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Axisymmetric versus nonaxisymmetric vortices in spinor Bose-Einstein condensates
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The structure and stability of various vorticeshr=1 spinor Bose-Einstein condensates are investigated by
solving the extended Gross-Pitaevskii equation under rotation. We perform an extensive search for stable
vortices, considering both axisymmetric and nonaxisymmetric vortices and covering a wide range of ferro-
magnetic and antiferromagnetic interactions. The topological defect called the Mermimvhtierson-
Toulouseg vortex is shown to be stable for the ferromagnetic case. The phase diagram is established in a plane
of external rotatior() versus total magnetizatiod by comparing the free energies of possible vortices. It is
shown that there are qualitative differences between axisymmetric and nonaxisymmetric vortices which are
manifested in th&) andM dependences.
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[. INTRODUCTION Mermin-Ho vortex may be favored in the ferromagnetic
BEC[18,19.

The experimental achievement of Bose-Einstein conden- Similar topological structures, called skyrmions in gen-
sation(BEC) in trapped atomic cloudgl—3] has opened up eral, have been proposed in the spinor BEC. Al Khawaja and
a novel field to investigate fundamental problems such as thgtoof [20] studied a skyrmion in th&=1 ferromagnetic
relationship between the superfluidity and BEC. Owing toBEC and concluded that it is not a thermodynamically stable
recent advances of experimental techniques, several groupgject without rotation. By considering the effect of the ex-
have succeeded in creating quantized vortices with variougernal rotation, however, we have shown recefifl§] that
procedures in the magnetically trapped BEG-9], where  this topological defect can be stable. Ingenious proposals
the condensate is described by a scalar order parameter. Fiave been madg22—25 on how to create it and detect it.
thermore, the atomic gases with the hyperfine sbinl  Yip [26] has performed a systematic study on vortex struc-
called “spinor BEC" have been Bose-condensed via opticakures and presented several axisymmetric and nonaxisym-
methods[11,10 which can keep the atomic “spin” states metric vortices forF=1 antiferromagnetic BEC. Recently,
degenerate and active. As shown recently by Klausteal.  |soshimaet al. [27,2§ have carried out an extensive study of
[12], the spin-dependent interaction of tWBRb atoms is  axisymmetric vortices to provide a vortex phase diagram in a
ferromagnetic. Thus, we now have spinor BEC’s with bothplane of the rotation and the magnetization for both the an-
antiferromagnetic ©Na) [11] and ferromagnetic interac- tiferromagnetic and ferromagnetic cases.
tions. In this paper, we examine the stability of various vortices

Such scalar and spinor BEC'’s are analogous to superfluigbr both theF =1 antiferromagnetic and ferromagnetic BEC
*He and “He. These superfluid heliums, however, havetrapped in a two-dimensional harmonic potential. We have
rather strong interactions. Indeed, the condensate fraction iemoved the previously imposed restriction in the axisym-
superfluid*He is only 10% of the total. By contrast, BEC of metric case that winding numbers be less than or equal to
the atomic gases have advantages for both theoretical anghity. The continuous vortices such as the Mermin-Ho vortex
experimental treatments due to their weak interactions; hergill also be shown to be favored over the singular ones
almost all the atoms are able to be Bose-condensed. It {27,28 and the other nonaxisymmetric ongs]. We dem-
possible to directly observe dynamical behaviors of the conenstrate the stability of such vortices and discuss differences
densate with optical methods, providing us an opportunity tetween the axisymmetric and nonaxisymmetric configura-
quantitatively investigate the new quantum fl{ii8]. tions. We also determine the vortex phase diagrams for the

The standard Hamiltonian for the spinor BEC has beemntiferromagnetic and ferromagnetic cases. By comparing
introduced by Ohmi and Machidgl4] and Ho[15], who the relative free energies of the possible vortex configura-
pointed out the richness of the exotic topological defectstions and the phase-separated state which may occur in the
Topological structures, such as skyrmions, merons, thésrromagnetic situation, the validity of assuming uniformity
Mermin-Ho (Anderson-Toulousetexture, and monopoles, along thez direction will be checked.
play an important role in various fields of physics. They This paper is organized as follows. In Sec. I, we first
provide a common framework to connect diverse fieldspresent the extended Gross-Pitaevskii equation for the spinor
thereby enhancing mutual understandjtg,17. In particu- BEC, and then explain the numerical procedure to find local
lar, sinceF =1 ferromagnetic BEC can be described by orderminima of the energy functional. Section Il enumerates pos-
parameters similar to the superfluitHe-A, the coreless sible vortices for axisymmetric and nonaxisymmetric cases,

and then discusses the stability of the Mermin-Ho vortex.
Section IV presents the phase diagram for the ferromagnetic
*Electronic address: mizushima@mp.okayama-u.ac.jp and antiferromagnetic cases in the plane of external rotation
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() versus total magnetizatiok obtained by comparing the /0 =1 0
free energies. Here, the qualitative differences between the = 11 0 -1
axisymmetric and nonaxisymmetric vortices are discussed by y V2 ’
showing the() and M dependence. The final section is de- 0 1 0
voted to conclusions and discussions. 10 0
Il. THEORETICAL FORMULATION F=|0 0 0. )
0 0 -1

A. Extended Gross-Pitaevskii equation

We consider Bose-condensEe: 1 spinor BEC's with in- Following the standard procedure, the extended Gross-
ternal degrees of freedom for both the ferromagnetic anditaevskii(GP) equation in the rotation frame is obtained as
antiferromagnetic cases. Here the order parameters are char-

acterized by the hyperfine sublevelg=1,0—1. We start Hh(r)—uﬁgnE "Jﬂ 2] 5
with the standard Hamiltonian by Ohmi and Machidaf] [ .
and Ho[15],

A i +0s>, % {(F)ij(F )t i}
H,otzﬂ—f drQ- > wl(rxp)w;, “

i

A On
— T — S+ 2D ARV AR\ R\
H_f dr[%} With(n) = W6 + 2 %: Y These coupled equations for tth condensate wave func-
tion ¢;=(¥;) (J=0,+1) are used to calculate various prop-

n 9s S S W E) (B W, W (1) erties of vortices in the following. Here we take the external
i B A rotation asQ=Qz and assume uniformity along tzedirec-
tion.
Here
B. Numerical procedure
h(r)=— 12v? V(1) @) The stationary states of the extended GP equation are de-
2m fined as local minima of the energy functional
isl a one2-b<)2dy , Hamiltonian. The _ quantityV(r) . E[lﬁi,lﬁi*]:f dr z Ei(r)+Eyr)|—u'M—Q-L,
=s;m(27v,)°(x"+y) is the external confinement potential [
such as an optical potential. The scattering lengthanda, )
characterize collisions between atoms through the total Spi\r/]vhereE andE. are defined b
0 and 2 channels, respectively, ! s y
g
4mh? ay+2a, Ei(r)ZIﬁ?[h(r)_MﬂL?n; i z]lﬂi, (6)
gn_ m 3
9s . 2
— *
is the interaction strength through the “density” channel, and Es(r)= 2 za: (; [‘/’k(Fa)kl'/’l]] ' @
Amh? a,—ag Q-L denotes
gS: m 3
Q-L:—ihQJdrE P xi—yi i ®
T T\ Tay Tox) TV

is that through the “spin” channel. The subscripts
=(xy,2) andi,j,k|=(0x1) correspond to the above andM = [drZ;i|;(r)|? is the total magnetization.
three Species. The chgmlcal potentials for the thrge COMPO~ The numerical algorithm used to minimize the energy
gents,ul (i :0'(;: 1?_Sat'5fy'“1_#°:'“07“*1' We intro- — ¢nctional in a scalar BEG29-32 can be extended to the
uceu=po andu’=py~ po. The angular momentum op- esent system. Following this procedure, the inigiabiven
eratorsk ,(a=X,y,z) can be expressed in matrices as randomly is modified using the local gradient of the energy
functional E[ ¢, ] as

SE[ i, f
' tﬂj(T-I-AT):(ﬂj(T)—MAT. 9

0 1
F=—|1 0 :
0 1 oY

O = O
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This equation means that the order parametgrs param-  We then define a couple of real vectors as
etrized by a “fictitious time” r, roll along the slope of the

energy functional. Equatiof®) is rewritten as m=(my,my,mM,) =Re( iy, by, 1), (17)
. N=(Nyx,Ny,N) =IM(thy, by, ). (18
—hd.py(7)= |h(f)—[M(T)+M 14902 | v 2]5jk e e
k Thel vector, which points in the direction of the local mag-
Js R ) netization, is defined ab=mXn. The corresponding unit
+> % [IEp [W(Fa)m‘ﬂp](':a)jk] vector is denoted by.
J
L0 e —y— 5jk (7). (10) C. Calculated system
ay ~ oX The actual calculations are carried out by discretizing the

two-dimensional space into a 861 mesh. We have per-
formed an extensive search to find stable vortices, starting
with various vortex configurations, covering a wide range of
the ferromagnetic and the antiferromagnetic interaction
strengthgs/g,= —0.2~0.2, and examining various axisym-
sz f dr|¢j(r)|2. (11 metric and nonaxisymmetric vortices. See R¢RY,28 for
! the classification of possible vortices in the axisymmetric
case. We use the following parameters: the mass Rb
atom m=1.44x10 kg, the trapping frequencyw,
=200 Hz, and the particle number per unit length along the
z axis n,=2.0x 10* um. The results displayed here are for

This is the Gross-Pitaevskii equation for imaginary times
=it. In each time stepy(7) is adjusted to preserve the total
number of particles in the system,

For 7—c, 4; converges to the stationary state, correspond
ing to one of the local minima of the energy functiort).
For 7=, ¢; satisfies

SE[ i ,*] 0s/9,= —0.02 (ferromagnetic cageand gs/g,=0.02 (anti-
A |, =0, (12)  ferromagnetic cage The external rotation frequencf is
51/’,* normalized by the harmonic trap frequency.
322 (Ii;q.(lO) becomes equivalent to the extended GP equa- Ill. VORTEX STRUCTURE
We take the initial state of each component as The vortex configurations are characterized by the combi-
. nation of the winding numbew; of ¢; (j=0,=1) denoted
i(r,7=0)=nte(r) n; expiS;(r) ], (13 by (w;,wp,w_,), wherew; denotes the phase change by

. ) N . 2mw; when the wave function goes around the phase singu-
wheren+g(r) is the density profile within the Thomas-Fermi larity.

(TF) approximation, The spin term(7) of the total energy is rewritten as

=V
9
g, orgs=0. Ed(1)= 2 I0%(0) = 2050 g o () = g(N)], (19
Nre(r) = - (14
07 0e for gs<0, wheren(r)==,|¢;(r)|? is the total density. The spin texture
n S

in the ground state without rotation is determined by this

and 7; represents the ratio of each component. The phase R€rgy. By minimizing Eq19), the relative phases; are
given by shown to satisfy

2ap=a+a_,+nm, 20
S(N=2> wel+a;, (15) o E T 29
k wheren is an integer, and the oddven n corresponds to the

Wj(k) is the winding number of thith condensateefk) is the antiferromagneti¢ferromagneti¢ situation[27].

polar angle of the coordinate{”,y(¥) whose origin is lo-

cated at thekth vortex core, andy; is the relative phase

between the three components. It also follows from Eq.(19) that {w,,wqy,w_,) of axi-
It is convenient to describe the condensates in terms of theymmetric vortices satisfies

three componentd (@ =X,y,z) where the quantization axis

A. Axisymmetric vortex

is taken along thex direction, 2Wo=Wy+W_q. (21
(1) -1 0 1 (1) Thus, possible candidates for the stable state are the nonvor-
S0 - tex state(0,0,0) and the vortex configurationg1,0,—1),
Py(n) | = 7 o(r) . (16) (1,x,0), (0,x,1), and(1,1,1), which exhaust all the com-
P,(1) 0 \/E 0 W_q(r). binations of the winding numbers less than or equal to unity.
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FIG. 1. Properties of thé0,1,2) vortex at{)=0.35 andM/N
=0.21.(a) Density profile;(b) I, andl, ; (c) density map of,. The
bold line in (a) denotes the total density(r) and the thin lines
show the density of each componéu|?.
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FIG. 2. Spatial dependence of thecomponent along the radial
direction atM/N=0, 0.46, and()=0.37. The dashed line shows
cos3(r) with the bending angl@(r) = #r/R (R=2.85 um) for the
AT vortex.

+sinB(cosgx+singy) where 8 varies from B(0)=0 to
B(R)=m/2 (=) for MH [Anderson-Toulous€AT)] (R is

the outer boundary of the cloudThus the spin moment is
flared out to the radial direction and at the circumference it
points outward for MH and downwards for Afor the sche-
matic I-vector structure, see Fig. 18 in R¢R3]).

In Fig. 2, we show the spatial dependence ofltheom-
ponent along the radial direction, namely the spatial depen-
dence of the bending angg(r) for the MH vortex. As the
magnetizationM decreases, the local magnetization in the
condensate surface changes from positive to negative passing
through zero. This means that theector in this vortex flares

The thermodynamic stability of these vortices is demon-out radially to orient almost horizontallg(r = R) = =/2 for

strated in Ref[28]. Here we concentrate on the possibility of
combinations with higher winding numbers, which will be
shown to be stable only in the ferromagnetic case.

Figure 1 displays the density arevector profiles of a
new continuous vorteX0,1,2) found to be stable for the
ferromagnetic interactiongg<<0). It is seen thaty; with
zero winding numbew;=0 occupies the central region of
the harmonic trap angr_; with the higher winding number

M/N~0.5 and to point downward foB(r=R)=m for
M/N~0. The former (latter) corresponds literally to the
Mermin-Ho (Anderson-Toulousevortex. This is simply be-
cause asM decreases, the spin-down component; with
w=2 increases in the outer region. Thus we can control
these MH and AT vortices by merely changing the total mag-
netization.

As pointed out in the previous papgl], however, the

w_,=2 fills in the circumference region. The intermediate sjtuation is completely different from the case of superfluid
region is occupied by the¢,, component, which has a singu- 3He.A| where the stability of the MH vortex is due to the
larity wo=1 at the center of the trap. The resulting total constraint that thévector be perpendicular to the vessel wall
density is nonsingular and has a smooth spatial variatiopss]. These vortex configurations in ferromagnetic BEC are
described by a Gaussian form except for the outermost r&eated naturally under the condition of a given total number

gion. This vortex is equivalent to the topological structure
called the Mermin-Ho vortex in superfluidHe [18] and
skyrmions in generdl20].

The axisymmetrig0,1,2) vortex may be parametrized as

coszg
lpl(r) B :8
do() | =n(r)| 2e'?sin7 cosy |, (22
(1)

o st

where the bending angj@(r) runs over G<=B(r)<m and ¢
signifies the polar angle in polar coordinates. The spin direc

tion is denoted by thé vector and is given aKr)=2zcosg

and magnetization, both of which are well controlled in a
harmonic trap experiment.

In comparison with th¢0,1,2) vortex, the spin textures of
other vortex configurations, such as tx,0) and(1,0,
—1) vortices, have a different natuf@7]. In the (1,X,0)
vortex, the spin moment is suddenly reversed near the vortex
core of they, component because of the absence ofithe
component. In th¢1,0,—1) vortex it can vary continuously
around the vortex core. In this configuration, however, since
the condensate at the center of the trap consists only of the
polar statd 15|, the spin texture has a singularity. Thus only
the (0,1,2) vortex can have a nonsingular and continuous
spin texture under slow rotation.

It is easy to calculate the total angular momentunof
the axisymmetric vortices; by using the total particle number
and the total magnetization, it is simply written as
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where the total magnetization is written &&= fdrn(r)i, ®)
and we have introduced;—wy=jw’. Thus the spin tex- FIG. 4. Density profiles in thé1,1,1) split<(1) (on the lefy and
tures with a net spin polarization carry the angular momensplit-(Il) vortex (on the righ} at 2 =0.35 andM/N=0: (a) non-
tum, i.e., the superflow. For th(,1,2) vortex, L,/AN=1 magnetic interaction caseg{/g,=0.0) and(b) gs=0.4g,. The
—(M/N). This simple formula has the following physical bold lines show the total density(r) and the thin and dashed lines
meaning.(i) At M=N, L,=0 because/;, has no winding. present the density profiles of the internal structures, respectively.
(i) At M/N=1%, L,/AN is exactly equal td:/2, correspond- . ,
ing to the MH vortex. sented on the left of Fig.() [the split{]) statd collapse and

In the (0,1,2) state with the higher winding, the nonwind- the amplitude of each o_rder parameter cfsmnot recover near
ing componenty; works as a “pinning potential” for the thg vortex cores, i.e., this state behaves like the phase sepa-
remainingy, and_,, thereby making the state stable in the ration in _thex-y plane. .In contrast, the state shown on the
lower rotation drive. In particulany_, with w_,=2 is sta- 1ght of Fig. 4b) [the split{Il) statd forms the regular cores.
bilized by the presence of the, due to the ferromagnetic As a result, the split) state is energetl_call_y fa\_/orable over
interaction. For a very small antiferromagnetic interactionthe SPIit{l) state for the antiferromagnetic situation. In a very
(g<=0.005y,) and the nonmagnetic casg.(g,=0), the small spin interaction rangeg{~0.02y,,), which is a realis-
vortex with thew _,=2 becomes unstable and splits into a i Parameter, however, the spllj- state can be favored over
couple ofw_,=1 vortices(see Fig. 3 This configuration is the split{ll) state, though the energies of two states are very
equivalent to the vortex found by Yiphase IV in Ref[26])  Cl0Se to each other.

and is always unstable for the large/g, (>0). A third vortex configuration is displayed in Fig. 5, where.
vortex cores of each component are displaced to form a tri-

angle. In the nonmagnetic limit, the three components are
completely equivalent and the three singularities form a
To investigate the possibility of nonaxisymmetric vorti- regular triangle. As the spin interacti@p increases, thes,
ces, let us first recapitulate the axisymmetrlcl,1) vortex.  and_, components overlap locally because of the antifer-
In the axisymmetric case, the total density of 1,1 romagnetic interaction and this vortex configuration starts to
vortex is equivalent to the one in a scalar BEC, having theleform from a regular triangle shape. For larger spin inter-
singularity at the center of the trap where the potential enactions ¢s>0.4), this vortex becomes unstable due to the
ergy is minimum. The axisymmetric singulét,1,1) vortex  overlap the betweeg;, and_, components.
is always unstable even in the higher rotati@g]. However, Figure Ga) shows the density profiles of a nonaxisymmet-
by displacing the vortex cores of each component from theic nonsingular(1,1,1) vortex for the ferromagnetic case.
center of the trap, thél,1,1) vortex can be stable as a non- Two singularities ofs; and¢_, are displaced from the cen-
axisymmetric nonsingular type in the lower rotation fre-ter. They, component with the singularity at the center of
quency. This works favorably to gain more condensation enthe trap plays the role of preventing the phase separation
ergy at the center of the trap. A similar situation is seen neafavored in the ferromagnetic spin interaction. The spin tex-
the Q., in the homogeneous system, where the singular vorture in this state is displayed in Figgb§and Gc), where the
tex lattice, called the Abrikosov lattices, is never favored inspin moments flip at the center of the trap.
the entire antiferromagnetic regi¢84]. In comparison with axisymmetric types, these nonaxisym-
For the antiferromagnetic casé,; and _, overlap to  metric vortices have the advantage that they can easily adjust
minimize the spin-dependent ener@(r). In Fig. 4, we themselves for a change . As () increases, the two or
show the density profiles argl, dependence of two different three separate singularities adjust their mutual distance from
(1,1,1) vortices. In the nonmagnetic limitgt/g,=0), the the center and change the valud_gfto gain energy from the
two states are completely equivalent. As the spin interactiomerm — QL. In this sense, the nonaxisymmetric vortices are
0s/9, increases, striking differences grow between the twdlexible against a change i) compared with the axisym-
states. Forg,/g,~0.4, the vortex cores of the state pre- metric ones.

B. Nonaxisymmetric vortex
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FIG. 5. Density profiles of each componeéuit (r)|?, | ¥o(r)|?,
and|y_4(r)|? in the (1,1,2) triangle vortex at)=0.35 andM/N
=0: (a nonmagnetic interaction casegs(g,=0.0), (b) gg
=0.0,, and (c) gs=0.29,,. The total density profile almost
agrees with that in the vortex-free state, i.e., the nonsingular type.

IV. PHASE DIAGRAM

The phase diagrams are shown in a plane of the external
rotation and the total magnetization by comparing the ener-
gies of various vortex configurations,

E=Jdr

—QL,. (24)

> Ei(r)+Eg(r)

PHYSICAL REVIEW A 66, 053610 (2002
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£ 028)
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"'.-'.——..~k
0.24) .
0.22 (0,0, 0)
0.2 ; . . .
0 0.2 0.4 0.6 0.8 1
(b) M/N

FIG. 7. Phase diagram fa@) the ferromagnetic stateg{=
—0.0,) and (b) the antiferromagnetic casegd=0.02,). The
dashed line in@) denotes the boundary where the lowest quasipar-

ticle energy of thg0,1,2) vortex becomes negati@1].

It is noted that the regio)<0.38 considered here corre-

sponds to the single vortex region in the scalar BEC case

1.6 —————————— [35]. Thus, the present single-vortex consideration may also
14t be justified for()<0.38.
T 1ol The resulting phase diagram is displayed in Fig. 7(&r
rf 10l the ferromagnetic case an)) the antiferromagnetic case.
= osl For the ferromagnetic case, a large area of®h# plane is
2 | occupied by thg0,1,2) vortex, including MH and AT. The
g 0¢ nonaxisymmetri¢1,1,1) vortex and th€1,0,— 1) vortex are
2 o4 0 stabilized neatM =0 and M=N, respectively. We find a
02 ‘ large empty area in the intermedidé&N region where nei-
040 30 20 10 0 10 20 30 40 ther single-vortex nor vortex-free states are stabilized at all
@) x(y=0) [um] because the phase separation in the ferromagnetic case pre-
vents forming a uniform mixture of the three components
140 even when the circulation is absent in the vortex-free state.
30 In the phase diagram for the antiferromagnetic case, in
20 N Satamae 20 contrast, everywhere is occupied by a stable phase. This re-
8 SO 4 = . . . . .
o NP ls g sult is consistent with Fig. (3) of Ref. [28] over a W.|de
= NN > range, except for the presence of two nonaxisymmetric types
20 3822 120 nearM~0, i.e., the(1,1,1) split<(l) and triangle vortex. The
1.0 LA L 1 (1,1,1) triangle vortex is energetically indistinguishable
20 S S S 140 from the phase-I vortex obtained by Yj@6]. The phase-IV
a0 oot B o s 40 .20 0 20 40xfuml  yortex given in Fig. 3 of Ref[26] is found unstable fogs
(b) 3020 10 U?m]w 20 3.0 ©_ro G Tz =0.02, and does not appear in this phase diagram.

It is found for both cases that the stabilities of the nonaxi-

FIG. 6. (a) Density profile of the condensates) thel, andl,, ~ Symmetric vortices are restricted in a narrow region. On the
and(c) the density map of, for the nonaxisymmetri¢1,1,1) vor-  other hand, the axisymmetric vortices are stable in a large
tex in Q=0.35 andM/N=0.0. The bold line is the total density area. As discussed in Sec. Ill, since the finite density of a
n(r) and the thin lines show the density of each componayif. component at the vortex cores of the others supports its sta-
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FIG. 8. ) dependence of the angular momentp/N at () 0.6 0.7 18{/?\1 0.9 1.0
M/N=0: (a) the ferromagnetic caseg{=—0.0%y,) and (b) the
antiferromagnetic caseg{=0.02yy). FIG. 9. TheM dependence of the energy for the ferromagnetic

case:(a) the(0,1,2) and(b) the(1,0,—1) vortices. The energies of
bility, the nonaxisymmetric vortex becomes unstable in in-the phase-separated states witks 0 andw=1 correspond to the
creasingM where the number ofs; grows while the others energies of th€0,1,2) vortex atM/N=1 and the(1,0,— 1) vortex
shrink. at M/N=1, respectively.
Figure 8 shows th€) dependence of the angular momen- .
tum atM =0 for the two cases. For axisymmetric types, as—0- Thus, the composite state of the three components, such

shown in Eq.(23), the angular momentum of the system &S the MH vortex, becomes “locally” stable under a rotation
is fixed for a givenM. Thus there is the need to change thedrive while the composite state may have “global” stability.

winding combinations'w; ,wo,w_,) SO as to increase,, It is possible to perform a similar discussion for the phase-

which means that the axisymmetric vortices do not have th&€Parated state in higher rotation. The result of Fig) 9
adaptability for changes ifd. shows that thg1,0,—1) vortex is favored over the phase-

separated state with the winding, whose total density corre-

sponds to the conventional singular vortex in the scalar BEC.
V. DISCUSSION

The phase-separated state with=0 is expected to be VI CONCLUSION

stable in a large empty region of Fig(aJ. In this state/; We have presented possible vortex structures and the vor-
and ¢_; components phase-separate along zhdirection  tex phase diagram in the plane of external rotafiband the
due to the ferromagnetic interaction. Namely, an arbitrarytotal magnetizatio/N for both cases of antiferromagnetic
X-y cross section consists of only tigg or the/_; compo-  (g,=0.02,) and ferromagneticg,=—0.02y,,) interaction.
nent, and the spin-polarized state Wi N= =1 is piled up  We have investigated the thermodynamic stability of the pos-
along thez direction. Neglecting the contribution from the sible vortex configurations by solving the extended Gross-
boundary layer associated with the phase separation, we c@®itaevskii equation for the spinor BEC wifh=1.
estimate that the energy of this phase-separated state with For the ferromagnetic case, the stability of the continuous
w=0 andw=1 is equal to the energy of the scalar BEC with vortex, called the Mermin-Ho and Anderson-Toulouse vor-
w=0 andw=1, respectively. tex, is demonstrated, but these topological structures are
We compare in Fig. @) the free energies of thé0,1,2)  found to never be stable under no rotation drive. Further-
vortex state and the phase-separated state. As shown in Figiore, these vortices can exist in the intermediate process
9(a), the (0,1,2) vortex with the three components is ener- (see Fig. 5 in Ref{37]) proposed by Isoshimet al. [37,34,
getically favored over the phase-separated state, where the., it may be created by making use of spin texture.
energy of the phase-separated state is given by the energy of We have also discovered a couple of new nonaxisymmet-
the (0,1,2) vortex atM/N=1, i.e., the scalar BEC wittv ric vortices besides the two vortices found by Y&8] for the
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