsDXY[](Ẋ)/]Y with X, Y being either ofN, E,
Dw are found from the rhs of Eqs.~24!–~26! at steady state
~Appendix B!,

DNN5g12BNo1
g0Fo

No

a/z

g0 ln~No /Ntr !
, ~38!

DFF5vgzg0 ln~No /Ntr !2Y

3@cosKmb2coskx8b1cosKnb2cosky8b#,

~39!

DNF52a/z1g0 ln~No /Ntr !2Y

3@cosKmb2coskx8b1cosKnb2cosky8b#,

~40!

DFN5vgz
g0Fo

No

a/z

g0 ln~No /Ntr !
, ~41!

wherekx,y8 5Km,n1kx,y . Note ~Appendix B! that the linear-
ization of the phase difference equation~31! yields DFN
5DFF5DFF[0, consistent with the freedom to choose
fixed, arbitrary phase differencekb among adjacent sites
Diagonalization of

detU2DNN2l DNF

DFN 2DFF2l
U50 ~42!

yields the eigenvalue equation

l21~DNN1DFF!l1~DNNDFF2DNFDFN!50, ~43!

whereby lettingU5l1,2 yields the dispersion relation fo
collective modes over the cavity lattice, written in the for

5During the evolution towards a steady state, or in a situation
from equilibrium, the phase differences among sites are treate
independent variables according to Eq.~26! or ~31!.

in

.
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S. RIYOPOULOS PHYSICAL REVIEW A66, 053820 ~2002!
U~k8;K !52G~k8;K !

6 iV~k8;K !A12G2~k8;K !/V2~k8;K !,

~44!

where V[ADNFuDFNu2DFFDNN and G[(DNN1DFF)/2.
The obtained dispersion branches form the propaga
bands of an active photonic lattice. They depend on
steady-state periodK and the total perturbation wave numb

k85K1k. ~45!

Using the steady-state values in the rhs ofV~k! we obtain

V~k8;K !5V̂~K !H 122YZo

3
cosKmb2coskx8b1cosKnb2cosky8b

J~K ! J 1/2

,

~46!

whereV̂5ADNFuDFNu is the coupled-cavity oscillation fre
quency

V̂~K !5VoAJ~K !, ~47!

Vo being the oscillation~relaxation! frequency for an iso-
lated cavity,

Vo5Avga
g0Fo

No
5Agvga

NJ /No21

ln~No /Ntr !
. ~48!

The factorZo5111/J1 ln(No /Ntr)zg̃No /(Foa). The oscilla-
tion decay rateG is related to the stimulatedgs5g0Fo /No
and the total nonstimulatedg̃5g12BNo decay rates by

G~k8!5
1

2
g̃F11

gs

g̃
J~K !

12Y
vga

g̃

cosKmb2coskx8b1cosKnb2cosky8b

J~K !
G .

~49!

In theL5Y50 uncoupled limit,G tends to the single-cavity
decay rateGo5(g̃1g)/2 from the combined nonradiativ
and stimulated emission. For very small couplingG is much
smaller thanV, scaling asG/V.Go /Vo.Ag/vgza!1, so
one may set the square root in Eq.~44! to unity. Plots ofV
and G vs kb for given Y50.0003 and variousDwo5Kb
~where againKx5Ky) are shown in Fig. 9. Here we have s
kx85ky85k8 to limit the parameter space. For any givenV
andK Eq. ~46! yields two solutionsk1 , k2 corresponding to
the roots of cosKb2cos(K1k)b5CV . Figure 10 shows the
general dispersionV over thekx , ky space for givenKb.

An excited lattice wave of the real wave numberk8 is a
stable perturbation of real frequencyV(k8) that decays in
time with decay rateG(k8). However, cross-coupling cor
05382
g
e

rections soon become important at low coupling strengthL
;Y!1 due to the factorvga/g̃@1 multiplying the last cou-
pling term in Eq.~49!. The large size of this term reflects th
fact that the radiation growth rate is the algebraic sum
large numbers, thus a small imbalance caused by a p
difference among perturbed adjacent densities has a big
fect in the growth rate. WhenY exceeds a stability threshold

FIG. 9. Dispersion relation for the modulation waves at co
pling strengthY50.0002. 3D plots of the~a! frequencyV.Im U
and~b! decay rateG ~normalized over the isolated cavityVo) over
wave-number spaceK andk5k82K.

FIG. 10. Contour plots of the frequencyV.Im U ~normalized
over the isolated cavityVo) over the 2D first Brillouin zonekx

Þky for fixed Y50.0002 andK5p.
0-10
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COHERENT PHASE LOCKING, COLLECTIVE . . . PHYSICAL REVIEW A 66, 053820 ~2002!
YS[
1

4

g̃

vga
J~Dwo!S 11

gs

g̃
J~Dwo! D , ~50!

G turns negative, and perturbations within the range

kb<cos21FcosDwo1
YS

Y G2Dwo , ~51!

cosDwo<12
YS

Y
~52!

becomeunstable. @Relation ~52! yields theDwo range for
which inequality~51! admits solutions forkb.# The stability
thresholdYS is plotted in Fig. 11 vsDwo . YS is minimum for
Dwo5p and phase locking withDwo5p is destabilized first
to long-wavelength fluctuationskb!1; Dwo50 is the last
to lose stability, forY@YS* [YS(0) due to Eq.~52!. No
phase locking with fixedDwo between cavities exists abov
YS* , since there is always an unstable range of excited fl
tuations forany value of Dwo . A new coherent pattern o
behavior emerges whereby the amplitudes and relative p
differences settle into a periodic orbitDw̃o(t). The old~and
now unstable! fixed pointsDwo lie inside this orbit. The new
behavior is illustrated in Fig. 12 showing the time evoluti
Fi j (t) andDw i j (t) for the same parameters as Fig. 5, exc
that hereY50.0009.Ys . The stable ‘‘attracting’’ orbit is
better observed in Fig. 13~a! by plottingFi j (t) againstNi j (t)
for the boxed area data of Fig. 12. Remarkably, the p
Dw i j

x (t) againstDw i j
y (t) in Fig. 13~b! shows that the phas

differences in thex and y array directions remain mutuall
equal as they change in time. The phase does not ente
regimeDw(t).cos21(12YS/Y), where fixed phase solution
are, in principle, possible due to Eq.~52!. The same phase
space trajectory occurs for all cavities, and perturbati
away from that cycle converge back to it. It represent
generic example of Hopf bifurcation, where the loss of s
bility of a fixed point leads to a stable limit cycle. Pushin
the couplingY even higher leads to cycles of increasing co
plexity and longer periods until chaotic behavior settles i

FIG. 11. Loss of fixed-phase stability thresholdYS vs steady
stateDwo for various drive current values (I th51.81 mA).
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We will not investigate chaotic behavior in detail. How
ever, the inspection of the dispersion relation~44! shows that
a transition to an absolute instability occurs, crossing
parameter boundaryG/V.1, wherebyU becomes pure real

U~k8;K !52GF16A12
V2

G2 G.2GF16S 12
V2

2G2D G .
~53!

The absolute instability limitYabs is given, using Eqs.~49!
and ~46!,~47!, by

Yabs[
VoAJ~K !

2vga
S 12

g1
g0Fo

No
J~K !

2VoAJ~K !
D . ~54!

SinceYabs.YS we also haveG,0 for Y.Yabs, thus both
roots in Eq.~53! yield pure exponential growth. Forgs /g̃

FIG. 12. Spontaneous transition to a limit cycle behavior in
535 periodic array at coupling strengthY50.0009 and the rest o
parameters as in Fig. 5.~a! Circulating cavity power.~b! Phase
difference among adjacent cavities.
0-11
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FIG. 13. Parametric plot
~‘‘surface of section’’! of the limit
cycle using the data in the boxe
area of Fig. 12.~a! No(tn) vs
Fo(tn) for a given cavity. ~b!
Phase difference Dwo

x(tn) vs
Dwo

y(tn) for a given cavity. ~c!
AccumulatedNo(tn) vs Fo(tn) for
all cavities.
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,1 the absolute threshold valueYabs is minimum6 at Dwo

50 and maximum atDwo5p. For Y.Yabs* [Yabs(p) we
haveG/V.1 regardless ofDwo . While the Y.Ys , G.0
threshold of the preceding paragraph allows for the existe
of stable periodic orbits after the destabilization of the ori
nal fixed points, we conjecture~Appendix C! that G/V.1
implies complete absence of stable coherent orbits, lea
to ‘‘lattice turbulence.’’ Figure 14 is a 3D plot of the real pa
ReV over the 2D parameter spaceY and k, for given Dwo
5p. The parameter area with ReV50 is the absolute insta
bility range; its boundaries inY2Dwo mark the paramete
space boundaries for instability.

So far, we have employed the scalingVo /g.Avga/g
@1 falling within the usual range of manufactured VCSE
parameters. The opposite limitVo /g.Avga/g!1, regard-
ing combinations of low group velocity and/or very hig
cavity quality ~small a}2 ln Rcav),

7 is also interesting. In
that regime we always haveG/V.1, and Eq.~44! with pure
real U holds regardless ofY. In addition, we always have
G.0 @the threshold value Eq.~54! for G,0 now yieldsYS
.1, while the overlap factorY cannot exceed unity#, thus
both roots correspond to negativeU meaning pure damping
of fluctuations and unconditional stability of the phas

6The opposite is valid whengs /g̃,1.
7Large carrier decay rateg is of little practical interest.
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locked fixed points in the linear coupling regime~Y small.!
Figure 15, corresponding to 1/100 of the cavity losses a
material gain, and 1/100 of the group velocity, with sam
other parameters as Fig. 5, exhibits phase-locked behavi
five times higher coupling strengthY50.003. For typical
valuesg in the nanosecond rangeVo must drop well below
the gigahertz range to achieve this scaling, evident in
long-time scale of Fig. 15.

VI. EVANESCENT LATTICE WAVES

We have dealt with the behavior of fluctuations of reak
using the dispersion relation~44!. It applies to an initial-
value problem, following the time evolution from an arb
trary initial superposition of real wave-number mode
whereby all modes subsequently decay in time with ra
G~k!. The related boundary-value problem is also of intere
where we specify a boundary condition in time~say, drive
selected members of the array! and record evolution in space
A real driving frequency now leads to complex wave nu
bersk→k1 ih and evanescent waves in space. The de
constanth~V! is found by solving Eq.~44! for Im U(k1ih)
50 under given V5ReU(k1ih). For G/V.g/Vo!1,
and for Y,YS ~i.e., stable steady state! h is also small;
an expansion of cos(kb1ihb)5cos(kb)cosh(hb)
2i sin(kb)sinh(hb) and letting cosh(hb).1 yields
0-12
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h5
1

b
sinh21H 1

Y

g̃J~K !

4VoZo

3

11
gs

g̃
J~K !14Y

vga

g̃

cosDwo2cos~Dwo1kb!

J~K !

sin@Dwo1kb#
J .

~55!

Figure 16 plotshb vs kb for variousY values. For the con-
sidered parameter values the decay lengthl d[1/h is shorter
than the lattice spacinghb5b/ l d.1. Even so, the induced
coherence length for the phase interaction is much lon
Figure 17 plots the space-time evolution of a 21-cavity pe
odic 1D array, where all cavities are held at constant biaI
51.67I th , while the central cavityj 511 is excited by a
superimposed modulated bias of amplitude60.12I th near
the resonant array frequencyV51.3231010 rad/s. Evanes-
cent waves propagating away from the center are obviou
Fig. 17. The intensity amplitude plot, Fig. 17~a!, shows rapid
decay of the excited amplitudes across only few sites of
array span. However, a persistent long-range coherenc
evident from the phase plot of Fig. 17~b!, showing the slow
oscillating phasew ~not the phase differenceDw! in each site.
Wave fronts propagating over the entire array at the gr
velocity y5vgt are evident, hence the coherence length
ceeds the amplitude decay distance. We found that the pe
is not equal top, i.e., the phase difference among adjac

FIG. 14. 3D plots of the frequencyV.Im U over thek5k8
2K andY space for~a! Kb50 and~b! Kb5p. The zero-frequency
area marks the absolute instability parameter space~pure realU
with positive ReU52G.0).
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FIG. 15. Spontaneous phase lock for high intercavity coupl
strengthY50.003 in a 2D 535 periodic array in theVo,g re-
gime. ~a! Circulating cavity power.~b! Phase difference among ad
jacent cavities. Parameters are the same as in Fig. 5, except th
gain and loss coefficients and the group velocity are reduced
1/100. Uniformly distributed random initial conditions are used.

FIG. 16. Plot of decay constanthb vs the real wave numberkb
for various values of the steady stateDwo for coupling strengthY
50.0011.
0-13
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S. RIYOPOULOS PHYSICAL REVIEW A66, 053820 ~2002!
sites is notp as in the spontaneous mode locking of Fig.
nor is it the same among all site pairs.

The decay length for driven oscillations is of obvious i
terest to the performance of VCSEL array based interc
nects since it invites cross talk and BER when adjacent c
ties are switched on. Of particular interest is the effect on
turn-on jitter, related with the effect of cavity cross couplin
on the density rise and radiation rise times. Such consi
ations set an upper limit on the array packing density@13#
and will be investigated in future work. On the other ha
strongly coupled arrays may be desirable for phased a
beam steering. In that case controlling the phase differe
through the applied driving frequency can offer a way of f
and effective steering without micromechanical actuators

VII. PHASE SELECTION

The observed tendency for spontaneous antiphase l
ing, whereby adjacent cavities phase lock in an out-of-ph
Dw5p configuration can be understood from a free-ene
point of view. In the preceding section we saw that near

FIG. 17. Time evolution of evanescent lattice waves. Cavit
maintained at constant bias, plus the central cavityj 511, are
driven with superimposed modulated bias.~a! Power perturbation.
~b! Phase cosine recorded at each citej. The envelope over al
points tn and Pj is plotted. The amplitude perturbation deca
quickly to the steady-state value over most of the array, but ph
perturbations propagate throughout.
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final approach to the steady state the optical modulations
described by the linearized Eqs.~37!. If one were to ignore
the dissipation described by the diagonal matrix eleme
the undamped modulations would be described by a Ha
tonian system

d

dt
dF52uDFNudN52

]H

]dN
, ~56!

d

dt
dN5DNFdF5

]H

]dN
, ~57!

where the Hamiltonian is given by

H~dN,dF !5 1
2 DNFdF21 1

2 uDFNudN2. ~58!

The power and density fluctuationsdF, dN play a role simi-
lar to the ‘‘position’’ and ‘‘momentum’’ in a mechanical sys
tem. Performing the canonical transformationF̂
5dF/AuDFNu, N̂5dNAuDFNu and noticing that
ADNFuDFNu5V̂ defined in Eq.~47! puts the above in the
more transparent form

Ĥ~N̂,F̂ !5 1
2 V̂2F̂21 1

2 N̂2. ~59!

So, a density fluctuationN̂ moves in an effective potentia
V(F̂)51/2V̂2F̂2 with Ĥ5const. The oscillationsN̂(t), F̂(t)
are 90° out of phase so thatHo51/2N̂mx

2 51/2V̂2F̂mx
2 . If the

centers of the oscillationsFo(Dwo) were far apart, the mo-
tion from an arbitrary initialF would be an oscillation abou
the closest~‘‘resonant’’! valueFo(Dwo), with orbits forming
an ‘‘island’’ in the N̂-F̂ phase space. Nonlinear saturatio
terms added to Eq.~59! limit the island widthDF̂ andDN̂.
For example, if (V̂2/2)F̂2 were the first term in the expan
sion of a harmonic potentialV̂2(cosF̂21), the maximum
excursions would beDF̂56p, DN̂56&V. We will still
assumeDF̂;p without imposing harmonic conditions o
Eq. ~59!.

Observe now, according to Eqs.~32! and ~33!, that the
locations of the steady-state valuesFo(Dw) cluster close to
each other for small coupling factorsY,YS . The relative
separation between the firstFo(Dw50) and lastFo(Dw
5p) center is given by

Fo~p!2Fo~0!

Fo~p!
512expFa/z

g0
S 1

114L18Y

2
1

114L28YD G
.8~Y2L!

a/z

g0
, ~60!

thus the island widthDF̂;p exceeds the separation amon
possible centersFo(0)2Fo(p);Y Fo(0)!1. Therefore one
may choose anyFo(Dwo) as a reference point for the tota

s

se
0-14
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COHERENT PHASE LOCKING, COLLECTIVE . . . PHYSICAL REVIEW A 66, 053820 ~2002!
energy Ĥ definition,8 writing the initial conditions asF̂o

5F2Fo(Dwo)5Fmx and N̂o50. Now, let us turn dissipation
on by reviving the diagonal elements. BecauseDNN@DFF ,
it is the density equation which is being mostly affected,

d

dt
dN52DNNdN2uDNFudF. ~61!

The dissipative term bears analogy to friction, proportio
to the momentum in a mechanical system, furthering
analogy ofN̂ as momentum. The motion now becomes sim
lar to a ‘‘ball’’ in a potential well with friction, where the
final location is the bottom of the wellF̂50. The potential
depth depends onDwo as shown in Fig. 18. Since the invar
ants of motion are destroyed and nowHÞconst, the fall will
not stop until the deepest well bottom is reached. In ot
words, the final rest phaseDwo corresponds to the maximum
potential depthF2Fo(Dwo), i.e., the lowest value for
Fo(Dwo),

V~ F̂;Dwo!5
1

2
V̂2F̂mx

2

5
1

2
Vo

2J~Dwo!
@F2Fo~Dwo!#2

vggsJ~Dwo!

5
Vo

2

2vggs
@F2Fo~Dwo!#2. ~62!

A crucial detail here is that the phase difference equa
~31!, which has not been included in Eq.~59! but neverthe-
less determines the value forDw, is satisfied for anyDwo as
long as the adjacent site densities and intensities are e

8The familiar from nonlinear dynamics ‘‘island overlap’’ situation

where F̂(t) can ‘‘hop’’ from island to island, does not apply her
because only one potential term enters Eq.~59!.

FIG. 18. Effective potentialsV(F) of various Dw as control
parameter. The same energy value applies at the initial loca
F/Fo51.15. Maximum depth occurs forDw5p at the bottom lo-
cationF5Fo(Dw5p).
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Use of the definitions forFo(Dwo), V̂(Dwo), and the ex-
pansion formulaX12e5X2e ln X yields

V~F;Dwo!5
Vo

2

2vggs
S F2Fo2

g̃

a/z
No@4L14Y cos~Dwo

x!

14Y cos~Dwo
y!# D 2

, ~63!

whereFo , No are the uncoupled cavity steady-state valu
Thus, once the system is brought near steady stateuF
2Fo(0)u/Fo(0),1, the final ‘‘rest’’ at the deepest potentia
well occurs for the antiphased lockDwo5p regardless of
initial F. That can also be thought of as maximizing the fr
energy V(Dwo) released during the transition to a phas
locked steady state.

VIII. CONCLUSION

Coupled microlaser cavities were analyzed and shown
exhibit long-range coherence and modulation waves cha
terized by a lattice dispersion. For low coupling streng
~low packing density!, spontaneous phase lock into a ‘‘cry
tal’’ state is numerically observed. Oscillations about th
steady state are stable for modest coupling strengths.
preferred locked phase is determined by an effective ‘‘latt
potential’’ minimum. The generic behavior of nonlinear di
sipative systems anticipates transitions from the above s
tions regular in space and independent of time, to quasip
odic and finally chaotic spatiotemporal lattice oscillatio
under increasing driving currentJ. Here we observed thes
transitions for increasingcoupling strength Yunder a bias
constant in time and uniform in space. Therefore the latt
stability boundaries are curves in theY-J parameter space
that can be crossed in either direction. Interestingly the
tice crystallization fails for high coupling strengths~very
small cavity separation!, placing a stability limit on the pack-
ing density. The inclusion of longer-range interactio
among further than next neighbor cites may modify tho
stability boundaries. Coherence may also be destroye
very low coupling strengths due to spontaneous phase no
but the noise floor is not analyzed here.

The present analysis suggests two methods, one static
one dynamic, of controlling the phase difference in pha
locked arrays without individual addressing. For examp
one could impose the desired Bragg condition in a pha
locked array and use it for beam steering. In the static
proach the minimum-energy phase for the lattice poten
can be tailored by interlacing two lattices, each with differe
cavity properties, as in lattices with two kinds of atoms.
study of how a binary array may spontaneously settle int
selected phase will be the subject of future work. In t
dynamic approach one may control the phase differe
among the phase-locked neighbors by driving a collect
array mode of frequencyV~k! corresponding to the desire
kx,y5Dw/bx,y . In principle, that can be achieved by impo
ing a small oscillating current component on top of the co
stant bias driving the array as in Figs 17. A sub-micron tim
for mode locking and change in the beam direction could

n
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achieved. One advantage of both methods is that they do
rely on moving mechanical parts, such as mirrors.

APPENDIX A: ORTHONORMAL BASIS

Strictly speaking the original GL basis functions are n
lattice orthogonal,

E
0

`

d2rU* ~r2Ri j !U~r2Ri 8 j 8!

5E
0

`

d2rU* ~r !U~r2Ri 82 i , j 82 j !Þd i ,i 8d j , j 8 .

~A1!

An orthonormal basisU→Û is readily constructed following
the Gramm-Smith orthogonalization procedure, yielding

Û ~1!~r !5U ~0!~r !2 (
i 85 i 61

(
j 85 j 61

hi j
~1!U~r2Ri j !,

~A2!

Û ~n!~r !5Û ~n21!~r !2 (
i 85 i 6n

(
j 85 j 6n

hi j
~n!U~r2Ri j !,

~A3!

with U (0)5U, andhi j given by

hi j
~n!5E

0

`

d2r Û ~n21!
* ~r !U~r2Ri j !. ~A4!

Each iteration imposes orthogonality among further aw
sites. Note thathi j are small~of order Y!1) and thath(n)

;h(1)n. For nearest-neighbor interaction only the first step
needed, whereuponÛ (1) is divided byA128h11

2 for normal-

ization. Using the hatted basisÛ instead ofU in the coupling
coefficients definitionsY, L, Eqs. ~27! and ~28! cause a
second-order correctionO(Y2), comparable to the secon
nearer site coupling strength, which is neglected in
nearest-neighbor model. The frequency is not affected by
orthogonalization, and the spatial eigenfunctionsÛmn(r ) cor-
respond to the same frequencyvmp as the paraxial eigen
modesUmn(r ).

APPENDIX B: STABILITY EQUATIONS AROUND FIXED
POINTS

Equations~24! and ~25! are expanded around the stead
state valuesFi j 5Fo , Ni j 5No , Dw i j 5Dwo . Due to period-
icity, an arbitrary~i,j! is chosen as reference; we takei 5 j
50 with near neighborsi 8561, j 8561. The perturbations
are themselves Bloch waves, meaning that the next site
turbations are phase shifted bykb relative to the reference
cite, dA0,615dA61,05dAo exp(6ikb), whereA stands forF
or N. Letting cosDwo5@exp(iDwo)1c.c.#/2 and taking the
variation with respect todF, dN, using the notationDXY

[](Ẋ)/]Y with X, Ybeing eitherdN or dE yields
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DNN52g22BNo2
g0Fo

No
@~114L!12~4Y cosDwo!#,

~B1!

DNF5g0 lnS No

Ntr
D F ~114L coskb!

1
1

2
~4Y cosDwo14Y cos@Dwo1kb# !G , ~B2!

DFN5vgz
g0Fo

No
@~114L coskb!12~4Y cosDwo!#,

~B3!

DFF52vga1vgzg0 lnS No

Ntr
D

3F ~114L!1
1

2
~4Y cosDwo14Y cos@Dwo1kb# !G .

~B4!

When taking the partial derivatives, we usedAFo /F61

5AF61 /Fo5AFo /Fo51 due to the uniformity of the
steady state, and the fact thatdA61 introduces the additiona
phase shift6kb. Above we used the sameDwo

x5Dwo
y

5Dwo5Kb and kx5ky5k; generalizing forKxÞKy , let-
ting 4 cos(Dwo)→2 cos(Kmb)12 cos(Knb), 4 cos(Dwo1kb)
→2 cos(Kmb1kxb)12 cos(Knb1kyb) and then using the
steady-state relations~32! and~33! in Eqs.~B1!–~B4! yields
Eqs.~38!–~41!.

It may appear that a complete analysis of the th
coupled equations~24!, ~25!, and ~31! requires a simulta-
neous linearization of Eq.~31! subject toDw→Dwo1dw.
However, in order to conform with the Bloch condition, th
phase shift among adjacent sites is not an independent
able but a parameter assuming a fixed valuedw5kb; the
complex perturbationdAo exp(6ikb) used in Eqs.~24! and
~25! already involved anarbitrary large dw5kb. It is also
worth noting that, if one still elects to linearize Eq.~31!
choosing a smalldw!1, the phase corrections enter to th
second order and the linear stability is still determined
Eqs. ~B1!–~B4!. Indeed we must havedA0,615dA61,0
5dA0 exp@6idw# ~i.e., not dA01A0 exp@6idw#), and since
all amplitude terms in the phase evolution Eq.~31! are like
A0 /A61,0, the perturbation yields

A0

A61,0
→ Ao~11dA!

Ao~11dAe6 idw!

516 idAdw1dA2

511O~dA2!. ~B5!

That, and the uniform steady-state densities, yield zero
tial derivatives ](Ḋw)/]N5](Ḋw)/]F5](Ḋw)/]Dw50.
Hence the 333 stability matrix reduces to a 232 case,
0-16
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detU2DNN2l DNF DNF

DFN 2DFF2l DFF

0 0 02l
U

52l detU2DNN2l DNF

DFN 2DFF2l
U50, ~B6!

even thoughDNF5](Ṅ)/]Dw andDFF5](Ḟ)/]Dw are not
zero. Here, the entire system stability is determined by
stability of theF, N dynamic subspace; the subspace span
by Dw is the center manifold of marginal stability, contribu
ing the trivial eigenvaluel50 in Eq. ~B6!.

APPENDIX C: CHAOTIC REGION

Although regular orbits are absent in the chaotic regi
the stability relation is useful in the following sense. Co
sider an arbitrary trajectory passing through an arbitr
~nonfixed! point F(to), N(to) at t5to and a nearby orbit
passing fromF(to)1DF, N(to)1DN. For short time inter-
vals to1dt the time evolution of the trajectory separatio
dF(t), DN(t) is still given by an expression similar to Eq
~37!,
c

S

n

.
ec

on

F

05382
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,
-
y

d

dt S DN
DF D5S 2D̃NN D̃NF

D̃FN 2D̃FF
D S DN

DF D , ~C1!

where the tilde symbol now implies that the partial derivati
D̃XY[](Ẋ)/]Y is given by the primitive expressions for a
bitrary F, N in Appendix B @i.e., not substituting the fixed
phase values in Eqs.~C1!–~C4!#. After diagonalization, the
infinitesimal evolution of the orbit separation isDX(to
1Dt)5DXo exp(loDt), whereDX is the orthonormal base
corresponding tolo . For lo.0 nearby orbits diverge
DX(to1Dt)/DX(to)511loDt.1. One can repeat the pro
cess and define the local orbit divergenceDX(tn
1Dt)/DX(tn) at any phase-space point and time. If the m
trix ~C1! is positive definiteln.0 for everyn, meaning that
the instability criterionY.Yabx in Eq. ~54! is satisfied for
anyF, N over the phase-space area considered, the Liapu
exponenth[ limN→`(1/N)ln Pn51

N (DXn11 /DXn) of the sys-
tem is greater than unity leading to chaotic orbits, justifyi
the conjecture of Sec. V. That is a sufficient but not necess
condition, sinceh can exceed unity without allln being
positive ~i.e., not every 11lnDt.1); in fact we observe
chaotic behavior below the limitYabs.
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