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Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control
theory to the nonlinear Schradinger equation
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Using a set of general methods developed by Krdtay 1. Konnov and V. A. Krotov, Automation and
Remote Control60, 1427 (1999], we extend the capabilities of optimal control theory to the nonlinear
Schralinger equatioffNLSE). The paper begins with a general review of the Krotov approach to optimization.
Although the linearized version of the method is sufficient for the linear Siihger equation, the full flex-
ibility of the general method is required for treatment of the nonlinear ‘Siohger equation. Formal equations
for the optimization of the NLSE, as well as a concrete algorithm are presented. As an illustration, we consider
a Bose-Einstein condensdfEC) initially at rest in a harmonic trap. A phase develops across the BEC when
an optical lattice potential is turned on. The goal is to counter this effect and keep the phase flat by adjusting
the trap strength. The problem is formulated in the language of optimal control tf@67) and solved using
the above methodology. To our knowledge, this is the first rigorous application of OCT to the nonlinear
Schralinger equation, a capability that is bound to have numerous other applications.
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I. INTRODUCTION Krotov method is reviewed. Its application to linear prob-
lems, in general, and the Schlinger equation, in particular,

In recent years much progress has been made in the use @fe discussed. Section Il deals with the application of OCT
optimal control theory (OCT), to coherently control to the NLSE problems and demonstrates this by solving the
quantum-mechanical systems governed by the Sthger ~BEC problem mentioned above. Finally, in Sec. 1V, we con-
equation. Such systems include controlled manipulations oflude and suggest further applications.
molecular wave packefd—3|, high harmonic generatidd],
and realization of quantum computing algorithfg$.

In this paper, the application of OCT is extended in a
systematic way to systems governed by the nonlinear 'Schro A. Description of problem

dinger equatiorNLSE), such as solitons in fiber optics and  consider a state of some system which can be defined by
Bose-Einstein condensat¢BEC’s) in atomic physics. We 4 yector of variablegs and which is controlled by a set of
begin with a general description of the Krotov iterative yariablesu, through the state equations of motion
method[6]. We describe first its application to quantum sys-
tems governed by the linear Schinger equation, and then {/;:f(lp,u)_ 1)
show how a generalized version of this metH@d can be
used to treat nonlinear problems. I _—
Finally, we consider a concrete problem governed by the-l.-he initial valu_e ofi, ¢(0):_¢°’ IS flxed_but evolves over
NLSE, namely a BEC evolving under the Gross-PitaevskiitIme to some flnal valugh(T) = i . T_he history of evol\_nng
. R state vectors is called the state trajectory, and the history of
equation. The use of a BEC as a realization of quantum : : . .
ST . . . control input is termed the control history or just the control
computing is widely being considered, as this is a macro 8]
scopic entity which nevertheless behaves quantum mecharLi- Given the trajectory)(t) and the controli(t), we define
cally. The fact that a BEC carries a definite phase that can bg “process"w= (¢(t),u(t)) as a pair of historie,s;f(t) u(t)
manipulated and controlled is a striking manifestation of thisSatisfying Eq.(1). Wé can now define the objecti\’/e func-
quality. For many computation applications, it is desirable t%ional on the process
split the BEC up into localized pieces each of which can then
be viewed as a quantum bit and manipulated as such. This is
achieved by the switching on of an optical lattice potential; To
however, the switching on of the optical lattice causes a J[w]=F(¢(T))+JOf (tg(t),u(t)dt, @
phase to accumulate across the BEC, which is undesirable
for use in computing applications. It is the cancellation of
this effect which is the goal of this model problem. where F((T)) and fO(t,y(t),u(t)) are general functions
The outline of the paper is as follows: In Sec. Il, the that represent the dependencelai the terminal and inter-
mediate time values aof, respectively. It is required to find
a processw for which the objective obtains its smallest
*Fax: 972-8-9344123 value.

II. KROTOV METHOD OF OPTIMIZATION
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B. Utility constructs and definitions

b d
R(t,,u)= — f(t,g,u)— fO(t,p,u) + PTG

For a continuously differentiable scalar functigit, ), Y
we define the following functional:

T The functionsR and G are designed to separate out the de-
LIw; ¢]=G(yr) - fo R(t,%(t),u(t))dt—é(0,0), (3)  pendence of[w;¢] on the final time and intermediate time,

respectively.
where It can be shown that for any functio#p and processv
= ((t),u(t)), L[w;p]=J[w]. The derivation goes as fol-
G(¢r)=F(¢r) + (T, 1), (4)  lows:
|
T (3¢ 0 9
L[w;$]=G(yr)~ f RCt (1), u(t)dt= G (0h0) = F (1) + &(T o) = J —g FL W =10t ,u)+ - dt— B(0.ko)
0 oY at
T de 9 J
=F(r)+ ¢(T,ihr) - JO [ﬁﬁ—‘@a—‘f—f%t,w,u)]dt— $(040)
Td¢ T T
=F )+ &(T ihr) - ad”f f°<t,¢/,u)dt—¢<o,wo>=F<¢T)+f Oty u)dt=J[w]. (6)
0 0 0
|
Obviously therefore, minimizind.[w; ¢] for any ¢ mini- (1) We first construct a functiogh(t, /) such thal.[w;¢]
mizes J[w], and minimizingL[w;¢] can be achieved by is a maximum with respect tg(t) at the pointw®. This is
separately minimizings (1) and maximizingR(t, ¢, u). equivalent to the following two conditions:
It is convenient for later reference to define the functibn 0 0 ] 0
through the following relation: R(t, ¢°(t),u (t))zmwlnR(t,w(t),U (1) C)
aop(t, J
R(t,w,u>zH<t,w,u, d’;w“’)) oo, @ G(y) =maG (i), (10

¥
where where the functiond®k and G are calculated using the new
0 ¢(t,4). In other words, we chooseé(t,y) such that our
H(t,¢,u,p)=pf(t, ¢, u) — F5(t, 4,u). @) currenty?(t) will be the worst of all possibles(t)’s in mini-
) mizing the objectiveL[w; ¢]=J[w] (maximizing R, mini-
Npte the extra parameter i denoted byp, wh|c.h empha- mizing G). Any change iny brought about by a new choice
sizes thaty and d¢/dy should be treated as independentqf (t) will now only improve the minimization o[ w] [see

variables, with respect thl. Fig. 1].
(2) For ¢(t,y(t)), we find a control(t) that maximizes
C. An iterative algorithm H(t,¢,u,(d¢/dy)) and denote it by

We now return to our main goal and describe the Krotov

iterative method for finding a sequence of processes, A

which monotonically decrease the value of the objective Rew)
Jlw] [6,9]. The central idea is that as we have complete

freedom in choosing the potential(,t), we can construct

¢ such that our current estimate of the state history will —_—

maximize I[Lw; ¢], and so become the worst of all possible
histories. We are then free to find a new estimate for the /3 T
controlu(t), which will minimize L[ w; ¢] with respect to its ‘

explicit dependence ou(t), without worrying about the ef-

fect of u(t) onL[w;¢] through the change af(t), as that >

can only be improved. % ¥

We begin by taking an arbitrary control histanj(t) and FIG. 1. Sketch of variouR() determined by different choices
the corresponding state trajectof§l(t), which constitute to-  of ¢(t,). The construction of(t,) is the one that minimizes
gether a process®. R(¥) at =, i.e., is the worsR at the currenty,.
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~ J
u(t,y)= 032)

arg ma>H

t,¥,u,

=arg maR(t,#,u).

u

(11)

Note that the controli(t,) is still a function of . This
freedom will be removed in the next step.

(3) We require thatl(t,s) and ¢(t) be consistent with

each other through the equations of motion. The equation of

motion (1) (with its initial conditions together with the

equation for the controi=u(t,) (11), provide two equa-
tions for the two unknownsa and . These equations may be
solved self-consistently fou and ¢(t), obtaining the new
processw= (U, ).

(4) It is now guaranteed that minimization of the objective

has been improved so thaftw]<J[w°]; this completes the
current iteration. The new becomes a starting point for the
next iteration,w—w?®, and operations 1-3 can now be re-
peated to achieve further decrease in the objective.

We proceed to prove that indeed the ndiw]<J[w°].
First, we assert using E¢6) that

W= Iw]=L[w; ¢]—L[w; B]. 12

Also,

i
LEwO; 61 LTw; 61=G(u) - 6w + | (R u0,u(t)

—R(t, $°(t),u’(t))}dt

PHYSICAL REVIEW A6, 053619 (2002

where

A=G(49)—G(¢7), (14)

-
Ax= fo {R(, #(1),u(t))—R(t, (ﬂ(t),uo(t))}dt’ (15)

.
A3:Jo{R(t"ﬂ(t)*uo(t))—R(t:lﬁo(t),uo(t)}dt. (16)

The non-negativeness df; and A follow from conditions
(9) and (10), respectively, and by Eql1) the choice of a
new control ensures the non-negativenesa af This com-
pletes the proof.

D. Construction of ¢ to first order in i

In implementing the above iterative method the main dif-
ficulty lies in step(1). Here it is necessary to determine a
function ¢(t,#) that, by conditiong9) and(10), will ensure
the absolute maximum and minimum of the functiéhand
G, respectively, on the trajectory(t), i.e., to choose
¢(t,4) to give the worst possiblé[¢q;#]. A necessary
condition for an extremum dR andG atw®= (°,u°) is the
existence of a stationary point there, but in order to make the
conditions sufficient, it is necessary to add conditions of
positivity and negativity on the second derivativesRoand
G, respectively.

We leave the additional requirements on the second de-
rivatives for a later section, and restrict ourselves in this
section solely to determining the conditions for a stationary

=A;+A,+Ag, (13 point in R and G, which are as followsf10]
|
52 0 0
I“P(t,¢) g 9 I, 47)
0,0 0,0 0,0 o 0,0
wR(tlﬁ )= EwR ——f(t,4",u H&z//ow;f(t(’/’ %) = —f5(t g7, u )+ T
P P(t,y°) a¢(t ¢°)
_7 0 40, 0,0
= (ij(t Wou HTW )+ T
W g a¢(t,¢f°>
0,0
(wH(t O Tyt at) oy
X
¢H<t W0+ =0, (17)
G(tye u0) IF(yr.U0) dp(Tyh) aF(ygu®
S T T A (18
|
where[11] Equations(17) and (18) can be restated as an equation of

motion for the vectory, and the definition oH(t,,u,p),
Y(t)= —d)(t 2o(1)). (19) (8), can be used to rewrite the equation of motion for(1)

in the following compact form:
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. d 0.0 we set (9R/z91ﬂ)|¢o=0, R must be independent af. (see
X== I/,H(t"p U x) Fig. 1). Therefore the contral can be made to maximize
without the resulting change if(t) having any effect on the
, » IF (Y9 ,u°) objective.
with boundary conditiong(T) = — ~op The above example encompasses the problem of optimi-

zation of a quantum-mechanical wave function governed by
(20)  the linear Schirdinger equation

[y=—iH(u)| ). (26)

J
y= &—H(t,w,uo,)() with boundary conditionsy(0) = . _ _ o
X 21 Some care is necessary, however, if the objective takes the

@) form F(¢r)=— (4| P|ir), which is not strictly linear in

These equations constitute a so-called Hamiltonian systefi€ State vector as in E¢22). Another complication arises
with a HamiltonianH (t, #,u, y), and the variabless and y from the fact that the state vectgris an element of a com-

. : : : lex Hilbert space. We therefore work this problem out in
are said to be conjugate. Equatiti®) shows that the vari- P . .
able y represents the functior(t,y) to first order in . full, and show that nevertheless the above choicepof

. : o sufficient in these problems just as in the linear example, due
Equations(20) and (21) give the prescription for construct- to the fact that the target projection operaB®lis positive

ing x(1). definite[12,1
Creating the conjugate variabjeto fulfill the above re- ’IA\SI aigov'e %\',e seb(t, ) = (x| ¥)+ (| x) (Where we have
quirements enforces a stationary pointRrand G with re- j,,qed the complex conjugate as an extra independent state

spect toy. As explained above it is also necessary, in thearjaplg, and thus get for the Hamiltonian of the problem
general case, that the stationary point be an extremum and

therefore that the second derivatives®andR, with respect H(t,,u,x)= —i<X||:||l/f>+ i(z/;|F|T|X)— A O(u)
to ¢, are negative and positive, respectively. However, for A
problems linear iny it so happens that a stationary point is =2Im{ x|H(u)| ) — N fO(u), (27

sufficient. This will be illustrated by a concrete example in
the following section, after which we return to our main line
of discussion completing the conditions for obtainih(t, i) N it

. . [x)=—iH"(u")[x)
in the general nonlinear case.

which using Eq.(20) yields for the conjugate vector

with boundary conditiong x1)=P|#%). (28
E. A linear problem and application to the linear Schrodinger ] ] . ) ) . ]
equation optimization Reinserting this equation and its complex conjugate into the

. . . formulas forR and G, we have
Consider a problem where the equations of motion are

linear in the state variable, R(t,4,u%) = —i (x|AUO)|4)+i (| AT(UO)|x)— N fO(uO)
y=a(u)y, F(yp)=byr, °:=u). (22 +(xl) + (vl x)

We proceed to show that it is sufficient to choogét, ) = -\ ), (29

= x(t) ¢ to achieve monotonic increase in the objective at

each iteration. The Hamiltonian for this problem by the defi- G(yr) =~ (gl Plyrr) + xrlyrm) + (el x)

e B gy 0TI, so we getby ap = (el Plr) +(W8IPlu) + (il PlUS). (30
) R is independent ofy as above, which guarantees that of
x=—a(u®)y with boundary conditionsy(T)= —b. Eq. (16) vanishesG is dependent oirr; however(denoting

(23)  Ay=y—y°) the positiveness of\,=(Ayq|P|Ayr) [EQ.

(14)] is always guaranteed due to the positivenesB.oAl-

Using the above we find that ternatively, note that the second derivative g,

oy ax QZG/0¢T0¢$: —P{O is always nege_ltive due to the posi-
R(t,,u®) = ya(u®) y— %+ = y=| ya(u®)+ = | y—f° tiveness ofP, assuring that the condition for a maximum of
o o G(y) is automatically mef14].
=—f9u9), (24) Another intricate point regarding these problems, which is
often missed, is the following. In many problems in quantum
G(r)=bir+ x1vr=(b+ x1) ¥7=0, (25) mechanics it so happens that the equations of motion are

linear in the control variable, namely the field. This means
which are independent af. This implies that both\; and  that strictly speaking there is no proper maximum in the
Aj in Egs. (14) and (16) vanish. By maximizingA, [Eq.  Hamiltonian of the control systemd (t,,u, x) with respect
(15)], the objective is guaranteed to decrease at each iterée u, and stage(2) of the algorithm[Eq. (11)] cannot be
tion. Note that in the linear case there is no need to check theroperly fulfilled. This problem is often overcome by adding
second derivatives d andR since, aR is linear ing and  a penalty functiom\ f°(u) quadratic inu to the objective as
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implicitly indicated above. The physical interpretation of this square ofn, and for largen the expense of solving this sys-

construction is that placing a penalty on the fluence of théem normally becomes too high.

field constrains the algorithm to search out the optidiadc- In Ref. [7], it is proved that for certain classes of func-

tion of u rather than minimizing the objective by varying its tionals conditions(9),(10) can be fulfilled by takings ac-

magnitude. The price paid by this solution, however, is thatording to Eq.(31) with

the algorithm often exerts much effort into minimizing the

superficial penalty part of the objective at the expense of the

really required terminal part. Uij(t):(
An alternative way to overcome this problem is by notic-

ing that the algorithm does not really require that the Hamil-

tonian be maximized by at each iteration. All that is really where a,3<0 and y>0. Taking ﬁs—aZFw?)/m//#wT

rquired Is tha'.c th? Hamiltonian be increased by the neV‘éllways fulfills condition(35) and it can be shown that as
choice ofu, which is enough to ensure thay, [Eq. (10)] ,|a|—c, for these classes of functionals, conditi@4) is
be non-negative. The penalty function can therefore b%Iso fulfilled. The strategy then is to begin with=0 and if

drop;\p_eld &g?g at ﬁaCh}\'_t?r."’lt'm should be mcreas:zdxt the objective does not decrease, take increasingly larger
—u u, where IS somemacroscopicconstant 1 ) 1 g1 yntil a decrease in the objective is achieved.

which can be chosen arbitrari[yL5]. This is not to be con-

fused, despite the formal similarity, with the gradient meth-
ods where the correction tomust always be small such that 1. APPLICATION TO THE NLSE
its effect on any change i# will remain in the linear regime.

a(eTV-1)+8 fori=j

0 fori#j, (36

A. General formulation

F. Construction of ¢ to second order in g We wish to apply this algorithm to optimizing a quantum

. . . __system governed by the nonlinear Salingier equation
As noted above, for an equation of motion nonlinear in 4 g y 3 a

the state variable, it is necessary to fulfill conditions on the N il 2 —_i(p 2

second derivatives d® andG and thereforep must be cho- ) (519 {(H+ulyle, @D
sen to contain higher orders in We therefore take o

where H=K+V is the usual linear Hamiltonian operator
consisting of kinetic and potential parts, ands the coeffi-
cient of the additional nonlinear term. The objective is de-
fined as for the linear case, as minimizing

1
¢(ta<//):)(i¢fi+EAlﬂi*Uij(t)Al/fj, (31

whereA = i — :pio, and the functionsr;; are to be deter-
mined such as to obtain the required extremR andG. The R
conditions supplementary to Eg&l7)—(18), necessary for J= —(1//T|P|¢//T>+Af dtfo(u). (38
fulfilling Egs. (9)—(10), are the following system of differen-
tial inequalities:
, - In realization of step 1 ?f the iterative method, we choose
I°R(t, 4" ,u”) d(t, ) ={x|¥)+{Y|x)+3(A¢|a|Ay) and find the Hamil-
d’R=Ayf Wmﬂi . d’R=0, (32  {gpjan of<th|e >sysfteln >to bé o8

I*G(49) H(t,,u,x)=—i(x|A +i(y| Al x)— N fO(u
PG Ay T Mgy, d2G=0. 33 (tu,x (xIHNL )+ H LX) (u)
Hniodm =2Im(x| A )~ 1 o), (39
For the positivity and negativity of the quadratic form&R
andd?G, respectively, it suffices to set just as in the linear case. However it must be remembered
that hereHy, depends ony andy*, and therefore using Eq.
92 0 for anyi # (20) yields for the conjugate vector
0,0
< R(t,y",u°) = L, (34
YT 6;=0 foralli=j
L Ix)=— aH(t %,u®,x)
& o |0 for any i# A U X
— - Glp)=) _ _ . (35
YT a;<0 foralli=j,z,

=ip(PO)x*)—i(AT+2u4%?)|x). (40

where a; and §; are some non-negative functions. Inserting

the full form of R andG into the above equations yields a set Note that this equation differs in two respects from its linear
of n(n+1)/2 equations of motion for the functions;;, counterpar{Eq. 28. First, it involves|¢°) which does not
wheren is the dimension of the state vector. This means thatause special problems except that the veptdy must be
the dimension of the system grows proportionately to thestored and used in propagatihg). The more cumbersome
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difficulty arises from the fact that the equation obtained is no

/ : . . '_>: . 4 -
longer linear in|x), but rather contains an extra term linear X H(K+V)x (42
in |x*)(=(x|). Nevertheless the coupled equations
a 1x) . K O a -b [x) can be solved using the split operator method for separating
It *) =-l 0 Kk + b* —a Ix*))” the treatment of the kinetic and potential parts of the Hamil-

(47  tonian: x(t+ 5t)=e KM2g=Vatg=iKat2y () - The kinetic
R R evolution can be computed using the usual Fourier-transform
where K= — (22/2m)(6%/9x?), a=V(x)+2u|y°|?, andb  methods and the potential part can be evaluated by diagonal-

= u(¥°)?, or in matrix form ization to give
bf? A
1 a_Dcos{Dﬁt)—ae' ib sin(D 6t)
—ivet_ —
e =D o Ib|2 _ , (43
—ib*sin(D ét) cogDét)—ae P

a—-D

with D=\/az—|b|2. Finally, introducing the complex-conjugation operafrand the Fourier-transform operat this
procedure yields the following formula for the numerical propagation step:
Ll§

a—D

cogDdt)—aexpiD ét)

g NE!
|x(t+ )= ZTe'(ﬁzkz"‘m)ﬁ‘z[E(

b R .
+iSsin(Dat)c]zTe'<ﬁ2k2/4m>ﬂz|X(t)>. (44)

Having obtained x(t)) for all t, we now proceed to real- series of localized pieces. The potential-energy operator
ize step(2) of the algorithm and, according to E@L), find  therefore takes the forid=Kx2+ S(t)Voco(kx), whereK

for each point in time a field that maximizes is the trap constank is the laser field wave numbev,, is
” the lattice intensity, and the switching-on function of the field
Hltyu, — | =2Im(x+ & oA z//.I:I(u)|z//>—)\f°(u). is denotedS(t). In applications to quantum computing, these
Y localized wave packets are to represent quantum bits. How-

ever, due to the nonlinearity of the equations, the condensate

Or mathematically, develops a phase that varies from one lattice site to the other

9 (see Fig. 2 which is undesirable for quantum computing,
U(t, ) = arg mat t,w,u.—). (45  since these algorithms assume that there is zero relative
u P phase among the various single quantum bits. The problem is

therefore to eliminate this phase profile by adjusting the trap
Step(3) of the algorithm is fulfilled simultaneously with strength during the switching on of the laser field. From the
step (2), by simultaneously propagating and ¢ such that OCT perspective, the trap constaftt) is taken as the con-
each newu(t) is used directly in propagating(t) — (t trol and the objective is to minimize the variance of the
+6t). For o, we use formula(36), and according to the phase of the wave packef(x), at some final timeT. The
algorithm described in the preceding section we begin witlphase being a multivalued function poses problems; we
o=0 and increase the parameter$a|,| 8| until we achieve therefore consider, instead, minimizing the variance of

decrease of objective. cos@)= 1 [(¢+¢*)/|¢{] such that the objective becomes
B. Application to a concrete problem J=(cog(6))—(cog b7))?
We consider a one-dimensiondlD) BEC confined by a =(|cog(67)| ) — (|cog 67)| )2 (47)

harmonic trap and governed by the Gross-Pitaevskii equation
_ o Using the first part of Eq(20), we get the equations of mo-
|ih)y=—i(K+V+NUg|¢]?)| ), (46)  tion for y as in Eq.(40); and taking a derivative od with
respect to)s , we get[according to Eq(20)], the boundary
whereK, V are as above, andUj is the nonlinear atom- conditions
atom interaction strengtiN being the number of atoms. The 23 . ’
BEC is initially in the ground state of the trap potential, and _ = vT
is therefore stationary. An optical lattice is then switched on, X7~ gy% — ReLyr]+ 5] Wrl(cos o)) o *3
having the effect of separating the BEC wave packet into a (48
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FIG. 2. Wave packet at=0,
and t=T with no trap adjust-
ments.

FIG. 3. Objective decrease as
a function of iteration.
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Optimized final wave function and phase
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The Hamiltonian of the problem i#i(t,#,K,x)=K(t){x

switching-on function plotted in Fig. 4 turns on the optical

+30(Ay)|x?| ), so that according to the above procedurepotential at a quarter of the optimizing interval/¢), and is

we improve K at each iteration byK—K+\"1(y
+ 3 a(Ay)X%]y).

C. Optimization results

Following Ref.[16], we transform the NLSE to dimen-
sionless unitst’'=t/ty and X'=Xx/xgy, where Xqo=Xtg
=20.3 um andty,=m>x3/2% =75 ms. The Thomas-Fermi ra-

dius Xqg= \/Z,uT,:/mwtzrap gives the size of the condensate,
and is defined through a chemical potengigl-=7%/ty, de-

termined by normalization of the wave function to unity. The

wave function too is scale¢t— xrg#, and in order to keep

constant from there to the final time. With no adaption of the
trap constant, a phase develops across the wave function, as
shown in Fig. 2. The optimization process decreases the ob-
jective monotonicallyas plotted in Fig. Band yields a strat-

egy of increasingAK(t) =K(t) —Kq to achieve a flat phase

at the final timeT=1500us. These striking results are
shown in Fig. 4.

IV. CONCLUSIONS

Using a set of general methods developed by Krotov, we
have extended the capabilities of the optimal control theory

the time scales of our 1D model comparable to the 3D realto the NLSE. Although the linearized version of the method

ity, we adjustU—CU by a factorC= Ja/[T(2+1/2)]=4%
(Ref. [16]). We takety, =96.2 us, optical wavelength\
=589 nm, andvVy=10.94%, for the final field intensity. All

is sufficient for the linear Schdinger equation, the full flex-
ibility of the general method is required for a rigorous treat-
ment of the nonlinear Schdinger equation. Mention should

parameters were taken to resemble the experiments describe@ made of the interesting recent work of Hornung and de
in Ref. [16]. Performing these transformations, we end upVivie-Riedle[17], applying optimization techniques to mol-

finally with a dimensionless NLSE,

. 1 52 2 2
i[)=| = 7 522+ KOX+S()VeoS (kx) + U] g2 | |),

(49

where the trap constart = wf,t5, the field intensityV
=Voto/h=2x250, and the nonlinear coefficientU

ecule formations in a BEC, although tlge function in that
work included linear terms only. A parallel approach was
pursued by Piing et al.[18] who used genetic algorithms to
control the momentum state of a BEC. The significance of
this paper is twofold. First, both formal equations and a con-
crete and efficient algorithm were presented for optimizing
the NLSE in cases where the nonlinear terms are significant.
Second, the methodology was applied successfully to an in-
teresting physical problem confronting the use of trapped

=3 uteto/A=1039, such that all space, time, and energyBECs for quantum computing, namely, producing a constant

guantities are now expressed in unitsxgf, ty, andf/tg,
respectively.

final phase profile across the condensate after an optical lat-
tice is turned on. Further work on understanding analytically

Initially, the wave packet is in an eigenstate of the potenthe mechanism found by OCT is still underway. We believe

tial with trap constanK,=779, and is therefore static. The

the working equations developed here will have many more
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