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Interaction of dark solitons with localized impurities in Bose-Einstein condensates

Dimitri J. Frantzeskakis,1 G. Theocharis,1 F. K. Diakonos,1 Peter Schmelcher,2 and Yuri S. Kivshar3
1Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece

2Theoretische Chemie, Physikalisch-Chemisches Institut, INF 229, 69120 Heidelberg, Germany
3Nonlinear Physics Group, Research School of Physical Sciences and Engineering, Australian National University,

Canberra ACT 0200, Australia
~Received 28 June 2002; published 12 November 2002!

We study the interaction of dark solitons with a localized impurity in Bose-Einstein condensates. We apply
the soliton perturbation theory developed earlier in optics for describing the soliton dynamics and soliton-
impurity interaction analytically, and then verify the results by direct numerical simulations of the Gross-
Pitaevskii equation. We find that a dark soliton can be reflected from or transmitted through a repulsive
impurity in a controllable manner, while near the critical point the soliton can be quasitrapped by the impurity.
Additionally, we demonstrate that an immobile soliton may be captured and dragged by an adiabatically
moving attractive impurity.
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I. INTRODUCTION

Since the experimental discovery of Bose-Einstein c
densation in dilute atomic alkali-metal gases@1# an enor-
mous development of our knowledge on the properties of
condensed phase has taken place. Among others, ex
ments on the Bose-Einstein condensates~BECs! have dem-
onstrated superfluidity of the condensed phase@2#, the pos-
sibility of four-wave mixing @3#, the amplification of light
and atoms via a condensate@4# as well as the creation o
topological structures such as vortices@5#, vortex lattices@6#,
as well as dark@7# and bright@8# solitons. This opens the
promising perspective for numerous applications of the n
linear matter-wave physics and, in particular, it is very mu
reminiscent of the situation encountered for light waves a
optics many decades ago. One of the first and recently
vented example of a coherent matter-wave device is the
called atom chip@9#, that consists of a microfabricated sem
conductor surface accommodating atom-optics elem
such as current or charge-carrying wires, resonators, etc.
latter allow to trap and guide or, more generally speaking
control the motion of the matter waves. A long-term persp
tive of such coherent matter-wave devices is quantum in
mation processing on the nanometer scale.

A relevant interesting issue in the above context is to le
how to control the motion of nonlinear excitations of th
condensate, in general, and of different types of solitons
particular. Experimentally there exist several quantu
phase-engineering techniques to generate dark solitons
Bose-Einstein condensate~see, e.g., Denschlaget al. @7#!.
The question then arises how one could influence or e
guide their motion. The present paper makes a step in
direction by investigating the interaction of a dark solit
trapped in a confining potential with a localized inhomog
neity or an impurity. The perspective hereby is that impu
ties could be used as elements of a matter-wave device
controls the motion of a network of nonlinear excitations

Dark solitons can be excited in BECs with repulsive
teractions; such a soliton is characterized by a notch in
BEC density profile and a phase jump across its locali
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region. Their dynamics in a trapping potential has been st
ied theoretically by several authors@10–13#. Beyond the
above motivation, the dynamics of BECs in the presence
impurities has recently become a subject of growing inter
@14#. One process that has been studied is a response o
condensate to the propagation of significantly heavier im
rities. The travelling impurity induces a BEC dynamics th
leads, due to energy reasons, to the expulsion of the impu
from BEC. In this context, the investigation of the interacti
of a soliton with a single impurity appears to be an importa
issue. It is of fundamental interest in nonlinear wave the
and has been studied in the framework of almost all non
ear evolution equations possessing soliton solutions@15#.
However, in the context of BECs where the relevant evo
tion equation is the Gross-Pitaevskii~GP! equation with a
confining potential@16#, the interaction of dark solitons with
impurities has not been studied in detail yet.

The purpose of this paper is twofold. First, we apply t
soliton perturbation theory earlier developed for dark so
tons in optics~see Ref.@17# for a comprehensive review! and
derive an effective equation for the motion of a dark solit
in a trapping potential, and in the presence of either repuls
or attractive impurities. Second, we study, both analytica
and numerically, the dynamics of the condensate and a d
soliton in the presence of a static~nonpropagating! impurity.
This analysis is rather general, and it may be used to desc
the interaction of a dark soliton with ‘‘artificial’’ impurities
induced by sharply focused laser beams used to enginee
density of the BEC in experiments@7#. Various interaction
effects such as reflection, transmission, and quasitrappin
the dark soliton by a repulsive impurity are described a
verified by direct simulations. The quasitrapping effect fou
is characterized by a relatively large time for the solito
impurity interaction, and is followed by subsequent solit
oscillation in a limited spatial domain. Additionally, the po
sibility of the dragging of a dark soliton by an adiabatica
moving attractive impurity is demonstrated.

The paper is organized as follows. In Sec. II, we descr
our analytical results based on the perturbation theory
vented for optical dark solitons. Section III is devoted to
©2002 The American Physical Society08-1
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detailed comparison between our analytical predictions
numerical results obtained by the direct integration of the
equation. Finally, Sec. IV provides a summary and conc
sions.

II. MODEL AND ANALYTICAL RESULTS

A. The effective Thomas-Fermi wave function

A convenient model to study the mean-field dynamics
BECs is the GP equation which has the form of
(311)-dimensional nonlinear Schro¨dinger ~NLS! equation
with an external trapping potential~see, e.g., a review pape
@16#, and references therein!. In the case when the confine
ment for two of the three spatial dimensions is much stron
than in the third dimension, the GP equation can be redu
to an effective quasi-(111)-dimensional GP equation@18#
~see also the relevant experimental works in Refs.@7,19#!.
For repulsive interatomic interactions, the latter equation
be expressed in the following dimensionless form:

iut1
1

2
uxx2uuu2u5V~x!u, ~1!

where the spatial coordinatex and timet are normalized to
the harmonic-oscillator lengtha'5A\/mv' and oscillation
period, 1/v' , respectively. The frequencyv' belongs to the
two dimensions with strong confinement. The normaliz
field u describes the macroscopic wave functionc of the
condensate, according to the following scaling relation:

c~x,t !5S mv'

4pa\ D 1/2

u~x,t !,

wherea is the scattering length.
In order to study the interaction of a BEC dark solito

with a localized impurity in the framework of Eq.~1!, it is
convenient to decompose the external potentialV(x) as fol-
lows:

V~x!5U tr~x!1bd~x!, ~2!

where Utr(x) is the ~conventional parabolic! time-
independent trapping potential, which is assumed to
smooth and slowly varying on the soliton scale, and the
ditional sharp potentiald(x) accounts for an impurity local
ized in space at the pointx50, and it is described by a Dira
d function. The parameterb in Eq. ~2! which measures the
impurity strength is assumed to be small and may take ei
positive or negative values for repulsive or attractive imp
rities, respectively. The impurity potential causes a deform
tion of the condensate wave function@14#.

In order to treat analytically Eq.~1!, first we look for the

profile of the background field oscillations,u5ub(x)e2 iu0
2t,

whereu0
2 is the normalized density of the BEC cloud, in th

presence of the potentialV(x) that is given by the real equa
tion

u0
2ub1

1

2

d2ub

dx2
2ub

35V~x!ub . ~3!
05360
d
P
-

f

r
ed

n

d

e
-

er
-
-

When the amplitude maxuub(x)u is small, the nonlinear
term in Eq.~3! can be neglected and, assuming that in
absence of the potentialV(x) the background amplitude i
u0, we look for a solution of Eq.~3! in the form

ub~x!5u01 f ~x!. ~4!

Substituting Eq.~4! into Eq. ~3!, neglecting all nonlinear
terms with respect tof and keeping only the leading-orde
terms with respect to the parametersb andk ~see below!, we
obtain the following linear equation forf (x):

1

2

d2f

dx2
22u0

2f 5u0@U tr~x!1bd~x!#. ~5!

A physically relevant solution of Eq.~5! may be obtained
as follows: First, in the absence of the impurity~i.e., in the
case b50), we assume an anisotropic cigar-shaped h
monic trap, described by the effective one-dimensional
tential U tr(x)5k2x2, where k25(vx

2/2v'
2 )!1, vx being

the frequency of the trap in the axial direction. In this ca
the spatial derivatived2f /dx2 is small and can be neglected
and, as a result, an approximate solution of Eq.~5! reads
f (x)52(2u0)21U tr(x), resembling the well-known
Thomas-Fermi~TF! approximation for the wave function
where the densityuuu2 is quadratic in the termu02U tr(x).
Second, for a homogeneous BEC~i.e., in the caseU tr50),
Eq. ~5! is equivalent to its homogeneous counterpart and
matching condition at the position of the impurity reads

d f

dxU
01

2
d f

dxU
02

52bu0 .

Therefore, the spatially localized solution of Eq.~5! is f (x)
52(b/2)exp(22u0uxu). Combining these particular solu
tions, we express the solution of Eq.~5! as follows:

f ~x!52
1

2u0
U tr~x!2

b

2
e22u0uxu. ~6!

The background field densityub
2(x) given by Eqs.~4! and

~6! actually describes an effective TF-like condensate w
function modified by a localized impurity. This density
illustrated in Fig. 1~solid line! for u051 and for the har-
monic trapping potentialU tr(x)5(kx)2 ~dashed line!, with
k50.05; this value is approximately twice as large the o
used in the experimental studies of BEC dark solitons in R
@7#. We remark that both for the illustrations@see Fig. 1# as
well as the numerical calculations thed function for the lo-
calized impurity atx50 has been replaced by the steep fun
tion 10b cosh21(x/0.05) with b560.15 for repulsive or at-
tractive impurities, respectively. It is interesting to obser
that the repulsive impurity@Fig. 1~a!# creates a hole on the
condensate wave function, in accordance with the earlier
dictions @14#, while the attractive one@Fig. 1~b!# creates a
hump. In any case, it is clear that the condensate is sha
like the inverted harmonic trapping potential with a dip or
hump, having the size of the healing length~which is,
8-2
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roughly speaking, equal to 1/56 for the values of the para
eters used! around the impurity.

B. Dynamics of dark solitons

To describe the dynamics of a dark soliton on top of
inhomogeneous background described by the effective
like cloud, we seek for a solution of Eq.~1! in the form

u5ub~x!e2 iu0
2ty~x,t !, ~7!

where ub obeys Eq.~3! and the unknown complex field
y(x,t) represents a dark soliton, which is governed by
following effective equation:

i y t1
1

2
yxx2ub

2~ uyu221!y52
1

ub

dub

dx
yx . ~8!

Apparently, the right-hand side and part of the nonline
terms of Eq.~8! can be treated as a perturbation. To obt
the contribution of the nonlinear terms within perturbati
theory, we may use Eqs.~4! and ~6! and approximateub

2 as
ub

2'u0
212u0f , based on the smallness of the functionf (x)

~due to the slowly varying properties of the trapping pote
tial and the smallness of the parameterb characterizing the
impurity!. In this way, and upon introducing the transform
tions t→u0

2t, x→u0x, we obtain the following perturbed
NLS equation for the dark soliton:

i y t1
1

2
yxx2~ uyu221!y5P~y!, ~9!

where the total perturbationP(y) has the form

FIG. 1. The ground-state condensate intensityub
2(x) ~solid!, de-

scribing an effective Thomas-Fermi cloud, for a harmonic trapp
potentialU tr(x)5(kx)2 ~dotted! with k50.05. The potential due to
the localized impurity atx50 is approximated by the steep functio
10b cosh22(x/0.05) withb560.15. Both cases of repulsive~a! and
attractive~b! impurities are, respectively, shown.
05360
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P~y!5
1

2u0
2 F2~12uyu2!yU tr1yx

dUtr

dx G
1

b

u0
e22u0uxu@~12uyu2!y2u0~x/uxu!yx#. ~10!

In the absence of the perturbationP(y), Eq.~9! represents
a conventional defocusing NLS equation which has a d
soliton solution of the form@22#

y~x,t !5cosw tanhj1 i sinw, j5cosw@x2~sinw!t#,
~11!

wherew is the soliton phase angle (uwu,p/2) describing the
darkness of the soliton through the relation,uyu251
2cos2w/cosh2j ~note that the limiting casesw50 and cosw
!1 correspond to the so-calledblack and gray solitons, re-
spectively@17#!. To treat analytically the effect of the pertu
bation ~10! on the dark soliton, we employ the adiabat
perturbation theory developed in Ref.@20# ~see also the re-
view @17#!. According to this approach, the parameters of
dark soliton~11! become slowly varying functions oft, but
the functional form remains unchanged. Thus, the soli
‘‘phase angle’’ becomesw→w(t) and, as a result, the solito
coordinate becomesj→j5cosw(t)@x2x0(t)#, where

x0~ t !5E
0

t

sinw~ t8!dt8 ~12!

is the soliton center. As has been shown in Ref.@20#, the
evolution of the parameterw is then defined by the equation

dw

dt
5

1

2 cos2w sinw
ReH E

2`

1`

P~y!y t* dxJ . ~13!

Substituting Eq.~10! into Eq.~13! and taking into accoun
that for spatially slowly varying trapping potentialU tr the
higher-order derivatives may be omitted, we obtain the f
lowing result~for u051):

dw

dt
52

1

2

dUtr

dx

1
3

4
bE

0

1`

dx
exp~22x!

@cosh4~x2x0!2cosh4~x1x0!#
,

~14!

where we assume additionally that the dark soliton is clos
a black one, i.e.,w is sufficiently small. Evaluating the inte
grals in Eq.~14! and using the definition of Eq.~12!, we
obtain the following effective equation for the soliton cente

d2x0

dt2
52

dW

dx0
. ~15!

It is readily seen that Eq.~15! represents an equation o
motion for a classical particle with the coordinatex0 moving
in the effective potential,

g

8-3
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FRANTZESKAKIS et al. PHYSICAL REVIEW A 66, 053608 ~2002!
W~x0!5
1

2 H U tr~x0!1
b

2 cosh2x0
J . ~16!

It is important to notice that, in the absence of the impur
(b50), Eq.~15! describes the motion of a dark soliton in th
presence of a trapping potential, and it predicts that the s
ton oscillates in a harmonic trap. An equation similar to E
~15!, ~16! has first been stated without derivation in Re
@10#, but without the factor of 1/2. The same equation fou
in Ref. @10# is derived in Ref.@11# by considering the dipole
mode of a condensate carrying a dark soliton, and thus
not directly related to Eq.~15!. The correct result has bee
obtained by a multiple time scale boundary layer theory
cently developed by Busch and Anglin@12# who assumed
that the potential, the background density, and velocity v
slowly on the soliton scale.

In the general caseb5” 0, we do not assume that the im
purity potential varies slow on the soliton scale, however,
take into account the modification of the condensate gro
state in the presence of the impurity. It is important to me
tion that the term proportional tob in the potential~16! does
not possess the appearance one might expect by inspe
Eqs. ~5! and ~6!. This reflects the pointlike character of th
impurity: the healing length is the shortest length available
the condensate with respect to density variations and the
fective pointlike impurity generates a disturbance of t
background cloud on the same length scale as the dark
ton.

The resulting equation~16! shows that the character of th
effective potential is changed in the vicinity of the impuri
~i.e., in a localized region aroundx50): In particular, it
becomes repulsive~attractive! for b.0 (b,0) for the dark
soliton due to the presence of the impurity localized at
center of the trapping potential.

III. NUMERICAL RESULTS

Adopting the particle picture of the dark soliton describ
above, we now analyze the soliton dynamics in the fram
work of Eqs.~15! and~16!. In particular, we assume that th
effective potential is given by W(x0)5(1/2)(kx0)2

1(b/4)cosh22(x0) ~the values of the parameters arek
50.05 andb560.15, see Fig. 1!.

At first, in the case of a repulsive impurity (b.0) @see
W(xo) in Fig. 2~a!#, it is clear that the dynamical system
hand is characterized by three fixed points, namely, two
liptic ~stable! located atx0'62 and one hyperbolic~un-
stable! located atx050. Figure 2~b! shows the associate
phase plane (x0 ,dx0 /dt) including several phase curve
The separatrix passing through the hyperbolic fixed poin
(0,0) possesses the appearance of an intersecting double
and, by definition, separates two types of motion taking pl
in a single well or above both wells. As a result, differe
types of the soliton dynamics and soliton-impurity intera
tion are expected, depending on the initial conditions@recall
that we consider almost black solitons with cosw'1, i.e., the
initial soliton velocity is sinw'0, and, as a result, the initia
conditions refer solely to the initial soliton positionx0(0)]:
05360
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~a! For ux0(0)u,5.48 ~corresponding to the phase curv
surrounding the elliptic fixed points! the dark soliton isre-
flectednearly elastically by the impurity, and then it osci
lates in a relatively small spatial region@see Fig. 1~b!#, as
compared to the entire length of the condensate~the latter is
L'56).

~b! For ux0(0)u.5.48 ~corresponding to the phase curv
surrounding the separatrix! the dark soliton istransmitted
nearly elastically through the impurity, and then it oscillat
in a relatively large region inx, as compared to the entir
length of the condensate.

~c! The point ux0(0)u55.48 corresponds to a critical re
gime described by the figure-eight separatrix; in this case
interaction time is very large.

On the other hand, in the case of an attractive impu
(b,0), as shown in Fig. 2~a!, it is clear that the dynamica
system in hand is characterized by a single fixed po
namely, an elliptic~stable! one, located atx050. Figure 2~c!
shows the associated phase plane including several p
curves. Apparently all trajectories are periodic and the spa
domain where the soliton oscillates is the same as in the
b50. Thus, the presence of the attractive impurity does
qualitatively affect the soliton motion, but rather modifie
locally ~i.e., in the vicinity of the site of the impurity! the
soliton’s kinetic energy.

The above theoretical predictions have been checked
direct numerical simulations of the GP equation. In partic
lar, we have used a split-step Fourier method@21# to inte-

FIG. 2. ~a! The effective potentialW(x0)5(1/2)(0.05x0)2

1(b/4)cosh22(x0) for a repulsive impurity,b50.15~solid line!, and
an attractive impurity,b520.15 ~dotted line!. ~b! The associated
phase plane forb510.15, where several trajectories are show
Dots, small circles, diamonds, and stars correspond to the nume
results obtained by direct integration of the GP equation for diff
ent initial positions of the soliton taken inside, outside, or on
left-hand separatrix, respectively. The corresponding types of
soliton dynamics are shown in Figs. 3, 4, 5, and 6, respectively.~c!
The associated phase plane forb520.15, where several trajecto
ries are shown. Stars correspond to the numerical results obta
by the GP equation fort50,5,8,15,20,30, for a black soliton ini
tially placed atx0521.
8-4
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grate the GP equation~1! with an initial condition of the
form

u~x,0!5ub~x!tanh@x2x0~0!#, ~17!

whereub(x)511 f (x) is the effective TF-like wave function
modified by the localized impurity@ f (x) is given in Eq.~6!
with u051] and x0(0) is the initial soliton position. This
initial condition represents a dark soliton with cosw51 @see
Eq. ~11!#, i.e., a black soliton with zero initial velocity. No
tice that the particular choice of the initial condition~17!
implies that the characteristic lengthk21 of the trapping po-
tential is much larger than the soliton width, i.e.,k21@1
~recall that we have takenk50.05), a fact indicating that in
this regime the validity of the perturbation theory presen
in the preceding section is guaranteed.

Finally, it is important to notice that since the initial con
dition used@see Eq.~17!#, is obviously only an approxima
tion and not an exact solution of the GP equation with
impurity, it does not describe the pure soliton state, but a
includes various phonon modes. Consequently, in the
merical results presented below, changes in the backgro
density of the condensate, even ‘‘far’’ away from the solito
are observed. Also in an experiment, the prepared sol
does not perfectly coincide with the theoretical analytica
or numerically obtained soliton. We expect that our analy
cal predictions and numerical results~which, as we will see
below, are in a fairly good agreement! can be verified in a
corresponding experiment.

A. Repulsive impurity

The three different types~a!, ~b!, and ~c! of the soliton
evolution and interaction with a repulsive impurity predict
above, have been investigated numerically upon conside
the initial soliton positionsx0(0)523, 28, 25.48, and
25.5, respectively.

In particular, Fig. 3 shows the evolution of the solito
densityuuu2, corresponding to Eq.~17! with x0(0)523, on
top of the effective TF cloud~solid line!, with a potential
V(x)5(0.05x)211.5 cosh22(x/0.05) ~dotted line!. Notice
that both the effective TF wave function and potential are
same as the ones illustrated in Fig. 1~a!. As can be seen in
Fig. 3, the dark soliton is reflected by the impurity~at t
'28; see third panel! nearly elastically, and it oscillates i
the interval23,x,21. The oscillations of the soliton tak
place in a spatial domain significantly smaller than the
tension of the BEC trap~here the corresponding fraction
2/56). According to the particle picture of the solito
adopted in the preceding section, this behavior is effectiv
described by a periodic trajectory inside the separatrix lo
on the left-hand side of Fig. 2~b!. To illustrate this, the nu-
merically obtained soliton positions and velociti
(x0 , dx0 /dt) corresponding to the instants of the six su
figures of Fig. 3 are shown by six dots in Fig. 2~b!, starting
from (23,0) and taking place clockwise. It is clearly se
that the relevant analytical prediction, according to which
soliton center follows the periodic trajectory is in fairly goo
agreement with the numerical result obtained by the dir
integration of the GP equation. This agreement is not o
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qualitative but quantitative, since the maximum relative er
found in the soliton velocity does not exceed 20%.

Using the same initial configuration for a dark solito
initially placed atx0(0)528, in Fig. 4 we show the evolu
tion of the soliton density which, in this case, is transmitt
nearly elastically through the impurity~no emission of radia-
tion is observed!, i.e., it is oscillating in the interval28,x
,7.5. Thus, the soliton motion takes place in a relative
large spatial region compared to the condensate length~here

FIG. 3. Evolution of a black soliton densityuuu2 on top of the
effective TF cloud~solid!, with the potentialV(x) ~dotted! being
the same as the one in Fig. 1~a!. The dark soliton is initially placed
atx0(0)523 and, in accordance with the analytical prediction, it
reflected by the impurity~at t'28) and then oscillates in the inter
val 23,x,21. This behavior is effectively described by the p
riodic trajectory surrounded by the left part of the separatrix sho
in Fig. 2~b!.

FIG. 4. The same as in Fig. 3 but for the dark soliton initia
placed atx0(0)528. According to the analytical results, the so
ton is transmitted through the impurity and then oscillates in
interval 28,x,7.5. This behavior is effectively described by th
periodic trajectory enclosing the separatrix in Fig. 2~b!.
8-5
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the fraction is'15.5/56). This behavior is effectively de
scribed by the periodic trajectory enclosing the separa
shown in Fig. 2~b!. As done above the soliton’s position i
phase space corresponding to the instants of the six su
ures of Fig. 4 are indicated~small circles! in Fig. 2~b!. They
follow the corresponding periodic trajectory and a go
agreement between the analytical prediction and the num
cal results is found again~the maximum relative error in the
soliton velocity is found to be slightly smaller in this cas
i.e., of the order of 15%).

We will now investigate the third possible type of solito
impurity interaction corresponding to a critical regime.
Fig. 5, we show the evolution of a dark soliton with an initi
position corresponding to the extremal valuexmax of the left-
hand part of the separatrix in Fig. 2~b!. According to the
previous discussion, it is expected that the dark soliton w
interact infinitely long with the impurity approaching th
point x50. As can be seen in Fig. 5, in direct simulations t
dark soliton reaches the impurity site~at t'30) and it re-
mains ‘‘quasitrapped’’ by the impurity tillt'38. Neverthe-
less, the numerical simulations show that fort.38 the soli-
ton is released by the impurity, i.e., the soliton center, inst
of remaining on the separatrix, escapes to a periodic tra
tory inside the separatrix and eventually performs an osc
tion. This behavior can be seen in Fig. 2~b!, where the first
four of the soliton’s phase space points~corresponding to the
six subfigures of Fig. 5! are indicated by stars and follow th
separatrix~the maximum relative error in the soliton veloci
found does not exceed 10%), while the last two phase sp
points follow a periodic trajectory inside the separatrix.

A slightly different initial soliton position, but still close
to the separatrix, i.e.,x0(0)525.5 ~note: this value is
slightly smaller than the extremal valuexmax) produced simi-
lar results for the soliton-impurity interaction, but instead
leads to the soliton traversal through the impurity. This res
is illustrated in Fig. 6, where the dark soliton, after reach

FIG. 5. The same as in Fig. 3 but for the dark soliton initia
placed atx0(0)525.48. The soliton reaches the pointx50, then it
is quasitrapped by the impurity for some finite time, and eventu
oscillates following a periodic trajectory enclosed by the left part
the separatrix in Fig. 2~b!.
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the impurity ~at t'30) first is trapped untilt'38, as in the
previous case. However, fort.38 the soliton escapes to
nearby periodic trajectory surrounding the separatrix, ev
tually performing an oscillation in a relatively large spati
domain. This behavior can also be seen in Fig. 2~b! indicated
by triangles that follow the separatrix~the maximum relative
error in the soliton velocity found does not exceed 10%
while the last two triangles follow a periodic trajectory su
rounding the separatrix. It is worth mentioning that, in bo
cases mentioned above, the trapping time is estimated t
of order t tr'10.

Generally speaking, the initial conditions located in t
neighborhood of the separatrix lead to a quasitrapping p
nomenon characterized by a relatively large timet tr of inter-
action between the dark soliton and impurity. This pheno
enon is followed by either reflection or transmission a
eventual oscillation of the soliton. Apparently, quasitrappi
cannot be understood quantitatively in terms of perturbat
theory since the latter predicts that the soliton will rema
infinitely long at the impurity. However, it is worth mention
ing that the perturbation theory developed above is based
the particlelike properties of the dark soliton, and it does
take into account the radiation component of the field, wh
describes the wave properties of the soliton. We stron
surmise that the quasitrapping effect is a signature of
wave nature of the soliton excitation, but its detailed inve
tigation is beyond the scope of this paper.

We have also carried out numerical simulations for nea
black solitons characterized by a small initial velocity~e.g.,
sinf'0.1); these results provide a qualitatively similar pi
ture for both the soliton evolution and soliton-impurity inte
action. This can be understood in terms of the presen
analysis, since nearly black solitons follow the trajectories
the phase plane in the neighborhood of the correspond
ones followed by the black solitons. For example, an initia
finite soliton velocity may result in a change of reflectio

y
f

FIG. 6. The same as in Fig. 3 but for the dark soliton initia
placed atx0(0)525.5. The soliton reaches the pointx50, then it
is quasitrapped by the impurity for some finite time, and eventua
oscillates following a periodic trajectory that encloses the right p
of the separatrix in Fig. 2~b!.
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into transmission, which can easily be understood, since
change of the initial conditions drives the soliton~after inter-
acting for some finite time with the impurity! to follow a
periodic orbit enclosing the separatrix.

B. Attractive impurity

Here we investigate numerically the dynamics of a nea
black soliton in the presence of an attractive impurityb
,0). As discussed above, in this case the effective poten
becomes attractive for the dark soliton in the vicinity of t
impurity ~i.e., atx50) as shown in Fig. 2~a!. However, if a
dark ~black! soliton is initially located far away from the
impurity ~i.e., for ux0u.2), there is no way to be trappe
since its initial potential energy~due to the trapping poten
tial! is larger than the depth of the impurity-induced well. O
the other hand, ifux0u,2 the black soliton oscillates in th
attractive impurity-induced well, occupying a comparative
small region around the location of the impurity. Both the
results have been confirmed by direct numerical simulati
of the GP equation. Particularly, the oscillation of a bla
soliton, initially placed atx0521,22,26, is illustrated in
the associated phase plane shown in Fig. 2~c! by the corre-
sponding periodic trajectories~solid lines!. Again, the nu-
merically found soliton positions and velocities@see points
depicted by stars in Fig. 2~c!# in the case of a black soliton
with x0521 ~i.e., initially located inside the well induce
by the impurity!, are in a fairly good agreement with th
analytical predictions.

In this context, an interesting issue is to consider an a
batically moving attractive impurity, which moves with
small constant velocityv on top of the background TF wav
function without inducing significant perturbations. In th

FIG. 7. Evolution of a black soliton densityuuu2 on top of the
effective TF cloud~solid!, with the potentialV(x) ~dotted! being
the same as that in Fig. 1~b!. The dark soliton that is initially placed
at x0(0)50 is captured and dragged by a steadily moving attrac
(b520.15) impurity with a velocityv50.1. This occurs up tot
'40, when the soliton is released by the impurity, and eventu
oscillates following a periodic trajectory in the interval24<x
<4.
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case, the question arises whether this steadily moving im
rity may drag a black soliton, which is stationary if it i
initially placed at the bottom of the trapping potential (x
50), or it slightly oscillates in the well induced by a stat
attractive impurity. Apparently this issue is important for a
plications, since it would directly demonstrate the possibil
of controlling the motion of black solitons in BECs, b
means of artificial impurities induced by properly tune
sharply focused laser beams.

In order to investigate this issue, we have integrated
merically the original GP equation with the modified pote
tial V(x;t)5(0.05x)221.5 cosh22@(x2vt)/0.05# and with an
initial condition u(x,0)5ub(x)tanh(x), i.e., a black soliton
initially placed at the location of the impurity. In the numer
cal simulations, varying the value of the velocityv of the
impurity, we observed that forv.vc'0.25 the black soliton
remains immobile and the moving impurity causes stro
fluctuations in the condensate background wave function.
the other hand, whenv is taken belowvc the soliton is able
to follow the impurity for a finite time, inversely propor
tional to the value ofv. Such a case is illustrated in Fig. 7
where the evolution of a black soliton, dragged by a stead
moving impurity with v50.1, is shown. It is clearly seen
that the soliton is captured and pulled by the impurity up
t'40, but later on it escapes and, having gained energ
starts to oscillate in the interval (24,4) ~note that att540
the soliton center is placed atx54). In order to get a quali-
tative insight into this effect, in Fig. 8 we show the succe
sive forms of the relevant effective potentialW(x0) for the
time instants corresponding to the snapshots in Fig.

e

ly

FIG. 8. The effective potentialW(x0) in the case of a steadily
moving attractive impurity withb520.15 and velocityv50.1 for
time instants corresponding to the snapshots of Fig. 7. Fort,40 the
soliton performs oscillations in the deepest part of the poten
thus being pulled by the impurity. Att'40 the formation of an
additional maximum is observed and the potential becomes s
lower, allowing the soliton to gain energy. This effect may quali
tively explain the release of the soliton by the moving impurity f
later times.
8-7
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For t,40 the potential is always purely attractive and t
dark soliton gets trapped and is transported by the impu
performing, at the same time, small oscillations inside
well. However, at approximatelyt540 an additional maxi-
mum forms and the potential becomes shallower. This allo
the soliton to gain enough energy for performing larger
cillations ~ignoring the barrier that is going to be formed!,
finally leading to an escape of the soliton from the movi
impurity.

IV. SUMMARY AND CONCLUSIONS

We have studied the interaction of a dark soliton with
localized impurity in Bose-Einstein condensates. This sit
tion has been modeled by an external potential in the
equation, which, apart from the conventional confining p
tential of the trap, incorporates an additionald-like potential.
The latter provides a phenomenological description of
presence of a sufficiently narrow impurity compared to
BEC’s length. Experimentally, such an impurity could be
alized by a correspondingly focussed laser beam intersec
the condensate. The impurity potential modifies the ba
ground Thomas-Fermi wave function by forcing a ho
~hump! at the location of a repulsive~attractive! impurity.
We have studied the dynamics of a dark soliton placed on
of the effective TF cloud employing the perturbation theo
for dark solitons earlier developed in optics@20#. According
to this approach, the soliton-impurity interaction is effe
tively described in terms of a collective variable, the solit
center.

In the case of a repulsive impurity, we have demonstra
that the soliton behaves like a classical particle in the p
ence of an effective double-well potential, whose central
cal maximum is induced by the presence of the impurity.
a result, the perturbation theory predicts, depending on
initial conditions, an elastic soliton reflection by the impuri
and nearly elastic transmission through the impurity, b
cases being accompanied by soliton oscillations in the
evant spatial domains. The analytical predictions are t
compared to the results of the direct numerical integration
the GP equation. We find that there is a fairly good agr
e
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ment between the analytical and numerical results for
soliton reflection and transmission through the impuri
Near the critical regime we observe a quasitrapping phen
enon, characterized by a relatively large interaction time a
subsequent reflection or transmission of the dark soliton.

The dynamics of a dark soliton in the presence of
attractive impurity has been studied as well. In this case,
have shown that the soliton motion is not qualitatively a
fected by the impurity, since the soliton oscillates in the sa
spatial domains as in the case of a purely harmonic confin
potential. Nevertheless, we have demonstrated that a b
soliton, initially placed at the bottom of the confining pote
tial, can be captured and dragged by an adiabatically mov
attractive impurity, up to a certain time inversely propo
tional to the dragging velocity. It is found that the impurity
induced convection of the soliton occurs for impurity veloc
ties below a certain threshold. The release of the soliton
the impurity after finite time has qualitatively been explain
by adopting the particle picture of the soliton and its moti
in the relevant effective time-dependent potential.

The above results show that spatially fixed or adiab
cally moving impurities represent an effective tool for m
nipulating the soliton motion in the condensates: qual
tively different processes can, to some extent, be contro
by, e.g., the coupling strength of the impurity. Higher dime
sions than the effective one-dimensional situation conside
here as well as further possible elements to control the
tion of nonlinear excitations are relevant issues to be con
ered in future investigations.
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