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Axisymmetric versus nonaxisymmetric vortices in spinor Bose-Einstein condensates

T. Mizushima,1,* K. Machida,1 and T. Kita2
1Department of Physics, Okayama University, Okayama 700-8530, Japan

2Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
~Received 26 July 2002; published 12 November 2002!

The structure and stability of various vortices inF51 spinor Bose-Einstein condensates are investigated by
solving the extended Gross-Pitaevskii equation under rotation. We perform an extensive search for stable
vortices, considering both axisymmetric and nonaxisymmetric vortices and covering a wide range of ferro-
magnetic and antiferromagnetic interactions. The topological defect called the Mermin-Ho~Anderson-
Toulouse! vortex is shown to be stable for the ferromagnetic case. The phase diagram is established in a plane
of external rotationV versus total magnetizationM by comparing the free energies of possible vortices. It is
shown that there are qualitative differences between axisymmetric and nonaxisymmetric vortices which are
manifested in theV andM dependences.
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I. INTRODUCTION

The experimental achievement of Bose-Einstein cond
sation~BEC! in trapped atomic clouds@1–3# has opened up
a novel field to investigate fundamental problems such as
relationship between the superfluidity and BEC. Owing
recent advances of experimental techniques, several gr
have succeeded in creating quantized vortices with var
procedures in the magnetically trapped BEC@4–9#, where
the condensate is described by a scalar order parameter.
thermore, the atomic gases with the hyperfine spinF51
called ‘‘spinor BEC’’ have been Bose-condensed via opti
methods@11,10# which can keep the atomic ‘‘spin’’ state
degenerate and active. As shown recently by Klausenet al.
@12#, the spin-dependent interaction of two87Rb atoms is
ferromagnetic. Thus, we now have spinor BEC’s with bo
antiferromagnetic (23Na) @11# and ferromagnetic interac
tions.

Such scalar and spinor BEC’s are analogous to super
3He and 4He. These superfluid heliums, however, ha
rather strong interactions. Indeed, the condensate fractio
superfluid4He is only 10% of the total. By contrast, BEC o
the atomic gases have advantages for both theoretical
experimental treatments due to their weak interactions; h
almost all the atoms are able to be Bose-condensed.
possible to directly observe dynamical behaviors of the c
densate with optical methods, providing us an opportunity
quantitatively investigate the new quantum fluid@13#.

The standard Hamiltonian for the spinor BEC has be
introduced by Ohmi and Machida@14# and Ho @15#, who
pointed out the richness of the exotic topological defec
Topological structures, such as skyrmions, merons,
Mermin-Ho ~Anderson-Toulouse! texture, and monopoles
play an important role in various fields of physics. Th
provide a common framework to connect diverse fiel
thereby enhancing mutual understanding@16,17#. In particu-
lar, sinceF51 ferromagnetic BEC can be described by ord
parameters similar to the superfluid3He-A, the coreless
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Mermin-Ho vortex may be favored in the ferromagne
BEC @18,19#.

Similar topological structures, called skyrmions in ge
eral, have been proposed in the spinor BEC. Al Khawaja
Stoof @20# studied a skyrmion in theF51 ferromagnetic
BEC and concluded that it is not a thermodynamically sta
object without rotation. By considering the effect of the e
ternal rotation, however, we have shown recently@21# that
this topological defect can be stable. Ingenious propos
have been made@22–25# on how to create it and detect i
Yip @26# has performed a systematic study on vortex str
tures and presented several axisymmetric and nonaxis
metric vortices forF51 antiferromagnetic BEC. Recently
Isoshimaet al. @27,28# have carried out an extensive study
axisymmetric vortices to provide a vortex phase diagram i
plane of the rotation and the magnetization for both the
tiferromagnetic and ferromagnetic cases.

In this paper, we examine the stability of various vortic
for both theF51 antiferromagnetic and ferromagnetic BE
trapped in a two-dimensional harmonic potential. We ha
removed the previously imposed restriction in the axisy
metric case that winding numbers be less than or equa
unity. The continuous vortices such as the Mermin-Ho vor
will also be shown to be favored over the singular on
@27,28# and the other nonaxisymmetric ones@26#. We dem-
onstrate the stability of such vortices and discuss differen
between the axisymmetric and nonaxisymmetric configu
tions. We also determine the vortex phase diagrams for
antiferromagnetic and ferromagnetic cases. By compa
the relative free energies of the possible vortex configu
tions and the phase-separated state which may occur in
ferromagnetic situation, the validity of assuming uniformi
along thez direction will be checked.

This paper is organized as follows. In Sec. II, we fir
present the extended Gross-Pitaevskii equation for the sp
BEC, and then explain the numerical procedure to find lo
minima of the energy functional. Section III enumerates p
sible vortices for axisymmetric and nonaxisymmetric cas
and then discusses the stability of the Mermin-Ho vort
Section IV presents the phase diagram for the ferromagn
and antiferromagnetic cases in the plane of external rota
©2002 The American Physical Society10-1
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V versus total magnetizationM obtained by comparing the
free energies. Here, the qualitative differences between
axisymmetric and nonaxisymmetric vortices are discussed
showing theV and M dependence. The final section is d
voted to conclusions and discussions.

II. THEORETICAL FORMULATION

A. Extended Gross-Pitaevskii equation

We consider Bose-condensedF51 spinor BEC’s with in-
ternal degrees of freedom for both the ferromagnetic
antiferromagnetic cases. Here the order parameters are
acterized by the hyperfine sublevelsmF51,0,21. We start
with the standard Hamiltonian by Ohmi and Machida@14#
and Ho@15#,

Ĥrot5Ĥ2E drV•(
j

C j
†~r3p!C j ,

Ĥ5E dr F(
i j

C i
†$h~r !2m i%C jd i j 1

gn

2 (
i j

C i
†C j

†C jC i

1
gs

2 (
a

(
i jkl

C i
†C j

†~ F̂a! ik~ F̂a! j l CkC l G . ~1!

Here

h~r !52
\2¹2

2m
1V~r ! ~2!

is a one-body Hamiltonian. The quantityV(r )
5 1

2 m(2pn r)
2(x21y2) is the external confinement potenti

such as an optical potential. The scattering lengthsa0 anda2
characterize collisions between atoms through the total
0 and 2 channels, respectively,

gn5
4p\2

m

a012a2

3

is the interaction strength through the ‘‘density’’ channel, a

gs5
4p\2

m

a22a0

3

is that through the ‘‘spin’’ channel. The subscriptsa
5(x,y,z) and i , j ,k,l 5(0,61) correspond to the abov
three species. The chemical potentials for the three com
nentsm i ( i 50,61) satisfy m12m05m02m21. We intro-
ducem5m0 andm85m12m0. The angular momentum op
eratorsF̂a(a5x,y,z) can be expressed in matrices as

Fx5
1

A2 S 0 1 0

1 0 1

0 1 0
D ,
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Fy5
i

A2 S 0 21 0

1 0 21

0 1 0
D ,

Fz5S 1 0 0

0 0 0

0 0 21
D . ~3!

Following the standard procedure, the extended Gro
Pitaevskii~GP! equation in the rotation frame is obtained

F H h~r !2m i1gn(
l

Uc lU2J d i j

1gs(
a

(
kl

$~Fa! i j ~Fa!klck* c l%

2 i\V•“3rd i j Gc j50. ~4!

These coupled equations for thej th condensate wave func
tion c j5^C j& ( j 50,61) are used to calculate various pro
erties of vortices in the following. Here we take the extern
rotation asV5V ẑ and assume uniformity along thez direc-
tion.

B. Numerical procedure

The stationary states of the extended GP equation are
fined as local minima of the energy functional

E@c i ,c i* #5E dr F(
i

Ei~r !1Es~r !G2m8M2V•L ,

~5!

whereEi andEs are defined by

Ei~r !5c i* H h~r !2m1
gn

2 (
k

UckU2J c i , ~6!

Es~r !5
gs

2 (
a

H(
k,l

@ck* ~ F̂a!klc l #J 2

, ~7!

V•L denotes

V•L52 i\VE dr(
i

c i* S x
]

]y
2y

]

]xDc i , ~8!

andM5*dr( i i uc i(r )u2 is the total magnetization.
The numerical algorithm used to minimize the ener

functional in a scalar BEC@29–32# can be extended to th
present system. Following this procedure, the initialc j given
randomly is modified using the local gradient of the ener
functionalE@c i ,c i* # as

c j~t1Dt!5c j~t!2
dE@c i ,c i* #

dc j*
Dt. ~9!
0-2
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This equation means that the order parametersc j , param-
etrized by a ‘‘fictitious time’’t, roll along the slope of the
energy functional. Equation~9! is rewritten as

2\]tc j~t!5F H h~r !2@m~t!1m8 j #1gn(
k

UckU2J d jk

1
gs

2 (
a

H(
l ,p

@c l* ~ F̂a! lpcp#~ F̂a! jkJ
1 i\VS x

]

]y
2y

]

]xD d jkGck~t!. ~10!

This is the Gross-Pitaevskii equation for imaginary timest
5 i t . In each time step,m(t) is adjusted to preserve the tot
number of particles in the system,

N5(
j
E dr uc j~r !u2. ~11!

For t→`, c j converges to the stationary state, correspo
ing to one of the local minima of the energy functional~5!.
For t5`, c j satisfies

dE@c i ,c i* #

dc j*
ut→`50, ~12!

and Eq.~10! becomes equivalent to the extended GP eq
tion ~4!.

We take the initial state of each component as

c j~r ,t50!5AnTF~r !h j exp@ iSj~r !#, ~13!

wherenTF(r ) is the density profile within the Thomas-Ferm
~TF! approximation,

nTF~r !5H mTF2V

gn
for gs.0,

mTF2V

gn1gs
for gs,0,

~14!

andh j represents the ratio of each component. The phas
given by

Sj~r !5(
k

wj
(k)u j

(k)1a j , ~15!

wj
(k) is the winding number of thej th condensate,u j

(k) is the
polar angle of the coordinate (x(k),y(k)) whose origin is lo-
cated at thekth vortex core, anda j is the relative phase
between the three components.

It is convenient to describe the condensates in terms of
three componentsca(a5x,y,z) where the quantization axi
is taken along thea direction,

S cx~r !

cy~r !

cz~r !
D 5

1

A2 S 21 0 1

2 i 0 2 i

0 A2 0
D S c1~r !

c0~r !

c21~r !.
D . ~16!
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We then define a couple of real vectors as

m5~mx ,my ,mz!5Re~cx ,cy ,cz!, ~17!

n5~nx ,ny ,nz!5Im~cx ,cy ,cz!. ~18!

The l vector, which points in the direction of the local ma
netization, is defined asl5m3n. The corresponding uni
vector is denoted byl̂ .

C. Calculated system

The actual calculations are carried out by discretizing
two-dimensional space into a 51351 mesh. We have per
formed an extensive search to find stable vortices, star
with various vortex configurations, covering a wide range
the ferromagnetic and the antiferromagnetic interact
strength,gs /gn520.2;0.2, and examining various axisym
metric and nonaxisymmetric vortices. See Refs.@27,28# for
the classification of possible vortices in the axisymmet
case. We use the following parameters: the mass of a87Rb
atom m51.44310225 kg, the trapping frequencyn r
5200 Hz, and the particle number per unit length along
z axis nz52.03103/mm. The results displayed here are f
gs /gn520.02 ~ferromagnetic case! and gs /gn50.02 ~anti-
ferromagnetic case!. The external rotation frequencyV is
normalized by the harmonic trap frequency.

III. VORTEX STRUCTURE

The vortex configurations are characterized by the com
nation of the winding numberwj of c j ( j 50,61) denoted
by ^w1 ,w0 ,w21&, where wj denotes the phase change
2pwj when the wave function goes around the phase sin
larity.

The spin term~7! of the total energy is rewritten as

Es~r !5
gs

2
@n2~r !2u2c1~r !c21~r !2c0

2~r !u2#, ~19!

wheren(r )5( j uc j (r )u2 is the total density. The spin textur
in the ground state without rotation is determined by t
energy. By minimizing Eq.~19!, the relative phasesa j are
shown to satisfy

2a05a11a211np, ~20!

wheren is an integer, and the odd~even! n corresponds to the
antiferromagnetic~ferromagnetic! situation@27#.

A. Axisymmetric vortex

It also follows from Eq.~19! that ^w1 ,w0 ,w21& of axi-
symmetric vortices satisfies

2w05w11w21 . ~21!

Thus, possible candidates for the stable state are the non
tex state^0,0,0& and the vortex configurations:^1,0,21&,
^1,3,0&, ^0,3,1&, and^1,1,1&, which exhaust all the com
binations of the winding numbers less than or equal to un
0-3
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The thermodynamic stability of these vortices is demo
strated in Ref.@28#. Here we concentrate on the possibility
combinations with higher winding numbers, which will b
shown to be stable only in the ferromagnetic case.

Figure 1 displays the density andl-vector profiles of a
new continuous vortex̂0,1,2& found to be stable for the
ferromagnetic interaction (gs,0). It is seen thatc1 with
zero winding numberw150 occupies the central region o
the harmonic trap andc21 with the higher winding numbe
w2152 fills in the circumference region. The intermedia
region is occupied by thec0 component, which has a singu
larity w051 at the center of the trap. The resulting to
density is nonsingular and has a smooth spatial varia
described by a Gaussian form except for the outermost
gion. This vortex is equivalent to the topological structu
called the Mermin-Ho vortex in superfluid3He @18# and
skyrmions in general@20#.

The axisymmetriĉ 0,1,2& vortex may be parametrized a

S c1~r !

c0~r !

c21~r !
D 5An~r !S cos2

b

2

A2eif sin
b

2
cos

b

2

e2if sin2
b

2

D , ~22!

where the bending angleb(r ) runs over 0<b(r )<p andf
signifies the polar angle in polar coordinates. The spin dir
tion is denoted by thel vector and is given asl(r )5 ẑ cosb

FIG. 1. Properties of thê0,1,2& vortex atV50.35 andM /N
50.21. ~a! Density profile;~b! l x andl y ; ~c! density map ofl z . The
bold line in ~a! denotes the total densityn(r ) and the thin lines
show the density of each componentuc j u2.
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1sinb(cosfx̂1sinfŷ) where b varies from b(0)50 to
b(R)5p/2 (5p) for MH @Anderson-Toulouse~AT!# (R is
the outer boundary of the cloud!. Thus the spin moment is
flared out to the radial direction and at the circumference
points outward for MH and downwards for AT~for the sche-
matic l-vector structure, see Fig. 18 in Ref.@33#!.

In Fig. 2, we show the spatial dependence of thel z com-
ponent along the radial direction, namely the spatial dep
dence of the bending angleb(r ) for the MH vortex. As the
magnetizationM decreases, the local magnetization in t
condensate surface changes from positive to negative pas
through zero. This means that thel vector in this vortex flares
out radially to orient almost horizontallyb(r 5R)5p/2 for
M /N;0.5 and to point downward forb(r 5R)5p for
M /N;0. The former ~latter! corresponds literally to the
Mermin-Ho ~Anderson-Toulouse! vortex. This is simply be-
cause asM decreases, the spin-down componentc21 with
w52 increases in the outer region. Thus we can con
these MH and AT vortices by merely changing the total ma
netization.

As pointed out in the previous paper@21#, however, the
situation is completely different from the case of superflu
3He-A, where the stability of the MH vortex is due to th
constraint that thel vector be perpendicular to the vessel w
@33#. These vortex configurations in ferromagnetic BEC a
created naturally under the condition of a given total num
and magnetization, both of which are well controlled in
harmonic trap experiment.

In comparison with thê0,1,2& vortex, the spin textures o
other vortex configurations, such as the^1,3,0& and ^1,0,
21& vortices, have a different nature@27#. In the ^1,3,0&
vortex, the spin moment is suddenly reversed near the vo
core of thec1 component because of the absence of thec0
component. In thê1,0,21& vortex it can vary continuously
around the vortex core. In this configuration, however, sin
the condensate at the center of the trap consists only of
polar state@15#, the spin texture has a singularity. Thus on
the ^0,1,2& vortex can have a nonsingular and continuo
spin texture under slow rotation.

It is easy to calculate the total angular momentumLz of
the axisymmetric vortices; by using the total particle numb
and the total magnetization, it is simply written as

FIG. 2. Spatial dependence of thel z component along the radia
direction atM /N50, 0.46, andV50.37. The dashed line show
cosb(r ) with the bending angleb(r )5pr /R (R52.85mm) for the
AT vortex.
0-4



en

l

-

e

on

a

ti-

th
en

th
n-
e-
en
e
o
in

t

tio
w
e-

near
epa-
he
.
r
ry

r
ery

re
tri-
are

a

er-
to

er-
he

t-
.
-
of
tion
x-

m-
just

r
rom

re
-

s
ly.

AXISYMMETRIC VERSUS NONAXISYMMETRIC . . . PHYSICAL REVIEW A 66, 053610 ~2002!
Lz

\N
5w01w8

M

N
, ~23!

where the total magnetization is written asM5*drn(r ) l̂ z
and we have introducedwj2w05 jw8. Thus the spin tex-
tures with a net spin polarization carry the angular mom
tum, i.e., the superflow. For thê0,1,2& vortex, Lz /\N51
2(M /N). This simple formula has the following physica
meaning.~i! At M5N, Lz50 becausec1 has no winding.
~ii ! At M /N5 1

2 , Lz /\N is exactly equal to\/2, correspond-
ing to the MH vortex.

In the^0,1,2& state with the higher winding, the nonwind
ing componentc1 works as a ‘‘pinning potential’’ for the
remainingc0 andc21, thereby making the state stable in th
lower rotation drive. In particular,c21 with w2152 is sta-
bilized by the presence of thec1 due to the ferromagnetic
interaction. For a very small antiferromagnetic interacti
(gs50.005gn) and the nonmagnetic case (gs /gn50), the
vortex with thew2152 becomes unstable and splits into
couple ofw2151 vortices~see Fig. 3!. This configuration is
equivalent to the vortex found by Yip~phase IV in Ref.@26#!
and is always unstable for the largegs /gn (.0).

B. Nonaxisymmetric vortex

To investigate the possibility of nonaxisymmetric vor
ces, let us first recapitulate the axisymmetric^1,1,1& vortex.
In the axisymmetric case, the total density of the^1,1,1&
vortex is equivalent to the one in a scalar BEC, having
singularity at the center of the trap where the potential
ergy is minimum. The axisymmetric singular^1,1,1& vortex
is always unstable even in the higher rotation@28#. However,
by displacing the vortex cores of each component from
center of the trap, thê1,1,1& vortex can be stable as a no
axisymmetric nonsingular type in the lower rotation fr
quency. This works favorably to gain more condensation
ergy at the center of the trap. A similar situation is seen n
theVc2 in the homogeneous system, where the singular v
tex lattice, called the Abrikosov lattices, is never favored
the entire antiferromagnetic region@34#.

For the antiferromagnetic case,c1 and c21 overlap to
minimize the spin-dependent energyEs(r ). In Fig. 4, we
show the density profiles andgs dependence of two differen
^1,1,1& vortices. In the nonmagnetic limit (gs /gn50), the
two states are completely equivalent. As the spin interac
gs /gn increases, striking differences grow between the t
states. Forgs /gn;0.4, the vortex cores of the state pr

FIG. 3. Density profiles of thê0,1,2& vortex in an antiferro-
magnetic interaction ofgs /gn50.005~on the left! and the nonmag-
netic interaction ofgs /gn50 ~on the right!.
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sented on the left of Fig. 4~b! @the split-~I! state# collapse and
the amplitude of each order parameter cannot recover
the vortex cores, i.e., this state behaves like the phase s
ration in thex-y plane. In contrast, the state shown on t
right of Fig. 4~b! @the split-~II ! state# forms the regular cores
As a result, the split-~II ! state is energetically favorable ove
the split-~I! state for the antiferromagnetic situation. In a ve
small spin interaction range (gs;0.02gn), which is a realis-
tic parameter, however, the split-~I! state can be favored ove
the split-~II ! state, though the energies of two states are v
close to each other.

A third vortex configuration is displayed in Fig. 5, whe
vortex cores of each component are displaced to form a
angle. In the nonmagnetic limit, the three components
completely equivalent and the three singularities form
regular triangle. As the spin interactiongs increases, thec1
andc21 components overlap locally because of the antif
romagnetic interaction and this vortex configuration starts
deform from a regular triangle shape. For larger spin int
actions (gs.0.4), this vortex becomes unstable due to t
overlap the betweenc1 andc21 components.

Figure 6~a! shows the density profiles of a nonaxisymme
ric nonsingular^1,1,1& vortex for the ferromagnetic case
Two singularities ofc1 andc21 are displaced from the cen
ter. Thec0 component with the singularity at the center
the trap plays the role of preventing the phase separa
favored in the ferromagnetic spin interaction. The spin te
ture in this state is displayed in Figs. 6~b! and 6~c!, where the
spin moments flip at the center of the trap.

In comparison with axisymmetric types, these nonaxisy
metric vortices have the advantage that they can easily ad
themselves for a change inV. As V increases, the two o
three separate singularities adjust their mutual distance f
the center and change the value ofLz to gain energy from the
term2VLz . In this sense, the nonaxisymmetric vortices a
flexible against a change inV compared with the axisym
metric ones.

FIG. 4. Density profiles in thê1,1,1& split-~I! ~on the left! and
split-~II ! vortex ~on the right! at V50.35 andM /N50: ~a! non-
magnetic interaction case (gs /gn50.0) and ~b! gs50.4gn . The
bold lines show the total densityn(r ) and the thin and dashed line
present the density profiles of the internal structures, respective
0-5
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IV. PHASE DIAGRAM

The phase diagrams are shown in a plane of the exte
rotation and the total magnetization by comparing the en
gies of various vortex configurations,

E5E dr F(
i

Ei~r !1Es~r !G2VLz . ~24!

It is noted that the regionV,0.38 considered here corre

FIG. 5. Density profiles of each componentuc1(r )u2, uc0(r )u2,
and uc21(r )u2 in the ^1,1,1& triangle vortex atV50.35 andM /N
50: ~a! nonmagnetic interaction case (gs /gn50.0), ~b! gs

50.02gn , and ~c! gs50.2gn . The total density profile almos
agrees with that in the vortex-free state, i.e., the nonsingular ty

FIG. 6. ~a! Density profile of the condensates,~b! the l x and l y ,
and~c! the density map ofl z for the nonaxisymmetriĉ1,1,1& vor-
tex in V50.35 andM /N50.0. The bold line is the total densit
n(r ) and the thin lines show the density of each componentuc j u2.
05361
al
r-

sponds to the single vortex region in the scalar BEC c
@35#. Thus, the present single-vortex consideration may a
be justified forV,0.38.

The resulting phase diagram is displayed in Fig. 7 for~a!
the ferromagnetic case and~b! the antiferromagnetic case
For the ferromagnetic case, a large area of theV-M plane is
occupied by thê 0,1,2& vortex, including MH and AT. The
nonaxisymmetriĉ 1,1,1& vortex and thê1,0,21& vortex are
stabilized nearM50 and M5N, respectively. We find a
large empty area in the intermediateM /N region where nei-
ther single-vortex nor vortex-free states are stabilized at
because the phase separation in the ferromagnetic case
vents forming a uniform mixture of the three componen
even when the circulation is absent in the vortex-free sta

In the phase diagram for the antiferromagnetic case
contrast, everywhere is occupied by a stable phase. This
sult is consistent with Fig. 2~a! of Ref. @28# over a wide
range, except for the presence of two nonaxisymmetric ty
nearM;0, i.e., thê 1,1,1& split-~I! and triangle vortex. The
^1,1,1& triangle vortex is energetically indistinguishab
from the phase-I vortex obtained by Yip@26#. The phase-IV
vortex given in Fig. 3 of Ref.@26# is found unstable forgs
50.02gn and does not appear in this phase diagram.

It is found for both cases that the stabilities of the nona
symmetric vortices are restricted in a narrow region. On
other hand, the axisymmetric vortices are stable in a la
area. As discussed in Sec. III, since the finite density o
component at the vortex cores of the others supports its

.

FIG. 7. Phase diagram for~a! the ferromagnetic state (gs5
20.02gn) and ~b! the antiferromagnetic case (gs50.02gn). The
dashed line in~a! denotes the boundary where the lowest quasip
ticle energy of thê 0,1,2& vortex becomes negative@21#.
0-6
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bility, the nonaxisymmetric vortex becomes unstable in
creasingM where the number ofc1 grows while the others
shrink.

Figure 8 shows theV dependence of the angular mome
tum at M50 for the two cases. For axisymmetric types,
shown in Eq.~23!, the angular momentum of the systemLz
is fixed for a givenM. Thus there is the need to change t
winding combinationŝ w1 ,w0 ,w21& so as to increaseLz ,
which means that the axisymmetric vortices do not have
adaptability for changes inV.

V. DISCUSSION

The phase-separated state withw50 is expected to be
stable in a large empty region of Fig. 7~a!. In this state,c1
and c21 components phase-separate along thez direction
due to the ferromagnetic interaction. Namely, an arbitr
x-y cross section consists of only thec1 or thec21 compo-
nent, and the spin-polarized state withM /N561 is piled up
along thez direction. Neglecting the contribution from th
boundary layer associated with the phase separation, we
estimate that the energy of this phase-separated state
w50 andw51 is equal to the energy of the scalar BEC w
w50 andw51, respectively.

We compare in Fig. 9~a! the free energies of thê0,1,2&
vortex state and the phase-separated state. As shown in
9~a!, the ^0,1,2& vortex with the three components is ene
getically favored over the phase-separated state, where
energy of the phase-separated state is given by the ener
the ^0,1,2& vortex atM /N51, i.e., the scalar BEC withw

FIG. 8. V dependence of the angular momentumLz /N at
M /N50: ~a! the ferromagnetic case (gs520.02gn) and ~b! the
antiferromagnetic case (gs50.02gn).
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50. Thus, the composite state of the three components, s
as the MH vortex, becomes ‘‘locally’’ stable under a rotatio
drive while the composite state may have ‘‘global’’ stabilit
It is possible to perform a similar discussion for the pha
separated state in higher rotation. The result of Fig. 9~b!
shows that thê 1,0,21& vortex is favored over the phase
separated state with the winding, whose total density co
sponds to the conventional singular vortex in the scalar BE

VI. CONCLUSION

We have presented possible vortex structures and the
tex phase diagram in the plane of external rotationV and the
total magnetizationM /N for both cases of antiferromagnet
(gs50.02gn) and ferromagnetic (gs520.02gn) interaction.
We have investigated the thermodynamic stability of the p
sible vortex configurations by solving the extended Gro
Pitaevskii equation for the spinor BEC withF51.

For the ferromagnetic case, the stability of the continuo
vortex, called the Mermin-Ho and Anderson-Toulouse v
tex, is demonstrated, but these topological structures
found to never be stable under no rotation drive. Furth
more, these vortices can exist in the intermediate proc
~see Fig. 5 in Ref.@37#! proposed by Isoshimaet al. @37,36#,
i.e., it may be created by making use of spin texture.

We have also discovered a couple of new nonaxisymm
ric vortices besides the two vortices found by Yip@26# for the

FIG. 9. TheM dependence of the energy for the ferromagne
case:~a! the ^0,1,2& and~b! the ^1,0,21& vortices. The energies o
the phase-separated states withw50 andw51 correspond to the
energies of thê0,1,2& vortex atM /N51 and thê 1,0,21& vortex
at M /N51, respectively.
0-7
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antiferromagnetic case. The conventional singular vorte
found to never be favored in spinor BEC for both cases. T
means that the total density profile is always nonsingular
continuous. Therefore, the experimental procedure to im
the magnetic patterns for each vortex configuration will
required as a special technique to identify these vortices
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