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Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control
theory to the nonlinear Schrödinger equation

Shlomo E. Sklarz and David J. Tannor*
Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel

~Received 15 May 2002; published 26 November 2002!

Using a set of general methods developed by Krotov@A. I. Konnov and V. A. Krotov, Automation and
Remote Control60, 1427 ~1999!#, we extend the capabilities of optimal control theory to the nonlinear
Schrödinger equation~NLSE!. The paper begins with a general review of the Krotov approach to optimization.
Although the linearized version of the method is sufficient for the linear Schro¨dinger equation, the full flex-
ibility of the general method is required for treatment of the nonlinear Schro¨dinger equation. Formal equations
for the optimization of the NLSE, as well as a concrete algorithm are presented. As an illustration, we consider
a Bose-Einstein condensate~BEC! initially at rest in a harmonic trap. A phase develops across the BEC when
an optical lattice potential is turned on. The goal is to counter this effect and keep the phase flat by adjusting
the trap strength. The problem is formulated in the language of optimal control theory~OCT! and solved using
the above methodology. To our knowledge, this is the first rigorous application of OCT to the nonlinear
Schrödinger equation, a capability that is bound to have numerous other applications.
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I. INTRODUCTION

In recent years much progress has been made in the u
optimal control theory ~OCT!, to coherently control
quantum-mechanical systems governed by the Schro¨dinger
equation. Such systems include controlled manipulation
molecular wave packets@1–3#, high harmonic generation@4#,
and realization of quantum computing algorithms@5#.

In this paper, the application of OCT is extended in
systematic way to systems governed by the nonlinear Sc¨-
dinger equation~NLSE!, such as solitons in fiber optics an
Bose-Einstein condensates~BEC’s! in atomic physics. We
begin with a general description of the Krotov iterati
method@6#. We describe first its application to quantum sy
tems governed by the linear Schro¨dinger equation, and the
show how a generalized version of this method@7# can be
used to treat nonlinear problems.

Finally, we consider a concrete problem governed by
NLSE, namely a BEC evolving under the Gross-Pitaevs
equation. The use of a BEC as a realization of quant
computing is widely being considered, as this is a mac
scopic entity which nevertheless behaves quantum mech
cally. The fact that a BEC carries a definite phase that can
manipulated and controlled is a striking manifestation of t
quality. For many computation applications, it is desirable
split the BEC up into localized pieces each of which can th
be viewed as a quantum bit and manipulated as such. Th
achieved by the switching on of an optical lattice potent
however, the switching on of the optical lattice causes
phase to accumulate across the BEC, which is undesir
for use in computing applications. It is the cancellation
this effect which is the goal of this model problem.

The outline of the paper is as follows: In Sec. II, th

*Fax: 972-8-9344123
1050-2947/2002/66~5!/053619~9!/$20.00 66 0536
of

of

o

-

e
ii
m
-
ni-
be
s
o
n
is

;
a
le

f

Krotov method is reviewed. Its application to linear pro
lems, in general, and the Schro¨dinger equation, in particular
are discussed. Section III deals with the application of O
to the NLSE problems and demonstrates this by solving
BEC problem mentioned above. Finally, in Sec. IV, we co
clude and suggest further applications.

II. KROTOV METHOD OF OPTIMIZATION

A. Description of problem

Consider a state of some system which can be defined
a vector of variablesc and which is controlled by a set o
variablesu, through the state equations of motion

ċ5 f ~c,u!. ~1!

The initial value ofc, c(0)5c0, is fixed but evolves over
time to some final valuec(T)5cT . The history of evolving
state vectors is called the state trajectory, and the histor
control input is termed the control history or just the cont
@8#.

Given the trajectoryc(t) and the controlu(t), we define
a ‘‘process’’w5(c(t),u(t)) as a pair of historiesc(t), u(t)
satisfying Eq.~1!. We can now define the objective func
tional on the processw:

J@w#5F„c~T!)1E
0

T

f 0~ t,c~ t !,u~ t !…dt, ~2!

where F„c(T)… and f 0
„t,c(t),u(t)… are general functions

that represent the dependence ofJ on the terminal and inter-
mediate time values ofc, respectively. It is required to find
a processw for which the objective obtains its smalle
value.
©2002 The American Physical Society19-1
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B. Utility constructs and definitions

For a continuously differentiable scalar functionf(t,c),
we define the following functional:

L@w;f#5G~cT!2E
0

T

R„t,c~ t !,u~ t !…dt2f~0,c0!, ~3!

where

G~cT!5F~cT!1f~T,cT!, ~4!
n
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R~ t,c,u!5
]f

]c
f ~ t,c,u!2 f 0~ t,c,u!1

]

]t
f~ t,c!. ~5!

The functionsR andG are designed to separate out the d
pendence ofL@w;f# on the final time and intermediate time
respectively.

It can be shown that for any functionf and processw
5„c(t),u(t)…, L@w;f#5J@w#. The derivation goes as fol
lows:
L@w;f#5G~cT!2E
0

T

R„t,c~ t !,u~ t !…dt2f~0,c0!5F~cT!1f~T,cT!2E
0

TH ]f

]c
f ~ t,c,u!2 f 0~ t,c,u!1

]f

]t J dt2f~0,c0!

5F~cT!1f~T,cT!2E
0

TH ]f

]c

]c

]t
1

]f

]t
2 f 0~ t,c,u!J dt2f~0,c0!

5F~cT!1f~T,cT!2E
0

Tdf

dt
dt1E

0

T

f 0~ t,c,u!dt2f~0,c0!5F~cT!1E
0

T

f 0~ t,c,u!dt5J@w#. ~6!
e

s

Obviously therefore, minimizingL@w;f# for any f mini-
mizes J@w#, and minimizingL@w;f# can be achieved by
separately minimizingG(cT) and maximizingR(t,c,u).

It is convenient for later reference to define the functionH
through the following relation:

R~ t,c,u![HS t,c,u,
]f~ t,c!

]c D1
]

]t
f~ t,c!, ~7!

where

H~ t,c,u,p!5p f~ t,c,u!2 f 0~ t,c,u!. ~8!

Note the extra parameter inH denoted byp, which empha-
sizes thatc and ]f/]c should be treated as independe
variables, with respect toH.

C. An iterative algorithm

We now return to our main goal and describe the Kro
iterative method for finding a sequence of processes$ws%,
which monotonically decrease the value of the object
J@w# @6,9#. The central idea is that as we have compl
freedom in choosing the potentialf(c,t), we can construct
f such that our current estimate of the state history w
maximize L@w;f#, and so become the worst of all possib
histories. We are then free to find a new estimate for
controlu(t), which will minimizeL@w;f# with respect to its
explicit dependence onu(t), without worrying about the ef-
fect of u(t) on L@w;f# through the change ofc(t), as that
can only be improved.

We begin by taking an arbitrary control historyu0(t) and
the corresponding state trajectoryc0(t), which constitute to-
gether a processw0.
t

v

e
e

ll

e

~1! We first construct a functionf(t,c) such thatL@w;f#
is a maximum with respect toc(t) at the pointw0. This is
equivalent to the following two conditions:

R„t,c0~ t !,u0~ t !…5min
c

R„t,c~ t !,u0~ t !… ~9!

G~cT
0!5max

c
G~cT!, ~10!

where the functionsR and G are calculated using the new
f(t,c). In other words, we choosef(t,c) such that our
currentc0(t) will be the worst of all possiblec(t)’s in mini-
mizing the objectiveL@w;f#5J@w# ~maximizing R, mini-
mizing G). Any change inc brought about by a new choic
of u(t) will now only improve the minimization ofJ@w# @see
Fig. 1#.

~2! For f„t,c(t)…, we find a controlu(t) that maximizes
H„t,c,u,(]f/]c)… and denote it by

FIG. 1. Sketch of variousR(c) determined by different choice
of f(t,c). The construction off(t,c) is the one that minimizes
R(c) at c5c0, i.e., is the worstR at the currentc0.
9-2
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ũ~ t,c!5arg max
u

HS t,c,u,
]f

]c D
5arg max

u
R~ t,c,u!. ~11!

Note that the controlũ(t,c) is still a function of c. This
freedom will be removed in the next step.

~3! We require thatũ(t,c) and c(t) be consistent with
each other through the equations of motion. The equatio
motion ~1! ~with its initial conditions! together with the
equation for the controlu5ũ(t,c) ~11!, provide two equa-
tions for the two unknownsu andc. These equations may b
solved self-consistently foru and c(t), obtaining the new
processw5(u,c).

~4! It is now guaranteed that minimization of the objecti
has been improved so thatJ@w#,J@w0#; this completes the
current iteration. The neww becomes a starting point for th
next iteration,w→w0, and operations 1–3 can now be r
peated to achieve further decrease in the objective.

We proceed to prove that indeed the newJ@w#<J@w0#.
First, we assert using Eq.~6! that

J@w0#2J@w#5L@w0;f#2L@w;f#. ~12!

Also,

L@w0;f#2L@w;f#5G~cT
0!2G~cT!1E

0

T

$R„t,c~ t !,u~ t !…

2R„t,c0~ t !,u0~ t !…%dt

5D11D21D3 , ~13!
05361
of

where

D15G~cT
0!2G~cT!, ~14!

D25E
0

T

$R„t,c~ t !,u~ t !…2R„t,c~ t !,u0~ t !…%dt, ~15!

D35E
0

T

$R„t,c~ t !,u0~ t !…2R„t,c0~ t !,u0~ t…%dt. ~16!

The non-negativeness ofD3 andD1 follow from conditions
~9! and ~10!, respectively, and by Eq.~11! the choice of a
new control ensures the non-negativeness ofD2. This com-
pletes the proof.

D. Construction of f to first order in c

In implementing the above iterative method the main d
ficulty lies in step~1!. Here it is necessary to determine
functionf(t,c) that, by conditions~9! and~10!, will ensure
the absolute maximum and minimum of the functionsR and
G, respectively, on the trajectoryc0(t), i.e., to choose
f(t,c) to give the worst possibleL@c0 ;f#. A necessary
condition for an extremum ofR andG at w05(c0,u0) is the
existence of a stationary point there, but in order to make
conditions sufficient, it is necessary to add conditions
positivity and negativity on the second derivatives ofR and
G, respectively.

We leave the additional requirements on the second
rivatives for a later section, and restrict ourselves in t
section solely to determining the conditions for a station
point in R andG, which are as follows:@10#
]

]c
R~ t,c0,u0!5

]2f~ t,c0!

]c2 f ~ t,c0,u0!1
]f

]c

]

]c
f ~ t,c0,u0!2

]

]c
f 0~ t,c0,u0!1

]

]t

]f~ t,c0!

]c

5
]

]c
H~ t,c0,u0,x!1

]2f~ t,c0!

]c2 f ~ t,c0,u0!1
]

]t

]f~ t,c0!

]c

5
]

]c
H~ t,c0,u0,x!1S ]c

]t

]

]c
1

]

]t D ]f~ t,c0!

]c

5
]

]c
H~ t,c0,u0,x!1

dx

dt
50, ~17!

]G~ t,cT
0 ,u0!

]cT
5

]F~cT
0 ,u0!

]cT
1

]f~T,cT
0!

]cT
5

]F~cT
0 ,u0!

]cT
1xT50, ~18!
of
where@11#

x~ t !5
]

]c
f„t,c0~ t !…. ~19!
Equations~17! and ~18! can be restated as an equation
motion for the vectorx, and the definition ofH(t,c,u,p),
~8!, can be used to rewrite the equation of motion forc, ~1!
in the following compact form:
9-3
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ẋ52
]

]c
H~ t,c0,u0,x!

with boundary conditionsx~T!52
]F~cT

0 ,u0!

]cT
,

~20!

ċ5
]

]x
H~ t,c,u0,x! with boundary conditionsc~0!5c0 .

~21!

These equations constitute a so-called Hamiltonian sys
with a HamiltonianH(t,c,u,x), and the variablesc andx
are said to be conjugate. Equation~19! shows that the vari-
able x represents the functionf(t,c) to first order inc.
Equations~20! and ~21! give the prescription for construct
ing x(t).

Creating the conjugate variablex to fulfill the above re-
quirements enforces a stationary point inR and G with re-
spect toc. As explained above it is also necessary, in
general case, that the stationary point be an extremum
therefore that the second derivatives ofG andR, with respect
to c, are negative and positive, respectively. However,
problems linear inc it so happens that a stationary point
sufficient. This will be illustrated by a concrete example
the following section, after which we return to our main lin
of discussion completing the conditions for obtainingf(t,c)
in the general nonlinear case.

E. A linear problem and application to the linear Schrödinger
equation optimization

Consider a problem where the equations of motion
linear in the state variable,

ċ5a~u!c, F~cT!5bcT , f 05 f 0~u!. ~22!

We proceed to show that it is sufficient to choosef(t,c)
5x(t)c to achieve monotonic increase in the objective
each iteration. The Hamiltonian for this problem by the de
nition ~8! is H(t,c,u,x)5xa(u)c2 f 0(u), so we get by ap-
plying Eq. ~20!

ẋ52a~u0!x with boundary conditionsx~T!52b.
~23!

Using the above we find that

R~ t,c,u0!5xa~u0!c2 f 01
]x

]t
c5S xa~u0!1

]x

]t Dc2 f 0

52 f 0~u0!, ~24!

G~cT!5bcT1xTcT5~b1xT!cT50, ~25!

which are independent ofc. This implies that bothD1 and
D3 in Eqs. ~14! and ~16! vanish. By maximizingD2 @Eq.
~15!#, the objective is guaranteed to decrease at each it
tion. Note that in the linear case there is no need to check
second derivatives ofG andR since, asR is linear inc and
05361
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we set (]R/]c)uc050, R must be independent ofc. ~see
Fig. 1!. Therefore the controlu can be made to maximizeR
without the resulting change inc(t) having any effect on the
objective.

The above example encompasses the problem of opt
zation of a quantum-mechanical wave function governed
the linear Schro¨dinger equation

uċ&52 iĤ ~u!uc&. ~26!

Some care is necessary, however, if the objective takes
form F(cT)52^cTuPucT&, which is not strictly linear in
the state vector as in Eq.~22!. Another complication arises
from the fact that the state vectorc is an element of a com
plex Hilbert space. We therefore work this problem out
full, and show that nevertheless the above choice off is
sufficient in these problems just as in the linear example,
to the fact that the target projection operatorP is positive
definite @12,13#.

As above, we setf(t,c)5^xuc&1^cux& ~where we have
included the complex conjugate as an extra independent
variable!, and thus get for the Hamiltonian of the problem

H~ t,c,u,x!52 i ^xuĤuc&1 i ^cuĤ†ux&2l f 0~u!

52Im^xuĤ~u!uc&2l f 0~u!, ~27!

which using Eq.~20! yields for the conjugate vector

uẋ&52 iĤ †~u0!ux&

with boundary conditionsuxT&5PucT
0&. ~28!

Reinserting this equation and its complex conjugate into
formulas forR andG, we have

R~ t,c,u0!52 i ^xuĤ~u0!uc&1 i ^cuĤ†~u0!ux&2l f 0~u0!

1^ẋuc&1^cuẋ&

52l f 0~u0!, ~29!

G~cT!52^cTuPucT&1^xTucT&1^cTuxT&

52^cTuPucT&1^cT
0uPucT&1^cTuPucT

0&. ~30!

R is independent ofc as above, which guarantees thatD3 of
Eq. ~16! vanishes.G is dependent oncT ; however~denoting
Dc5c2c0) the positiveness ofD15^DcTuPuDcT& @Eq.
~14!# is always guaranteed due to the positiveness ofP. Al-
ternatively, note that the second derivative ofG,
]2G/]cT]cT* 52P,0 is always negative due to the pos
tiveness ofP, assuring that the condition for a maximum
G(c0) is automatically met@14#.

Another intricate point regarding these problems, which
often missed, is the following. In many problems in quantu
mechanics it so happens that the equations of motion
linear in the control variableu, namely the field. This mean
that strictly speaking there is no proper maximum in t
Hamiltonian of the control systemH(t,c,u,x) with respect
to u, and stage~2! of the algorithm@Eq. ~11!# cannot be
properly fulfilled. This problem is often overcome by addin
a penalty functionl f 0(u) quadratic inu to the objective as
9-4
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implicitly indicated above. The physical interpretation of th
construction is that placing a penalty on the fluence of
field constrains the algorithm to search out the optimaldirec-
tion of u rather than minimizing the objective by varying i
magnitude. The price paid by this solution, however, is t
the algorithm often exerts much effort into minimizing th
superficial penalty part of the objective at the expense of
really required terminal part.

An alternative way to overcome this problem is by not
ing that the algorithm does not really require that the Ham
tonian be maximized byu at each iteration. All that is really
required is that the Hamiltonian be increased by the n
choice ofu, which is enough to ensure thatD2 @Eq. ~10!#
be non-negative. The penalty function can therefore
dropped and at each iterationu should be increasedu
→ul21 ]H/]u, wherel21 is somemacroscopicconstant
which can be chosen arbitrarily@15#. This is not to be con-
fused, despite the formal similarity, with the gradient me
ods where the correction tou must always be small such tha
its effect on any change inc will remain in the linear regime.

F. Construction of f to second order inc

As noted above, for an equation of motion nonlinear
the state variable, it is necessary to fulfill conditions on
second derivatives ofR andG and thereforef must be cho-
sen to contain higher orders inc. We therefore take

f~ t,c!5x ic i1
1

2
Dc i* s i j ~ t !Dc j , ~31!

whereDc i5c i2c i
0 , and the functionss i j are to be deter-

mined such as to obtain the required extrema inR andG. The
conditions supplementary to Eqs.~17!–~18!, necessary for
fulfilling Eqs. ~9!–~10!, are the following system of differen
tial inequalities:

d2R5Dc i*
]2R~ t,c0,u0!

]c i* ]c j
Dc j , d2R>0, ~32!

d2G5DcTi*
]2G~cT

0!

]cTi* ]cT j

DcT j , d2G<0. ~33!

For the positivity and negativity of the quadratic formsd2R
andd2G, respectively, it suffices to set

]2

]c i* ]c j
R~ t,c0,u0!5H 0 for anyiÞ j

d i>0 for all i 5 j
, ~34!

]2

]cTi* ]cT j

G~cT
0!5H 0 for any iÞ j

2a i<0 for all i 5 j ,z,
~35!

wherea i andd i are some non-negative functions. Inserti
the full form of R andG into the above equations yields a s
of n(n11)/2 equations of motion for the functionss i j ,
wheren is the dimension of the state vector. This means t
the dimension of the system grows proportionately to
05361
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square ofn, and for largen the expense of solving this sys
tem normally becomes too high.

In Ref. @7#, it is proved that for certain classes of fun
tionals conditions~9!,~10! can be fulfilled by takingf ac-
cording to Eq.~31! with

s i j ~ t !5H a~eg(T2t)21!1b for i 5 j

0 for iÞ j ,
~36!

where a,b,0 and g.0. Taking b<2]2F(cT
0)/]cT* ]cT

always fulfills condition~35! and it can be shown that a
g,uau→`, for these classes of functionals, condition~34! is
also fulfilled. The strategy then is to begin withs50 and if
the objective does not decrease, take increasingly la
g,uau,ubu until a decrease in the objective is achieved.

III. APPLICATION TO THE NLSE

A. General formulation

We wish to apply this algorithm to optimizing a quantu
system governed by the nonlinear Schro¨dinger equation

uċ&52 iĤ NL~ ucu2!uc&52 i ~Ĥ1mucu2!uc&, ~37!

where Ĥ5K̂1V̂ is the usual linear Hamiltonian operato
consisting of kinetic and potential parts, andm is the coeffi-
cient of the additional nonlinear term. The objective is d
fined as for the linear case, as minimizing

J52^cTuP̂ucT&1lE dt f0~u!. ~38!

In realization of step 1 of the iterative method, we choo
f(t,c)5^xuc&1^cux&1 1

2 ^DcusuDc& and find the Hamil-
tonian of the system to be

H~ t,c,u,x!52 i ^xuĤNLuc&1 i ^cuĤNL
† ux&2l f 0~u!

52Im^xuĤNLuc&2l f 0~u!, ~39!

just as in the linear case. However it must be remembe
that hereĤNL depends onc andc* , and therefore using Eq
~20! yields for the conjugate vector

uẋ&52
]

]c*
H~ t,c0,u0,x!

5 im~c0!2ux* &2 i ~Ĥ†12muc0u2!ux&. ~40!

Note that this equation differs in two respects from its line
counterpart@Eq. 28#. First, it involvesuc0& which does not
cause special problems except that the vectoruc0& must be
stored and used in propagatingux&. The more cumbersome
9-5
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difficulty arises from the fact that the equation obtained is
longer linear inux&, but rather contains an extra term line
in ux* &(5^xu). Nevertheless the coupled equations

]

]t S ux&

ux* &
D 52 i H S K̂ 0

0 2K̂
D 1S a 2b

b* 2aD J S ux&

ux* &
D ,

~41!

where K̂52(\2/2m)(]2/]x2), a5V̂(x)12muc0u2, and b
5m(c0)2, or in matrix form
-

it

tio

e
nd
on
o

05361
o
xẆ 52 i ~K1V!xW ~42!

can be solved using the split operator method for separa
the treatment of the kinetic and potential parts of the Ham

tonian: xW (t1dt)5e2 iKdt/2e2 iVdte2 iKdt/2xW (t). The kinetic
evolution can be computed using the usual Fourier-transf
methods and the potential part can be evaluated by diago
ization to give
e2 iVdt5
1

D S ubu2

a2D
cos~Ddt !2aeiDdt ib sin~Ddt !

2 ib* sin~Ddt !
ubu2

a2D
cos~Ddt !2ae2 iDdt

D , ~43!

with D5Aa22ubu2. Finally, introducing the complex-conjugation operatorĈ and the Fourier-transform operatorẐ, this
procedure yields the following formula for the numerical propagation step:

ux~ t1dt !&5Ẑ†ei (\2k2/4m)dtẐH 1

D S ubu2

a2D
cos~Ddt !2a exp~ iDdt ! D1 i

b

D
sin~Ddt !ĈJ Ẑ†ei (\2k2/4m)dtẐux~ t !&. ~44!
tor
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Having obtainedux(t)& for all t, we now proceed to real
ize step~2! of the algorithm and, according to Eq.~11!, find
for each point in time a field that maximizes

HS t,c,u,
]f

]c D52Im^x1 1
2 sDc.Ĥ(u)uc&2l f 0~u!.

Or mathematically,

ũ~ t,c!5arg max
u

HS t,c,u,
]f

]c D . ~45!

Step~3! of the algorithm is fulfilled simultaneously with
step ~2!, by simultaneously propagatingu and c such that
each newu(t) is used directly in propagatingc(t)→c(t
1dt). For s, we use formula~36!, and according to the
algorithm described in the preceding section we begin w
s50 and increase the parametersg,uau,ubu until we achieve
decrease of objective.

B. Application to a concrete problem

We consider a one-dimensional~1D! BEC confined by a
harmonic trap and governed by the Gross-Pitaevskii equa

uċ&52 i ~K̂1V̂1NU0ucu2!uc&, ~46!

where K̂, V̂ are as above, andNU0 is the nonlinear atom-
atom interaction strength,N being the number of atoms. Th
BEC is initially in the ground state of the trap potential, a
is therefore stationary. An optical lattice is then switched
having the effect of separating the BEC wave packet int
h

n

,
a

series of localized pieces. The potential-energy opera
therefore takes the formV̂5Kx21S(t)V0cos2(kx), whereK
is the trap constant,k is the laser field wave number,V0 is
the lattice intensity, and the switching-on function of the fie
is denotedS(t). In applications to quantum computing, the
localized wave packets are to represent quantum bits. H
ever, due to the nonlinearity of the equations, the conden
develops a phase that varies from one lattice site to the o
~see Fig. 2!, which is undesirable for quantum computin
since these algorithms assume that there is zero rela
phase among the various single quantum bits. The proble
therefore to eliminate this phase profile by adjusting the t
strength during the switching on of the laser field. From t
OCT perspective, the trap constantK(t) is taken as the con
trol and the objective is to minimize the variance of t
phase of the wave packet,u(x), at some final timeT. The
phase being a multivalued function poses problems;
therefore consider, instead, minimizing the variance

cos(u)5 1
2 @(c1c* ) / ucu# such that the objective becomes

J5^cos2~uT!&2^cos~uT!&2

5^cucos2~uT!uc&2^cucos~uT!uc&2. ~47!

Using the first part of Eq.~20!, we get the equations of mo
tion for x as in Eq.~40!; and taking a derivative ofJ with
respect tocT* , we get@according to Eq.~20!#, the boundary
conditions

xT52
]J

]cT*
52Re@cT#1

1

2
ucTu^cos~uT!&S cT

cT*
13D .

~48!
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FIG. 2. Wave packet att50,
and t5T with no trap adjust-
ments.

FIG. 3. Objective decrease a
a function of iteration.
053619-7
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FIG. 4. Optimized trap
strength evolution~bottom! and fi-
nal wave packet att5T ~top!. The
flat phase is strikingly apparent.
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The Hamiltonian of the problem isH(t,c,K,x)5K(t)^x
1 1

2 s(Dc)ux2uc&, so that according to the above procedu
we improve K at each iteration by K→K1l21^x
1 1

2 s(Dc)ux2uc&.

C. Optimization results

Following Ref. @16#, we transform the NLSE to dimen
sionless units t85t/t0 and x85x/x0, where x05xTF

520.3mm andt05mx0
2/2\575 ms. The Thomas-Fermi ra

dius xTF5A2mTF /mv trap
2 gives the size of the condensat

and is defined through a chemical potentialmTF[\/tNL de-
termined by normalization of the wave function to unity. T
wave function too is scaledc→AxTFc, and in order to keep
the time scales of our 1D model comparable to the 3D re
ity, we adjustU→CU by a factorC5Ap/@G(211/2)#5 4

3

~Ref. @16#!. We take tNL596.2ms, optical wavelengthl
5589 nm, andV0510.94ER for the final field intensity. All
parameters were taken to resemble the experiments desc
in Ref. @16#. Performing these transformations, we end
finally with a dimensionless NLSE,

i uċ&5S 2
1

4

]2

]x2 1K~ t !x21S~ t !Vcos2~kx!1Uucu2D uc&,

~49!

where the trap constantK5v trap
2 t0

2 , the field intensityV
5V0t0 /\5232502, and the nonlinear coefficientU
5 4

3 mTFt0 /\51039, such that all space, time, and ene
quantities are now expressed in units ofx0 , t0, and \/t0,
respectively.

Initially, the wave packet is in an eigenstate of the pote
tial with trap constantK05779, and is therefore static. Th
05361
l-

ed

y

-

switching-on function plotted in Fig. 4 turns on the optic
potential at a quarter of the optimizing interval (T/4), and is
constant from there to the final time. With no adaption of t
trap constant, a phase develops across the wave functio
shown in Fig. 2. The optimization process decreases the
jective monotonically~as plotted in Fig. 3! and yields a strat-
egy of increasingDK(t)5K(t)2K0 to achieve a flat phase
at the final timeT51500ms. These striking results ar
shown in Fig. 4.

IV. CONCLUSIONS

Using a set of general methods developed by Krotov,
have extended the capabilities of the optimal control the
to the NLSE. Although the linearized version of the meth
is sufficient for the linear Schro¨dinger equation, the full flex-
ibility of the general method is required for a rigorous tre
ment of the nonlinear Schro¨dinger equation. Mention should
be made of the interesting recent work of Hornung and
Vivie-Riedle @17#, applying optimization techniques to mo
ecule formations in a BEC, although thef function in that
work included linear terms only. A parallel approach w
pursued by Po¨tting et al. @18# who used genetic algorithms t
control the momentum state of a BEC. The significance
this paper is twofold. First, both formal equations and a c
crete and efficient algorithm were presented for optimiz
the NLSE in cases where the nonlinear terms are signific
Second, the methodology was applied successfully to an
teresting physical problem confronting the use of trapp
BECs for quantum computing, namely, producing a const
final phase profile across the condensate after an optica
tice is turned on. Further work on understanding analytica
the mechanism found by OCT is still underway. We belie
the working equations developed here will have many m
9-8
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applications in systems governed by the NLSE, includ
both BECs and soliton fiber optics.
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