PHYSICAL REVIEW A 66, 053813 (2002

Mode structure and photon number correlations in squeezed quantum pulses

T. Opatrny
Physikalisches Institut/Optik, Friedrich-Alexander University, Erlangemaliarg, Germany,
Department of Physics, Texas A&M University, College Station, Texas 77843-4242,
and Department of Theoretical Physics, Palatkyiversity, Olomouc, Czech Republic

N. Korolkova and G. Leuchs
Physikalisches Institut/Optik, Friedrich-Alexander University, Erlangemnkiarg, Germany
(Received 22 April 2002; published 22 November 2002

The question of an efficient multimode description of optical pulses is studied. We show that a relatively
very small number of nonmonochromatic modes can be sufficient for a complete quantum description of pulses
with Gaussian quadrature statistics. For example, a three-mode description was enough to reproduce the
experimental data of photon number correlations in optical solifSnsSpéter, N. Korolkova, F. Kaig, A.
Sizmann, and G. Leuchs, Phys. Rev. Létl, 786 (1998]. This approach is very useful for a detailed
understanding of squeezing properties of soliton pulses with the main potential for quantum communication
with continuous variables. We show how homodyne detection and/or measurements of photon number corre-
lations can be used to determine the quantum state of the multimode field. We also discuss a possible way of
physical separation of the nonmonochromatic modes.
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[. INTRODUCTION cally, quantum variables of a soliton were treated on a
position grid of typically~10°—10° points[5,6]. Are there
For a complete quantum description of an optical pulsehundreds of useful modes available in a pulse, or would a
one has to use a multimode density matrix. The question idetter choice of the mode functions show that only a few
how many modes are necessary for such a description. If omaodes(perhaps just ong7are in some nontrivial quantum
works with monochromatianodes, then an infinite number state? Or are just four quantum operators introduced by Haus
of modes would be needed, which is impractical. On theand Lai[7] sufficient to describe all the relevant phenomena?
other hand, one can construct different sets of modes as lin- Knowing the answer to the question of what is the com-
ear combinations of the monochromatic modé$ These plete quantum description of a pulse would be very helpful
modes (which are, howevernonmonochromatic may be in quantum information processing: one could fully utilize
more suitable for a quantum description of pulses. In particuthe squeezing and entanglement properties of our sources.
lar, it would be useful to find such a modal structure so thatAfter forming a soliton pulse in a fiber, one can determine its

the quantum state of the pulse can be described by the defiultimode quantum state in the most comprehensive way.
Sity ODEratord = o..® o whereo . is some nontrivial One can then optimize the medium properties to achieve
y op 0= Cexc® Lvac Qexc maximum squeezing, or the maximum purity of an entangled

density operator of a few excited modes aagh. is the  state. Working with pairs of correlated pulses, one could ap-
vacuum state density operator of all the remaining modesp|y a proper measurement scheme and use entanglement cri-
Thus we could work with a concise description of the pulseteria for multimode bipartite Gaussian sta{@ to check
by means o0fp¢yc- whether the pulse pair is entangled or separable. One can
Our work is motivated by the question of how to com- also better understand the influence of the medium on the
pletely describe the quantum state of solitons in optical fipropagating pulse: provided that the output pulse is de-
bers. Such soliton pulses are used in various schemes @drmed, what happens with the quantum information carried
guantum information processirifpr a review, see, e.g., Ref. by the pulse? Is it washed out by decoherence procdéeses
[2]). Can a single-mode description of a soliton pulse beperhaps by an eavesdroppeor is it just unitarily trans-
sufficient? When explaining squeezing in the Kerr mediumformed into other modes of the same pulse? A simple and
one sometimes plots a picture of phase space where a quaserrect measurement and description of the multimode state
tum uncertainty circle is deformed into an ellipse—a descrip-s highly desirable.
tion which clearly corresponds to a single-mode situation. This work is organized as follows. In Sec. Il we introduce
This approach is useful to qualitatively understand the gennonmonochromatic modes and deal with the transformations
eration of continuous variables entanglement as in [f. between different sets of quadrature operators. Section ||
but do we use all the quantum features of a given pulse if watudies basic properties of the photon statistics of multimode
treat it as a single mode object? Should one, instead, worfields: mean photon numbers and covariances between dif-
with many more modes of a pulse in the hope that each oferent modes. In Sec. IV we discuss a homodyne scheme for
them can become a useful resource for quantum communa complete determination of Gaussian states of nonmono-
cation? Multimode correlations of photon numbers in a soli-chromatic multimode fields. In Sec. V we compare the pho-
ton were observef#]. To calculate such correlations numeri- ton number squeezing available via applying a proper local
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oscillator modulation and via using spectral filtering. Sectionsystem of mode functions as in Eq8) and (3) with f;(w)
VI suggests a way for an optimal selection of the nonmono=f (). Let the quantum state of the first motle be a

chromatic mode functions. In Sec. VII we discuss a possibl 0 _
way of how to physically separate individual nonmonochro-%Oherent stgtéﬁ)l, ba|5)s A'B|’8>1_' and let all the otheb
matic modes of the pulse. Discussion and conclusions ar@'°des be in vacuun0),, b|0)=0, k>1. By means of

presented in Sec. VIIl. Most of the mathematical details aréransformation(G) we find that using the monochromatic

discussed in Appendixes A—E, and in Appendix F we com nodes, the quantum state is a multimode coherent state

pare our approach to that of Haus and [Zj. I1,|f(w)B), . Even though the single-mode and multimode
coherent states are related to the same object, i.e., a pulse in

a coherent state, the single-mode description is clearly more

convenient for handling and understanding the field struc-
Under the term “mode” we understand a single degree ofture. Of course, for other than coherent states the transforma-

freedom of the electromagnetic field; a mode can be detions of the state in different mode systems are not so

scribed by a pair of bosonic operators. It canrhenochro-  straightforward, but still can provide us with a very conve-

matic (evolution described by a single frequehay non-  nhient use of the quantum state description.

monochromatic Any state of the field can be treated in

different mode decompositions. In a given decomposition the C. Quadrature operators

state is called aingle modeif all modes except one have

vacuum statistics of their operators, in the opposite case the

state ismultimode In this section we deal with the transition &S

between different mode decompositions.

1. NONMONOCHROMATIC MODES

We define the Hermitian quadrature operatdi®), p(o)

R 1 . -
X(0)=—=[a(w)+a' ()], ()
A. Bosonic operators \/E
Let us assume a polarized optical field propagating in a 1
given direction. The monoghromatlc modes of the fleld. are p(w)= ——=[a(w)—a' ()], )
denoted by the corresponding frequengyand the bosonic i\2
operators of these modes satisfy the commutation relations

S . and similarly theb-mode quadrature operatoXg and Py as
[a(w),a(0")]=d(w—-0'), [a(w),a(e’)]=0. (1)

Let us assume a complete orthonormal set of functions )‘(k:i(ﬁﬁﬁb, 9)
fo(w): V2
1
f fi(o)f (o) do=6nhy, (2 P,=——(b.—Db/). 10
K i\/f( k= by) (10
> (o) fo)=8ow—o'). (3)  These operators obey the same commutation relations as the
k quantum mechanical position and momentum operators with
h=1, ie.,
We define a new set of operatdrg as
[X(w),p(e")]=i6(0-w"), (11)
Bk:f f(w)a(w)do, (4) . ..
[X(w),X(0")]=[p(w),p(w’)]=0, (12)
which satisfy the commutation relations and
St . o
[by,by/ 1= Sk, [k, b ]=0. 5 [Xe, P ]1=i 8 (13)
Thus the functiong can be used to define a new set of SR PPN
k(w) [Xk,xkr]:[Pk,Pk/]:o. (14)

nonmonochromatimodes. The inverse transformation of the

nonmonochromatic modes to the monochromatic ones read‘sne transformations between the two sets of quadrature op-
erators can be written in the forms

a(0)=20 fi(@)by. (6)
ﬁk=§§p f 2t () &(w)do, (15
B. Example
Let us consider a pulse with a normalized frequency en- oy — 70 o) h 16
velopef(w); [|f(w)|?dw=1. Let us define an orthonormal f) #:EX,P % lw)m, (16)
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with é=x,p, andu=X,P, and the transformation matrix
is

Zi(0)=Z¢ () =Refy(w), (17)

ZiP(0)=~Z{X(w)=Im f (). (18)
As can be checked, matrix satisfies the orthogonality rela-
tions

25 f Z(0) 21 (@) do= 8,/ S » (19

> D 2 (0) 2 (0 ) =8(w—w0') b . (20)

n ok
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=2"u, 27)
V=2ZV'Z", (29)
V'=Z"VZ. (29

In general, to transform between V andé¢, V', one has
to know the complete transformation matgxi.e., the whole
set of mode functiond,(w). However, if we assume that
only a few nonmonochromatic modes are excited while the
rest is in vacuum state, then the explicit form of the empty
mode functions does not play any ro[ét was also illus-
trated in the example in Sec. Il B where only one mode func-
tion f(w) was enough to transform the state into the multi-
mode casg.This can be used for a simplified calculation of
the transformed quantities, as discussed in Appendix A.

Sometimes it is useful to work with a discrete set of frequen-

cies w; corresponding to frequency bins of widtfw. The
quadratureEj of the jth bin is obtained as

g= > > Zi (21)
u=X,P Kk
where the transformation matrix elememﬁg are
2l =7} (0 VA w. (22

For brevity, we can join the quadratune&w) andp(w) into
a single vectorZ, and similarly the quadrature$, and P,

into a single vecto, so that transformationd5) and(16)
[or Eq.(21)] are written in the matrix multiplication forms

p=2& &=7'n.

Here the superscript means matrix transposition, and the
rows of the matrixZ are represented by indicgsandk, and
the columns by the indice$ andw (or j).

(23

D. Mean quadratures and variances

Important properties of multimode quantum states are

given by the vectors of the quadrature mean vaILEs,

=Tr{ ;] andu,=Tr[ ¢ ii], and by the variance matricss
andV’, given as

1 — -
V,lLk,,u'k’:E<{(Mk_l('l’k)’(ﬂli’_M,k’)}>’ (24)

1 _ _
Ve =5 0E= 6.~ 0D, (25

where {---} stands for the anticommutatofA,B}=AB
+BA, and(---) represents averagingA)=Tr(gA). The

Ill. PHOTON STATISTICS OF MULTIMODE
GAUSSIAN STATES

Among all possible states, the class of Gaussian states is
one of the most important—both from theoretical and experi-
mental points of view. The basic property of these states is
that their Wigner functior{as well as theQ function or the
characteristic functionhave a Gaussian forfsee, e.g., Refs.
[8-10). Examples of Gaussian states are coherent states,
squeezed coherent states, thermal states, and squeezed ther-
mal states. Gaussian states are typically observed in most
experiments with optical pulses. In this paper we confine
ourselves to Gaussian states; the main advantage used here is
that a Gaussian state remains Gaussian in any mode decom-
position, and a relatively small number of parameters is nec-
essary for its description.

A. Mean photon numbers and variances
Let us first study the relation between quadrature mo-
ments and photon number moments in discrete modes. The

photon number operator kth modeﬁk can be expressed by
means of the quadrature operators as

- 1 72, 72
Ne=2 (Xt p—1). (30
The mean photon number in ttkéh mode is thus
1 o2 ~2
(N = §(<Xk>+<pk>_1), (39

and the mean product of photon numbers is
T N Y L S N Y
(ngny) = Z(<ka' )+ (P + (PiPT) + (PiXT") = (Xi) = {Pic)

—(X\)—(pP)+1). (32

relationship between these quantities can be written in matrix

multiplication form as

(26)

As discussed in Appendix B, for Gaussian states all the
quadrature moments on the right hand sides of E2f§.and
(32 can be expressed using the quadrature means and vari-
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ances as in EqgB6)—(B10). The resulting photon number (a) P ‘
moments can be used to calculate the photon number cova- R
riances 7 '

com(ny N =N —(NiH(ny), (33

(nm)

which can be written in terms of the quadrature means and

g

=

[0}
) g <
variances as 151 0
- - _ o g g
_ ’ ’ ’ ’ = )
COV( N, ) = X4X) Ve xi H XikP1 Vi pi F PiX Vipioxi T PPV pi é : S
=

1 V/2 V12 V/2 V/Z _ 5k| e
+ E( xk,xl+ pk,xl+ xk,pl+ pk,pl) T'

(39

with the special casanﬁzcov(nk,nk). A very important
role is played by the so called normally ordered covariance

~a =
Cl=(:AnAn; 1) =comny,ny) — SN (35 ‘%
©
The normally ordered covariance is used to define the nor- =
malized correlation matrix as in Rg#]: :
o
A~ S
AnAny: C =0
C(kT)E< kz |2>: :I 2" (36) 0-105_;
VANZAn?  \JAnZAn: 0.

Values of the correlation matrix measured in Rif] are
shown in Fig. 1a). In the limit of continuous frequency
modes, one can define the photon number dersitw)),
variance densitf An?(»))=(n(®)), and normally ordered FIG. 1. Photon correlation matri€{) as a function of the
covariance C(w,w') with its normalized version wavelengths of the pulse spectrum. Results measured in[&ef.
C"(w,w"). Since a Gaussian state remains Gaussian in anith omitted elements with very large fluctuations @.8) (a), and

mode decomposition, and since the parameters of a Gaussiﬁ}? best fit using a reconstructed three-mode variance matrix

state£ andV can easily be transformed from one mode de-Vxkxi (see Sec. 111D (b).

composition into another, one can also calculate the photon =~ . .
number mean values and correlations in arbitrary mode degondl'gl_on ) IS generally valid for all strong pulses, Cof‘d"
tions (ii) and(iii ) are related to our choice of mode functions

composition. . A )
P and their generalization is straightforward. In E84) the
) ) ) terms containing, ; vanish and the first term on the right is
B. Photon correlations in multimode pulses dominant: thus Ed(34) becomes
If we try to reproduce the experimental results of Réf. o
as truly as possible with as few modes as possible, the first COM Ny, NY) = XiX| Vg i - (37)

attempt would be to start with just a single nhonmonochro-

matic mode. However, as shown in Appendix C, the covari-To calculate this quantity using the nonmonochromatic
ance matrix couf, ,n;) of such a field would have the same modes, we write

sign for all valuesk andl. The sign would be positive if the

single-mode state is super-Poissonian, or negative if the — —
single-mode state is sub-Poissonian. On the other hand, the Xk:nZN fn(“’k)xn\/E
covariance matrix measured in Ré#] contains both posi- B

tive and negative elements. Therefore, the quantum state of .
the soliton pulses measured in Rpf] cannot be described fsee Eqs.(27), (17, and/(22)], whereN is the number of
occupied modes and fof,, ,; we use Eq(A7) from Appen-

as a single nonmonochromatic mode. S A Th h ber i
Exact analytical expressions are rather lengthy if moréiX A- The mean photon number is

than one mode are excited. However, relatively simple rela- 1

tions can be obtained if the following requirements are met: = tvalkva

(i) the coherent amplitude of at least one of the modes is (n) 2 mMESN fn( @) fa( @) XnXnd o, (39
much greater than any of the variance matrix elemdits;

only the X quadratures have nonzero mean values, RPg., using Egs.(31) and (B6) and conditions(i)—(iii). The nor-
=0 for all k, and (iii) the mode functions are real. While mally ordered covariancgEq. (35)] thus becomes

(39
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Omn
Cy= EN fm(wk)fn(wl)(VXm,Xn_ 7)

m,n=

X 2 fm’(wk)fn’(wl)im’in’sz- (40)
m’,n’ <N

Since in very narrow frequency binsw, the mean photon
number and photon number variance are approximately
equal,(An2)~(n,)<1, Eq.(39) can be used also to obtain
(Anﬁ}, and the normalized correlation matfikq. (36)] be-
comes

Mode functions [nnTllz]

-2 1 . v _ Bmn N (41 —40 —20 0 20 40
kIl — “~ m(wk) n(wl) Xm,Xn 2 . ( ) Wavelength [nm]

. . . . FIG. 2. Mode functions for which th&/y, x, matrix of the
Taking Aw—0, we can work with the continuous quantity pulse measured in Rg#] is diagonal. The insets show the fluctua-
tions of theX quadratures in comparison with the vacuum fluctua-
Smn tion (dashed ling In the main figure, the full line corresponds to the
Vixmxn™ o mode functionf; with the squeezed quadratuMy;y;~0.29:
(42) dashed line td, with Vy,x,~1.39, and dash-dotted line tg with
Vyax3~2.69.

CV(w,0)=2 2 fyl0)f (o)

m,n<N

In Eq. (42) only theX elements of the quadrature varianses 1

occur. In other words, the measured photon number covari- 2 = n)2 2 2, /

ances are only influenced by the covariances of quadratures<AV><kvXk’> 4f j ACTHw, 0" f(w)fio (o) dudw'.
which are in phase with the quadrature of the strongly ex- (44)
cited modes.

Note that here, for the sake of brevity, we have assumed
uncorrelated errors in the elements@f)(w,w'); the deri-
vation of a more general formula taking into account corre-
lated errors is straightforward.

In See. 11 B we saw how to calculate the normalized pho- | et us stress that the formulas derived in here and in Sec.
ton covariance from the quadrature variance matrix of thay| B are valid for very narrow frequency bins whe(an?)
nonmonochromatic modes. We can also consider an inversg<nk><1_ However, in real experiments, it is often neces-
problem. Let us assume that the mode functibgso) are  sary to work with wider bins in which the photon statistics
known. Let us also assume that the normally ordered covasgp differ from Poissonian, so that using EG&2) and (43)
riancesC(w,w") are measured as in Re#], so that the  coyid cause significant errors. This situation can be easily
normalized covarianc€™(w,w’) can be determined. As taken into account by substituting the proper expression for
can be seen from Eq42), this quantity is a linear combina- «An2) in the formulas connecting the photon correlation ma-
tion of the products of the mode functiofifw). The coef-  yjy with the quadrature variance matrix. Equatidd®) and
ficients in the linear combination are elements of the quadra(43) then become slightly more involved: since this generali-

ture varianceV. Thus, to obtain the elements Wf one can  ;4tion s straightforward, we do not include the formulas in
use the orthonormality of the mode functiohgw) to invert  his text.

the linear dependence. We find

C. Reconstruction of the quadrature variances
from the photon number covariances

D. Application to experimental data

1 1
— - (n) ' ’ ’
Vikxw 2 Ok 2] j CHw0)fd)l(e)dodw. To illustrate our method, we have used the experimental
(43)  data obtained in Refl4] [reproduced in Fig. (&)]. They
were measured for soliton pulses propagating in a 2.7-m op-
Thus, from the spectral covariances of the photon numbergical fiber. We have used a preliminary set of mode functions
one can reconstruct tHe(N+1)/2 elements of the quadra- (starting with a sech function as the basic shape of the soli-
ture variance matrix, out of the total number {2N+1) ton) and applied reconstruction formul43). We have diago-
independent elements. nalized the resulting variance matik, x,» and found that
Since Eq(43) is linear, it allows for a direct estimation of only three eigenvalues are substantially different from the
the reconstruction errdisee, e.g., Ref.10]). If the normal- vacuum value 1/2. The corresponding eigenvectors can be
ized covariances were measured with precisiorused to construct a new set of mode functitgee Fig. 2 In
AC™"(w,w"), then the error in reconstructing the elementsthis set, theX quadratures are independent of each other.
of V can be estimated as Thus, we have found that with respect to the quadratures
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which are in phase with the coherent amplitude duadra-

tures in our convention the pulse measured in R¢#] can

effectively be described as a three mode field, the quadrature
variances beingVy; x1~0.29, Vyox2~1.39, and Vyzx3

~2.69 with the off-diagonal elements being zero. The small- Laser
est eigenvalue corresponds to squeezi®y35 dB. The re- Yy
constructed variance matriy x, can be used to calculate D

back the photon number correlation mat@{}; see Fig. /\

1(b). Bright pulse |/ \.

Since the photon number correlations were measured with Eﬁ;;eing S%l}lggzed yacuun
limited precision, these results suffer from errors. To esti- Local oscillator :
mate the precision of our results, we have Monte Carlo gen-
erated 1000 “experimental” matrice€{!’ with elements
fluctuating with errors given by the error estimates of the
original experiment. The squeezing value then fluctuated be-
tween—2.2 and—4.1 dB, with most results centered around Quadrature measurement
—3.1 dB. Even though the error is too large to make a defi-
nite statement, these result suggest that larger squeezing is FIG. 3. Scheme to measure all the elements of the quadrature
available than the measured—2.5 dB of this setup with variance matrix. The Sagnac interferometer produces a squeezed
spectral filtering. Let us note that the shape of the mod&acuum in one output and in the other output a bright pulse corre-
function corresponding to the squeezed quadratuleline ~ SPonding to one of the mode functiofsay f,(w)]. The pulse
in Fig. 2) resembles the spectral filtering approach: the conshaping device transforms the bright pulse envelope into different
tribution from the middle of the spectrum is enhanced whilecombinations of the mode functions. Using the resulting bright
the outer parts are suppressed. The question of photon nurp'l_Jlse as a local oscillator in a palanced h(_)modyne detector, one can
ber squeezing availability via spectral filtering and via local reconstruct the quadrature variance malfix
oscillator functions is studied in more detail in Sec. V.

Fiber
loop

Input pulse

[

bers, one has no access to the variaggser andVyy pys -
To get full information on the multimode Gaussian quantum
state, one has to perform phase dependent measurements.
We have seen that a one-mode description of a pulse idomodyne detection is one example of such a measurement;
not sufficient to explain the experimental data of Réf], recently it was studied how to apply homodyne detection
whereas a three-mode description gives a good agreemestheme to the quantum state reconstruction of a multimode
with the measurements. However, we cannot conclude fromptical field [14,15. Because we confine ourselves to the
this that the pulse does not contain more than three modes. [Baussian states, the task is easier than reconstruction of a
other modes thé> quadratures can be excited, which doesgeneral quantum state.
not influence the observed photon statistics. Also, the mea- To find the variance matri¥, one can use the scheme of
surement noise was too high so that weak excitation of somRef. [15] with the local oscillator pulses shaped to the form
additional modes might be undistinguished from the dataf weighted combinations of the mode functions. It is very
noise background. useful to subtract the coherent amplitude of the pulse by
It is interesting to compare our approach with that of Haususing a balanced Sagnac interferomdte] as in Fig. 3.
and Lai[7] (also see Refd11-13). In their case the quan- Here, two counterpropagating identical squeezed pulses are
tum field is decomposed into a “soliton” part and a “con- interfering at a 50%/50% beam splitter. In one of the outputs
tinuum” part. The soliton field is described by four operatorsof the beam splitter the pulses interfere constructively and
Aﬁ, A;\g, A;(, andAﬁ, related to the soliton energy, phase, form a brlght pulse, which is then used to form the local
position, and Ve|ocity, respective|y_ As shown in Appendix F,OSCi”ator. In the other OUtpUt where the pulses interfere de-
these operators can be expressed by our quadrature operatégictively, squeezed vacuufor a more general field with
of four modes, provided that the mode functions are properlyero mean amplitudes formed. The squeezed vacuum pulse
selected. However, only two of these operatat$ @ndAX) has the same quadrature variance matras each of the two

: terpropagating pulses.
related to two our modesf{ and f,) influence the photon coun . ! . : .
statistics. Thus, confining ourselves to the four soliton opera- The bright pulse is shaped mterferor_netr_lcally S0 that its
tors of Ref.[7] would not be sufficient to describe the ob- envelope has the form of different combinations of the mode

served phenomena. To apply the formalism of R&], one functionsfy(w). Such a pulse is then used as a local oscil-
would have to work with the full set of the soliton and con- 110" In & balanced homodyne detector. Thus, if the local
tinuum operators. oscillator is fi(w), one can obtain the value ofyy xy,

whereas with the local oscillatoif,(w) one can obtain
Vpekpk- Knowing these values and using the local oscillator
pulse of the formf,(w) + f,/(w) one can obtain the value of
Vxkxk» by using the local oscillator formi[f,(w)
Even though one can obtain full information about te + fy.(w)] one can obtain the value ¥ py, , and by using
guadratures from the spectral correlations of photon numthe form f,(w)+ify(w) one can obtain the value of

E. Conclusion

IV. COMPLETE DETERMINATION
OF THE VARIANCE MATRIX
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Vxm,pnv - Altogether,N(2N+1) different forms of the local  quadraturex,, andP,,; this corresponds to the experimental

oscillator are sufficient to obtain all té(2N+1) indepen-  sjtuation as in Sec. IV and Fig. 3. The photon number vari-
dent elements of the variance mathkix Let us note that to gnce is

increase the precision of the measurements, one can increase
the number of different phases of the local oscillator; a

2\
maximum-likelihood method for parameter estimations of a (An >_% cov (n.ny). (46)
single-mode Gaussian state using many phases was dis-
cussed in Ref[17]. Assuming, as in Sec. Il B, that the coherent amplitudes are

Having found the variance matrix, one has all the infor-much greater than the variance matrix elements, and that the
mation about the Gaussian state. Then we can immediatelyiode functions are reéjeneralization to complex functions
see, e.g., what is the maximum available squeezing of theeing straightforward we can express the photon number
state: it is the value corresponding to the minimum eigenvariance as
value of V. Typically, this value will be smaller than the
minimum diagonal element &f, which means that the opti-

o _ _
mum squeezing is shared among different modes. For ex- (An >_m%,\‘ (XmXnVxmxn 2XmPnVxmpn
ample, there is a quadrature squeezing in the fundamental o

modef, due to the Kerr effectassuming mode functions as +PmPaVemen)- (47)

in Appendix B, but theX; quadrature is also correlated to

the X5 quadrature, because of the correlation between théhe mean photon number is

pulse width and energy. Therefore, better squeezing can be .

expected to occur in a combination of the modes 1 and 3 _ _ 2, 2

than in the isolated mode 1. Thus, if the scheme is used to <n>—2k (M= 2 2 (XG+PY), (48)

produce squeezing, the measurement scheme can serve as a

tool for a selection of the optimum local oscillator. so that theQ parameter of Eq45) can be written, after some
One can also see how much the individual modes aralgebra, as

entangled with each other. To take full advantage of this

knowledge one has to be able to separate individual modes 0=2 3 [

from each other and distribute them among Alice, Bob, and CTmEN

other entanglement consumers. This is, however, a rather

n=N

Son - -
Xm VXm,Xn_T Xn+2XmVXm,PnPn
)

nontrivial task; in Sec. VII we will briefly mention a possible B (v Omn| = 49
approach to its solution. m| YPmPn™ "5 (49)
V. PHOTON NUMBER SQUEEZING VIA LOCAL where
OSCILLATOR MODULATION .
VS SPECTRAL FILTERING ~ X

Let us assume that we want to prepare a pulse with the " = =
maximum photon number squeezing, i.e., the photon number > (Xa+PR)
fluctuates as little as possible. To quantify the photon number
squeezing, one uses the Man@eparametef18], defined as 5
~ m
o (Am)—(n) s P -
=Ty 2. D2
(n) \/gN (Xa+PR)
wheren refers to the photon number of the entire pulse. This . . )
quantity is negative for sub-Poissonian field and positive forThus theQ parameter can be expressed in the matrix multi-
super-Poissonian fields. It was suggested in several work@lication form as
[19] that spectral filtering of the pulse can lead to improve-
ment of the photon number squeezing by blocking frequency oot Vxx Vxe
bands with correlated photon fluctuations and letting through Q=2(X,P) vV
frequency bands with anticorrelated photon numbers. Here
we show that a proper modulation of the coherent amplitude < = . < =~
(playing the role of the local oscillatpleads to the optimum where X and P are column vectors with th& and P,

: . ... _elements, and/yx, Vxp, and Vpp are the correspondin
squeezing which cannot be overcome by the spectral f”termgubmatrices of ?hxe va?i;nce matphsx The variance rr?atrix is(:;

(51)

X

~1, (52)

px Vpp

method. multiplied from the left and from the right with a unit vector,
) ) so that theQ parameter is limited by
A. Local oscillator modulation
Let us first assume that the quadrature variance m¥ftrix o[ \y(min) _ 1) <Q=2| v(m™_ 1) (53)
is fixed while we can modulate the mean values of the 2 2’
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whereV(™" is the minimum eigenvalue of the variance ma- .
trix V and V(M s its maximum eigenvalue. The minimum Cnn’:f c(w)fy(w)fh(w)do. (62)
value ofQ is reached if the vector of mean valuesXodndP

is the eigenvector o¥ corresponding to its minimum eigen- Again, theQ parameter is calculated as a matrix product of
value. Setting the components of this vector is possible usinghe variance/ multiplied from the left and from the right by
the scheme of Fig. 3. a vector. This time, however, the vector is not of the unit
length, so thaQ' is limited by
B. Spectral filtering

Let us assume a spectral filtering functios6(w)=<1: 2A2
the frequency component is completely transmitted(ib)
=1 and it is completely blocked i€(w)=0. This function

1 1
v(min) E) sQfSZAZ( v(max)_ 5) , (63

transforms the mean quadratures and variances as whereA? is the square of the magnitude of the multiplying
vector:
Xp= (W)X, (54
- _ AZZnZN (X[2+P2). (64)
Px= C(w) Pk, (55 =

S5 To show thatQ can never be smaller than the minimum
>’<lf<x|:C(wk)V>'<kx|C(w|)+ %[1—02(@()], (56) value achievable by local oscillator modulation, it is enough
' ' to show thatA?<1, i.e., that the magnitude of the multiply-

ing vector is not bigger than one. Proof of this inequality is

) , % shown in Appendix D.
oot = S0V piC(@) + 5 1= X1, (57) PP

C. Conclusion

rf ’
Vikp1 = €(@1) Vi pi (@) (58) We can see that no spectral filtering can improve the pho-

. ton number squeezing below the minimum eigenvalue of the
The 6, terms in Eqs(56) and(57) follow from the quantum quadrature variance matrix, which is available via the local

mechanical nature of the quadratures: partially blocking &gijjator modulation approach. Let us stress that our method
frequency component means that the corresponding field ISt finding the optimum local oscillator function is very

mixed with a vacuum. o, simple and straightforward since it is based on linear algebra.
Equations(54)—(58) can be used to determifén®) and 1 \ya5 suggested recently to use an adaptive algorithm to

(n) as in Sec. VA and thus to find th@ parameter of the ntimize the pulse shape for achieving optimum photon
filtered field. After a straightforward algebra, one can expres$, ;mper squeezin20]. In this method, the optimum was

the newQ parameter as reached after 20 000 iterations. In our case, provided that the
pulse is sufficiently well described by=5 modes,N(2N

< 5mn < < = = i i i
szzngN le"n( Vi xn— 5 XI1+2XInVXm,PnPI1 +1)=>55 iterations is enough.
S VI. SELECTION OF APPROPRIATE MODE FUNCTIONS
=f mn|=¢
+Pm| Vempn— T) Pn} (59 So far it was assumed that the set of mode functions was

given and the question was about the statistics of the corre-
where sponding quadratures. But how should these mode functions
be selected?
In principle, any orthogonal set of mode functions can be

E CrmnXn used for a description of the pulse statistics. However, since
%f — n<N (60) the aim is to reduce the number of quantum variables neces-
m ' sary to describe the pulse, the functions should be carefully
2 Cow(XnXn +PoPr) chosen. One possibility is to start from theory and assume
n,n’<N some particular shape of the pulse—e.g., a hyperbolic secant
soliton and to construct the orthogonal set from the typical
_ perturbations. An example is given in Appendix F, Egs.
2 CmnPn (F15—(F18), where the relationship to the soliton quantum
Bf n=N fluctuations approach by Haus and IL@] is discussed.
m- ’ (61) Another a h d i
- pproach does not assume any particular mode
> (X Xn +PoPy) function form, and is related directly to the experiment. It is
n,n’<N useful to assume that only one mode has a nonzero coherent
amplitude and a very small number of modes have quadra-
with ture fluctuations substantially different from the vacuum val-
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ues. To find the optimum set of mode functions, one can use i} ,
the following procedure. Inpmpulsewfi,

(1) Selectf,(w) as the measured classical envelope of the >
pulse(see Appendix E n 1 q ’

(2) Determine the minimum value of variance to be still =" 777
considered as different from the vacuum. )

(3) Construct a temporary set of orthogonal functions 3
femP) k=1 .. .N’ with f{*™P)=f, chosen in(1). The size ~ ---1J---- ---dL---
N’ of the temporary set should reasonably correspond to the h" j\"
experimental conditions. P

(4) Perform the measurement of th&l2<2N' variance  --___. N.
matrix V(Y with the temporary set of mode functions. ®

(5) Construct the reduced matri® from V(1) by ex-

cluding rows and columns referring to quadratures of mode F!G- 4. Scheme to separate individual nonmonochromatic
1. Letindexes 1 . .N’—1 correspond to thi quadratures modes. The pulse is first decomposed on a grating into quasimono-

. , , chromatic channels. The frequency of each channel is then shifted
and indexeN" .. .N'—2 correspond to th® quadratures. by means of an AOM to the central frequency of the pulse. The

(6) DiagonalizeV®) to get V(®=wWAWT with W an  resyiting modeswith the same central frequenden interfere on
orthogonal matrix. Let us choos#/ such thatV{? is the  a 2N port.
largest element of/?; VP ==, Wy Wy, V{Z.
(7) The functionf, is constructed as

of pure Gaussian multimode states into uncorrelated modes
has recently been studied fia1].
N —1 The procedure of operational construction of mode func-
_ ; (temp) tions as described above is, of course, not the only possible.
f2= kgl (Wit Wakeen -2 i1y €9 Itis, however, very useful for finding the minimum syugspace
of mode functions sufficient for the pulse description. Other
It can be checked that the variance of thejuadrature cor- Sets of mode functions can be selected such that the variance
matrix takes some special shape, e.g., some of the “canoni-

responding to this mode function {&3)=V{?. cal” forms studied in Ref(8]

(8) A new temporary set dili’ —2 mode functions is con-
structed from the old one as an orthogonal complemeft to
andf,. By means of the transformation connecting the new VIl. SEPARATION OF MODES

temporary set of mode functions to the initial one, calculate | may be very useful to separate individual nonmono-
the corresponding variance matrix. Construct reduced matripromatic modes which form the pulse. The possibility of
v by excluding rows and co_Iumngs referring to quadraturesyptaining nonclassical correlations of optical pulses by par-
of modes(1) and(2). D|agonaI|_zeV( )'and find mode func- titioning the pulse in the spectral region was suggested in
tion f5 in the same way as it6) and (7). Note that the  Ref.[22]. Similarly as with spectral filtering, this approach is
variances of the quadratures of ma@gare smaller than the ot necessarily the optimum one for obtaining maximum en-
variance(X5). tanglement from the source.

(9) Repeat this procedure of redefining the temporary The basic idea for obtaining the optimum separation is to
mode set, transforming and diagonalizing the variance masend different(nonmonochromatjc modes into different
trix, and defining a new mode function. After each repetition,channels by using a special unitary transformation among
the maximum variance of then(+ 1)st mode is smaller than them. It was shown in Ref.23] that any discrete unitary
the maximum variance of theth mode. If for somen=N operator can be constructed interferometrically. For this pur-
the variance of mode+1 is sufficiently close to 1/3as  pose we suggest to apply a scheme as in Fig. 4. In the first
defined in item(2)], the quantum state of th@¢-1)st mode step one decomposes the pulse into quasimonochromatic
is indistinguishable from vacuum. The pulse can be decomponents. The frequencies of these components are then
scribed with the given precision as &lhmode object. shifted by means of acusto-optical modulatgd®©M'’s), so

Let us note that the procedure of redefining the temporaryhat each channel has the same central frequency. The chan-
mode set and rediagonalizing the reduced variance matrirels then interfere on aNe port consisting of beam splitters
each time when a new mode function is constructed is necand mirrors. By a proper choice of théNZport parameters
essary. It is not possible, as one might be tempted, to find ane can manage that most of a pulse in fhéw) mode
set of mode functions simply by diagonalizing the measuredeaves the Rl port in thekth output channel.
variance matrix, since the SO transformation corre- One can also optimize theN2port parameters to prepare
sponding to diagonalization is generallyt a canonical a set of optimally entangleld modes(multipartite entangle-
transformation(see, e.g., Ref.8] for more details On the  mend, sent to different channels. This would be a generali-
other hand, in the special casemfre Gaussian states which zation of the proposal of Ref22] for partitioning soliton
are specified byN(N+ 1) real parameters one can find a setpulses to generate entangled states.
of uncorrelated modes. In this case our procedure would be Let us note that the spectral filtering of solitons used to
terminated after the first diagonalization. The diagonalizatiorproduce photon number squeeziri®] is a special kind of
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mode separation. However, as shown in Sec. V, in this casdifferent from the approach by Haus and [@] (see Appen-
the separation is not optimized with respect to all relevantdix F for more details The formalism of Ref[7] was de-
degrees of freedom. Therefore, better results can be expectegloped to solve an idealized quantum soliton equation and
in our general approach. to study the soliton dynamics. Its essential feature is the de-
composition of the field into “soliton” and “continuum”
parts, where the soliton field is completely described by four
VIIl. DISCUSSION AND CONCLUSION operators. Our approach ignores the dynamniwhich is
i i rather complicated in real lijefocusing on the phenomeno-
To summarize our results we can state the following. |ogical description of the pulse. The four soliton operators of
(i) For a complete description of the experimental resultRef.[7] can be expressed by means of our quadrature opera-
measured on optical solitons it appears that a very smafprs, but they alone appear to be insufficient for description
number of nonmonochromatic modes is enough. The resuligf the observed phenomena. It is necessary to work with the
cannot be described by means of a single-mode field, bufomplete set of “soliton” and “continuum” operators if one
already three nonmonochromatic modes were sufficient tevishes to describe the observed pulses using the formalism
reproduce the experimental data of Ref]. With our ap- of Ref.[7].
proach it is easy to interpret the “butterfly” pattern of the
measured photon covariances: three different nonmonochro- ACKNOWLEDGMENTS

matic modes overlap and contribute with their fluctuating We are grateful to R.S. Bennink, R.W. Boyd, J. Faala
in-phase quadratures to the photon statistie® Fig. 2 F. Konig, V. Kozlov, R. Loudon, A. Matsko, C. Silberhorn,
(ii) Provided that the pulses are Gausdiahich seemsto g D.-G. Welsch for many stimulating discussions. T.O.
be a relevant assumption for most of the experimental situananks Professor G. Leuchs for his kind hospitality at the
tions), a complete quantum description of the pulse can be=riedrich-Alexander University in Erlangen. This work was

done by means of a multimode variance matrix. The e|esupported by the Deutsche Forschungsgemeinschatt.
ments of this matrix can be determined by means of homo-

dyne detection with specially shaped local oscillator pulses. APPENDIX A: SIMPLIFIED CALCULATION OF

(iii) The concrete form of the mode functions is a matter TRANSFORMED MEAN QUADRATURES AND
of choice. If the aim is to find the smallest number of modes, VARIANCES FOR A FEW EXCITED MODES
an operational method for constructing the mode functions is
provided. In this case the first mode contains the coherent
amplitude, whereas the rest of the modes have zero me
fields and their field variances decrease with increasing mod
inde>§. By selecting the minimum set of modes, one can sub- ;k=0 for k>N, (A1)
stantially reduce the number of parameters necessary for a
complete description of the physical situation. and

(iv) Knowledge of the mode structure of the pulse and of 1
the corresponding quantum state will be very useful for V== for k>N,V
guantum information purposes: one can select the optimum HEORE 2
shape of the local oscillator pulse to detect maximum for u#p' and (k>N or k'>N).
squeezing or entanglement. This optimum finding is very (A2)
straightforward and much faster than adaptive algorithms
in Ref.[20]. One can also relatively easily study the influ
ence of the medium on the propagated pulses and on the
guantum information they carry. By measurement of the — —
multimode quantum state of the input and output pulses we 51:2 Zi 1 (A3)
can find the von Neumann entropy of the states. This would
enable us to tell whether the observed pulse deformation coand
responds most probably to a unitary evolution or rather to
decay and dephasing, possibly caused by an eavesdropper. - -

(v) In principle, one can also separate individual modes to véjlg,j,ZE Z Z 1€ V ok ke z{(‘,’.f’

Let us assume that only the fifstmodes of thé, system
e occupied, while the rest of the systems is in vacyoi,
or k>N. The quadrature means and variances are thus

ﬂk‘#rkr=0

_a“?ransformations{ﬂ) and(29) can then be written as

match the requirements of the pulse user, e.g., to prepare a wk k!

single mode maximally squeezed field, or to extract a maxi-

mally entangled two-mode field, etc. + l E Z1E ZmE Ad

A . . . . 2 k]‘ kj/ ( )

(vi) The pulse separation is a generalization of spectral % K>N

filtering, which has also been used for observation of photon

number squeezind.9]. We have shown that spectral filtering N s s

can never beat the coherent amplitude modulation approach = > |z v _ T KK e

. . . . kJ 'uk”u"k’ 2 k']'

in achieving better photon number squeezing. In our ap- o KK

proach, we can understand why spectral filtering can help

with squeezing, but we can also see its limitations. n OS¢ Oy (A5)
(vii) Our approach of multimode description of solitons is 2
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with
(A6)

To get Eq.(A5) from Eq. (A4), the orthogonality and com-
pleteness relatiofEq. (20)] was used. As a special case, let
us consider the variance matrix elemem'avxj, when the
mode functionsf,(w) are real, as in Sec. Ill B. Equation
(A5) then becomes

i1
dr s
2 k,k'<N

Vo=

Xj,xj"

S
flopfio(@j)Ao| Vs = =

(A7)

APPENDIX B: QUADRATURE MOMENTS OF
MULTIMODE GAUSSIAN STATES

An N-mode Gaussian state with mean quadratu_temd
variance matrixV has the Wigner functiofV( ),

(u— )V Y p—p)
5 ,
(B1)

1
W —
(W)= N Jdey exr{

whereV ™1 is the matrix inversion ofV. Thus a Gaussian
state is fully determined by X?+ 3N real parameterg2N
mean quadratures plu$(2N+1) independent elements of
the symmetric matriy/].

Generally, a quadrature momentf) can be calculated as
the integral of the Wigner function

= [ [ mwoax, . dpy. 82

The symmetrical two-variable momenﬁ{,&k,,&,;,}) and
1({p2,mi.}) can be calculated as

1 ~ ~ !
§<{Mkyﬂkf}>=J "'fﬂk#klw(ﬂ)dxl---dPN
(B3)

and

1 o 2 12
§<{Mk 7Mkr}>: | Mt W(p)d Xy .. dPy

1
-3

5 (B4)

K,k

whereEMkY#,k,EO if and,ui;, commute with each other,
andEMk,M/klsl if py and,ui;, are conjugate variables. Using

Eqg. (B1) one can analytically evaluate the integrals and ex-

press the quadrature moments by means of the paramaters
andV,, . . We obtain

()= ks (BS)

PHYSICAL REVIEW A 66, 053813 (2002

By = HE+V i k. (B6)
()= pi+ 3;kv,uk,;¢k : (B7)
(W)= mie+ GEEVMI(,[LK—’_ 3V,2Lk,,u< ) (B8)
1 . . -
§<{#k M 1) = pickticr TV i i (B9)

and
1 2 N2 0 2 12 2 12
§<{Mk!ﬂk'}>_ﬂk Mg Y e e F eV i uk

—I—V,Lk’MkVM/k/’M,k, +4ILLkMIk/V

k' k!
) 1
F 2V ke ™ 50k (B10)

Note that although Eq¥B5), (B6), and (B9) are generally
valid for all states, equalitieB7), (B8), and(B10) only hold

for Gaussian states. Corresponding expressions can be found
also for the moments of the quadratugés).

APPENDIX C: PHOTON STATISTICS IN DIFFERENT
FREQUENCY CHANNELS OF A SINGLE
NONMONOCHROMATIC MODE

Let us assume a nonmonochromatic mode defined by the
discrete functionf(w,), k=1 ...N, =}_,|f(0)|?=1. Let
the state of this mode be Gaussian. We are interested in the
photon number correlations between different frequency
channels.

Theorem All nonzero elements of a multimode photon
correlation matrix of an effectively single-mode Gaussian
state have the same sign. They are negdpesitive if the
single-mode state is sulisuper) Poissonian.

Proof. The mode functiorf(w)) defines the first row of
the unitary transformation matrik. Let the parameters of

the single-mode Gaussian state Xe P, Vxx, Vpp, and

Vxp. The multimode parameterg, Py, Vyixis Vxkpis €tC.,

can be calculated by means of the simplified summation as in
Egs.(A3) and(A5). The sign of the off diagonal element of
the correlation matrixEq. (36)] is determined by the sign of
the covariancéEq. (33)]. After some algebra with applying
Egs.(A3), (A5), and(34) we arrive at

+2XPVyp

_ 1
cov (n,n)=|f(wp)|?f(w)|? Xz(Vxx_ >

P2 1 1 1\2 12
+P VPP_E +§ VXX_E +VXP
1 1\2
+ > Vpp— 5 | (Cy

Thus we can see that the sign of the nonzero elements does
not depend on the argumentg and w;, but is fully deter-
mined by the expression in the square brackets. If we denote
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the photon number in the single mode %ywe find that the

PHYSICAL REVIEW A66, 053813 (2002

APPENDIX E: ELIMINATION OF COHERENT

quantity An?—(n) is equal to the expression in the square AMPLITUDES OF A MULTI-MODE GAUSSIAN STATE

brackets. This quantity is negative for sub-Poissonian states | ot ys assume that modes of theb system are excited
and positive for super-Poissonian states by definition. QEDgnq the rest is in vacuum. Then. one can redefine Nhe

APPENDIX D: PROOF THAT THE MAGNITUDE OF THE
SPECTRAL-FILTERING QUADRATURE VECTOR
IS LESS THAN 1

Showing that
AZ:EN (X2+P2)<1 (D1)
is equivalent to showing that
D CunCin(XiXi+ PP < D (XX + PPy,
k,I,n=<N k<N
(D2)
which follows directly from the definitions ok’ and P’
[Egs.(60) and(61)]. To violate Eq.(D2), it would be neces-
sary to have some vectdfsuch that
YTc?y>YTey, (D3)

wherec is a matrix with the elements,,. Equation(D3)
could only be valid if there exists some eigenvatyeof ¢

modes such that only one of thesay modef)l) has nonzero

values ofX;, P4, whereasX,,=0, P,=0 for m>1 (the
variance matrix elements corresponding to these modes are,
however, generally nonzero

Proof  Define Bn=2"YAXn+iPn)=(b,), m
=1...N. Let f,, be the mode functions normalized such
that (f,,fm)=S6mmr » Where the bracket denotes the scalar
product. Let us define a new mode functiogn as g;
EA2mzlﬁ;fm and a corresponding annihilation operator
hi=AS}_1Brbm, whereA= (21 _|By|?) Y% Then(h,)
= \/qu=1|,8m|2. Let us define mode functiorg, . . .gy as
linear combinations of; . . . fy by some orthogonalization
procedure, i.e.gm=2N G fmr s m=2...N such that

m =1
(Im+9m') = Smny » M=1...N. In particular,

N
(gl,gm)=A§l BiGm=0 (ED)

for m>1. The annihilation operators corresponding to the
g-modes areh,=3",_ Gpmwby, and their mean values
are (R) =3 _ 1 G (D) =21, _ ;G By =0 accord-
ing to (E1). Thus, in the new system of modes only the first

such thatc, > 1. Let us assume that such an eigenvalue doesne has a noncoherent amplitude. QED.
exist. Letu, be the elements of the corresponding eigenvec-

tor, i.e.,
P CiU; = C\Uy, (D4)
S o[ oioi@do=cu. 09
Let us define a functiog(w) as
a()= 2 ufi(w). (D6)
Sinceu,=[q(w)f(w)dw, one has

f ¢2()q() (@) do=0, f d()f(w)dw, (D7)

U c2<w>q<w>fk<w>dw>Uq<w>fk<w>dw‘, (09)

which cannot happen for any functiar(w) since|c?(w)]
<1. ThusA?<1. QED.

APPENDIX F: RELATIONSHIP TO THE SOLITON
PERTURBATION APPROACH OF HAUS AND LAl

In Ref. [7] (also see Refd12,13) it was suggested to
describe the quantum fluctuations of the nonlinear Schro
dinger equatiofNSE) soliton by writing

a(x,t)=ay(x,t)+Aa(x,t), (F)

wherea,(x) is the unperturbed solution of the NSE of the
hyperbolic secant form, and

Aa=Aagy+ Adgyn (F2)

is the quantum perturbation part withésol describing fluc-

tuations of the soliton degrees of freedom, whila,,,, cor-
responds to field fluctuations not contained in the soliton
solution and thus belonging to the continuum. The soliton

fluctuations are expressed by means of four operalars
AB, AX, andAp as

Adg=[AN(D) F,(X)+AB(H)f4(X) + AX(t) F(X)
. KAZ
+n,Ap(t)fo(x)]ex ITt)’ (F3)

where the functions,,, f,, f,, andf, are derivatives of the
soliton function
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|

with respect to the parameteng(=2¢|A,?), po. 65, and
X, - In these equations the valug is the mean photon num-
ber of the pulse¢ is the soliton widthp, andx, refer to the
carrier frequency and soliton center position, respectivel
The valueK is related to the Kerr nonlinearity ar@to the

(F4)

medium dispersion. To find the values of the operators fron}i

measured data, one introduces adjoint functifinsf,, f,,
andf, with the property

PHYSICAL REVIEW A 66, 053813 (2002

\/5 1 w w
filw)=Ii tanh— sech—
m? V2w, Wo Wo
——1
9
2 w w
— — —sech—]. (F14
Wqo Wgo

These functions were obtained by an orthogonalization pro-

Yeedure from the Fourier transformed functiohysy x , with

w,=2c/(m§). With this choice of the mode functions one
nds that the soliton perturbation operators can be expressed

by means of the quadraturs, X,, P,, P,, P53, andP, as

An=+/2nXy, (F15
Re | [ f001,000x|= 3. 75 -
. 1 =
with k,1=n,8,x,p (note thatf, themselves do not form an 1 §+ 9
orthogonal set; explicit form Aof functionf, and f, can be AD= P+ P, (F16)
found in Ref.[12]). Writing Aa as a sum of Hermitian op- V2n, V2n,
eratorsha=Aa"+iAa®, one finds that
N 2c .
~ ~ Ax= X2, (Fl?)
An=f£:(x)Aa(1)(x)dx, (F6) 6now,
-~ \BNywg . 2 \Bnywg
T TP Ap=0®op (T V%% (kg
Ag=i | fE(x)Aa(x)dx, (F7) 2c 9 2c
i X Assuming vacuum fluctuations of, and Py, (X2)=1/2,
Ax=fi;§(x)Aa(1)(x)dx, (F8  (P2)=1/2, one finds that the uncertainty products of the
soliton perturbation operators are
1
D=i—| f* 22 . 1 a2
Ap=i nOJ fr(x)Aa‘?(x)dx. (F9) <An2>(A02):§+ %~0.675, (F19
(F10
The relationship of this approach to our scheme can be . - 2
easily examined if one assumes the first four mode functions (AX®)(ngAp?) = 350274 (F20

f(w) in the forms

1 w
fi(w)= \/z_wosechaTo, (F11)
3 ) 1)
folw)= tanh— sech—, (F12
2w, W, [0
1 1 w w w
f3(w)= 2—tanh—sech—
1 72\2w,\ @o ) Wo
_+_
3 9
w
—sech—), (F13
Wo

which are larger than the minimum uncertainty value 1/4
following from the commutation relatiofsAn,A#]=i and

[AX,n,Ap]=i. This result corresponds exactly to that of
Refs.[7,12]. Our interpretation of the result is that the op-
eratorA @ is not purely a conjugate afn, but it contains an
admixture of an operator commuting withn. This admix-
ture [in Eq. (F16) proportional toPs] increases the noise
above the minimum uncertainty limit. Similar interpretation
holds for the pairAX, n,Ap.

From Egs(F15—(F18) one sees that from the statistics of
5(1,2 and I51,2,3,4one can determine the statistics of the soliton
perturbation operatordn, A8, Ax, andAp. This does not
hold conversely: knowledge of the four soliton operators is
not enough to determine the six quadratures.
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