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Theory of excess noise in unstable resonator lasers

C. Lamprecht and H. Ritsch
Institut für Theoretische Physik, Universita¨t Innsbruck, Technikerstraße 25, 6020 Innsruck, Austria

~Received 27 September 2001; published 18 November 2002!

We theoretically investigate the quantum dynamics of an unstable resonator laser. Compared to a stable
cavity laser of equal gain and loss it exhibits aK-fold enhanced linewidth. This excess noise factorK is a
measure of the nonorthogonality of the resonator eigenmodes and amounts to an enlargement of the quantum
vacuum fluctuations. Using a quantum treatment starting from first principles based on the nonorthogonal
eigenmodes, we put previous theoretical predictions onto a more firm ground. While we find a position-
dependent enhancement of the spontaneous emission rate into an empty mode of onlyAK, the constructive
quantum interference of the spontaneous emission with a single oscillating mode lets the Petermann excess
noise factorK reappear in the phase diffusion~laser linewidth!. Hence locally enhanced spontaneous emission
as well as noise enhanced by interference~amplified spontaneous emission! play an equal role in the origin of
excess noise.

DOI: 10.1103/PhysRevA.66.053808 PACS number~s!: 42.60.Jf, 42.50.Ct, 42.50.Lc, 42.60.Da
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INTRODUCTION

Since its first discovery more than 30 years ago the p
nomenon of excess noise in unstable resonators has le
substantial theoretical confusion and controversies. The
fect was first predicted by Petermann@1# as a simple en-
hancement factorK of the minimal laser linewidth compare
to the Schawlow-Townes formula@2,3#. Later on the effect
was connected to the nonorthogonality of the resona
modes by Siegman@4#. Experimentally the existence of ex
cess noise and the validity of this rule has been extensi
tested by various groups@5–8# finding excellent agreemen
The effect not only depends on the reflectivity and size of
mirrors but as well on other parameters as the Fresnel n
ber or the mirror curvature and shape@8–11#. From the be-
ginning it was unclear if the effect should be attributed to
enhanced atomic spontaneous emission rate to be sim
plugged into the Schawlow-Townes formula or to an amp
fication of the spontaneously emitted light field via the la
gain @12#. Since a full quantum-mechanical derivation sta
ing from first principles was hampered by the nonorthog
nality of the unstable resonator eigenmodes, different heu
tic or numerical integration approaches were developed.

The theoretical modeling of excess noise progres
along several lines. In one approach one avoids the prob
of the mode nonorthogonality by embedding the whole s
tem into a larger closed volume~‘‘modes of the universe
approach’’! and use the corresponding modes for numer
simulations. Bardroff and co-worker here found a close c
nection between the amount of excess noise and the di
ence of the spatial distribution of gain and loss@13#. Up to
small corrections they could reproduce Siegman’s pre
tions and extend the model to a nonlinear gain medium@14#.
Alternatively, Poizat and co-workers showed that cen
properties of excess noise can be mimicked by a toy inp
output model containing only three orthogonal modes
with suitably coupled noise terms@15# which can be gener
alized to a larger set of modes@16#. However, in both case
the connection and interpretation in terms of the nonortho
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nal resonator modes of an unstable resonator geometry is
so straightforward.

In a renewed effort we based our considerations on
infinite set of nonorthogonal matched and adjoint quasim
des@17#, which were the basis of the original predictions b
Petermann@1# and Siegman@4#. As one example the longi
tudinal multimode dynamics of very lossy Fabry-Perot re
nator with overlapping lines has been studied in great de
@18#.

As a first step to get a deeper understanding of exc
noise in unstable lasers we developed a quantum the
based on the nonorthogonal modes@17#. In this case, photon
creation and annihilation in a certain mode are no lon
Hermitian conjugate processes and can show an asymm
The main results of this approach have also been confirm
by a more detailed work of Dalton and co-worker@19#. As a
first test we tried to identify the microscopic origin of exce
noise and considered a single inverted atom inside an
stable resonator as a quantum detector for the local am
of quantum noise@20#. Indeed we found an enhancement
the spontaneous atomic decay into the resonator modes
proximately, which for realistic cases was only proportion
to the square root of the excess noise factorAK. The full K
factor appeared only in the limit of a tiny high-Q cavity,
where only a single mode dominates the decay. Interestin
we discovered that one only gets a spatial redistribution
the quantum noise in the cavity and not a global enhan
ment. Averaging over the volume leads to a total cancela
of the K factor in the total emission rate. Again by extern
active mode selection we could obtain an excess noise
hancement of spontaneous emission in perfect agreem
with other predictions of van der Leeet al. @21,22#.

As a next process we studied another purely quan
noise driven process, namely, parametric down convers
Again we found excess noise effects as a locally enhan
pair photon production at the expense of a reduction of
photon correlations@23,24#. For this purpose we generalize
known phase-space methods based on the Wigner,
Glauber or the positive-P representation to the case of th
nonorthogonal quasimodes. Fortunately, using these met
©2002 The American Physical Society08-1
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we are now in the situation to come back to the roots of
problem and study the dynamics of an unstable reson
laser starting from first principles. Here the central quest
still is to identify the physical mechanism yielding the exce
linewidth in unstable resonator lasers.

We will proceed as follows. As a basic model we consid
the interaction of the unstable cavity field with a number
pumped two-level atoms. Following a standard laser mo
~see, e.g., Refs.@25,26#! we first derive coupled stochast
differential equations for the field and atomic variable
Based on our previous findings~cf. Ref.@20#! we can assume
a total spontaneous decay rate of the atoms, which is do
nated by the transverse nonresonator modes and hence s
no significant excess noise enhancement. Adiabatic
eliminating the atomic degrees of freedom, we end up w
stochastic differential equations for the field amplitudes si
lar to the Van der Pol oscillator. Averaging over the atom
position we can obtain simple expressions for the oscillat
threshold or the phase diffusion coefficient, which will be t
basis for our discussion of the essential physical effects.

FIELD QUANTIZATION

Let us first review some aspects of the field quantizat
in terms of nonorthogonal quasimodes@20#. For the free
electromagnetic field confined to a volume with partially a
sorbing boundaries one can find a complete set of quas
des$un(x)%. They are known as matched modes and defi
as self-reproducing field configurations after one full rou
trip. The multiple indexn includes all longitudinal, trans
verse, and polarization degrees of freedom. Within
paraxial approximation this corresponds to eigenfunction
Huygens’ integral operator, i.e.,L(un)5gnun ~see, e.g., Ref.
@28#!. The eigenvaluesgn determine the possible frequenci
vn and loss rateskn . An analytically solvable example is
one-dimensional symmetric unstable resonator with a Ga
ian reflectivity profile@20#. In general these modes are n
necessarily orthogonal, but are biorthogonal to a second
of adjoint modes$vn(x)%, such that

E
V
dx vn* ~x!um~x!5dnm . ~1!

In fact the adjoint modes correspond to quasimodes trave
in the opposite direction. Whereas the matched modes ca
normalized to unity, Eq.~1! implies a normalization constan
Kn>1 for the adjoint modes, called the Petermann exc
noise factor@1#. The connection between the excess no
factor in lasers and the norm of the adjoint modes was fo
by Siegman @4# ten years after the prediction of
K-enhanced laser noise@1#.

These normalization properties can be rewritten as

E
V
dx un* ~x!um~x!5Anm with Ann51, ~2!

E
V
dx vn* ~x!vm~x!5Bnm with Bnn5Kn , ~3!
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where the integral extends over the resonator volume, wh
A and B are just their inverse. For a stable geometry t
adjoint modes are identical to the matched modes and
overlap matricesA,B are the identity matrices. A genera
property of the quasimodes is their completeness. Hence
ery field distribution may be expanded in terms of each se
quasimodes. Accordingly two sets of field operators may
defined associated with an expansion in the matched mo
$an ,an

†% or in the adjoint modes$bn5Anmam ,bn
†5Amnam

† %.
One finds commutation relations reflecting the normalizat
properties, i.e.,

@an ,am
† #5Bnm , ~4!

@bn ,bm
† #5Anm , ~5!

@an ,bm
† #5dnm . ~6!

Note that matched mode operators invoke the adjoint ove
matrix. Including field losses and within the Markov a
proximation the field dynamics may be described by the f
lowing master equation@20#:

ṙ5
2 i

\
~He f fr2rHe f f

† !1(
nm

Anm~ k̃m1k̃n* !amran
† , ~7!

with

He f f5\(
n

ṽnbn
†an . ~8!

Here we have introduced complex frequenciesṽn5vn

2 ikn and complex loss ratesk̃n5kn1 ivn , respectively.
This effective Hamiltonian may now be used to define ge
eralized Fock states for each moden,

uNn&5
bn

†N

AN!
u0&, ~9!

or generalized coherent states,

iaW &5exp$bW †
•aW %i0&, ~10!

using the vectorial notationbW †
•aW [(nbn

†an . The operators
bn

† andan here correspond to photon creation and annih
tion in these modes.

LASER MODEL

As a next step we couple the electromagnetic field toN
two-level atoms of frequencyvA described by the Hamilto-
niansHA

( j )5vasz
( j )/2. The interaction is given by

HInt52 i\(
n, j

~gn
( j )s1

( j )an2g̃n
( j )bn

†s2
( j )!, ~11!

and invokes the matched and adjoint mode coupling
8-2



e
ge

th
l
a

r o
p

dif

an
a-

T
d-

i

th
ng

g
en

w
a

s:

sent
ium
ing
and

de
de
ult-
or.

e

f
r

ous
by

THEORY OF EXCESS NOISE IN UNSTABLE . . . PHYSICAL REVIEW A 66, 053808 ~2002!
gn
( j )5A vn

2\e0
un~xj !d, g̃n

( j )5A vn

2\e0
vn* ~xj !d, ~12!

whered denotes the atomic dipole moment andxj the atomic
position. At the end of our calculation we will average ov
all possible positions in the mode accounting for a homo
neous gain medium. As usual@25–27#, we introduce collec-
tive atomic operators asS25( jgn

( j )s2
( j ) and neglect the di-

rect interaction between the atomic dipoles. In this model
two atomic levels describe the lasing transition only. A
other transitions of the real laser atoms that contribute qu
tum noise are formally absorbed in a quantum reservoi
inverted harmonic oscillators as a quantum model for pum
ing ~see Refs.@25,26#, and references therein!. Using the
GlauberP representation one may now derive stochastic
ferential equations for the atomic variables$s2 ,s1 ,sz% cor-
responding to$S2 ,S1 ,Sz% and the field variablesan corre-
sponding toan yielding

ȧn52k̃nan1g̃ns2 , ~13!

ṡ252g's21szb1G2 , ~14!

ṡz52g isz22(
n

~s1b1b* s2!1gN1Gz , ~15!

with b5(ngnan and k̃n5kn1 i (vn2vA). Here g' ,g i ,g
describe the effective damping rates of the atoms
G2 ,G1 ,Gz denote white-noise sources fulfilling the correl
tions

^G2G1&5gN, ~16!

^G2G2&52s2b, ~17!

^G2Gz&522gs2 , ~18!

^GzGz&52~gN2g isz!24~b* s21s1b!. ~19!

Note that the atomic equations contain no excess noise.
ratesg' ,g i ,g describe the atom-reservoir coupling inclu
ing resonator modes as well as nonresonator modes. As
latter are usually dominating the decay we neglect any em
sion enhancement due to the unstable geometry~cf. Ref.
@20#!. The origin of excess noise, however, is present in
field equations in the terms involving the adjoint coupli
g̃n , which contain the excess noise factorg̃n;AKn. These
equations@Eqs. ~13!–~15!# could now be simulated usin
standard techniques and in principle the linewidth and int
sity noise could be obtained numerically.

RESULTS

In order to get some analytic expressions, we will no
make some further assumptions and adiabatically elimin
the atomic variables, which is valid in the limitk
!g,g' ,g i . After some algebra one finds
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gN

g iR~b!
1

Gz

g i
2

2

g'g i
~b* G21bG1!, ~20!

s2
ss5

b

g'

sz
ss1

G2

g'

, ~21!

with the saturation denominatorR(b)5114ubu2/g'g i .
This leads to the following equations for the field variable

ȧn52k̃nan1
gN

g'g i

g̃nb

R~b!
1Gn , ~22!

with

Gn5
g̃nb

g'R~b! H S 11
2ubu2

g'g i
DG22

2b2

g'

G11
b

g i
J . ~23!

Note that all noise terms contain the adjoint couplingg̃n and
hence the excess noise factor, which is, however, also pre
in the gain term. To account for a homogeneous gain med
we now have to average over the atomic positions. Tak
into account the normalization properties of the matched
adjoint modes@Eqs.~1!–~3!# we may write

ȧn52k̃nan1
g2

g'

s̄z
ssan1Ḡn , ~24!

where we have introduced the mean coupling strengthg2

5vAd/2\e0, the steady-state inversion

s̄z
ss5gN/g iS 11

4g2I

g'g i
D ~25!

and the total field photon numberI 5(nmAnman* am .
Above threshold essentially only the lowest-order mo

n50 oscillates due to the rapidly increasing loss with mo
order. Neglecting higher-order modes completely the res
ing equation is now equivalent to a Van der Pol oscillat
For laser oscillation well above threshold,

g2gN

g'g i
.k0 , ~26!

we expand the field amplitude into intensity and phasea
5AI exp(iC). The laser linewidth is then determined by th
phase diffusion coefficientDCC of the oscillating mode,
which is derived from the two-time correlation function o
the field phaseC @1,27#. Following the standard rules fo
variable transformations for Langevin equations@26# it can
be expressed in the formDCC5(Daa* 2Daacos 2C)/2I . By
help of Eqs.~23! and ~24! one then finds

DCC'
1

2I
^ḠḠ* &'

1

2I

g2g i

g'
2

s̄z
ssK. ~27!

Hence, although the spatially averaged atomic spontane
emission rate into an empty cavity mode is not influenced
excess noise, we still find the excess noise factorK in the
8-3
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laser linewidth for single-mode operation. Note that the no
correlations of higher modes also scale withKn5Bnn and
one in principle could also expect extra noise in multimo
operation. However, if many modes would be excited
excess noise factors destructively interfere after spa
averaging. Calculating the total noise intensityI N

5(nmAnm^Ḡn* Ḡm& for all modes shows no enhanceme
sinceA andB are just inverse. Hence excess noise origina
in the projection of spatially redistributed multimode spon
neous emission onto a single oscillating mode. This is fac
tated through the mode nonorthogonality. Note that simila
the enhanced coupling strength for the mean field vanis
through averaging over the atomic positions due to the b
thogonality relation Eq.~1!. Hence, the semiclassical fiel
equations determining the laser threshold condition do
show any excess noise modification.

CONCLUSIONS

We have revealed the mechanism connecting the
hanced laser linewidth in unstable resonator lasers and m
nonorthogonality. Starting from first principles we could co
firm previous claims that the minimal laser linewidth is e
hanced by the excess noise factor, determined by the nor
ization of the adjoint mode. The mechanism behind this
spatial redistribution of quantum fluctuations and a proj
tion of this onto a single mode. Following the standard ph
diffusion model the atomic noise feeds into the field dyna
tt

e

ys

.C
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ics and suddenly shows an excess noise enhancement v
enhanced adjoint mode coupling@17,20#. Of course, to de-
rive this result we had to use several approximations, wh
do, however, not go beyond models of a single laser i
stable resonator geometry. In practice single-mode opera
to see the full effect might be harder to achieve in unsta
lasers.

We think that the present work resolves some of the c
troversies and confusion on this subject in the past. We h
shown that the effect of excess noise is always presen
unstable cavities, but needs mode selection to get visi
Considering a single atom in an unstable cavity the situa
is similar @20#. Along the optical axis the ground mode
dominant and an enhancement of the spontaneous emis
rate may occur, but averaging over the atomic position c
cels out the excess noise enhancement. However, there i
a simple relation between the laser linewidth and the sp
taneous emission rate of the single atoms. The one-to-
correspondence fails for nonorthogonal cavity modes,
one finds an enhancement factor for the spontaneous e
sion rate into the empty resonator modes of only appro
mately AK, whereas the laser linewidth shows a linearK
dependence.
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