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Theory of excess noise in unstable resonator lasers
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We theoretically investigate the quantum dynamics of an unstable resonator laser. Compared to a stable
cavity laser of equal gain and loss it exhibitKafold enhanced linewidth. This excess noise fadfois a
measure of the nonorthogonality of the resonator eigenmodes and amounts to an enlargement of the quantum
vacuum fluctuations. Using a quantum treatment starting from first principles based on the nonorthogonal
eigenmodes, we put previous theoretical predictions onto a more firm ground. While we find a position-
dependent enhancement of the spontaneous emission rate into an empty mode  ottig constructive
guantum interference of the spontaneous emission with a single oscillating mode lets the Petermann excess
noise factoiK reappear in the phase diffusidlaser linewidth. Hence locally enhanced spontaneous emission
as well as noise enhanced by interferefe@plified spontaneous emissjgslay an equal role in the origin of
excess noise.
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INTRODUCTION nal resonator modes of an unstable resonator geometry is not
so straightforward.

Since its first discovery more than 30 years ago the phe- In a renewed effort we based our considerations on the
nomenon of excess noise in unstable resonators has led ifinite set of nonorthogonal matched and adjoint quasimo-
substantial theoretical confusion and controversies. The efles[17], which were the basis of the original predictions by
fect was first predicted by Petermaff] as a simple en- Petermanri1] and Siegmar4]. As one example the longi-
hancement factdk of the minimal laser linewidth compared tudinal multimode dynamics of very lossy Fabry-Perot reso-
to the Schawlow-Townes formul@,3]. Later on the effect hator with overlapping lines has been studied in great detail
was connected to the nonorthogonality of the resonatok18l- ) )
modes by Siegmaf4]. Experimentally the existence of ex- ~ AS a first step to get a deeper understanding of excess
cess noise and the validity of this rule has been extensivel)0iS€ in unstable lasers we developed a quantum theory
tested by various groug$—8]| finding excellent agreement. aseq on the nonpr_thqgon_al mocﬂdzi’]._ In this case, photon
The effect not only depends on the reflectivity and size of th reatpn and annlhllatmn In a cer;am mor(]de are no longer
mirrors but as well on other parameters as the Fresnel numrﬁémr::ilg feosndll’,;gegfe t[r)“rg(;esses ar? h can SI Ov‘é an asyrr;metré/.
ber or the mirror curvature and shaf&-11]. From the be- . pproach have aiso been confirme

o ) . by a more detailed work of Dalton and co-worké®]. As a
ginning it was “f_‘c'e"’“ if the effect sh_ou_ld be attributed to_ A/t test we tried to identify the microscopic origin of excess
enhanced atomic spontaneous emission rate to be simp,

; “Roise and considered a single inverted atom inside an un-
plugged into the Schawlow-Townes formula or to an ampli-giape resonator as a quantum detector for the local amount

ficgtion of the spontaneously emitted Iight fieId_via_the laserys quantum nois¢20]. Indeed we found an enhancement of
gain[12]. Since a full quantum-mechanical derivation start-ipe spontaneous atomic decay into the resonator modes ap-
ing from first principles was hampered by the nonorthogoproximately, which for realistic cases was only proportional
nality of the unstable resonator eigenmodes, different heurisg the square root of the excess noise fagflr. The full K

tic or numerical integration approaches were developed. factor appeared only in the limit of a tiny higl- cavity,

The theoretical modeling of excess noise progresseqihere only a single mode dominates the decay. Interestingly,
along several lines. In one approach one avoids the probleme discovered that one only gets a spatial redistribution of
of the mode nonorthogonality by embedding the whole systhe quantum noise in the cavity and not a global enhance-
tem into a larger closed volumé&modes of the universe ment. Averaging over the volume leads to a total cancelation
approach’) and use the corresponding modes for numericabf the K factor in the total emission rate. Again by external
simulations. Bardroff and co-worker here found a close conactive mode selection we could obtain an excess noise en-
nection between the amount of excess noise and the diffehancement of spontaneous emission in perfect agreement
ence of the spatial distribution of gain and 1d48]. Up to  with other predictions of van der Lest al.[21,22.
small corrections they could reproduce Siegman’s predic- As a next process we studied another purely quantum
tions and extend the model to a nonlinear gain mediliAj. noise driven process, namely, parametric down conversion.
Alternatively, Poizat and co-workers showed that centralAgain we found excess noise effects as a locally enhanced
properties of excess noise can be mimicked by a toy inputpair photon production at the expense of a reduction of the
output model containing only three orthogonal modes buphoton correlation§23,24). For this purpose we generalized
with suitably coupled noise termid5] which can be gener- known phase-space methods based on the Wigner, the
alized to a larger set of mod¢$6]. However, in both cases Glauber or the positiv& representation to the case of the
the connection and interpretation in terms of the nonorthogononorthogonal quasimodes. Fortunately, using these methods
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we are now in the situation to come back to the roots of thavhere the integral extends over the resonator volume, where
problem and study the dynamics of an unstable resonatdk and B are just their inverse. For a stable geometry the
laser starting from first principles. Here the central questioradjoint modes are identical to the matched modes and the
still is to identify the physical mechanism yielding the excessoverlap matricesA,B are the identity matrices. A general
linewidth in unstable resonator lasers. property of the quasimodes is their completeness. Hence, ev-
We will proceed as follows. As a basic model we considerery field distribution may be expanded in terms of each set of
the interaction of the unstable cavity field with a number ofquasimodes. Accordingly two sets of field operators may be
pumped two-level atoms. Following a standard laser modetlefined associated with an expansion in the matched modes
(see, e.g., Refd.25,26)) we first derive coupled stochastic {a,,a'} or in the adjoint mode$b,=A,mam,bi=Amal}.
differential equations for the field and atomic variables.One finds commutation relations reflecting the normalization
Based on our previous findingsf. Ref.[20]) we can assume properties, i.e.,
a total spontaneous decay rate of the atoms, which is domi-

nated by the transverse nonresonator modes and hence shows [a,.a/1=Bnm, (4)
no significant excess noise enhancement. Adiabatically
eliminating the atomic degrees of freedom, we end up with [b, ,b;]:Anm, (5)
stochastic differential equations for the field amplitudes simi-
lar to the Van der Pol oscillator. Averaging over the atomic [a, ,brTn]: S (6)

position we can obtain simple expressions for the oscillation

threshold or the phase diffusion coefficient, which will be theote that matched mode operators invoke the adjoint overlap
basis for our discussion of the essential physical effects. 1y atrix. Including field losses and within the Markov ap-
proximation the field dynamics may be described by the fol-
FIELD QUANTIZATION lowing master equatiof20]:

Let us first review some aspects of the field quantization ~ _; o
in terms of nonorthogonal quasimodgz0]. For the free p=7(Heffp—leff)+E Anm(km+ &) ampal, (7)
electromagnetic field confined to a volume with partially ab- nm
sorbing boundaries one can find a complete set of quasimo-.
des{u,(x)}. They are known as matched modes and defineé“”th
as self-reproducing field configurations after one full round
trip. The multiple indexn includes all longitudinal, trans- Hetr =%, wbla,. (8)
verse, and polarization degrees of freedom. Within the n
paraxial approximation this corresponds to eigenfunctions of _
Huygens’ integral operator, i.d.(u,) = v,u, (see, e.g., Ref. Here we have introduced complex frequencies= w,
[28]). The eigenvalues,, determine the possible frequencies — i« and complex loss rateg,=«,+iw,, respectively.
wy, and loss rates,. An analytically solvable example is a This effective Hamiltonian may now be used to define gen-
one-dimensional symmetric unstable resonator with a Gausgralized Fock states for each mode
ian reflectivity profile[20]. In general these modes are not
necessarily orthogonal, but are biorthogonal to a second set N

.. n
of adjoint modegv,(x)}, such that [N = W“’)' 9
J dX v} (X)Um(X) = S - (1) or generalized coherent states,
\%
lay=exp{b"- a}]0), (10

In fact the adjoint modes correspond to quasimodes traveling
in the opposite direction. Whereas the matched modes can be. . C ooy o +
normalized to unity, Eq(1) implies a normalization constant uilng the vectorial notatioh™- a=2,bna,. The operato_rs_
K,=1 for the adjoint modes, called the Petermann exces@n @nda, here correspond to photon creation and annihila-
noise factor[1]. The connection between the excess noisdiOn in these modes.

factor in lasers and the norm of the adjoint modes was found

by Siegman [4] ten years after the prediction of a LASER MODEL

K-enhanced laser noigé].

These normalization properties can be rewritten as As a next step we couple the electromagnetic fieldlto

two-level atoms of frequency, described by the Hamilto-
niansH§)=wao§”/2. The interaction is given by
fvdx Ur(X)Un(X)=Apm  With  Ap=1, 2

Hin= =172 (goVa—gPbre). (11

dx vk (x X)=B with  B,=K,, 3
fv on (X)0m(X) =B e @ and invokes the matched and adjoint mode coupling
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N r 2
D 27 . B0 A /-2 % =Yz *I'_+ B 20
V= Vgren(d, 8=\ gz vatd (12 =Ry g ET-ATD. (@0
whered denotes the atomic dipole moment agdhe atomic sss:ﬁs§3+ r_ | 2

position. At the end of our calculation we will average over oy Y.
all possible positions in the mode accounting for a homoge-
neous gain medium. As usu@5-27], we introduce collec- with the saturation denominatoR(3)=1+4|8|%/y, Y| -
tive atomic operators a8_=3,g%¢" and neglect the di- This leads to the following equations for the field variables:
rect interaction between the atomic dipoles. In this model the ~
two atomic levels describe the lasing transition only. All . ~ YN 9.8
other transitions of the real laser atoms that contribute quan- ¥n= " Kn@tn T T ¥, R(B) LY
tum noise are formally absorbed in a quantum reservoir of
inverted harmonic oscillators as a quantum model for pumpwith
ing (see Refs[25,26, and references therginUsing the 3
GlauberP representation one may now derive stochastic dif- 0.8 2|8|?
ferential.equations for the atomic yariabl{sgi .S+ ,S;} cor- n— v.R(B) YLy
responding tdS_,S, ,S,} and the field variableg,, corre-
sponding toa,, yielding Note that all noise terms contain the adjoint couplggand
_ g _ hence the excess noise factor, which is, however, also present
an=—Knapt+tgpS_, (13 in the gain term. To account for a homogeneous gain medium
we now have to average over the atomic positions. Taking
s =—vy, s +s8+T_, (14)  into account the normalization properties of the matched and
adjoint modegEgs.(1)—(3)] we may write

(22

2 2
N A
Y1 Y

(23

. 2
S;= S~ 22 (i fHprs )+ N+T,, (19 o= — e+ %;;sanﬁn, (24)
1

with B=3,0,a, and k= k,+i(w,— w,). Here y, ¥,y  where we have introduced the mean coupling strengfth
describe the effective damping rates of the atoms and= wad/2%i€q, the steady-state inversion
I'_,T', ,I', denote white-noise sources fulfilling the correla-

. 2
tions SS= NIy 1+ 49 I) (25)
YL Y
<F—F+>:7Nv (16)
and the total field photon numbee =, Anman ap, -
(T_.T_)=2s_8, 7 Above threshold essentially only the lowest-order mode
n=0 oscillates due to the rapidly increasing loss with mode
(T_T,)y=-2ys_, (18)  order. Neglecting higher-order modes completely the result-

ing equation is now equivalent to a Van der Pol oscillator.
(TT )y =2(yN—ys) —4(B*s_+s, ). (19) For laser oscillation well above threshold,

2
Note that the atomic equations contain no excess noise. The g°yN
ratesy, ,y|,y describe the atom-reservoir coupling includ- YL
ing resonator modes as well as nonresonator modes. As the . . ) . )
latter are usually dominating the decay we neglect any emise €xpand the field amplitude into intensity and phase
sion enhancement due to the unstable geometfy Ref. =\ﬁepr\P)._The Iase_r _ImeW|dth is then de_termlned by the
[20]). The origin of excess noise, however, is present in thehase diffusion coefficienD., of the oscillating mode,
field equations in the terms involving the adjoint coupling which is derived from the two-time correlation function of

~ : . . ~ the field phasel [1,27]. Following the standard rules for
gy which contain the excess noise factgy~ JK,. These variable transformations for Langevin equatid@$] it can

equations[Egs. (13)—(15)] could now be simulated using . _ -
standard techniques and in principle the linewidth and intenpe expressed in the forBlyy = (D gqx — D o,C08 2V)/21. By

sity noise could be obtained numerically. help of Eqs.(23) and(24) one then finds

>K0, (26)

1 9%y~

[
RESULTS D\W%EWF*)%E?sZSK. (27
€L

In order to get some analytic expressions, we will now
make some further assumptions and adiabatically eliminatelence, although the spatially averaged atomic spontaneous
the atomic variables, which is valid in the limik  emission rate into an empty cavity mode is not influenced by
<1v,7.,y|- After some algebra one finds excess noise, we still find the excess noise fabtdn the
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laser linewidth for single-mode operation. Note that the noisécs and suddenly shows an excess noise enhancement via the
correlations of higher modes also scale with=B,, and  enhanced adjoint mode coupling7,20. Of course, to de-
one in principle could also expect extra noise in multimoderive this result we had to use several approximations, which
operation. However, if many modes would be excited thedo, however, not go beyond models of a single laser in a
excess noise factors destructively interfere after spatiadtable resonator geometry. In practice single-mode operation
averaging. Calculating the total noise intensityy  to see the full effect might be harder to achieve in unstable
=2 nmAnm(TiT ) for all modes shows no enhancement, lasers.
sinceA andB are just inverse. Hence excess noise originates We think that the present work resolves some of the con-
in the projection of spatially redistributed multimode sponta-troversies and confusion on this subject in the past. We have
neous emission onto a single oscillating mode. This is facilishown that the effect of excess noise is always present in
tated through the mode nonorthogonality. Note that similarlyunstable cavities, but needs mode selection to get visible.
the enhanced coupling strength for the mean field vanishegonsidering a single atom in an unstable cavity the situation
through averaging over the atomic positions due to the biofis gimilar [20]. Along the optical axis the ground mode is
thogonality relation Eq(1). Hence, the semiclassical field gominant and an enhancement of the spontaneous emission
equations determining the laser threshold condition do nOfate may occur, but averaging over the atomic position can-
show any excess noise modification. cels out the excess noise enhancement. However, there is not
a simple relation between the laser linewidth and the spon-
taneous emission rate of the single atoms. The one-to-one
We have revealed the mechanism connecting the erforrespondence fails for nonorthogonal cavity modes, and
hanced laser linewidth in unstable resonator lasers and mod#e finds an enhancement factor for the spontaneous emis-
nonorthogonality. Starting from first principles we could con-Sion rate into the empty resonator modes of only approxi-
firm previous claims that the minimal laser linewidth is en- mately JK, whereas the laser linewidth shows a lindar
hanced by the excess noise factor, determined by the normalependence.
ization of the adjoint mode. The mechanism behind this is a The authors would like to thank B. Dalton for stimulating
spatial redistribution of quantum fluctuations and a projec-discussions and sending us work prior to publication. This
tion of this onto a single mode. Following the standard phasavork was supported by the Austrian FWF under Grant No.
diffusion model the atomic noise feeds into the field dynam-13435.
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