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Optimal quantum control in nanostructures: Theory and application
to a generic three-level system
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Coherent carrier control in quantum nanostructures is studied within the framework ofoptimal control. We
develop a general solution scheme for the optimization of an external control~e.g., lasers pulses!, which allows
to channel the system’s wave function between two given states in its most efficient way; physically motivated
constraints, such as limited laser resources or population suppression of certain states, can be accounted for
through a general cost functional. Using a generic three-level scheme for the quantum system, we demonstrate
the applicability of our approach and identify the pertinent calculation and convergence parameters.
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I. INTRODUCTION

Recent years have witnessed enormous interest in con
ling quantum phenomena in a variety of nanoscale syst
@1#. Quite generally, such a control allows us to modify t
system’s wave function at will through appropriate tailori
of external fields, e.g., laser pulses: While inquantum optics
the primary interest of this wave-function engineering lies
the exploitation of quantum coherence among a few ato
levels@2#, in quantum chemistryoptical control of molecular
states has even led to the demonstration of optically dri
chemical reactions of complex molecules@3#; furthermore,
starting with the seminal work of Heberleet al. @4#,
coherent-carrier control in semiconductors and semicond
tor nanostructures has recently been established as a m
field of research on its own. In particular, with the advent
semiconductor quantum dots@5#, sometimes referred to a
artificial atoms, one now has a system at hand which
sembles many of the atomic properties whilst offering at
same time all the flexibility of semiconductor nanostructur
experimentally basic quantum-coherence phenomena su
polarization beating@6# or Rabi-type flopping@7# have been
demonstrated, whereas theoretical effects such as coh
population transfer@8,9# or entanglement control@10–12#
have been proposed.

In the last few years this research area has received
ther impetus from the emerging fields of quantum compu
tion and quantum communication@13#, aiming at quantum
devices where the wave function can be manipulated w
highest possible precision~quantum gates!. This high-fidelity
quantum-state engineering calls for strategies that allow
optimal suppression of environment losses during gat
self-evidently, such an outstanding performance can only
achieved if the most sophisticated experimental and theo
ical techniques for optical control of quantum nanostructu
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are put together. It is worth emphasizing that hitherto th
exists no clear consensus on how to optimally tailor the s
tem’s control, and it appears that each field of research
come up with its own strategies. For instance, quantu
optical implementations in atoms benefit from the lo
atomic coherence times of metastable states, and it usu
suffices to rely on effective models that can be grasped fr
the solution of simplified level schemes~e.g., adiabatic popu-
lation transfer in an effective three-level system@14#!; in
contrast, in quantum chemistry the complexity of molecu
states usually does not permit schemes that are solely ba
by the underlying level schemes, and learning algorith
that receive direct feedback from experiment, appear to
the method of choice. Finally, coherent control in semico
ductor nanostructures has hitherto been primarily inspired
quantum-optical techniques; however, it is clear that con
in future quantum devices will require more sophisticat
techniques to account for the enhanced dephasing in the
states; a first step in this direction has been undertake
Refs. @11,12#, where the authors have adopted control te
niques developed in nuclear-magnetic resonance@15# to
semiconductor nanostructures.

In this paper, we examine the problem of coherent-car
control in quantum nanostructures within the framework
optimal control @16–19#. Here, one starts by defining th
optimality criteria ~the cost functional!; in general, for a de-
sired quantum-state transition, this functional will depend
the final state, the wish to suppress the population of cer
states during the control process, as well as other physic
motivated constraints, e.g., limited laser resources. The gr
strategy then is to minimize this cost functional and to fi
the optimal time dependence of the control fields, which,
turn, governs the evolution of quantum states through
underlying dynamic equations~i.e., Schro¨dinger or master
equation!. The calculation of the necessary optimality cond
tions for this optimization problem results in a system
coupled equations, which, for high-dimensional system
may involve heavy computations. Yet, the clear-cut adv
tage of this optimization approach is the flexibility to ste
©2002 The American Physical Society11-1
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the control strategies through modification of the cost fu
tional, thus rendering this technique ideal for the purpose
quantum-state engineering.

We have organized our paper as follows. Our theoret
approach is presented in Sec. II; in Sec. III, we derive
numerical algorithm for the solution of the relevant equ
tions. As a first example, in Sec. IV, we study the optim
control of a generic three-level system. Section V summ
rizes our numerical results, and we finally draw some c
clusions in Sec. VI.

II. THEORY

Consider the Schro¨dinger equation for an-component
wave functioncPL2(Cn,@0,T#):

i ċ5Hc, c~0!5c0 , ~1!

where the HamiltonianH5H01He accounts for the unper
turbed systemH0, and the couplingHe , to an external con-
trol field e, where

uuHe(t)uu<Kuue~ t !uu, K.0 ~2!

is supposed to hold for alltP@0,T#; finally, c0 is the initial
state of the system (\51 throughout!. Note that, strictly
speaking, the wave-function description of Eq.~1! is only
allowed for an isolated quantum system. For the problem
our present concern~control in presence of dephasing an
relaxation!, a more generaldensity-matrix descriptionwould
be required@2# to account for the incoherent environme
couplings. However, following the procedure outlined
Ref. @20#, we observe that even in presence of such coup
it is possible to define a non-Hermitian Hamiltonian of t
form ~1!, accounting for the dephasing and generalized o
scatterings, if, at the same time, one introduces a further t
that accounts for generalized inscatterings. Thus, since
are aiming at an optimal control of thecoherenttime evolu-
tion, i.e., we are seeking for solutions that minimize enviro
ment losses~see also Sec. IV!, we can safely neglect insca
tering terms, and we are led to Eq.~1!, with H0 being non-
Hermitian.

In the following, we shall consider the problem of dete
mining the control fieldsePL2(C,@0,T#), such that Eq.~1! is
fulfilled. In so doing we shall be guided by a number
further constraints, which, all together, form the so-cal
optimal criteria: first, we assert that the control sequen
brings the system at timeT to the desired statecdPCn;
second, we account for the limited laser resources throu
minimization of the control field strengths; third, we ma
wish to suppress the population of intermediate states
suffer strong environment losses~see discussion below!.
More specifically, all these constraints are summarized in
cost functional:

J~c,e!ª
1

2
uc~T!2cduCn

2
1

g

2
uueuuL2(C,[0,T])

2

1
1

2 (
j 51

n

a j uuc j uuL2(C,[0,T])
2 , ~3!
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where the constantsg.0,a i>0 are the weighting factors
which allow to vary the relative importance of the vario
terms, andc jPL2(C,@0,T#) denotes thej th component of
c; the last term of Eq.~3! penalizes the occupation of certa
componentsc j during the control process. Apparently, fu
ther constraints could be added in a completely similar fa
ion. The optimal control problem under consideration c
now shortly be written as

minJ~c,e! subject to Eq.~1!. ~4!

We now state that Eq.~4! has a solution.
Theorem 1. The optimal-control problem~4! admits a so-

lution (c̄,ē)PH1(Cn,@0,T#)3L2(C,@0,T#).
Proof. The above theorem can be verified in a complet

analogous fashion to Ref.@18#, which we omit for the sake of
brevity ~see also Ref.@19# for mathematical details!. j

To calculate the necessary optimality conditions of fi
order for Eq.~4!, we use the method of Lagrange multiplie
@16# to turn the constrained minimization problem~4! into an
unconstrained one. For this purpose, we define the Lagra
ian function

L~c,p,e!5J~c,e!1Rê p,i ċ2~H01He!c&.

Here, ^f,c&5*0
Tf•c* dt, where ‘‘*’’ means complex con-

jugate and the dot ‘‘• ’’ denotes the usual vector-scalar pro
uct in Cn.

Consider the minimization problem: Findc̃, p̃, and ẽ
such that

L~ c̃,p̃,ẽ !5 inf
cPXt

0 ,pPXt ,ePXt

L~c,p,e!,

whereXt5L2(Cn,@0,T#) andXt
05Xtù$c:c(0)5c0%. Here,

the necessary conditions for a minimum are obtained
equating to zero the Fre´chet derivatives ofL with respect to
the triple (c,p,e). The following optimality system is ob-
tained:

i ċ5~H01He!c with c~0!5c0 , ~5a!

i ṗ5~H0* 1He!p2q with ip~T!5c~T!2cd , ~5b!

e5
1

g
ReFp•S ]H

]e r
c D * G1 i

1

g
ReFp•S ]H

]e i
c D * G , ~5c!

whereqj5a jc j ande5e r1 i e i . Notice that while the state
equation~5a! evolves forward in time, the adjoint equatio
~5b! is marching backwards. The control equation~5c! pro-
vides the control function.

III. NUMERICAL ALGORITHM

In this section, we formulate a numerical algorithm th
solves the optimality system~5a!–~5c! for given initial and
final configurationsc0 and cd , respectively. To solve this
problem, we apply a gradient-type minimization algorith
that first determines a search direction with respect to
variable e for both the real and imaginary parts. Then,
1-2
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simple step-size procedure is applied that guarantees a
crease in the cost functional. For givene, the search direc-
tion is calculated as follows: the initial condition for the sta
equation is given byc0. Once the wave function att5T is
computed, the final condition for the adjoint equation
given byip(T)5c(T)2cd . Thus, the adjoint variablep can
be calculated and the gradient ofJ with respect toe can be
computed.

Assume that the interval@0,T# has been discretized into
finite numberNsteps of subintervals of sizedt, and tm5(m
21)dt. A discrete state variable attm is denoted bycm. To
obtain a step size that guarantees a uniform decrease in
cost functional, we use the Armijo rule with backtrackin
@21#. In the sequel we denote byJ̃(e)ªJ„c(e),e…, where
c(e) is the unique solution of the state equation for givene.
Furthermore, we decomposee into its real and imaginary
parts, respectively, i.e.,e5e r1 i e i . The whole optimal-
control ~OPC! algorithm is then specified as follows.

~1! Initialize eold, 0,c!1, n>1, andb.0.
~2! ~a! Solve the state equationi ċ5(H01Heold)c with

c(0)5c0 ~marching forward!; obtain cnew. ~b! Solve the
adjoint equationi ṗ5(H0* 1Heold)p2q with ip(T)5c(T)
2cd ~marching backwards!; obtain pnew. ~c! Determine a
search direction

Sdr

di
D52G21S“rJ̃~eold!

“iJ̃~eold!
D,

where

“rJ̃~eold!5er
old2ReFp•S ]H

]e r
c D * Gnew

,

“ i J̃~eold!5e i
old2ReFp•S ]H

]e i
c D * Gnew

are the gradients for the real and imaginary parts ofe, re-
spectively, andG is a positive definite matrix.

~3! Determine a step sizet such that

J̃@eold1t~dr1idi!#,J̃~eold!1ctS“rJ̃~eold!

“iJ̃~eold!
DSdr

di
D ~6!

holds:
~a! If t5b fulfills Eq. ~6!, set bªnb, enew

ªeold1t(dr
1 idi), and go to step~2!, else~b! bªb/2, go to step~3a!.

Taking in step~2c!, the matrix G equal to the identity
matrix leads to the usual gradient method, which can hap
to converge slowly. Another idea is to use forG an approxi-
mation to the Hesse matrix ofJ with respect to the real an
imaginary parts ofe, which leads to quasi-Newton method
@21#.

To determine the evolution of the state variable and of
adjoint variable, we consider the implicit second-ord
Crank-Nicholson scheme. The advantage of the Cra
Nicholson scheme is that it is unconditionally stable and
preserves the probability densityucu2 in case of a coheren
time evolution@18#. For completeness, we give a brief d
scription of the method. Consider the Schro¨dinger equation
~1!. Given the numerical solution at time stepm, the value of
the wave function at the next time step,m11, is obtained
05381
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solving the following problem forcm11:

i
cm112cm

dt
5

1

2
Hm11cm111

1

2
Hmcm.

Thuscm11 is given by

cm115S I 1 i
dt

2
Hm11D 21S I 2 i

dt

2
HmDcm,

whereI is the identity inCn. Notice the dependenceHm from
time step due to the presence of the control inH. The opera-
tor @ I 1 i (dt/2)Hm11# is an3n complex matrix that is easily
invertible ~it can be computed analytically for small value
of n). In case of the adjoint equation marching backwards
time, the formulas above hold by inverting the time dire
tion.

Accuracy of the solution obtained by integrating in tim
using the Crank-Nicholson scheme~or u51/2 method! is
known, and we therefore report only the main result. Den
with em5c(tm)2cm, m51, . . . ,Nsteps, the error at each
time step between the continuous solutionc(t) and its nu-
merical approximationcm. Then, assuminge050, there ex-
ist constantsL andC such that

uemu<Cdt2FexpS L
tm

12Ldt/2D21G ,
where L is a Lipschitz constant andC is proportional to
sup[0,T] uc-u.

IV. MODEL SYSTEM

To demonstrate the applicability of our approach, as a fi
representative example in this paper, we consider the th
level system depicted in Fig. 1, which consists of the follo
ing states: two long-lived statesf1 andf2, which are ener-
getically separated by some amountd; a statef3 which has
a finite lifetime because of environment coupling~wiggled
line!. SuchL-type configurations have a long-standing h

FIG. 1. PrototypicalL-type level scheme used in our calcul
tions: f1 andf2 are long-lived states, whereasf3 is a short-lived
state that is optically coupled to bothf1 and f2 ~for details see
text!; wiggled line indicates relaxation and dephasing of statef3.
1-3
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tory in quantum optics and have been demonstrated succ
ful in the explanation of many coherence phenomena
atomic systems@2,14,22#; more recently, similar configura
tions have received increasing interest also in semicondu
quantum dots@8,20,23#.

Within this scheme, the system’s time evolution is go
erned by the effective Hamiltonian@14,20#

H05
1

2 S 2d 0 0

0 d 0

0 0 2 igo

D , ~7!

where the term2 igo accounts for the environment loss
~e.g., spontaneous photon emissions!. Furthermore, the cou
pling to the external field reads

He52
1

2 S 0 0 m1e

0 0 m2e

m1e* m2e* 0
D , ~8!

wherem1 andm2 describe the coupling strengths of statesf1
and f2 to the interconnecting statef3 ~e.g., optical dipole
matrix elements!; note that in Eqs.~7! and ~8! we have im-
plicitly assumed the usual rotating-wave approximat
@2,20#. Initial and final states are then given by

c05S 1

0

0
D , cd5S 0

e2 idT

0
D ,

and for the optimality equations~5a! and ~5b!, we obtain

e52
1

2g
Re@p•~H1c!* #2 i

1

2g
Re@p•~H2c!* #,

with

H15S 0 0 m1

0 0 m2

m1 m2 0
D , H25S 0 0 im1

0 0 im2

2 im1 2 im2 0
D .

V. RESULTS

Assuming that the system is initially prepared in statef1,
in the following we address the question: what is the m
efficient way to bring the system fromf1 to f2? Since the
direct optical transition betweenf1 andf2 is assumed to be
forbidden, we have to usef3 as an auxiliary state; howeve
the intermediate population off3 introduces losses throug
environment coupling. Thus, which sequence of laser pu
minimizes the population of levelf3?

A. Simplified model system

To gain insight into the general trends, in the followin
we shall discuss a somewhat simplified model system~re-
sults of our complete calculations will be presented furt
below!. We assume that the three-level system of Fig. 1
05381
ss-
n

or

-

t

es

r
s

subject to two fieldse1(t)5g@ t2(to/2)#expi(d/2)t and
e2(t)5g@ t1(to/2)#exp2i(d/2)t, respectively, whereg(t)
denotes a Gaussian envelope with full width of half ma
mum t; in addition, we assume that the first pulsee1 ~cen-
tered at timeto/2) only affects the 1-3 transition, and th
second pulsee2 ~centered at time2to/2) only the 2–3 one;
such an approximation corresponds to the case thatd is
much larger thanm1e andm2e @2,14#.

In Fig. 2, we present results for this simplified mod
system for different time delaysto between the two pulse
and for different pulse areas~as defined in the figure caption!
As regarding the general trends, we observe in Fig. 2
successful population transfer between the statesf1 andf2
can be achieved for both negative and positive time del
to . In the first case, the pulsee1 excites the systembeforethe
e2 one; here,e1 brings the system fromf1 to the auxiliary
statef3, ande2 channels the population betweenf3 and the
final state f2; apparently, the efficiency of this transfe
which is known as the stimulated emission pumping te
nique @14#, becomes maximal when the pulse areas are
multiples of p. In contrast, for positive time delays, i.e
when thee1 pulse excites the systemafter the e2 one, the
population transfer is not achieved through intermedi
shelving of population; for that reason, the sequence of la
pulses is calledcounterintuitive, and the whole process ha
been given the name stimulated Raman adiabatic pas
~STIRAP! @14#. This STIRAP process exploits the renorma
izations of quantum states in presence of the strong la
fields, and population transfer is achieved by keepingc3
negligible throughout; see Ref.@14# for an excellent review.

B. Optimal control

We next consider the population transfer for our compl
model system of Eqs.~7! and~8!, i.e., e affects both the 1-3
and 2-3 transitions, within the framework ofoptimal control
~see Ref.@24# for a related optimization analysis of the co

FIG. 2. Results of our calculations for the simplified model sy
tem described in the text, and using two laser pulses with Gaus
envelopes~with full width of half maximumt). Before the pulse
sequence the system is in statef1; black ~white! areas correspond
to the situation that after the pulse sequence the population off2 is
one~zero!. Negative~positive! time delays correspond to the situa
tion that thee1 pulse excites the system before~after! the e2 one,
and the pulse area is defined as*2`

` dtg(t) ~we usem15m251 and
go50.2t21).
1-4
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FIG. 3. Results of our optimal-control calculations forg50.001,a50; ~a! optimal control and~b! transients ofc1 , c2 , c3.
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herent dynamics!. As will become apparent from our follow
ing discussion, we can change the characteristics of the tr
fer process between the two limiting cases through differ
penalizations ofc3, i.e., through modification of the weigh
a5a3 in the cost functional~3!. In the solution of Eqs.
~5a!–~5c!, we usec50.001,n51.1, and initializeb with 0.2
~we checked that our results do not depend decisively
these parameters!. Furthermore, we usem15m251, d
510, go50.01, and consider a final timeT540. To update
the matrixG in our algorithm we use the Broyden-Fletche
Goldfarb-Shanno formula@21#. Unless otherwise specified
e50.1 exp(idt) for the initialization of the algorithm, and we
stop the iteration if the norm of the gradient is less th
1025.

Figure 3~a! shows results for the control field and Fi
3~b! for the quantum-state population fora50 ~i.e., no pe-
nalization ofc3). We observe that the population is cha
neled through occupation of the interconnectingf3 state, in
close resemblance to the stimulated emission pumping
cess; indeed, analyzing the Fourier transform of the con
field @Fig. 3~a!#, we find two strong contributions at frequen
cies 2d/2 andd/2, where the first one dominates at tim
below 20 and the latter one in the second half of the tran
process.

Further insight into the pertinent calculation paramet
can be obtained from Table I which reports the influence og
~3!, on: the tracking erroruc(T)2cduC3

2 , i.e., the measure o
how accurately the final state is reached; the value of the
functionalJ; and the number of iterations of required min
mization steps. Quite generally, we observe that allow
stronger field strengths through choice of smallerg values

TABLE I. Results of our calculations for different values ofg.

g uc(T)2cduC3
2 J Number of iterations

1021 5.7631023 3.9331022 26
1022 2.6831023 5.5331023 63
1023 7.4431024 1.1131023 123
1024 1.6831024 2.4431024 360
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results in a more efficient population transfer, as one wo
already expect from the discussion of the simplified mo
system; here, the increased control field allows for fas
1→3 and 3→2 transitions and, in turn, smaller environme
losses due to population off3. We also verified that the on
and off switching of the control fields can be controlled
replacinge in the state equation byj(t)e, wherej(t) is a
function that smoothly approaches zero at early and
times; such an additional control might be required to
count for the limited laser resources in the experiment.
finally note that the number of required iterations of the
gorithm significantly increases asg decreases, which we at
tribute to the increasing singularity of the optimal-contr
problem asg→01.

Finally, in Fig. 4, we show the influence of the penaliz
tion of the f3 population through finite values ofa3 @Eq.
~3!# on the solution of the optimal-control problem, whic
results in a strong reduction of the population-transfer tim
From the Fourier transform of the control field of Fig. 4, w
furthermore infer that here the time ordering of the tw
dominant frequency components is reversed as compare
thea50 case, thus making this excitation scenario similar
the STIRAP process.

VI. CONCLUSIONS

In conclusion, we have presented a theoretical analysi
optimal control of quantum nanostructures. A general so
tion scheme for the optimization of an external control~e.g.,
lasers pulses! has been developed, which allows to chann
the system’s wave function between the two given state
its most efficient way; physically motivated constraints, su
as limited laser resources or population suppression of
tain states, can be accounted for through a general cost f
tional. A computer algorithm for the solution of the optima
control problem has been derived and analyzed in de
Finally, we have demonstrated the applicability of our a
proach for a generic three-level quantum system, and
have identified the pertinent calculation and convergence
rameters.
1-5
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FIG. 4. Same as Fig. 3 but fora50.01.
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Apparently, the true strength of optimal control can on
be appreciated in the study of higher-dimensional syste
where the control strategies can no longer be grasped f
simple considerations, which are needed, e.g., for the de
of quantum gates in future quantum registers. There, the
flexibility of our present approach, which solely relies on t
state equation and a general functional accounting for
control constraints, rendersoptimal controlas an ideal tool
for both theoretical modeling as well as experimental s
port. In this respect, it will be necessary to develop m
efficient numerical methods for the solution of thebilinear
a,

e

D.
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tt
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optimal-control problem of our present concern. Future wo
will also address applications beyond the presently stud
three-level scheme.
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