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Spatial antibunching of photons with parametric down-conversion

W. A. T. Nogueira, S. P. Walborn, S. Pa´dua, and C. H. Monken*
Departamento de Fı´sica, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970, Brazil

~Received 2 May 2002; published 19 November 2002!

The theoretical framework behind a recent experiment by Nogueiraet al. @Phys. Rev. Lett.86, 4009~2001!#
of spatial antibunching in a two-photon state generated by collinear type-II parametric down-conversion and a
birefringent double slit is presented. The fourth-order quantum correlation function is evaluated and shown to
violate the classical Schwarz-type inequality, ensuring that the field does not have a classical analog. We expect
these results to be useful in the rapidly growing fields of quantum imaging and quantum information.
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I. INTRODUCTION

As current technology advances, more and more atten
is placed upon quantum mechanics to solve future proble
Furthermore, quantum systems are capable of perform
some tasks more efficiently than classical systems@1#, draw-
ing even more emphasis to quantum technologies. In part
lar, the fields of optical communication, optical imaging, a
optical information processing have been appended by
rapidly developing fields of quantum communication@2–4#,
quantum imaging@5,6#, and quantum information processin
@1#. Thus, the study of quantum phenomena promises to
fruitful enterprise.

For many years, researchers have studied the nonclas
behavior of light, such as squeezing@7–9# and antibunching
@10–12#. However, most theoretical and experimental inv
tigations deal with time variables only. That is, most tre
ments consider only one spatial mode. In a recent rev
article, Kolobov@13# demonstrates that many quantum ph
nomena also occur when considering spatial variables of
electromagnetic field. Many areas of technology stand
benefit from the possible applications provided by su
quantum phenomena.

An invaluable tool in these areas of research is the g
eration of entangled photons using parametric dow
conversion@14#. The two-photon state of light exhibits non
separable behavior@15,16# and has been used in nearly a
quantum information schemes@17#.

Spatial antibunching was recently observed experim
tally by Nogueiraet al. @18# using spontaneous parametr
down-conversion~SPDC!. In this paper, we provide a theo
retical background for the experiment reported in Ref.@18#.
Section II is dedicated to the general introduction of tem
ral and spatial antibunching. In Sec. III we discuss the th
retical observation of spatial antibunching of photons usin
two-photon entangled state produced by SPDC, as in
@18#. We close with some concluding remarks in Sec. IV.

II. PHOTON BUNCHING AND ANTIBUNCHING

It is well known that any state of the electromagnetic fie
that has a classical analog can be described by means
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positive nonsingular Glauber-SudarshanP distribution,
which has the properties of a classical probability functio
over an ensemble of coherent states. Because of this fac
normally ordered intensity correlation function for stationa
fields must obey the following inequality@19#:

^T: Î ~r ,t ! Î ~r ,t1t!:&<^: Î 2~r ,t !:&, ~1!

whereT:: stands for time and normal ordering. Photon de
sity operators are defined as

Î ~r ,t !5V̂†~r ,t !•V̂~r ,t !, ~2!

where

V̂~r ,t !5
1

AV
(
k,s

âk,sek,sei (k•r2vkt), ~3!

âk,s is the annihilation operator for the mode with wav
vector k and polarizations, ek,s is the unit polarization
vector,V is the quantization volume, andv5ck.

Expression~1! is commonly written in the shorter form,

G(2,2)~r1 ,r2 ,t!<G(2,2)~r1 ,r2,0!, ~4!

where

G(2,2)~r1 ,r2 ,t!5^T: Î ~r1,t ! Î ~r2,t1t!:&. ~5!

Since the delayed photon coincidence-detection probab
P(r1 ,r2 ,t) is proportional toG(2,2)(r1 ,r2 ,t) @19#, inequality
~4! means that for the class of fields considered above, p
tons are detected either bunched or randomly distribute
time. Photon antibunching in time, characterized by the v
lation of Eq. ~1!, was predicted by Carmichael and Wal
@10#, Kimble and Mandel@11#, and was first observed b
Kimble, Dagenais, and Mandel in resonance fluoresce
@12#.

In the space domain, the concept analogous to stationa
is homogeneity. For a homogeneous field, the expecta
value of any quantity that is a function of position is inva
ant under translation of the origin@19#. In particular, on a
plane surface normal to the propagation direction,

G(2,2)~r1 ,r2 ,t!5G(2,2)~d,t! ~6!
©2002 The American Physical Society10-1
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and

^:I n~r1d,t1t!:&5^:I n~r,t !:&, ~7!

wherer is the transverse position vector,d5r12r2, andn
51,2, . . .

For homogeneous and stationary fields described by p
tive nonsingularP distributions, the Schwarz inequality im
plies that

^T: Î ~r,t ! Î ~r1d,t1t!:&<^: Î 2~r,t !:&, ~8!

that is,

G(2,2)~d,t!<G(2,2)~0,0!. ~9!

Analogously to what was concluded from inequality~4!, for
fields that admit classical stochastic models, inequality~9!
implies that photons are detected either spatially bunche
randomly spaced in a transverse detection screen. Viola
of Eq. ~9! implicates the possibility of quantum fields exhi
iting spatial antibunching. Spatial antibunching of photo
has been predicted by some authors@13,20–23#.

III. SPATIAL ANTIBUNCHING WITH
DOWN-CONVERSION

In this section, we show that a field that violates inequ
ity ~9! can be generated by means of spontaneous param
down-conversion. The experimental setup, we are consi
ing is shown in Fig. 1. A nonlinear birefringent crystal
used to generate collinear entangled photon pairs. The do
converted photons are then incident on a birefringent dou
slit ~see Sec. III A! and coincidences are detected by det
torsD1 andD2. The pump beam is focused on the center
the plane of the double slit, between the two slits. Interf
ence filters are used such that the monochromatic appr
mation is valid.

The following discussion refers to the basic geometry
lustrated in Fig. 2, where a thin crystal is separated from
aperture plane by a distances and the aperture plane is sep

FIG. 1. Schematic diagram of spatial antibunching setup. An
laser pumps a BBO crystal, generating correlated photons.
down-converted photons are incident on the birefringent double
Sand then the beam splitterBS. The pump beam is focused on th
double slit. Single and coincidence counts are registered with
tectorsD1 andD2.
05381
si-

or
on

s

l-
tric
r-

n-
le
-
f
-
xi-

-
n

rated from a detection plane by a distancez.
Using a treatment based on Ref.@24#, in the paraxial and

monochromatic approximations, collinear SPDC generate
quantum state of the form@25#

uc&SPDC5C1uvac&1C2uc&, ~10!

with

uc&5E E
D

dq1dq2F~q1 ,q2!uq1 ,s1&uq2 ,s2&. ~11!

The coefficientsC1 and C2 are such thatuC2u!uC1u. C2
depends on the crystal length, the nonlinearity coeffici
and the magnitude of the pump field, among other facto
The ketsuqj ,s j& represent Fock states labeled by the tra
verse componentqj of the wave vectork j and the polariza-
tion s j of the down-converted photonj 51,2. In this paper,
we consider type-II phase matching, in which cases15e
and s25o, wheree ~o! stands for extraordinary~ordinary!
polarization.uc& is the two-photon component of the tot
quantum state. The functionF(q1 ,q2), which can be re-
garded as the normalized angular spectrum of the t
photon field@25#, is given by

F~q1 ,q2!5S 1

p DAL

K
v~q11q2!sincS Luq12q2u2

4K D ,

~12!

wherev(q) is the normalized angular spectrum of the pum
beam,L is the length of the nonlinear crystal in thez direc-
tion, andK is the magnitude of the pump field wave vecto
The integration domainD is, in principle, defined by the
conditionsq1

2<k1
2 andq2

2<k2
2. However, in most experimen

tal conditions, the domain in whichF(q1 ,q2) is appreciable
is much smaller than that. The state written above is not to
considered as a general expression for the SPDC proces
validity is determined by experimental conditions, especia
by the detection apparatus. As long as the monochrom
and paraxial approximations are valid, the results predic
by expression~11! are in excellent agreement with exper
ence. Monochromatic approximation is guaranteed by
presence of narrow-band interference filters in the detec

r
he
lit

e-

FIG. 2. Illustration of the geometry.s is the crystal-aperture
distance andz is the aperture-detector distance.
0-2
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apertures, whereas paraxial approximation is guarantee
keeping transverse detection regions much smaller than
distance from the crystal.

We consider for now that the down-converted fields
incident on some sort of aperture, so as to produce fou
order interference in the absence of second-order inte
ence. The reason for such a requirement is the followi
Spatial photon antibunching is a fourth-order effect in a h
mogeneous field, that is to say, in a field that@according to
Eq. ~7!#, does not show intensity patterns. With this schem
we are seeking for a fourth-order interference pattern
depends only onx12x2, the relative position of detectors
Furthermore, this fourth-order interference pattern must h
a minimum whenx15x2, in order to produce antibunching
Fourth-order spatial interference in the absence of sec
order can be achieved in spontaneous parametric do
conversion by means of a double slit, whose slit separatio
much greater than the transverse coherence length of
down-converted field, as reported by Fonsecaet al. @26#.
However, in Ref.@26#, the fourth-order correlation function
which is proportional to the coincidence rate, depends
x11x2 instead ofx12x2. In order to achieve a minimum o
coincidences whenx15x2, we have to introduce a phas
difference of p between the two possibilities~photon 1
through slit 1, photon 2 through slit 2! and~photon 1 through
slit 2, photon 2 through slit 1!. In our experiment, the phas
difference was introduced by means of birefringent eleme
placed in front of each slit, as described later. After the
erture, the two-photon state can be written as

uc&5M (
s18 ,s28

E E E E dq1dq2dq18dq28FA~q1 ,q2!

3Ts1s
18
~q182q1!Ts2s

28
~q282q2!uq18 ,s18&uq28 ,s28&,

~13!

whereM is a normalization constant,FA(q1 ,q2) is the an-
gular spectrum of the biphoton field on the aperture pla
that is,

FA~q1 ,q2!5S 1

p DAL

K
v~q11q2!sincS L

4K
uq12q2u2D

3expF isS k11k22
q1

2

2k1
2

q2
2

2k2
D G . ~14!

Tss8(q) is the transfer function of the aperture, linking th
incident field with transverse wave vectorq and polarization
s with the scattered field with transverse wave vectorq8 and
polarizations8. Tss8(q) is given by the Fourier transform o
the aperture functionAss8(j).

Since, we are working with collinear SPDC, withk1
5k25 1

2 K, FA is written as
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FA~q1 ,q2!5S 1

p DAL

K
v~q11q2!sincS L

4K
uq12q2u2D

3expF2 is

2K
~ uq11q2u21uq12q2u2!G , ~15!

where the irrelevant phase factoreiKs is omitted.
Using the orthonormal properties of the Fock states,

can define

C~r1 ,r2!5^vacuV̂~r2! ^ V̂~r1!uc& ~16!

as the two-photon coincidence-detection amplitude, whe

V̂~r!5eikz(
s

E dqâs~q!esei [q•r2(q2/2k)z] ~17!

is the monochromatic form of Eq.~3! in the paraxial approxi-
mation andz is the distance between the aperture plane
the detection plane, as shown in Fig. 2. It is assumed that
polarization vectore is independent ofq. The two-photon
coincidence-detection probability for stationary fields is p
portional to the fourth-order correlation function witht
50:

P~r1 ,r2!}G(2,2)~r1 ,r2,0!5uuC~r1 ,r2!uu2. ~18!

A. The birefringent double slit

The birefringent double slit consists of two quarter-wa
plates mounted in front of a typical double slit, such th
each wave plate covers only one slit and their fast axes
orthogonal to one another, as shown in Fig. 3. The slits
separated by a distanced. With the plate-slit aperture ori-
ented, such that the slits and one fast axis are parallel to
e ~y! direction and the other fast axis parallel to theo ~x!
direction, we can approximate the field-aperture functions

FIG. 3. The birefringent double slit. The quarter wave platesQ1

andQ2 are aligned with orthogonal fast axes.S is a double slit with
slit separation 2b.
0-3
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Aoo~j!52 id~jx2d/2!1d~jx1d/2!,

Aee~j!5d~jx2d/2!2 id~jx1d/2!,

Aeo~j!50,

Aoe~j!50, ~19!

wherejx is the x component ofj. The plate-slit apertures
provide a controlled phase factor, that is, no phase will
added to a field with polarization parallel to the direction
the fast axis of the wave plate, while a field with perpendic
lar polarization will be modified by a phase factor of e
(2ip/2). Thus, the phase factor depends on the polariza
of the field as well as through which slit the field ‘‘passes

B. The coincidence-detection probability amplitude

Combining Eqs.~13!–~17! and ~19!, we arrive at the fol-
lowing expression for coincidence-detection amplitude in
Fraunhofer approximation:

C5Ceo@ee^ eo#1Coe@eo^ ee#, ~20!

where

Cs1s2
}E E dq1dq2FA~q1 ,q2!H cosFd

2
~q1x1q2x!2

kd

2z
~x1

1x2!G6sinFd

2
~q1x2q2x!2

kd

2z
~x12x2!G J , ~21!

where the ‘‘1 ’’ holds for Ceo and the ‘‘2 ’’ holds for Coe .
We assume that the pump field is a Gaussian beam, w

waist is located on the aperture plane:

uA~j!}e2j2/w0
2
. ~22!

Its angular spectrum is

vA~q!5v~q!expF isS K2
q2

2K D G}e2w0
2q2/4, ~23!

wherew0 is the radius of the beam waist. Using Eqs.~15!
and ~23! in Eq. ~21!, it is straightforward to show that

Cs1s2
}e2(d/2w0)2

cosFkd

2z
~x11x2!G7sinFkd

2z
~x12x2!G .

~24!

It is interesting to note that the lengthL of the nonlinear
crystal enters in the coincidence-detection amplitude only
a multiplicative constant. It is clear from expression~24!
above that the fulfillment of the homogeneity condition~7!

for n52 in thex direction depends on the factore2(d/2w0)2
.

If w0!d, the dependence onx11x2 disappears and trans
verse field on the detection plane can be considered as
mogeneous. This is the reason why the pump beam mus
focused on the center of the double slit. In this case,
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Ceo~r1 ,r2!52Coe~r1 ,r2!}sinFkd

2z
~x12x2!G . ~25!

Thus, the coincidence-detection probability is

P~r1 ,r2!}12cosFkd

z
~x12x2!G . ~26!

When x15x2, the coincidence count rate is zero and i
creases withx12x2 until (x12x2)kd/z56p/2. Therefore,
the fourth-order correlation functionG(2,2)(r1 ,r2 ,t), which
is proportional to the coincidence-detection probabil
P(r1 ,r2), does not have a maximum atx15x2. This con-
tradicts Eq.~9!, thus characterizing spatial antibunching
photons.

IV. DISCUSSION AND CONCLUSION

We have shown the theoretical background behind
spatial antibunching of photons using parametric dow
conversion. It may be instructive for the reader to comp
the experiment analyzed here with its classical counterp
In this context, the single count detection rateRcl(x) should
be proportional to the classical average intensity^I (x)&,
whereas the coincidence count rateCcl(x1 ,x2) should be
proportional to the intensity-intensity~or the fourth-order!
correlation function̂ I (x1)I (x2)&. The single count detection
rate of down-converted light in the presence of a double
has been studied in previous works@26–28#. In Ref. @27#, it
was demonstrated that in terms of its single count rate, SP
behaves like a classical Schell-model extended light sou
In our experiment, the transverse coherence length be
shorter than the slits separation and shorter than the
width themselves, the single count rate is given by the c
sical expression for incoherent illumination, which can
approximated by a Gaussian,

Rcl~x!}e2x2/2s2
, ~27!

where s5z/ka and a is the width of the slits. Since the
transverse detection rangexmax2xmin is much shorter than
the width of this Gaussian profile for the slit-detectors d
tance considered, the single count rate is fairly constant o
the detection range@18#. By another side, the coincidence
detection rate due to a classical source is totally differ
from that observed with a down-converted light. Perhaps,
best classical model for type-II SPDC is a superposition
two extended light sources orthogonally polarized and co
lated in intensity. After the light is diffracted by the birefrin
gent double slit, the calculation of the classical fourth-ord
correlation function is quite similar to the case of the Brow
Twiss intensity interferometer@29#. Classical intensity inter-
ferometry is known to be insensitive to phase. Therefore,
birefringent elements have no effect on the predicted fou
order correlation, that is,

Ccl~x1 ,x2!}11v cosFkd

z
~x12x2!G . ~28!
0-4
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The visibility v is in the range 0<v< 1
2 and depends on th

statistics of the source. It is clear from expression~28! above
that Ccl(x1 ,x2) predicts spatial bunching, as expected fro
any classical light source. In view of the above analysis,
results presented here describe an entirely quantum fou
order interference effect, with no classical analog@30#. In
addition to rendering further interest in the study of noncl
sical states of light, spatial antibunching promises to b
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