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Mode structure and photon number correlations in squeezed quantum pulses
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The question of an efficient multimode description of optical pulses is studied. We show that a relatively
very small number of nonmonochromatic modes can be sufficient for a complete quantum description of pulses
with Gaussian quadrature statistics. For example, a three-mode description was enough to reproduce the
experimental data of photon number correlations in optical solitons@S. Spa¨lter, N. Korolkova, F. Ko¨nig, A.
Sizmann, and G. Leuchs, Phys. Rev. Lett.81, 786 ~1998!#. This approach is very useful for a detailed
understanding of squeezing properties of soliton pulses with the main potential for quantum communication
with continuous variables. We show how homodyne detection and/or measurements of photon number corre-
lations can be used to determine the quantum state of the multimode field. We also discuss a possible way of
physical separation of the nonmonochromatic modes.

DOI: 10.1103/PhysRevA.66.053813 PACS number~s!: 42.50.Dv, 42.65.Tg, 03.65.Ud, 03.65.Wj
se
i

o
r

th
l

cu
ha
de

e
ls

-
fi

s
f.
b
m
u

rip
on
en

w
o

un
oli
ri-

a

d a
ew

aus
a?
m-
ful
e
ces.
its
ay.

eve
led
ap-
t cri-

can
the
de-
ied
s

and
tate

ce
ons

III
ode
dif-
for

no-
o-
cal
I. INTRODUCTION

For a complete quantum description of an optical pul
one has to use a multimode density matrix. The question
how many modes are necessary for such a description. If
works with monochromaticmodes, then an infinite numbe
of modes would be needed, which is impractical. On
other hand, one can construct different sets of modes as
ear combinations of the monochromatic modes@1#. These
modes ~which are, however,nonmonochromatic! may be
more suitable for a quantum description of pulses. In parti
lar, it would be useful to find such a modal structure so t
the quantum state of the pulse can be described by the

sity operator%̂5%̂exĉ %̂vac, where%̂exc is some nontrivial

density operator of a few excited modes and%̂vac is the
vacuum state density operator of all the remaining mod
Thus we could work with a concise description of the pu
by means of%̂exc.

Our work is motivated by the question of how to com
pletely describe the quantum state of solitons in optical
bers. Such soliton pulses are used in various scheme
quantum information processing~for a review, see, e.g., Re
@2#!. Can a single-mode description of a soliton pulse
sufficient? When explaining squeezing in the Kerr mediu
one sometimes plots a picture of phase space where a q
tum uncertainty circle is deformed into an ellipse—a desc
tion which clearly corresponds to a single-mode situati
This approach is useful to qualitatively understand the g
eration of continuous variables entanglement as in Ref.@3#,
but do we use all the quantum features of a given pulse if
treat it as a single mode object? Should one, instead, w
with many more modes of a pulse in the hope that each
them can become a useful resource for quantum comm
cation? Multimode correlations of photon numbers in a s
ton were observed@4#. To calculate such correlations nume
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cally, quantum variables of a soliton were treated on
position grid of typically;102–103 points @5,6#. Are there
hundreds of useful modes available in a pulse, or woul
better choice of the mode functions show that only a f
modes~perhaps just one?! are in some nontrivial quantum
state? Or are just four quantum operators introduced by H
and Lai@7# sufficient to describe all the relevant phenomen

Knowing the answer to the question of what is the co
plete quantum description of a pulse would be very help
in quantum information processing: one could fully utiliz
the squeezing and entanglement properties of our sour
After forming a soliton pulse in a fiber, one can determine
multimode quantum state in the most comprehensive w
One can then optimize the medium properties to achi
maximum squeezing, or the maximum purity of an entang
state. Working with pairs of correlated pulses, one could
ply a proper measurement scheme and use entanglemen
teria for multimode bipartite Gaussian states@9# to check
whether the pulse pair is entangled or separable. One
also better understand the influence of the medium on
propagating pulse: provided that the output pulse is
formed, what happens with the quantum information carr
by the pulse? Is it washed out by decoherence processe~or
perhaps by an eavesdropper!, or is it just unitarily trans-
formed into other modes of the same pulse? A simple
correct measurement and description of the multimode s
is highly desirable.

This work is organized as follows. In Sec. II we introdu
nonmonochromatic modes and deal with the transformati
between different sets of quadrature operators. Section
studies basic properties of the photon statistics of multim
fields: mean photon numbers and covariances between
ferent modes. In Sec. IV we discuss a homodyne scheme
a complete determination of Gaussian states of nonmo
chromatic multimode fields. In Sec. V we compare the ph
ton number squeezing available via applying a proper lo
©2002 The American Physical Society13-1
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oscillator modulation and via using spectral filtering. Sect
VI suggests a way for an optimal selection of the nonmo
chromatic mode functions. In Sec. VII we discuss a poss
way of how to physically separate individual nonmonoch
matic modes of the pulse. Discussion and conclusions
presented in Sec. VIII. Most of the mathematical details
discussed in Appendixes A–E, and in Appendix F we co
pare our approach to that of Haus and Lai@7#.

II. NONMONOCHROMATIC MODES

Under the term ‘‘mode’’ we understand a single degree
freedom of the electromagnetic field; a mode can be
scribed by a pair of bosonic operators. It can bemonochro-
matic ~evolution described by a single frequency! or non-
monochromatic. Any state of the field can be treated
different mode decompositions. In a given decomposition
state is called asingle modeif all modes except one hav
vacuum statistics of their operators, in the opposite case
state ismultimode. In this section we deal with the transitio
between different mode decompositions.

A. Bosonic operators

Let us assume a polarized optical field propagating i
given direction. The monochromatic modes of the field
denoted by the corresponding frequencyv, and the bosonic
operators of these modes satisfy the commutation relatio

@ â~v!,â†~v8!#5d~v2v8!, @ â~v!,â~v8!#50. ~1!

Let us assume a complete orthonormal set of functi
f k(v):

E f m* ~v! f k~v!dv5dmk , ~2!

(
k

f k* ~v! f k~v8!5d~v2v8!. ~3!

We define a new set of operatorsb̂k as

b̂k5E f k~v!â~v!dv, ~4!

which satisfy the commutation relations

@ b̂k ,b̂k8
†

#5dkk8 , @ b̂k ,b̂k8#50. ~5!

Thus the functionsf k(v) can be used to define a new set
nonmonochromaticmodes. The inverse transformation of th
nonmonochromatic modes to the monochromatic ones re

â~v!5(
k

f k* ~v!b̂k . ~6!

B. Example

Let us consider a pulse with a normalized frequency
velope f (v); * u f (v)u2dv51. Let us define an orthonorma
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system of mode functions as in Eqs.~2! and ~3! with f 1(v)
[ f (v). Let the quantum state of the first modeb̂1 be a
coherent stateub&1 , b̂1ub&15bub&1 , and let all the otherb
modes be in vacuumu0&k , b̂ku0&k50, k.1. By means of
transformation~6! we find that using the monochromat
modes, the quantum state is a multimode coherent s
)vu f (v)b&v . Even though the single-mode and multimo
coherent states are related to the same object, i.e., a pul
a coherent state, the single-mode description is clearly m
convenient for handling and understanding the field str
ture. Of course, for other than coherent states the transfor
tions of the state in different mode systems are not
straightforward, but still can provide us with a very conv
nient use of the quantum state description.

C. Quadrature operators

We define the Hermitian quadrature operatorsx̂(v), p̂(v)
as

x̂~v!5
1

A2
@ â~v!1â†~v!#, ~7!

p̂~v!5
1

iA2
@ â~v!2â†~v!#, ~8!

and similarly theb-mode quadrature operatorsX̂k and P̂k as

X̂k5
1

A2
~ b̂k1b̂k

†!, ~9!

P̂k5
1

iA2
~ b̂k2b̂k

†!. ~10!

These operators obey the same commutation relations a
quantum mechanical position and momentum operators w
\51, i.e.,

@ x̂~v!,p̂~v8!#5 id~v2v8!, ~11!

@ x̂~v!,x̂~v8!#5@ p̂~v!,p̂~v8!#50, ~12!

and

@X̂k ,P̂k8#5 idkk8 , ~13!

@X̂k ,X̂k8#5@ P̂k ,P̂k8#50. ~14!

The transformations between the two sets of quadrature
erators can be written in the forms

m̂k5 (
j5x,p

E Zk
mj~v!ĵ~v!dv, ~15!

ĵ~v!5 (
m5X,P

(
k

Zk
mj~v!m̂k , ~16!
3-2
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with j5x,p, andm5X,P, and the transformation matrixZ
is

Zk
Xx~v!5Zk

Pp~v!5Ref k~v!, ~17!

Zk
Xp~v!52Zk

Px~v!5Im f k~v!. ~18!

As can be checked, matrixZ satisfies the orthogonality rela
tions

(
j
E Zk

mj~v!Zk8
m8j

~v!dv5dmm8dkk8 , ~19!

(
m

(
k

Zk
mj~v!Zk

mj8~v8!5d~v2v8!djj8 . ~20!

Sometimes it is useful to work with a discrete set of frequ
cies v j corresponding to frequency bins of widthDv. The
quadratureĵ j of the j th bin is obtained as

ĵ j5 (
m5X,P

(
k

Zk j
mjm̂k , ~21!

where the transformation matrix elementsZk j
mj are

Zk j
mj[Zk

mj~v j !ADv. ~22!

For brevity, we can join the quadraturesx̂(v) and p̂(v) into
a single vectorĵ, and similarly the quadraturesX̂k and P̂k

into a single vectorm̂, so that transformations~15! and~16!
@or Eq. ~21!# are written in the matrix multiplication forms

m̂5Zĵ, ĵ5ZTm̂. ~23!

Here the superscriptT means matrix transposition, and th
rows of the matrixZ are represented by indicesm andk, and
the columns by the indicesj andv ~or j ).

D. Mean quadratures and variances

Important properties of multimode quantum states
given by the vectors of the quadrature mean values,j̄ j

[Tr@%̂ ĵ j # andm̄k[Tr@%̂m̂k#, and by the variance matricesV
andV8, given as

Vmk,m8k85
1

2
^$~mk2m̄k!,~mk8

8 2m 8̄k8!%&, ~24!

Vj j ,j8 j 8
8 5

1

2
^$~j j2 j̄ j !,~j j 8

8 2j 8̄ j 8!%&, ~25!

where $•••% stands for the anticommutator,$Â,B̂%[ÂB̂

1B̂Â, and ^•••& represents averaginĝA&[Tr(%̂Â). The
relationship between these quantities can be written in ma
multiplication form as

m̄5Zj̄, ~26!
05381
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j̄5ZTm̄, ~27!

V5ZV8ZT, ~28!

V85ZTVZ. ~29!

In general, to transform betweenm̄, V andj̄, V8, one has
to know the complete transformation matrixZ, i.e., the whole
set of mode functionsf k(v). However, if we assume tha
only a few nonmonochromatic modes are excited while
rest is in vacuum state, then the explicit form of the emp
mode functions does not play any role.@It was also illus-
trated in the example in Sec. II B where only one mode fu
tion f (v) was enough to transform the state into the mu
mode case.# This can be used for a simplified calculation
the transformed quantities, as discussed in Appendix A.

III. PHOTON STATISTICS OF MULTIMODE
GAUSSIAN STATES

Among all possible states, the class of Gaussian state
one of the most important—both from theoretical and expe
mental points of view. The basic property of these state
that their Wigner function~as well as theQ function or the
characteristic function! have a Gaussian form~see, e.g., Refs
@8–10#!. Examples of Gaussian states are coherent sta
squeezed coherent states, thermal states, and squeezed
mal states. Gaussian states are typically observed in m
experiments with optical pulses. In this paper we confi
ourselves to Gaussian states; the main advantage used h
that a Gaussian state remains Gaussian in any mode de
position, and a relatively small number of parameters is n
essary for its description.

A. Mean photon numbers and variances

Let us first study the relation between quadrature m
ments and photon number moments in discrete modes.
photon number operator inkth moden̂k can be expressed b
means of the quadrature operators as

n̂k5
1

2
~ x̂k

21 p̂k
221!. ~30!

The mean photon number in thekth mode is thus

^nk&5
1

2
~^x̂k

2&1^ p̂k
2&21!, ~31!

and the mean product of photon numbers is

^nknl&5
1

4
~^x̂k

2x̂l
2&1^x̂k

2p̂l
2&1^ p̂k

2p̂l
2&1^ p̂k

2x̂l
2&2^x̂k

2&2^ p̂k
2&

2^x̂l
2&2^ p̂l

2&11!. ~32!

As discussed in Appendix B, for Gaussian states all
quadrature moments on the right hand sides of Eqs.~31! and
~32! can be expressed using the quadrature means and
3-3
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ances as in Eqs.~B6!–~B10!. The resulting photon numbe
moments can be used to calculate the photon number c
riances

cov~nk ,nl ![^nknl&2^nk&^nl&, ~33!

which can be written in terms of the quadrature means
variances as

cov~nk ,nl !5 x̄kx̄lVxk,xl8 1 x̄kp̄lVxk,pl8 1 p̄kx̄lVpk,xl8 1 p̄kp̄lVpk,pl8

1
1

2
~Vxk,xl82 1Vpk,xl82 1Vxk,pl82 1Vpk,pl82 !2

dkl

4
,

~34!

with the special caseDnk
2[cov(nk ,nk). A very important

role is played by the so called normally ordered covarian

Ckl[^:Dn̂kDn̂l :&5cov~nk ,nl !2dkl^nk&. ~35!

The normally ordered covariance is used to define the n
malized correlation matrix as in Ref.@4#:

Ckl
(n)[

^:Dn̂kDn̂l :&

ADnk
2Dnl

2
5

Ckl

ADnk
2Dnl

2
. ~36!

Values of the correlation matrix measured in Ref.@4# are
shown in Fig. 1~a!. In the limit of continuous frequency
modes, one can define the photon number density^n(v)&,
variance densitŷDn2(v)&5^n(v)&, and normally ordered
covariance C(v,v8) with its normalized version
C(n)(v,v8). Since a Gaussian state remains Gaussian in
mode decomposition, and since the parameters of a Gau
statej̄ andV can easily be transformed from one mode d
composition into another, one can also calculate the pho
number mean values and correlations in arbitrary mode
composition.

B. Photon correlations in multimode pulses

If we try to reproduce the experimental results of Ref.@4#
as truly as possible with as few modes as possible, the
attempt would be to start with just a single nonmonoch
matic mode. However, as shown in Appendix C, the cova
ance matrix cov(nk ,nl) of such a field would have the sam
sign for all valuesk and l. The sign would be positive if the
single-mode state is super-Poissonian, or negative if
single-mode state is sub-Poissonian. On the other hand
covariance matrix measured in Ref.@4# contains both posi-
tive and negative elements. Therefore, the quantum stat
the soliton pulses measured in Ref.@4# cannot be described
as a single nonmonochromatic mode.

Exact analytical expressions are rather lengthy if m
than one mode are excited. However, relatively simple re
tions can be obtained if the following requirements are m
~i! the coherent amplitude of at least one of the mode
much greater than any of the variance matrix elements;~ii !
only the X quadratures have nonzero mean values, i.e.,P̄k
50 for all k, and ~iii ! the mode functions are real. Whil
05381
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condition ~i! is generally valid for all strong pulses, cond
tions ~ii ! and~iii ! are related to our choice of mode function
and their generalization is straightforward. In Eq.~34! the
terms containingp̄k,l vanish and the first term on the right
dominant; thus Eq.~34! becomes

cov~nk ,nl !' x̄kx̄lVxk,xl8 . ~37!

To calculate this quantity using the nonmonochroma
modes, we write

x̄k5 (
n<N

f n~vk!X̄nADv ~38!

@see Eqs.~27!, ~17!, and ~22!#, whereN is the number of
occupied modes and forVxk,xl8 we use Eq.~A7! from Appen-
dix A. The mean photon number is

^nk&'
1

2 (
m,n<N

f m~vk! f n~vk!X̄mX̄nDv, ~39!

using Eqs.~31! and ~B6! and conditions~i!–~iii !. The nor-
mally ordered covariance@Eq. ~35!# thus becomes

FIG. 1. Photon correlation matrixCkl
(n) as a function of the

wavelengths of the pulse spectrum. Results measured in Ref@4#
with omitted elements with very large fluctuations (.0.8) ~a!, and
the best fit using a reconstructed three-mode variance ma
VXk,Xk8 ~see Sec. III D! ~b!.
3-4
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Ckl5 (
m,n<N

f m~vk! f n~v l !S VXm,Xn2
dmn

2 D
3 (

m8,n8<N

f m8~vk! f n8~v l !X̄m8X̄n8Dv2. ~40!

Since in very narrow frequency binsDv, the mean photon
number and photon number variance are approxima
equal,^Dnk

2&'^nk&!1, Eq. ~39! can be used also to obtai
^Dnk

2&, and the normalized correlation matrix@Eq. ~36!# be-
comes

Ckl
(n)52 (

m,n<N
f m~vk! f n~v l !S VXm,Xn2

dmn

2 DDv. ~41!

Taking Dv→0, we can work with the continuous quantity

C(n)~v,v8!52 (
m,n<N

f m~v! f n~v8!S VXm,Xn2
dmn

2 D .

~42!

In Eq. ~42! only theX elements of the quadrature variancesV
occur. In other words, the measured photon number cov
ances are only influenced by the covariances of quadrat
which are in phase with the quadrature of the strongly
cited modes.

C. Reconstruction of the quadrature variances
from the photon number covariances

In See. II B we saw how to calculate the normalized ph
ton covariance from the quadrature variance matrix of
nonmonochromatic modes. We can also consider an inv
problem. Let us assume that the mode functionsf k(v) are
known. Let us also assume that the normally ordered co
riancesC(v,v8) are measured as in Ref.@4#, so that the
normalized covarianceC(n)(v,v8) can be determined. As
can be seen from Eq.~42!, this quantity is a linear combina
tion of the products of the mode functionsf k(v). The coef-
ficients in the linear combination are elements of the quad
ture varianceV. Thus, to obtain the elements ofV, one can
use the orthonormality of the mode functionsf k(v) to invert
the linear dependence. We find

VXk,Xk85
1

2
dkk81

1

2E E C(n)~v,v8! f k~v! f k8~v8!dvdv8.

~43!

Thus, from the spectral covariances of the photon numb
one can reconstruct theN(N11)/2 elements of the quadra
ture variance matrix, out of the total number ofN(2N11)
independent elements.

Since Eq.~43! is linear, it allows for a direct estimation o
the reconstruction error~see, e.g., Ref.@10#!. If the normal-
ized covariances were measured with precis
DC(n)(v,v8), then the error in reconstructing the elemen
of V can be estimated as
05381
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^DVXk,Xk8
2 &'

1

4E E DC(n)2~v,v8! f k
2~v! f k8

2
~v8!dvdv8.

~44!

Note that here, for the sake of brevity, we have assum
uncorrelated errors in the elements ofC(n)(v,v8); the deri-
vation of a more general formula taking into account cor
lated errors is straightforward.

Let us stress that the formulas derived in here and in S
III B are valid for very narrow frequency bins where^Dnk

2&
'^nk&!1. However, in real experiments, it is often nece
sary to work with wider bins in which the photon statisti
can differ from Poissonian, so that using Eqs.~42! and ~43!
could cause significant errors. This situation can be ea
taken into account by substituting the proper expression
^Dnk

2& in the formulas connecting the photon correlation m
trix with the quadrature variance matrix. Equations~42! and
~43! then become slightly more involved; since this genera
zation is straightforward, we do not include the formulas
this text.

D. Application to experimental data

To illustrate our method, we have used the experimen
data obtained in Ref.@4# @reproduced in Fig. 1~a!#. They
were measured for soliton pulses propagating in a 2.7-m
tical fiber. We have used a preliminary set of mode functio
~starting with a sech function as the basic shape of the s
ton! and applied reconstruction formula~43!. We have diago-
nalized the resulting variance matrixVXk,Xk8 and found that
only three eigenvalues are substantially different from
vacuum value 1/2. The corresponding eigenvectors can
used to construct a new set of mode functions~see Fig. 2!. In
this set, theX quadratures are independent of each oth
Thus, we have found that with respect to the quadratu

FIG. 2. Mode functions for which theVXk,Xk8 matrix of the
pulse measured in Ref.@4# is diagonal. The insets show the fluctu
tions of theX quadratures in comparison with the vacuum fluctu
tion ~dashed line!. In the main figure, the full line corresponds to th
mode function f 1 with the squeezed quadratureVX1,X1'0.29:
dashed line tof 2 with VX2,X2'1.39, and dash-dotted line tof 3 with
VX3,X3'2.69.
3-5
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which are in phase with the coherent amplitude (X quadra-
tures in our convention!, the pulse measured in Ref.@4# can
effectively be described as a three mode field, the quadra
variances beingVX1,X1'0.29, VX2,X2'1.39, and VX3,X3
'2.69 with the off-diagonal elements being zero. The sm
est eigenvalue corresponds to squeezing22.35 dB. The re-
constructed variance matrixVXk,Xk8 can be used to calculat
back the photon number correlation matrixCkl

(n) ; see Fig.
1~b!.

Since the photon number correlations were measured
limited precision, these results suffer from errors. To e
mate the precision of our results, we have Monte Carlo g
erated 1000 ‘‘experimental’’ matricesCkl

(n) with elements
fluctuating with errors given by the error estimates of t
original experiment. The squeezing value then fluctuated
tween22.2 and24.1 dB, with most results centered arou
23.1 dB. Even though the error is too large to make a d
nite statement, these result suggest that larger squeezi
available than the measured'22.5 dB of this setup with
spectral filtering. Let us note that the shape of the mo
function corresponding to the squeezed quadrature~full line
in Fig. 2! resembles the spectral filtering approach: the c
tribution from the middle of the spectrum is enhanced wh
the outer parts are suppressed. The question of photon n
ber squeezing availability via spectral filtering and via loc
oscillator functions is studied in more detail in Sec. V.

E. Conclusion

We have seen that a one-mode description of a puls
not sufficient to explain the experimental data of Ref.@4#,
whereas a three-mode description gives a good agree
with the measurements. However, we cannot conclude f
this that the pulse does not contain more than three mode
other modes theP quadratures can be excited, which do
not influence the observed photon statistics. Also, the m
surement noise was too high so that weak excitation of so
additional modes might be undistinguished from the d
noise background.

It is interesting to compare our approach with that of Ha
and Lai @7# ~also see Refs.@11–13#!. In their case the quan
tum field is decomposed into a ‘‘soliton’’ part and a ‘‘con
tinuum’’ part. The soliton field is described by four operato
Dn̂, Dû, D x̂, andD p̂, related to the soliton energy, phas
position, and velocity, respectively. As shown in Appendix
these operators can be expressed by our quadrature ope
of four modes, provided that the mode functions are prope
selected. However, only two of these operators (Dn̂ andD x̂)
related to two our modes (f 1 and f 2) influence the photon
statistics. Thus, confining ourselves to the four soliton ope
tors of Ref.@7# would not be sufficient to describe the o
served phenomena. To apply the formalism of Ref.@7#, one
would have to work with the full set of the soliton and co
tinuum operators.

IV. COMPLETE DETERMINATION
OF THE VARIANCE MATRIX

Even though one can obtain full information about theX
quadratures from the spectral correlations of photon nu
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bers, one has no access to the variancesVPk,Pk8 andVXk,Pk8 .
To get full information on the multimode Gaussian quantu
state, one has to perform phase dependent measurem
Homodyne detection is one example of such a measurem
recently it was studied how to apply homodyne detect
scheme to the quantum state reconstruction of a multim
optical field @14,15#. Because we confine ourselves to t
Gaussian states, the task is easier than reconstruction
general quantum state.

To find the variance matrixV, one can use the scheme
Ref. @15# with the local oscillator pulses shaped to the for
of weighted combinations of the mode functions. It is ve
useful to subtract the coherent amplitude of the pulse
using a balanced Sagnac interferometer@16# as in Fig. 3.
Here, two counterpropagating identical squeezed pulses
interfering at a 50%/50% beam splitter. In one of the outp
of the beam splitter the pulses interfere constructively a
form a bright pulse, which is then used to form the loc
oscillator. In the other output where the pulses interfere
structively, squeezed vacuum~or a more general field with
zero mean amplitude! is formed. The squeezed vacuum pul
has the same quadrature variance matrixV as each of the two
counterpropagating pulses.

The bright pulse is shaped interferometrically so that
envelope has the form of different combinations of the mo
functions f k(v). Such a pulse is then used as a local os
lator in a balanced homodyne detector. Thus, if the lo
oscillator is f k(v), one can obtain the value ofVXk,Xk ,
whereas with the local oscillatori f k(v) one can obtain
VPk,Pk . Knowing these values and using the local oscilla
pulse of the formf k(v)1 f k8(v) one can obtain the value o
VXk,Xk8 , by using the local oscillator formi @ f k(v)
1 f k8(v)# one can obtain the value ofVPk,Pk8 , and by using
the form f k(v)1 i f k8(v) one can obtain the value o

FIG. 3. Scheme to measure all the elements of the quadra
variance matrix. The Sagnac interferometer produces a sque
vacuum in one output and in the other output a bright pulse co
sponding to one of the mode functions@say f 1(v)]. The pulse
shaping device transforms the bright pulse envelope into diffe
combinations of the mode functions. Using the resulting brig
pulse as a local oscillator in a balanced homodyne detector, one
reconstruct the quadrature variance matrixV.
3-6
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VXm,Pm8 . Altogether,N(2N11) different forms of the local
oscillator are sufficient to obtain all theN(2N11) indepen-
dent elements of the variance matrixV. Let us note that to
increase the precision of the measurements, one can inc
the number of different phases of the local oscillator;
maximum-likelihood method for parameter estimations o
single-mode Gaussian state using many phases was
cussed in Ref.@17#.

Having found the variance matrix, one has all the inf
mation about the Gaussian state. Then we can immedia
see, e.g., what is the maximum available squeezing of
state: it is the value corresponding to the minimum eig
value of V. Typically, this value will be smaller than th
minimum diagonal element ofV, which means that the opti
mum squeezing is shared among different modes. For
ample, there is a quadrature squeezing in the fundame
mode f 1 due to the Kerr effect~assuming mode functions a
in Appendix F!, but theX1 quadrature is also correlated
the X3 quadrature, because of the correlation between
pulse width and energy. Therefore, better squeezing ca
expected to occur in a combination of the modes 1 an
than in the isolated mode 1. Thus, if the scheme is use
produce squeezing, the measurement scheme can serve
tool for a selection of the optimum local oscillator.

One can also see how much the individual modes
entangled with each other. To take full advantage of t
knowledge one has to be able to separate individual mo
from each other and distribute them among Alice, Bob, a
other entanglement consumers. This is, however, a ra
nontrivial task; in Sec. VII we will briefly mention a possibl
approach to its solution.

V. PHOTON NUMBER SQUEEZING VIA LOCAL
OSCILLATOR MODULATION

VS SPECTRAL FILTERING

Let us assume that we want to prepare a pulse with
maximum photon number squeezing, i.e., the photon num
fluctuates as little as possible. To quantify the photon num
squeezing, one uses the MandelQ parameter@18#, defined as

Q5
^Dn2&2^n&

^n&
, ~45!

wheren refers to the photon number of the entire pulse. T
quantity is negative for sub-Poissonian field and positive
super-Poissonian fields. It was suggested in several w
@19# that spectral filtering of the pulse can lead to improv
ment of the photon number squeezing by blocking freque
bands with correlated photon fluctuations and letting throu
frequency bands with anticorrelated photon numbers. H
we show that a proper modulation of the coherent amplit
~playing the role of the local oscillator! leads to the optimum
squeezing which cannot be overcome by the spectral filte
method.

A. Local oscillator modulation

Let us first assume that the quadrature variance matrV
is fixed while we can modulate the mean values of
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quadraturesX̄n andP̄n ; this corresponds to the experiment
situation as in Sec. IV and Fig. 3. The photon number va
ance is

^Dn2&5(
k,l

cov ~nk ,nl !. ~46!

Assuming, as in Sec. III B, that the coherent amplitudes
much greater than the variance matrix elements, and tha
mode functions are real~generalization to complex function
being straightforward!, we can express the photon numb
variance as

^Dn2&5 (
m,n<N

~X̄mX̄nVXm,Xn12X̄mP̄nVXm,Pn

1 P̄mP̄nVPm,Pn!. ~47!

The mean photon number is

^n&5(
k

^nk&5
1

2 (
n<N

~X̄n
21 P̄n

2!, ~48!

so that theQ parameter of Eq.~45! can be written, after some
algebra, as

Q52 (
m,n<N

F X̃mS VXm,Xn2
dmn

2 D X̃n12X̃mVXm,PnP̃n

1 P̃mS VPm,Pn2
dmn

2 D P̃nG , ~49!

where

X̃m[
X̄m

A(
n<N

~X̄n
21 P̄n

2!

, ~50!

P̃m[
P̄m

A(
n<N

~X̄n
21 P̄n

2!

. ~51!

Thus theQ parameter can be expressed in the matrix mu
plication form as

Q52~X̃T,P̃T!S VXX VXP

VPX VPP
D S X̃

P̃
D 21, ~52!

where X̃ and P̃ are column vectors with theX̃m and P̃m
elements, andVXX , VXP , and VPP are the corresponding
submatrices of the variance matrixV. The variance matrix is
multiplied from the left and from the right with a unit vecto
so that theQ parameter is limited by

2S V(min)2
1

2D<Q<2S V(max)2
1

2D , ~53!
3-7
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whereV(min) is the minimum eigenvalue of the variance m
trix V andV(max) is its maximum eigenvalue. The minimum
value ofQ is reached if the vector of mean values ofX andP
is the eigenvector ofV corresponding to its minimum eigen
value. Setting the components of this vector is possible us
the scheme of Fig. 3.

B. Spectral filtering

Let us assume a spectral filtering function 0<c(v)<1:
the frequency component is completely transmitted ifc(v)
51 and it is completely blocked ifc(v)50. This function
transforms the mean quadratures and variances as

x̄k
f 5c~vk!x̄k , ~54!

p̄k
f 5c~vk! p̄k , ~55!

Vxk,xl8 f 5c~vk!Vxk,xl8 c~v l !1
dkl

2
@12c2~vk!#, ~56!

Vpk,pl8 f 5c~vk!Vpk,pl8 c~v l !1
dkl

2
@12c2~vk!#, ~57!

Vxk,pl8 f 5c~vk!Vxk,pl8 c~v l !. ~58!

Thedkl terms in Eqs.~56! and~57! follow from the quantum
mechanical nature of the quadratures: partially blocking
frequency component means that the corresponding fie
mixed with a vacuum.

Equations~54!–~58! can be used to determine^Dn2& and
^n& as in Sec. V A and thus to find theQ parameter of the
filtered field. After a straightforward algebra, one can expr
the newQ parameter as

Qf52 (
m,n<N

F X̃m
f S VXm,Xn2

dmn

2 D X̃n
f 12X̃m

f VXm,PnP̃n
f

1 P̃m
f S VPm,Pn2

dmn

2 D P̃n
f G , ~59!

where

X̃m
f 5

(
n<N

cmnX̄n

A (
n,n8<N

cnn8~X̄nX̄n81 P̄nP̄n8!

, ~60!

P̃m
f 5

(
n<N

cmnP̄n

A (
n,n8<N

cnn8~X̄nX̄n81 P̄nP̄n8!

, ~61!

with
05381
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cnn85E c2~v! f n~v! f n8~v!dv. ~62!

Again, theQ parameter is calculated as a matrix product
the varianceV multiplied from the left and from the right by
a vector. This time, however, the vector is not of the u
length, so thatQf is limited by

2A2S V(min)2
1

2D<Qf<2A2S V(max)2
1

2D , ~63!

whereA2 is the square of the magnitude of the multiplyin
vector:

A25 (
n<N

~X̃n
f 21 P̃n

f 2!. ~64!

To show thatQf can never be smaller than the minimu
value achievable by local oscillator modulation, it is enou
to show thatA2<1, i.e., that the magnitude of the multiply
ing vector is not bigger than one. Proof of this inequality
shown in Appendix D.

C. Conclusion

We can see that no spectral filtering can improve the p
ton number squeezing below the minimum eigenvalue of
quadrature variance matrix, which is available via the lo
oscillator modulation approach. Let us stress that our met
of finding the optimum local oscillator function is ver
simple and straightforward since it is based on linear alge
It was suggested recently to use an adaptive algorithm
optimize the pulse shape for achieving optimum pho
number squeezing@20#. In this method, the optimum wa
reached after 20 000 iterations. In our case, provided that
pulse is sufficiently well described byN55 modes,N(2N
11)555 iterations is enough.

VI. SELECTION OF APPROPRIATE MODE FUNCTIONS

So far it was assumed that the set of mode functions
given and the question was about the statistics of the co
sponding quadratures. But how should these mode funct
be selected?

In principle, any orthogonal set of mode functions can
used for a description of the pulse statistics. However, si
the aim is to reduce the number of quantum variables ne
sary to describe the pulse, the functions should be caref
chosen. One possibility is to start from theory and assu
some particular shape of the pulse—e.g., a hyperbolic se
soliton and to construct the orthogonal set from the typi
perturbations. An example is given in Appendix F, Eq
~F15!–~F18!, where the relationship to the soliton quantu
fluctuations approach by Haus and Lai@7# is discussed.

Another approach does not assume any particular m
function form, and is related directly to the experiment. It
useful to assume that only one mode has a nonzero cohe
amplitude and a very small number of modes have qua
ture fluctuations substantially different from the vacuum v
3-8
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ues. To find the optimum set of mode functions, one can
the following procedure.

~1! Selectf 1(v) as the measured classical envelope of
pulse~see Appendix E!.

~2! Determine the minimum value of variance to be s
considered as different from the vacuum.

~3! Construct a temporary set of orthogonal functio
f k

(temp), k51 . . .N8 with f 1
(temp)5 f 1 chosen in~1!. The size

N8 of the temporary set should reasonably correspond to
experimental conditions.

~4! Perform the measurement of the 2N832N8 variance
matrix V(1) with the temporary set of mode functions.

~5! Construct the reduced matrixV(2) from V(1) by ex-
cluding rows and columns referring to quadratures of mo
1. Let indexes 1 . . .N821 correspond to theX quadratures,
and indexesN8 . . . N822 correspond to theP quadratures.

~6! DiagonalizeV(2) to get Ṽ(2)5WV(2)WT with W an
orthogonal matrix. Let us chooseW such thatṼ11

(2) is the

largest element ofṼ(2); Ṽ11
(2)5(k,lW1kW1lVk,l

(2) .
~7! The functionf 2 is constructed as

f 25 (
k51

N821

~W1k1 iW1k1N821! f (k11)
(temp). ~65!

It can be checked that the variance of theX quadrature cor-
responding to this mode function is^X̂2

2&5Ṽ11
(2) .

~8! A new temporary set ofN822 mode functions is con
structed from the old one as an orthogonal complement tf 1
and f 2 . By means of the transformation connecting the n
temporary set of mode functions to the initial one, calcul
the corresponding variance matrix. Construct reduced ma
V(3) by excluding rows and columns referring to quadratu
of modes~1! and ~2!. DiagonalizeV(3) and find mode func-
tion f 3 in the same way as in~6! and ~7!. Note that the
variances of the quadratures of mode~3! are smaller than the
variance^X̂2

2&.
~9! Repeat this procedure of redefining the tempor

mode set, transforming and diagonalizing the variance
trix, and defining a new mode function. After each repetitio
the maximum variance of the (n11)st mode is smaller than
the maximum variance of thenth mode. If for somen5N
the variance of moden11 is sufficiently close to 1/2@as
defined in item~2!#, the quantum state of the (n11)st mode
is indistinguishable from vacuum. The pulse can be
scribed with the given precision as anN-mode object.

Let us note that the procedure of redefining the tempor
mode set and rediagonalizing the reduced variance ma
each time when a new mode function is constructed is n
essary. It is not possible, as one might be tempted, to fin
set of mode functions simply by diagonalizing the measu
variance matrix, since the SO(2N) transformation corre-
sponding to diagonalization is generallynot a canonical
transformation~see, e.g., Ref.@8# for more details!. On the
other hand, in the special case ofpureGaussian states whic
are specified byN(N11) real parameters one can find a s
of uncorrelated modes. In this case our procedure would
terminated after the first diagonalization. The diagonalizat
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of pure Gaussian multimode states into uncorrelated mo
has recently been studied in@21#.

The procedure of operational construction of mode fu
tions as described above is, of course, not the only poss
It is, however, very useful for finding the minimum subspa
of mode functions sufficient for the pulse description. Oth
sets of mode functions can be selected such that the vari
matrix takes some special shape, e.g., some of the ‘‘can
cal’’ forms studied in Ref.@8#.

VII. SEPARATION OF MODES

It may be very useful to separate individual nonmon
chromatic modes which form the pulse. The possibility
obtaining nonclassical correlations of optical pulses by p
titioning the pulse in the spectral region was suggested
Ref. @22#. Similarly as with spectral filtering, this approach
not necessarily the optimum one for obtaining maximum
tanglement from the source.

The basic idea for obtaining the optimum separation is
send different ~nonmonochromatic! modes into different
channels by using a special unitary transformation am
them. It was shown in Ref.@23# that any discrete unitary
operator can be constructed interferometrically. For this p
pose we suggest to apply a scheme as in Fig. 4. In the
step one decomposes the pulse into quasimonochrom
components. The frequencies of these components are
shifted by means of acusto-optical modulators~AOM’s!, so
that each channel has the same central frequency. The c
nels then interfere on a 2N port consisting of beam splitter
and mirrors. By a proper choice of the 2N port parameters
one can manage that most of a pulse in thef k(v) mode
leaves the 2N port in thekth output channel.

One can also optimize the 2N-port parameters to prepar
a set of optimally entangledK modes~multipartite entangle-
ment!, sent to different channels. This would be a gener
zation of the proposal of Ref.@22# for partitioning soliton
pulses to generate entangled states.

Let us note that the spectral filtering of solitons used
produce photon number squeezing@19# is a special kind of

FIG. 4. Scheme to separate individual nonmonochrom
modes. The pulse is first decomposed on a grating into quasim
chromatic channels. The frequency of each channel is then sh
by means of an AOM to the central frequency of the pulse. T
resulting modes~with the same central frequency! then interfere on
a 2N port.
3-9
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mode separation. However, as shown in Sec. V, in this c
the separation is not optimized with respect to all relev
degrees of freedom. Therefore, better results can be expe
in our general approach.

VIII. DISCUSSION AND CONCLUSION

To summarize our results we can state the following.
~i! For a complete description of the experimental resu

measured on optical solitons it appears that a very sm
number of nonmonochromatic modes is enough. The res
cannot be described by means of a single-mode field,
already three nonmonochromatic modes were sufficien
reproduce the experimental data of Ref.@4#. With our ap-
proach it is easy to interpret the ‘‘butterfly’’ pattern of th
measured photon covariances: three different nonmonoc
matic modes overlap and contribute with their fluctuati
in-phase quadratures to the photon statistics~see Fig. 2!.

~ii ! Provided that the pulses are Gaussian~which seems to
be a relevant assumption for most of the experimental si
tions!, a complete quantum description of the pulse can
done by means of a multimode variance matrix. The e
ments of this matrix can be determined by means of hom
dyne detection with specially shaped local oscillator puls

~iii ! The concrete form of the mode functions is a mat
of choice. If the aim is to find the smallest number of mod
an operational method for constructing the mode function
provided. In this case the first mode contains the cohe
amplitude, whereas the rest of the modes have zero m
fields and their field variances decrease with increasing m
index. By selecting the minimum set of modes, one can s
stantially reduce the number of parameters necessary f
complete description of the physical situation.

~iv! Knowledge of the mode structure of the pulse and
the corresponding quantum state will be very useful
quantum information purposes: one can select the optim
shape of the local oscillator pulse to detect maxim
squeezing or entanglement. This optimum finding is v
straightforward and much faster than adaptive algorithms
in Ref. @20#. One can also relatively easily study the infl
ence of the medium on the propagated pulses and on
quantum information they carry. By measurement of
multimode quantum state of the input and output pulses
can find the von Neumann entropy of the states. This wo
enable us to tell whether the observed pulse deformation
responds most probably to a unitary evolution or rather
decay and dephasing, possibly caused by an eavesdrop

~v! In principle, one can also separate individual modes
match the requirements of the pulse user, e.g., to prepa
single mode maximally squeezed field, or to extract a ma
mally entangled two-mode field, etc.

~vi! The pulse separation is a generalization of spec
filtering, which has also been used for observation of pho
number squeezing@19#. We have shown that spectral filterin
can never beat the coherent amplitude modulation appro
in achieving better photon number squeezing. In our
proach, we can understand why spectral filtering can h
with squeezing, but we can also see its limitations.

~vii ! Our approach of multimode description of solitons
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different from the approach by Haus and Lai@7# ~see Appen-
dix F for more details!. The formalism of Ref.@7# was de-
veloped to solve an idealized quantum soliton equation
to study the soliton dynamics. Its essential feature is the
composition of the field into ‘‘soliton’’ and ‘‘continuum’’
parts, where the soliton field is completely described by fo
operators. Our approach ignores the dynamics~which is
rather complicated in real life!, focusing on the phenomeno
logical description of the pulse. The four soliton operators
Ref. @7# can be expressed by means of our quadrature op
tors, but they alone appear to be insufficient for descript
of the observed phenomena. It is necessary to work with
complete set of ‘‘soliton’’ and ‘‘continuum’’ operators if one
wishes to describe the observed pulses using the forma
of Ref. @7#.
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APPENDIX A: SIMPLIFIED CALCULATION OF
TRANSFORMED MEAN QUADRATURES AND

VARIANCES FOR A FEW EXCITED MODES

Let us assume that only the firstN modes of theb̂k system
are occupied, while the rest of the systems is in vacuum,u0&k
for k.N. The quadrature means and variances are thus

m̄k50 for k.N, ~A1!

and

Vmk,mk5
1

2
for k.N,Vmk,m8k850

for mÞm8 and ~k.N or k8.N!.
~A2!

Transformations~27! and ~29! can then be written as

j̄ j5(
m,k

Zk j
mjm̄k

˜
~A3!

and

Vj j ,j8 j 8
8 5(

m,k
(
m,k8

Zk j
mj Vmk,m8k8 Zk8 j 8

m8j8
˜ ˜

1
1

2 (
m

(
k.N

Zk j
mj Zk j8

m,j8 ~A4!

5 (
m,m8k,k8

FZk j
mjS Vmk,m8k82

dmm8dkk8
2 DZk8 j 8

m8j8G˜

1
djj8d j j 8

2
, ~A5!
3-10
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with

(
m,k

[ (
m5X,P

(
k51

N
˜

. ~A6!

To get Eq.~A5! from Eq. ~A4!, the orthogonality and com
pleteness relation@Eq. ~20!# was used. As a special case,
us consider the variance matrix elementsVx j ,x j8

8 when the
mode functionsf k(v) are real, as in Sec. III B. Equatio
~A5! then becomes

Vx j ,x j8
8 5

d j j 8
2

1 (
k,k8<N

f k~v j ! f k8~v j 8!DvS VXk,Xk82
dkk8
2 D .

~A7!

APPENDIX B: QUADRATURE MOMENTS OF
MULTIMODE GAUSSIAN STATES

An N-mode Gaussian state with mean quadraturesm̄ and
variance matrixV has the Wigner functionW(m),

W~m!5
1

~2p!NAdetV
expF2

~m2m̄ !TV21~m2m̄ !

2
G ,

~B1!

where V21 is the matrix inversion ofV. Thus a Gaussian
state is fully determined by 2N213N real parameters@2N
mean quadratures plusN(2N11) independent elements o
the symmetric matrixV].

Generally, a quadrature moment^m̂k
n& can be calculated a

the integral of the Wigner function

^m̂k
n&5E •••E mk

nW~m!dX1 . . . dPN . ~B2!

The symmetrical two-variable moments12 ^$m̂k ,m̂k8
8 %& and

1
2 ^$m̂k

2 ,m̂k8
2 %& can be calculated as

1

2
^$m̂k ,m̂k8

8 %&5E •••E mkmk8
8 W~m!dX1 . . . dPN

~B3!

and

1

2
^$m̂k

2 ,m̂k8
82%&5E •••E mk

2mk8
82W~m!dX1 . . . dPN

2
1

2
d̃mk,m8k8 , ~B4!

whered̃mk,m8k8[0 if mk andmk8
8 commute with each other

andd̃mk,m8k8[1 if mk andmk8
8 are conjugate variables. Usin

Eq. ~B1! one can analytically evaluate the integrals and
press the quadrature moments by means of the parametem̄k

andVmk,m8k8
8 . We obtain

^m̂k&5m̄k , ~B5!
05381
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^m̂k
2&5m̄k

21Vmk,mk , ~B6!

^m̂k
3&5m̄k

313m̄kVmk,mk , ~B7!

^m̂k
4&5m̄k

416m̄k
2Vmk,mk13Vmk,mk

2 , ~B8!

1

2
^$m̂k ,m̂k8

8 %&5m̄km̄k81Vmk,m8k8 , ~B9!

and

1

2
^$m̂k

2 ,m̂k8
82%&5m k̄

2m̄k8
82

1m k̄
2Vm8k8,m8k81m̄k8

82Vmk,mk

1Vmk,mkVm8k8,m8k814m k̄m 8̄k8Vmk,m8k8

12Vmk,m8k8
2

2
1

2
d̃mk,m8k8 . ~B10!

Note that although Eqs.~B5!, ~B6!, and ~B9! are generally
valid for all states, equalities~B7!, ~B8!, and~B10! only hold
for Gaussian states. Corresponding expressions can be f
also for the moments of the quadraturesj(v).

APPENDIX C: PHOTON STATISTICS IN DIFFERENT
FREQUENCY CHANNELS OF A SINGLE

NONMONOCHROMATIC MODE

Let us assume a nonmonochromatic mode defined by
discrete functionf (vk), k51 . . .N, (k51

N u f (vk)u251. Let
the state of this mode be Gaussian. We are interested in
photon number correlations between different frequen
channels.

Theorem: All nonzero elements of a multimode photo
correlation matrix of an effectively single-mode Gaussi
state have the same sign. They are negative~positive! if the
single-mode state is sub-~super-! Poissonian.

Proof: The mode functionf (vk) defines the first row of
the unitary transformation matrixU. Let the parameters o
the single-mode Gaussian state beX̄, P̄, VXX , VPP , and
VXP . The multimode parametersx̄k , p̄k , Vxk,xl , Vxk,pl , etc.,
can be calculated by means of the simplified summation a
Eqs.~A3! and~A5!. The sign of the off diagonal element o
the correlation matrix@Eq. ~36!# is determined by the sign o
the covariance@Eq. ~33!#. After some algebra with applying
Eqs.~A3!, ~A5!, and~34! we arrive at

cov ~nk ,nl !5u f ~vk!u2u f ~v l !u2F X̄2S VXX2
1

2D12X̄P̄VXP

1 P̄2S VPP2
1

2D1
1

2 S VXX2
1

2D 2

1VXP82

1
1

2 S VPP2
1

2D 2G . ~C1!

Thus we can see that the sign of the nonzero elements
not depend on the argumentsvk andv l , but is fully deter-
mined by the expression in the square brackets. If we den
3-11
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the photon number in the single mode byn̂, we find that the
quantity Dn22^n& is equal to the expression in the squa
brackets. This quantity is negative for sub-Poissonian st
and positive for super-Poissonian states by definition. QE

APPENDIX D: PROOF THAT THE MAGNITUDE OF THE
SPECTRAL-FILTERING QUADRATURE VECTOR

IS LESS THAN 1

Showing that

A25 (
n<N

~X̃n
f 21 P̃n

f 2!<1 ~D1!

is equivalent to showing that

(
k,l ,n<N

ckncln~X̄kX̄l1 P̄kP̄l !< (
k,l<N

ckl~X̄kX̄l1 P̄kP̄l !,

~D2!

which follows directly from the definitions ofX̃f and P̃f

@Eqs.~60! and~61!#. To violate Eq.~D2!, it would be neces-
sary to have some vectorY such that

YTc2Y.YTcY, ~D3!

where c is a matrix with the elementsckl . Equation~D3!
could only be valid if there exists some eigenvaluecl of c
such thatcl.1. Let us assume that such an eigenvalue d
exist. Letuk be the elements of the corresponding eigenv
tor, i.e.,

(
l<N

cklul5cluk , ~D4!

i.e.,

(
l<N

ulE c2~v! f k~v! f l~v!dv5cluk . ~D5!

Let us define a functionq(v) as

q~v!5 (
l<N

ul f l~v!. ~D6!

Sinceuk5*q(v) f k(v)dv, one has

E c2~v!q~v! f k~v!dv5clE q~v! f k~v!dv, ~D7!

i.e.,

U E c2~v!q~v! f k~v!dvU.U E q~v! f k~v!dvU, ~D8!

which cannot happen for any functionq(v) since uc2(v)u
<1. ThusA2<1. QED.
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APPENDIX E: ELIMINATION OF COHERENT
AMPLITUDES OF A MULTI-MODE GAUSSIAN STATE

Let us assume thatN modes of theb system are excited
and the rest is in vacuum. Then, one can redefine thN

modes such that only one of them~say modeb̂1) has nonzero
values of X̄1 , P̄1 , whereasX̄m50, P̄m50 for m.1 ~the
variance matrix elements corresponding to these modes
however, generally nonzero!.

Proof: Define bm[221/2(X̄m1 i P̄m)5^b̂m&, m
51 . . .N. Let f m be the mode functions normalized suc
that (f m , f m8)5dmm8 , where the bracket denotes the sca
product. Let us define a new mode functiong1 as g1

[A(m51
N bm* f m and a corresponding annihilation operat

ĥ1[A(m51
N bm* b̂m , whereA5((m51

N ubmu2)21/2. Then ^ĥ1&
5A(m51

N ubmu2. Let us define mode functionsg2 . . . gN as
linear combinations off 1 . . . f N by some orthogonalization
procedure, i.e.,gm5(m851

N Gmm8 f m8 , m52 . . .N such that
(gm ,gm8)5dmm8 , m51 . . .N. In particular,

~g1 ,gm!5A(
l 51

N

b lGml50 ~E1!

for m.1. The annihilation operators corresponding to t
g-modes areĥm[(m851

N Gmm8b̂m8 , and their mean values

are ^ĥm&5(m851
N Gmm8^b̂m8&5(m851

N Gmm8bm850 accord-
ing to ~E1!. Thus, in the new system of modes only the fi
one has a noncoherent amplitude. QED.

APPENDIX F: RELATIONSHIP TO THE SOLITON
PERTURBATION APPROACH OF HAUS AND LAI

In Ref. @7# ~also see Refs.@12,13#! it was suggested to
describe the quantum fluctuations of the nonlinear Sch¨-
dinger equation~NSE! soliton by writing

â~x,t !5ao~x,t !1Dâ~x,t !, ~F1!

whereao(x) is the unperturbed solution of the NSE of th
hyperbolic secant form, and

Dâ5Dâsol1Dâcont ~F2!

is the quantum perturbation part withDâsol describing fluc-
tuations of the soliton degrees of freedom, whileDâcont cor-
responds to field fluctuations not contained in the soli
solution and thus belonging to the continuum. The solit
fluctuations are expressed by means of four operatorsDn̂,
Dû, D x̂, andD p̂ as

Dâsol5@Dn̂~ t ! f n~x!1Dû~ t ! f u~x!1D x̂~ t ! f x~x!

1noD p̂~ t ! f p~x!#expS i
KAo

2

2
t D , ~F3!

where the functionsf n , f u , f x , and f p are derivatives of the
soliton function
3-12



-

el

om

n

-

b
on

ro-

e
ssed

he

/4

of
p-

n

of
on

is

MODE STRUCTURE AND PHOTON NUMBER . . . PHYSICAL REVIEW A 66, 053813 ~2002!
ao~x,t !5AoexpF i S KAo
2

2
t2

C

2
po

2t1pox1uoD G
3sechS x2xo2Cpot

j D ~F4!

with respect to the parametersno(52juAou2), po , uo , and
xo . In these equations the valueno is the mean photon num
ber of the pulse,j is the soliton width,po andxo refer to the
carrier frequency and soliton center position, respectiv
The valueK is related to the Kerr nonlinearity andC to the
medium dispersion. To find the values of the operators fr
measured data, one introduces adjoint functionsf n , f u , f x ,
and f p with the property

Re F E f k* ~x! f l~x!dxG5dkl , ~F5!

with k,l 5n,u,x,p ~note thatf k themselves do not form a
orthogonal set; explicit form of functionsf k and f k can be
found in Ref.@12#!. Writing Dâ as a sum of Hermitian op
eratorsDâ5Dâ(1)1 iDâ(2), one finds that

Dn̂5E f n* ~x!Dâ(1)~x!dx, ~F6!

Dû5 i E f u* ~x!Dâ(2)~x!dx, ~F7!

D x̂5E f x* ~x!Dâ(1)~x!dx, ~F8!

D p̂5 i
1

no
E f p* ~x!Dâ(2)~x!dx. ~F9!

~F10!

The relationship of this approach to our scheme can
easily examined if one assumes the first four mode functi
f k(v) in the forms

f 1~v!5
1

A2vo

sech
v

vo
, ~F11!

f 2~v!5A 3

2vo
tanh

v

vo
sech

v

vo
, ~F12!

f 3~v!5
1

A1

3
1

p2

9

1

A2vo

S 2
v

vo

tanh
v

vo

sech
v

vo

2sech
v

vo
D , ~F13!
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f 4~v!5 i
A3

Ap2

9
21

1

A2vo

S tanh
v

vo

sech
v

vo

2
2

3

v

vo

sech,
v

vo
D . ~F14!

These functions were obtained by an orthogonalization p
cedure from the Fourier transformed functionsf n,u,x,p with
vo52c/(pj). With this choice of the mode functions on
finds that the soliton perturbation operators can be expre
by means of the quadraturesX̂1 , X̂2 , P̂1 , P̂2 , P̂3 , andP̂4 as

Dn̂5A2noX̂1 , ~F15!

Dû5
1

A2no

P̂11

A1

3
1

p2

9

A2no

P̂3 , ~F16!

D x̂5
2c

A6novo

X̂2 , ~F17!

D p̂5
A6novo

2c
P̂22Ap2

9
21

A6novo

2c
P̂4 . ~F18!

Assuming vacuum fluctuations ofX̂k and P̂k , ^Xk
2&51/2,

^Pk
2&51/2, one finds that the uncertainty products of t

soliton perturbation operators are

^Dn̂2&^D̂u2&5
1

3
1

p2

36
'0.675, ~F19!

^D x̂2&^no
2D p̂2&5

p2

36
'0.274, ~F20!

which are larger than the minimum uncertainty value 1
following from the commutation relations@Dn̂,Dû#5 i and

@D x̂,noD p̂#5 i . This result corresponds exactly to that
Refs. @7,12#. Our interpretation of the result is that the o
eratorDû is not purely a conjugate ofDn̂, but it contains an
admixture of an operator commuting withDn̂. This admix-
ture @in Eq. ~F16! proportional toP̂3] increases the noise
above the minimum uncertainty limit. Similar interpretatio
holds for the pairD x̂, noD p̂.

From Eqs.~F15!–~F18! one sees that from the statistics
X̂1,2 andP̂1,2,3,4one can determine the statistics of the solit
perturbation operatorsDn̂, Dû, D x̂, andD p̂. This does not
hold conversely: knowledge of the four soliton operators
not enough to determine the six quadratures.
3-13
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