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Spatial antibunching of photons with parametric down-conversion
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The theoretical framework behind a recent experiment by Nogeeiah [Phys. Rev. Lett86, 4009(2001)]
of spatial antibunching in a two-photon state generated by collinear type-Il parametric down-conversion and a
birefringent double slit is presented. The fourth-order quantum correlation function is evaluated and shown to
violate the classical Schwarz-type inequality, ensuring that the field does not have a classical analog. We expect
these results to be useful in the rapidly growing fields of quantum imaging and quantum information.
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[. INTRODUCTION positive nonsingular Glauber-Sudarsha® distribution,
which has the properties of a classical probability functional

As current technology advances, more and more attentionver an ensemble of coherent states. Because of this fact, the
is placed upon quantum mechanics to solve future problemsiormally ordered intensity correlation function for stationary
Furthermore, quantum systems are capable of performintields must obey the following inequalify19]:
some tasks more efficiently than classical systghisdraw- o R
ing even more emphasis to quantum technologies. In particu- (TA(r,O)I(rt+ 7)) <1%(r,1):), (1)
lar, the fields of optical communication, optical imaging, and
optical information processing have been appended by thethere7:: stands for time and normal ordering. Photon den-
rapidly developing fields of quantum communicati@-4],  Sity operators are defined as
guantum imaging5,6], and quantum information processing R R R
[1]. Thus, the study of quantum phenomena promises to be a I(r,t)=V(r,t)-V(r,1), (2)
fruitful enterprise.

For many years, researchers have studied the nonclassis#here
behavior of light, such as squeezifig-9] and antibunching
[10-12. However, most theoretical and experimental inves- 1
tigations deal with time variables only. That is, most treat- \/_5
ments consider only one spatial mode. In a recent review
article, Kolobov[13] demonstrates that many quantum phe-z

2 . ) ay , is the annihilation operator for the mode with wave
nomena also occur when considering spatial variables of th\?ector k and polarization, €, , is the unit polarization
1 N

electromagnetic field. Many areas of technology stand tQ/ector Q is the quantization volume, angd=ck

benefit from the possible applications provided by such Expression(1) is commonly written in the shorter form,
guantum phenomena.

An invaluable tool in these areas of research is the gen- G22(r,,1r,,=G?2(r,,r,,0) ()
eration of entangled photons using parametric down- ne e
conversion14]. The two-photon state of light exhibits non- \ypere
separable behavidril5,16 and has been used in nearly all
guantum information schemgs7]. G(Z'Z)(rl,rz,T)=<Tf(rl,t)f(r2,t+ 7). (5)
Spatial antibunching was recently observed experimen-
tally by Nogueiraet al. [18] using spontaneous parametric since the delayed photon coincidence-detection probability
down-conversion(SPDQ. In this paper, we provide a theo- p(r, r,,7) is proportional taG22(r ,r,,7) [19], inequality
retical background for the experiment reported in R28].  (4) means that for the class of fields considered above, pho-
Section Il is dedicated to the general introduction of ttmpo+ons are detected either bunched or randomly distributed in
ral and spatial antibunching. In Sec. Ill we discuss the theotme. Photon antibunching in time, characterized by the vio-
retical observation of spatial antibunching of photons using agtion of Eq. (1), was predicted by Carmichael and Walls
two-photon entangled state produced by SPDC, as in Ref10] Kimble and Mandel[11], and was first observed by
[18]. We close with some concluding remarks in Sec. IV. . kimble, Dagenais, and Mandel in resonance fluorescence
[212].
Il. PHOTON BUNCHING AND ANTIBUNCHING In the space domain, the concept analogous to stationarity
is homogeneity. For a homogeneous field, the expectation
It is well known that any state of the electromagnetic fieldvalue of any quantity that is a function of position is invari-
that has a classical analog can be described by means ofa@t under translation of the origii9]. In particular, on a
plane surface normal to the propagation direction,

V(r)=—= > & & o, 3)
K,o

*Electronic address: monken@fisica.ufmg.br G2 p,,p,,7)=GZ(§,7) (6)
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FIG. 2. lllustration of the geometnrs is the crystal-aperture
FIG. 1. Schematic diagram of spatial antibunching setup. An Ardistance and is the aperture-detector distance.
laser pumps a BBO crystal, generating correlated photons. The
down-converted photons are incident on the birefringent double slitated from a detection plane by a distarzce
Sand then the beam splitt&S. The pump beam is focused on the Using a treatment based on RE#4], in the paraxial and
double slit. Single and coincidence counts are registered with dq"nonochromatic approximations' collinear SPDC generates a

tectorsD; andD,. quantum state of the forfi25]
and |)spoc=C1lvag + Co|4), (10
Ap+ot+n))=C1"(p,1):), 7 .
(:1"(p 7)) =(1p, 1)) @ it
wherep is the transverse position vect@= p,— p,, andn
=1,2,...

For homogeneous and stationary fields described by posi- 4= f fquldqzd)(ql )|t 0)[0,02). (1)

tive nonsingularP distributions, the Schwarz inequality im-

plies that The coefficientsC,; and C, are such thatC,|<|C,|. C,
A . 5 depends on the crystal length, the nonlinearity coefficient
(TH(p V)l (p+8t+7))<(1%(p,1):), (8 and the magnitude of the pump field, among other factors.
that is, The kets|q; o) represent Fock states labeled by the trans-

verse componerd; of the wave vectok; and the polariza-
G122 §,7)<G22(0,0). (99  tion g of the down-converted photon=1,2. In this paper,

we consider type-ll phase matching, in which casg=e
Analogously to what was concluded from inequality, for ~ and o,=0, wheree (0) stands for extraordinargordinary)
fields that admit classical stochastic models, inequdBly polarization.|¢) is the two-photon component of the total
implies that photons are detected either spatially bunched aquantum state. The functio®(q;,q,), which can be re-
randomly spaced in a transverse detection screen. Violatiogarded as the normalized angular spectrum of the two-
of Eq. (9) implicates the possibility of quantum fields exhib- photon field[25], is given by
iting spatial antibunching. Spatial antibunching of photons

has been predicted by some authidr8,20-23. 1 L Loy yl?
<D(Q1,QZ):(;) Ev(ql-i—qz)sinc(—),

4K
Ill. SPATIAL ANTIBUNCHING WITH
DOWN-CONVERSION

In this section, we show that a field that violates inequal-wherev(q) is the normalized angular spectrum of the pump
ity (9) can be generated by means of spontaneous parameti€am,L is the length of the nonlinear crystal in tzedirec-
down-conversion. The experimental setup, we are considetion, andK is the magnitude of the pump field wave vector.
ing is shown in Fig. 1. A nonlinear birefringent crystal is The integration domairD is, in principle, defined by the
used to generate collinear entangled photon pairs. The dowsonditionsg3<k3 andg3=<k3. However, in most experimen-
converted photons are then incident on a birefringent doublé&l conditions, the domain in whici(q,,q,) is appreciable
slit (see Sec. lll A and coincidences are detected by detecdis much smaller than that. The state written above is not to be
torsD; andD,. The pump beam is focused on the center ofconsidered as a general expression for the SPDC process. Its
the plane of the double slit, between the two slits. Interfer-validity is determined by experimental conditions, especially
ence filters are used such that the monochromatic approxby the detection apparatus. As long as the monochromatic
mation is valid. and paraxial approximations are valid, the results predicted

The following discussion refers to the basic geometry il-by expression(11) are in excellent agreement with experi-
lustrated in Fig. 2, where a thin crystal is separated from aence. Monochromatic approximation is guaranteed by the
aperture plane by a distansand the aperture plane is sepa- presence of narrow-band interference filters in the detection

(12)
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apertures, whereas paraxial approximation is guaranteed by T
keeping transverse detection regions much smaller than their
distance from the crystal.

We consider for now that the down-converted fields are
incident on some sort of aperture, so as to produce fourth-
order interference in the absence of second-order interfer-
ence. The reason for such a requirement is the following:
Spatial photon antibunching is a fourth-order effect in a ho-
mogeneous field, that is to say, in a field thatcording to
Eq. (7)], does not show intensity patterns. With this scheme,
we are seeking for a fourth-order interference pattern that
depends only orx; —X,, the relative position of detectors.
Furthermore, this fourth-order interference pattern must have
a minimum wherx; =X,, in order to produce antibunching.
Fourth-order spatial interference in the absence of second
order can be achieved in spontaneous parametric down-
conversion by means of a double slit, whose slit separation is
much greater than the transverse coherence length of the L )

FIG. 3. The birefringent double slit. The quarter wave pl&es

down-converted field, as reported by Fonsextal. [26]. X ) ! -
However, in Ref[26], the foufth-orderycorrelation fUI[’ICt?OH andQ, are aligned with orthogonal fast ax&sis a double slit with
’ e, ' _slit separation B.
1) \F o O( L 2)
difference of = between the two possibilitieéphoton 1 7] Vigv (Gt a)sin 4KIql %l
through slit 1, photon 2 through sliy 2nd(photon 1 through

which is proportional to the coincidence rate, depends on
: : : —is
slit 2, photon 2 through slit)1 In our experiment, the phase Xexr{ﬁ(lqﬁqzlhr|q1—q2|2)}, (15)

fast axis

@

fast axis

X1+ X, instead ofx; —X,. In order to achieve a minimum of
inciden whex;=X,, we hav intr h

coincidences wherx;=Xx,, we have to introduce a phase ®A(qy,0p) =

difference was introduced by means of birefringent elements

placed in front of each slit, as described later. After the ap-

erture, the two-photon state can be written as where the irrelevant phase factd}‘s is omitted.
Using the orthonormal properties of the Fock states, we
can define
lp)=M Z, J f J’ j dd1dg,da;dg;PA(9;,92) W(py,po)=(vadV(p,) @V(py)| ) (16)
01,05

, , C as the two-photon coincidence-detection amplitude, where
X Ta'ltri(ql_ ql)TUZUé(qZ_ q2) | A1 Ul> | 4z, 0-2>’

(3 Vip)=e"3 f daa,(g)e, el e @207 (17)

whereM is a normalization constand»(q; ,05,) is the an-  is the monochromatic form of E¢3) in the paraxial approxi-

gular spectrum of the biphoton field on the aperture planefation andz is the distance between the aperture plane and

that is, the detection plane, as shown in Fig. 2. It is assumed that the
polarization vectore is independent ofj. The two-photon
coincidence-detection probability for stationary fields is pro-
1 L L portional to the fourth-order correlation function with
q)A(qlqu):(;) \/;U(Q1+Q2)Sin%R|Q1_QZ|2) =0:
. o a3 Pp1.p2) =GP A(p1.p2.0 = [ W(pr.po)|2. (18
Xexpis k1+k2—2—k1—2—k2 . (14)

A. The birefringent double slit
The birefringent double slit consists of two quarter-wave

T, () is the transfer function of the aperture, linking the plates mounted in front of a typical double slit, such that
incident field with transverse wave vectpiand polarization  each wave plate covers only one slit and their fast axes are
o with the scattered field with transverse wave vecfoand  orthogonal to one another, as shown in Fig. 3. The slits are
polarizationo’. T,,(q) is given by the Fourier transform of separated by a distanck With the plate-slit aperture ori-

the aperture functiol\ . (£). ented, such that the slits and one fast axis are parallel to the
Since, we are working with collinear SPDC, witty e (y) direction and the other fast axis parallel to thex)
=k,=1K, @, is written as direction, we can approximate the field-aperture functions by
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Aoo(§) = —18(&—dI2)+ 6(£x+d/2),
Aed &)= 6(&x—dI2)—i6(&4+dl2),
Aeo(§)=0,

Aoe( f) =0, (19)

where ¢, is the x component of£. The plate-slit apertures W
provide a controlled phase factor, that is, no phase will b
added to a field with polarization parallel to the direction of
the fast axis of the wave plate, while a field with perpendicu
lar polarization will be modified by a phase factor of exp
(—iml2). Thus, the phase factor depends on the polarizatio
of the field as well as through which slit the field “passes.”

B. The coincidence-detection probability amplitude
Combining Eqs(13)—(17) and(19), we arrive at the fol-

lowing expression for coincidence-detection amplitude in the

Fraunhofer approximation:
U=V ] €e®e]+V,d &R €], (20)
where

d kd
‘Po’l(rzocj fdqlqu(I)A(quqz)(CO{E(qlx-I—qu)—z(xl

. ]d kd
*sl E(qlx_qZX)_z_(Xl_XZ) }, (21)

+X
2) :

where the “+” holds for ¥, and the “—" holds for ¥ .

e
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| kd
Veo(P1:P2) = — Voo p1,p2)SiN Z(Xl_xz) . (25
Thus, the coincidence-detection probability is
kd
P(py,p2)*1—co 7(X1_X2) : (26)

hen x;=X,, the coincidence count rate is zero and in-
treases withx; — X, until (x;—X,)kd/z= = /2. Therefore,
the fourth-order correlation functio8®?(p,,p,,t), which

is proportional to the coincidence-detection probability
P(p1,p2), does not have a maximum &{=X,. This con-
tradicts Eq.(9), thus characterizing spatial antibunching of

IV. DISCUSSION AND CONCLUSION

We have shown the theoretical background behind the
spatial antibunching of photons using parametric down-
conversion. It may be instructive for the reader to compare
the experiment analyzed here with its classical counterpart.
In this context, the single count detection r&g(x) should

be proportional to the classical average intengityx)),
whereas the coincidence count raig (x;,X,) should be
proportional to the intensity-intensitor the fourth-order
correlation function{l (x4)1(x,)). The single count detection
rate of down-converted light in the presence of a double slit
has been studied in previous woikZ6—-28. In Ref.[27], it

was demonstrated that in terms of its single count rate, SPDC
behaves like a classical Schell-model extended light source.
In our experiment, the transverse coherence length being

We assume that the pump field is a Gaussian beam, whoséorter than the slits separation and shorter than the slits

waist is located on the aperture plane:

Un(He €1, (22
Its angular spectrum is
q° 22
va@)=v(q)expis| K— 5| el “o (23

wherewy is the radius of the beam waist. Using E@%5)
and(23) in Eqg. (21), it is straightforward to show that

. |kd
Fsi Z(xl—xz)

(24

kd
Wy 0, e(d’z‘”o)zco{z (X1 +Xy)

It is interesting to note that the length of the nonlinear

width themselves, the single count rate is given by the clas-
sical expression for incoherent illumination, which can be
approximated by a Gaussian,

Rai(x)re X127, (27)
where o=2z/ka and a is the width of the slits. Since the
transverse detection rangg,,x— Xmin IS much shorter than
the width of this Gaussian profile for the slit-detectors dis-
tance considered, the single count rate is fairly constant over
the detection ranggl8]. By another side, the coincidence-
detection rate due to a classical source is totally different
from that observed with a down-converted light. Perhaps, the
best classical model for type-lIl SPDC is a superposition of
two extended light sources orthogonally polarized and corre-
lated in intensity. After the light is diffracted by the birefrin-
gent double slit, the calculation of the classical fourth-order

crystal enters in the coincidence-detection amplitude only agorrelation function is quite similar to the case of the Brown-

a multiplicative constant. It is clear from expressiv)
above that the fulfilment of the homogeneity conditioh

for n=2 in thex direction depends on the facter (420,

Twiss intensity interferometd29]. Classical intensity inter-
ferometry is known to be insensitive to phase. Therefore, the
birefringent elements have no effect on the predicted fourth-

If wy<<d, the dependence o, +x, disappears and trans- Order correlation, that is,
verse field on the detection plane can be considered as ho-

mogeneous. This is the reason why the pump beam must be

focused on the center of the double slit. In this case,

. (28

kd
Cei(Xq,X2)1+v co 7(X1_X2)
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The visibility v is in the range &v <3 and depends on the useful tool in quantum imaging and quantum information
statistics of the source. It is clear from expresdi@8 above technologies.

that C,(x4,X,) predicts spatial bunching, as expected from

any classical light source. In view of the above analysis, the

results presented here describe an entirely quantum fourth- ACKNOWLEDGMENTS

order interference effect, with no classical anal@@]. In
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