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Optimal quantum control in nanostructures: Theory and application
to a generic three-level system
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Coherent carrier control in quantum nanostructures is studied within the framewopkiofal control We
develop a general solution scheme for the optimization of an external céaallasers pulsgswhich allows
to channel the system’s wave function between two given states in its most efficient way; physically motivated
constraints, such as limited laser resources or population suppression of certain states, can be accounted for
through a general cost functional. Using a generic three-level scheme for the quantum system, we demonstrate
the applicability of our approach and identify the pertinent calculation and convergence parameters.
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I. INTRODUCTION are put together. It is worth emphasizing that hitherto there

exists no clear consensus on how to optimally tailor the sys-

Recent years have witnessed enormous interest in contrdiem’s control, and it appears that each field of research has
ling quantum phenomena in a variety of nanoscale system@me up with its own strategies. For instance, quantum-

[1]. Quite generally, such a control allows us to modify the©Ptical implementations in atoms benefit from the long
system’s wave function at will through appropriate tailoring atomic coherence times of metastable states, and it usually
of external fields, e.g., laser pulses: Whilegnantum optics suffices to rely on effective models that can be grasped from

) . ; . . .= the solution of simplified level schemés.g., adiabatic popu-
the primary interest of this wave-function engineering lies Njation transfer in an effective three-level systéaw]): in

the exploitation of quantum coherence among a few atomigontrast, in quantum chemistry the complexity of molecular
levels[2], in quantum chemistrgptical control of molecular  states usually does not permit schemes that are solely backed
states has even led to the demonstration of optically drivemy the underlying level schemes, and learning algorithms
chemical reactions of complex moleculgd); furthermore, that receive direct feedback from experiment, appear to be
starting with the seminal work of Heberletal. [4],  the method of choice. Finally, coherent control in semicon-
coherent-carrier control in semiconductors and semiconduajuctor nanostructures has hitherto been primarily inspired by
tor nanostructures has recently been established as a matuyygantum-optical techniques; however, it is clear that control
field of research on its own. In particular, with the advent ofin future quantum devices will require more sophisticated
semiconductor quantum dof§], sometimes referred to as techniques to account for the enhanced dephasing in the solid
artificial atoms one now has a system at hand which re-states; a first step in this direction has been undertaken in
sembles many of the atomic properties whilst offering at theRefs.[11,12], where the authors have adopted control tech-
same time all the flexibility of semiconductor nanostructuresniques developed in nuclear-magnetic resonaficg to
experimentally basic quantum-coherence phenomena such @smiconductor nanostructures.

polarization beating6] or Rabi-type floppind 7] have been In this paper, we examine the problem of coherent-carrier
demonstrated, whereas theoretical effects such as coheragntrol in quantum nanostructures within the framework of
population transfef8,9] or entanglement contrdll0-13  optimal control[16—19. Here, one starts by defining the
have been proposed. optimality criteria (the cost functionaj in general, for a de-

In the last few years this research area has received fugired quantum-state transition, this functional will depend on
ther impetus from the emerging fields of quantum computathe final state, the wish to suppress the population of certain
tion and quantum communicatidii3], aiming at quantum states during the control process, as well as other physically
devices where the wave function can be manipulated witimotivated constraints, e.g., limited laser resources. The grand
highest possible precisigguantum gates This high-fidelity  strategy then is to minimize this cost functional and to find
guantum-state engineering calls for strategies that allow athe optimal time dependence of the control fields, which, in
optimal suppression of environment losses during gatingturn, governs the evolution of quantum states through the
self-evidently, such an outstanding performance can only banderlying dynamic equationé.e., Schralinger or master
achieved if the most sophisticated experimental and theoreequation. The calculation of the necessary optimality condi-
ical techniques for optical control of quantum nanostructuresions for this optimization problem results in a system of

coupled equations, which, for high-dimensional systems,
may involve heavy computations. Yet, the clear-cut advan-
*Electronic address: ulrich.hohenester@uni-graz.at tage of this optimization approach is the flexibility to steer
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the control strategies through modification of the cost funcwhere the constanty>0,a;=0 are the weighting factors,

tional, thus rendering this technique ideal for the purpose ofvhich allow to vary the relative importance of the various

quantum-state engineering. terms, andy; e L2(C,[0,T]) denotes theth component of
We have organized our paper as follows. Our theoreticaly; the last term of Eq(3) penalizes the occupation of certain

approach is presented in Sec. II; in Sec. lll, we derive thecomponentsy; during the control process. Apparently, fur-

numerical algorithm for the solution of the relevant equa-ther constraints could be added in a completely similar fash-

tions. As a first example, in Sec. IV, we study the optimalion. The optimal control problem under consideration can

control of a generic three-level system. Section V summanow shortly be written as

rizes our numerical results, and we finally draw some con-

clusions in Sec. VI. minJ(¢,€) subjectto Eq.(1). 4

We now state that Eq4) has a solution.
Theorem 1. The optimal-control problef@) admits a so-

Consider the Schringer equation for an-component lution (,€) e HL(C",[0,T]) X L2(C,[0,T]).

Il. THEORY

wave functiong e L2(C",[0,T]): Proof. The above theorem can be verified in a completely
) analogous fashion to RdfL8], which we omit for the sake of
ig=Hy, ¢(0)= 1, (1)  brevity (see also Ref19] for mathematical details M

. To calculate the necessary optimality conditions of first
where the Hamiltoniar =Ho+H . accounts for the unper- o rqer for Eq.(4), we use the method of Lagrange multipliers
turbed systent,, and the couplingd., to an external con-  [16] to turn the constrained minimization probled) into an
trol field e, where unconstrained one. For this purpose, we define the Lagrang-

ian function
[[Heol|=K]le(®]], K>0 )

is supposed to hold for atle [0,T]; finally, i is the initial L(¢.p,e)=J(,€)+Re(p,igy—(Ho+H) ).
state of the systemA(=1 throughout Note that, strictly

_ T (sl
speaking, the wave-function description of Eq) is only Here, (¢, ¢)=[o¢- 4" dt, where **” means complex con-

allowed for an isolated quantum system. For the problem of19ate fﬁnd the dot  denotes the usual vector-scalar prod-
our present concerfcontrol in presence of dephasing and uct in G, o ~
relaxation, a more generalensity-matrix descriptiomould Consider the minimization problem: Fing, p, and e

be required[2] to account for the incoherent environment such that

couplings. However, following the procedure outlined in e

Ref.[20], we observe that even in presence of such coupling L(yp,e)=  inf L(¢.p,e),

it is possible to define a non-Hermitian Hamiltonian of the VEXEPEX e

form (1_), acc_:ounting for the_ dephasir_lg and generalized outwhereX,=L?(C",[0,T]) andX?=Xtﬂ{w: #(0)= 1o} Here,
scatterings, if, at the same time, one introduces a further terime necessary conditions for a minimum are obtained by
that accounts for generalized inscatterings. Thus, since Wequating to zero the Feciet derivatives of. with respect to

are aiming at an optimal control of thherenttime evolu-  the triple (,p,€). The following optimality system is ob-
tion, i.e., we are seeking for solutions that minimize environ-tgjned:

ment lossegsee also Sec. Iy we can safely neglect inscat-

tering terms, and we are led to E@), with H, being non- i¢=(Ho+He)l// with ¢(0) = iy, (5a)
Hermitian.

In the following, we shall consider the problem of deter- iD=(H*+H )p—qg with ip(T)=(T)— 5b
mining the control fields e L?(C,[0,T]), such that Eq(1) is P=(Ho+HJIp—q PM=¢(D)~¢a. (b
fulfilled. In so doing we shall be guided by a number of 1 GH \* 1 GH \*
further constraints, which, all together, form the so-called €= — e{p~(g¢/ +i; R%p(g(//) , (50

r i

optimal criteria first, we assert that the control sequence
brings the system at tim& to the desired statgyyeC";
second, we account for the limited laser resources through
minimization of the control field strengths; third, we may
wish to suppress the population of intermediate states th
suffer strong environment lossgsee discussion belgw
More specifically, all these constraints are summarized in the
cost functional:

whereq;=a;¢; ande= €, +i¢;. Notice that while the state
3quation(5a) evolves forward in time, the adjoint equation
(5b) is marching backwards. The control equati&a) pro-
lides the control function.

IIl. NUMERICAL ALGORITHM

1 y In this section, we formulate a numerical algorithm that
I, €)== |(T) = gl 2t = || €l solves the optimality systertba—(5¢) for given initial and
(#r¢) ZW( )=l 2 I HLZ(("'[O'T]) final configurationsy, and ¢4, respectively. To solve this
n problem, we apply a gradient-type minimization algorithm
E 2 1112 3 that first determines a search direction with respect to the
+5 2 alldll Lz omy € , ectio
2= variable e for both the real and imaginary parts. Then, a
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simple step-size procedure is applied that guarantees a de- o3

crease in the cost functional. For giventhe search direc-
tion is calculated as follows: the initial condition for the state
equation is given byj,. Once the wave function at=T is
computed, the final condition for the adjoint equation is

given byip(T)=(T)— 4. Thus, the adjoint variablg can
be calculated and the gradient dfvith respect toe can be
computed.

Assume that the interv@D,T] has been discretized into a

finite numberNge s Of subintervals of sizest, andt,,=(m
—1)6t. A discrete state variable &, is denoted by/™. To

g2 -0
i

FIG. 1. PrototypicalA-type level scheme used in our calcula-

obtain a step size that guarantees a uniform decrease in ttiens: ¢, and ¢, are long-lived states, whereds is a short-lived
cost functional, we use the Armijo rule with backtracking state that is optically coupled to both, and ¢, (for details see

[21]. In the sequel we denote bY(e):=J(¥(e),€), where
(€) is the unique solution of the state equation for given

Furthermore, we decomposeinto its real and imaginary Solving the following problem fo)

parts, respectively, i.e.e=¢,+i€;. The whole optimal-
control (OPQ algorithm is then specified as follows.

(1) Initialize €°'9, 0<c<1, v=1, andB>0.

(2) (a) Solve the state equatioiny=(Hq+ H o) ¢ with
#(0)= ¢y (marching forwargt obtain 4"¢%. (b) Solve the
adjoint equationib=(H§ +Hod)p—q with ip(T)=(T)
— iy (marching backwards obtain p"¢%. (c) Determine a
search direction

k-

~ gH \*
V(%)= e~ Re[ p- (E ¢)

Vrj(e"'d))
V()
where

new

* |new

~ H
V(e = ef"d—RE{p (Z—6¢

are the gradients for the real and imaginary parts,ofe-
spectively, ands is a positive definite matrix.
(3) Determine a step sizesuch that

V(e (d,
I

~r old id:)1<J( &2
Je”%+1(d, +id;)]<I(e*) +ct Vij(EO'd) d;

holds:

(@) If t=p fulfills Eq. (6), set B:=vB, €"®™:=¢°'9+1t(d,

+id;), and go to steg2), else(b) B:=5/2, go to step3a).
Taking in step(2c), the matrixG equal to the identity

text); wiggled line indicates relaxation and dephasing of staje

m+1.

m+1_ /m 1 1
Il/, 5 l’[j :EHm+1¢m+l+§Hmwm.

Thus ™" is given by

l//m-*-l:

St -1 St
I+i?Hm+1 I—i?Hm J™,

wherel is the identity inC". Notice the dependen¢¢™ from
time step due to the presence of the contraHinThe opera-
tor[1+i(St/2)H™ 1] is anxn complex matrix that is easily
invertible (it can be computed analytically for small values
of n). In case of the adjoint equation marching backwards in
time, the formulas above hold by inverting the time direc-
tion.

Accuracy of the solution obtained by integrating in time
using the Crank-Nicholson schenter 6=1/2 methodl is
known, and we therefore report only the main result. Denote
with e™=(ty,) — ™, m=1,... Ngeps the error at each
time step between the continuous solutig(t) and its nu-
merical approximationy™. Then, assuming®=0, there ex-
ist constantd. andC such that

leM=<Cst?

L—tm ) 1
R Lotz )

matrix leads to the usual gradient method, which can happen

to converge slowly. Another idea is to use féran approxi-

mation to the Hesse matrix dfwith respect to the real and WhereL ,'f' a Lipschitz constant an@ is proportional to
imaginary parts of, which leads to quasi-Newton methods suRom|¥".

[21].

To determine the evolution of the state variable and of the
adjoint variable, we consider the implicit second-order
Crank-Nicholson scheme. The advantage of the Crank- To demonstrate the applicability of our approach, as a first
Nicholson scheme is that it is unconditionally stable and itrepresentative example in this paper, we consider the three-
preserves the probability density|? in case of a coherent level system depicted in Fig. 1, which consists of the follow-
time evolution[18]. For completeness, we give a brief de- ing states: two long-lived states, and ¢,, which are ener-

IV. MODEL SYSTEM

scription of the method. Consider the Sdtlirger equation
(1). Given the numerical solution at time stapthe value of
the wave function at the next time stap;+1, is obtained

getically separated by some amouita state¢; which has
a finite lifetime because of environment couplifigiggled
line). SuchA-type configurations have a long-standing his-
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tory in quantum optics and have been demonstrated success-
ful in the explanation of many coherence phenomena in
atomic system$2,14,27; more recently, similar configura-
tions have received increasing interest also in semiconductor
qguantum dot$8,20,23.

Within this scheme, the system’s time evolution is gov-
erned by the effective Hamiltonigdri4,20]

Area ()

L -6 0 0
Ho=5| 0 & 0 |, (@) 2 - 0 1 2
0 0 —iy, Time delay (1)

where the term—iy, accounts for the environment losses FIG. 2. Results of our calculations for the simplified model sys-
(e.g., spontaneous photon emissjoirthermore, the cou- tem described in the text, and using two laser pulses with Gaussian

pling to the external field reads envelopeqwith full width of half maximum 7). Before the pulse
sequence the system is in statg black (white) areas correspond
0 0 M1E to the situation that after the pulse sequence the populatign &f
B 1 0 0 one(zerg. Negative(positive time delays correspond to the situa-
He=- 2 H2€ | ®  tion that thee,; pulse excites the system befdiater the €, one,
ni€*  ue* 0 and the pulse area is defined &5, dtg(t) (we useu;=pu,=1 and
Yo=0.27"1).

whereu,; andu, describe the coupling strengths of staggs

and ¢, to the interconnecting stai¢; (e.g., optical dipole ) . )

matrix elements note that in Eqs(7) and (8) we have im- Subject to two fieldse(t)=g[t—(t,/2)]expi(42)t and
plicitly assumed the usual rotating-wave approximation€2(t)=g[t+ (to/2)]exp—i(a/2)t, respectively, whereg(t)

[2,20]. Initial and final states are then given by denotes a Gaussian envelope with full width of half maxi-
mum 7; in addition, we assume that the first pulsg(cen-
1 0 tered at timet,/2) only affects the 1-3 transition, and the
vo=| 0|, yg= e 16T , second pulse, (t_:entered at time-t,/2) only the 2—3 one;
such an approximation corresponds to the case éhad
0 0 much larger thanu,e and o€ [2,14).

In Fig. 2, we present results for this simplified model
system for different time delay, between the two pulses
1 1 and for different pulse aredas defined in the figure captipn
e=— s Rep-(Hi)*]-i5—Rep-(Ha4h)" ], As regarding the general trends, we observe in Fig. 2 that
2y 2y successful population transfer between the stéteand ¢,
can be achieved for both negative and positive time delays
t,. In the first case, the pulsg excites the systerneforethe
0 0 pu 0 0 iy €, one; hereg; brings the system frong, to the auxiliary
. state¢s, ande, channels the population between and the
Hi=| 0 0 waf, Hy={ O 0wz, final state ¢,; apparently, the efficiency of this transfer,
my Mo O —ipqy —ipuy O which is known as the stimulated emission pumping tech-
nique[14], becomes maximal when the pulse areas are odd
V. RESULTS multiples of 7. In contrast, for positive time delays, i.e.,
when thee; pulse excites the systeafter the €, one, the
Assuming that the system is initially prepared in stéte  population transfer is not achieved through intermediate
in the following we address the question: what is the moskhelving of population; for that reason, the sequence of laser
efficient way to bring the system fromh; to ¢,? Since the pulses is calledounterintuitive and the whole process has
direct optical transition betweegi; and ¢, is assumed to be been given the name stimulated Raman adiabatic passage
forbidden, we have to us¢; as an auxiliary state; however, (STIRAP) [14]. This STIRAP process exploits the renormal-
the intermediate population @f; introduces losses through izations of quantum states in presence of the strong laser
environment coupling. Thus, which sequence of laser pulsefields, and population transfer is achieved by keepihg
minimizes the population of leveb;? negligible throughout; see Rdfl4] for an excellent review.

and for the optimality equation®a and (5b), we obtain

with

A. Simplified model system B. Optimal control

To gain insight into the general trends, in the following  We next consider the population transfer for our complete
we shall discuss a somewhat simplified model systesn  model system of Eqg7) and(8), i.e., € affects both the 1-3
sults of our complete calculations will be presented furtherand 2-3 transitions, within the framework optimal control
below). We assume that the three-level system of Fig. 1 igsee Ref[24] for a related optimization analysis of the co-
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FIG. 3. Results of our optimal-control calculations fgp=0.001, «=0; (&) optimal control andb) transients ofiy;, 5, ¥a.

herent dynamigs As will become apparent from our follow- results in a more efficient population transfer, as one would
ing discussion, we can change the characteristics of the tranalready expect from the discussion of the simplified model
fer process between the two limiting cases through differengystem; here, the increased control field allows for faster
penalizations ofj3, i.e., through modification of the weight 13 and 3—2 transitions and, in turn, smaller environment
a=ajz in the cost functional3). In the solution of Egs. |osses due to population @f;. We also verified that the on
(58—(5¢), we usec=0.001,»=1.1, and initializes with 0.2 and off switching of the control fields can be controlled by
(we checked that our results do not depend decisively OReplacinge in the state equation b§(t)e, where&(t) is a
these parameters Furthermore, we useui=u,=1, &  fynction that smoothly approaches zero at early and late
=10, 7,=0.01, and consider a final time=40. To update {imes: such an additional control might be required to ac-
the matrixG in our algorithm we use the Broyden-Fletcher- . ¢ for the limited laser resources in the experiment. We
Goldfarb-Shanno formulg21]. Unless otherwise specified, qy note that the number of required iterations of the al-

=0.1exp(ét) for the initialization of the algorithm, and we : - ; ;
gtop the I?t(er;ttion if the norm of the gragient is less thengorlthm significantly increases gsdecreases, which we at
10-5 tribute to the increasing singularity of the optimal-control
. +

Figure 3a shows results for the control field and Fig. proplem a;y—>_0 ' . .
3(b) for the quantum-state population far=0 (i.e., no pe- . Finally, in Fig. 4, we show the mflgence of the penaliza-
nalization of /3). We observe that the population is chan- ton of the 3 pqpulatlon through finite values af; [Eq..
neled through occupation of the interconnectifgstate, in (3] On the solution of the optimal-control problem, which
close resemblance to the stimulated emission pumping prd_esults in a str_ong reduction of the popula_tlon-tran_sfer time.
cess; indeed, analyzing the Fourier transform of the controfFom the Fourier transform of the control field of Fig. 4, we
field [Fig. 3(a)], we find two strong contributions at frequen- furthermore infer that here the time ordering of the two
cies — 8/2 and 8/2, where the first one dominates at times dominant frequency compongnts IS reyersed as 'conjpgred to
below 20 and the latter one in the second half of the transfeihe =0 case, thus making this excitation scenario similar to

process. the STIRAP process.
Further insight into the pertinent calculation parameters
can be obtained from Table | which reports the influence of VI. CONCLUSIONS

(3), on: the tracking errofy(T) — l//d|(2:3, i.e., the measure of

how accurately the final state is reached; the value of the cost I_n conclusion, we have presented a theoretical analysis of
functional J; and the number of iterations of required mini- optimal contral of quantum nanostructures. A general solu-

mization steps. Quite generally, we observe that aIIowinqtlon scheme for the optimization of an _external contea.,
stronger field strengths through choice of smaljevalues asers pulseshas been developed, which allows to channel
the system’s wave function between the two given states in

its most efficient way; physically motivated constraints, such

TABLE |. Results of our calculations for different values pf Lo . .
as limited laser resources or population suppression of cer-

¥ (T) = gl J Number of iterations tain states, can be accqunted for through a general cost func-
tional. A computer algorithm for the solution of the optimal-
107! 5.76x10° 3 3.93x10° 2 26 control problem has been derived and analyzed in detail.
102 2.68x10°® 5.53x10 3 63 Finally, we have demonstrated the applicability of our ap-
1073 7.44<10°4 1.11x10°3 123 proach for a generic three-level quantum system, and we
1074 1.68x 104 2 44X 1074 360 have identified the pertinent calculation and convergence pa-

rameters.
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FIG. 4. Same as Fig. 3 but fer=0.01.

Apparently, the true strength of optimal control can only optimal-control problem of our present concern. Future work
be appreciated in the study of higher-dimensional systemgill also address applications beyond the presently studied
where the control strategies can no longer be grasped fromhree-level scheme.
simple considerations, which are needed, e.g., for the design
of quantum gates in future quantum registers. There, the high

flexibility of our present approach, which solely reli_es on the ACKNOWLEDGMENTS
state equation and a general functional accounting for the
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