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Interaction of dark solitons with localized impurities in Bose-Einstein condensates
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We study the interaction of dark solitons with a localized impurity in Bose-Einstein condensates. We apply
the soliton perturbation theory developed earlier in optics for describing the soliton dynamics and soliton-
impurity interaction analytically, and then verify the results by direct numerical simulations of the Gross-
Pitaevskii equation. We find that a dark soliton can be reflected from or transmitted through a repulsive
impurity in a controllable manner, while near the critical point the soliton can be quasitrapped by the impurity.
Additionally, we demonstrate that an immobile soliton may be captured and dragged by an adiabatically
moving attractive impurity.
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[. INTRODUCTION region. Their dynamics in a trapping potential has been stud-
ied theoretically by several authof40-13. Beyond the
Since the experimental discovery of Bose-Einstein conabove motivation, the dynamics of BECs in the presence of
densation in dilute atomic alkali-metal gasgld an enor- impurities has recently become a subject of growing interest
mous development of our knowledge on the properties of thgl4]. One process that has been studied is a response of the
condensed phase has taken place. Among others, expecendensate to the propagation of significantly heavier impu-
ments on the Bose-Einstein condensd&C9 have dem- rities. The travelling impurity induces a BEC dynamics that
onstrated superfluidity of the condensed phi@dethe pos- leads, due to energy reasons, to the expulsion of the impurity
sibility of four-wave mixing[3], the amplification of light from BEC. In this context, the investigation of the interaction
and atoms via a condensdi#] as well as the creation of of a soliton with a single impurity appears to be an important
topological structures such as vorti¢és, vortex latticed 6], issue. It is of fundamental interest in nonlinear wave theory
as well as dark7] and bright[8] solitons. This opens the and has been studied in the framework of almost all nonlin-
promising perspective for numerous applications of the nonear evolution equations possessing soliton solutififs.
linear matter-wave physics and, in particular, it is very muchHowever, in the context of BECs where the relevant evolu-
reminiscent of the situation encountered for light waves andion equation is the Gross-PitaevskiEP) equation with a
optics many decades ago. One of the first and recently ineonfining potentia[16], the interaction of dark solitons with
vented example of a coherent matter-wave device is the sampurities has not been studied in detail yet.
called atom chig9], that consists of a microfabricated semi-  The purpose of this paper is twofold. First, we apply the
conductor surface accommodating atom-optics elementsoliton perturbation theory earlier developed for dark soli-
such as current or charge-carrying wires, resonators, etc. Thens in opticysee Ref[17] for a comprehensive revievand
latter allow to trap and guide or, more generally speaking, talerive an effective equation for the motion of a dark soliton
control the motion of the matter waves. A long-term perspecin a trapping potential, and in the presence of either repulsive
tive of such coherent matter-wave devices is quantum inforer attractive impurities. Second, we study, both analytically
mation processing on the nanometer scale. and numerically, the dynamics of the condensate and a dark
Arelevant interesting issue in the above context is to learrsoliton in the presence of a staticonpropagatingimpurity.
how to control the motion of nonlinear excitations of the This analysis is rather general, and it may be used to describe
condensate, in general, and of different types of solitons, ithe interaction of a dark soliton with “artificial” impurities
particular. Experimentally there exist several quantum-4nduced by sharply focused laser beams used to engineer the
phase-engineering techniques to generate dark solitons indensity of the BEC in experimen{§]. Various interaction
Bose-Einstein condensatsee, e.g., Denschlagt al. [7]). effects such as reflection, transmission, and quasitrapping of
The question then arises how one could influence or evethe dark soliton by a repulsive impurity are described and
guide their motion. The present paper makes a step in thigerified by direct simulations. The quasitrapping effect found
direction by investigating the interaction of a dark solitonis characterized by a relatively large time for the soliton-
trapped in a confining potential with a localized inhomoge-impurity interaction, and is followed by subsequent soliton
neity or an impurity. The perspective hereby is that impuri-oscillation in a limited spatial domain. Additionally, the pos-
ties could be used as elements of a matter-wave device thatbility of the dragging of a dark soliton by an adiabatically
controls the motion of a network of nonlinear excitations. moving attractive impurity is demonstrated.
Dark solitons can be excited in BECs with repulsive in- The paper is organized as follows. In Sec. I, we describe
teractions; such a soliton is characterized by a notch in theur analytical results based on the perturbation theory in-
BEC density profile and a phase jump across its localizedented for optical dark solitons. Section Il is devoted to a
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detailed comparison between our analytical predictions and When the amplitude méw,(x)| is small, the nonlinear
numerical results obtained by the direct integration of the GRerm in Eq.(3) can be neglected and, assuming that in the
equation. Finally, Sec. IV provides a summary and concluabsence of the potentid(x) the background amplitude is

sions. Uy, we look for a solution of Eq(3) in the form
Il. MODEL AND ANALYTICAL RESULTS Up(X) =Ug+ f(X). (4)
A. The effective Thomas-Fermi wave function Substituting Eq.(4) into Eq. (3), neglecting all nonlinear

A convenient model to study the mean-field dynamics ofterms with respect té and keeping only the leading-order

(3+1)-dimensional nonlinear Schiimger (NLS) equation ~ obtain the following linear equation fdi(x):
with an external trapping potentiédee, e.g., a review paper

. . 2
[16], and references thereginn the case when the confine- } ﬂ_ 26
ment for two of the three spatial dimensions is much stronger 2 dx2 2Upf = Ul U(x) +B00)]. ©
than in the third dimension, the GP equation can be reduced
to an effective quasi-(+1)-dimensional GP equatiofig] A physically relevant solution of Eq5) may be obtained

(see also the relevant experimental works in RETs19).  as follows: First, in the absence of the impuritye., in the
For repulsive interatomic interactions, the latter equation Calggse b:O), we assume an anisotropic Cigar-shaped har-

be expressed in the following dimensionless form: monic trap, described by the effective one-dimensional po-
1 tential U,(x)=k?x?, where k?=(w2/20°)<1, w, being
iU+ = Uy — |ul2u=V(x)u, (1 the frquency .of the trap in 'the axial direction. In this case,
2 the spatial derivativel>f/dx? is small and can be neglected,

and, as a result, an approximate solution of Ef).reads
. . B — f(x)=—(2up) Uy(x), resembling the well-known
the_h:rTch-oscnlaipr Ileng_t:if_ il Mao, "’t‘)n? OSC'”tat't?]n Thomas-Fermi(TF) approximation for the wave function,
period, L, , respectively. Tne frequenay, belongs lothe a6 the densityu|? is quadratic in the ternuig— Uy(X).
two dimensions with strong confinement. The normalized

field u d bes th . functisnof th Second, for a homogeneous BEi&., in the casdJ,=0),
I€ld U describes the macroscopic wave tunc igno _ne Eq. (5) is equivalent to its homogeneous counterpart and the
condensate, according to the following scaling relation:

matching condition at the position of the impurity reads

where the spatial coordinateand timet are normalized to

W)

m 12
¢(X't):(4ﬂ'aﬁ> ux1), ﬂ
dx

df

dx 0_

0+
where« is the scattering length.

_In order to study the interaction of a BEC dark soliton Therefore, the spatially localized solution of H&) is f(x)
with a localized impurity in the framework of Eql), itis = — (b/2)exp(-2uyx|). Combining these particular solu-

convenient to decompose the external potertiad) as fol-  tijons, we express the solution of E) as follows:
lows:

V(x) = Uy(x) +b(x), @ f(x) = zinuUm— ge‘2”0|x|. ®

where U, (x) is the (conventional paraboljc time- ] . )

independent trapping potential, which is assumed to be The background field densityf(x) given by Eqs(4) and
smooth and slowly varying on the soliton scale, and the ad(6) actually describes an effective TF-like condensate wave
ditional sharp potentiab(x) accounts for an impurity local- function modified by a localized impurity. This density is
ized in space at the point=0, and it is described by a Dirac illustrated in Fig. 1(solid line) for up=1 and for the har-

5 function. The parametes in Eq. (2) which measures the Monic trapping potentiall (x) = (kx)? (dashed ling with
impurity strength is assumed to be small and may take eithdf=0.05; this value is approximately twice as large the one
positive or negative values for repulsive or attractive impu_used in the experimental studies of BEC dark solitons in Ref.

rities, respectively. The impurity potential causes a deformak?]. We remark that both for the illustratiofisee Fig. 1 as
tion of the condensate wave functiph4]. well as the numerical calculations tlé&efunction for the lo-
In order to treat analytically Eq1), first we look for the ~ calized impuritly ak=0 has been replaced by the steep func-
iu2 i T ithb= i .
profile of the background field oscillations=u,(x)e™ "o, tion 1(b cosh™(x/0.05) with b=0.15 for repulsive or at

whereu? is the normalized density of the BEC cloud, in the tractive impurities, respectively. It is interesting to observe

) 2 that the repulsive impurityFig. 1(a)] creates a hole on the
presence of the potentis(x) that is given by the real equa- condensate wave function, in accordance with the earlier pre-

tion dictions[14], while the attractive oné¢Fig. 1(b)] creates a
1 d2u hump. In any case, it is clear that the condensate is shaped
UdUp+ = —zb—u§=V(x)ub. (3)  like the inverted harmonic trapping potential with a dip or a
2 dx hump, having the size of the healing lengtivhich is,
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P(v) = ——| 201 [o]?) o0y + v, e
(v)—z—ug (1-[v]H) Uy Y

b
+ e 21— o) v=up(X/[X) v (10)
0

%o 0 In the absence of the perturbatiBiiv), Eq.(9) represents
a conventional defocusing NLS equation which has a dark
15 T - - - — soliton solution of the form22]

v(X,t)=cosp tanhé+i sing, &=cose[x—(sing)t],
1y

0,001

whereg is the soliton phase anglég| < 7/2) describing the
o | darkness of the soliton through the relation|v|?=1
%0 20 o o 0 » % —cog¢lcoshté (note that the limiting cases=0 and cosp
* <1 correspond to the so-callddack and gray solitons, re-
FIG. 1. The ground-state condensate intensfix) (solid), de-  spectively[17]). To treat analytically the effect of the pertur-
scribing an effective Thomas-Fermi cloud, for a harmonic trappingbation (10) on the dark soliton, we employ the adiabatic
potentialU(x) = (kx)2 (dotted with k=0.05. The potential due to perturbation theory developed in R¢20] (see also the re-
the localized impurity ak=0 is approximated by the steep function view [17]). According to this approach, the parameters of the
10b cosh?(x/0.05) withb=+0.15. Both cases of repulsive) and  dark soliton(11) become slowly varying functions df but
attractive(b) impurities are, respectively, shown. the functional form remains unchanged. Thus, the soliton
“phase angle” becomeg— ¢(t) and, as a result, the soliton
roughly speaking, equal to 1/56 for the values of the parameoordinate becomes— &= cose(t)[ Xx—X(t)], where
eters usedaround the impurity.

t
xo(t)zf sing(t")dt’ (12
B. Dynamics of dark solitons 0
To describe the dynamics of a dark soliton on top of theis the soliton center. As has been shown in H&D], the
inhomogeneous background described by the effective TFevolution of the parametes is then defined by the equation,
like cloud, we seek for a solution of E@L) in the form

u=up(x)e " Yatu(x,t 7 d—¢=;,R MP(v)v;*dx ) (13
b(X) X0, ™ dt 2 coggsing —e

where u, obeys Eq.(3) and the unknown complex field Substituting Eq(10) into Eq.(13) and taking into account

v(x,t) represents a dark soliton, which is governed by thethat for spatially slowly varying trapping potentiél,, the

following effective equation: higher-order derivatives may be omitted, we obtain the fol-
lowing result(for ug=1):

ivt+%Uxx_ugdl"z_l)vz_ui%vx- (8 d_cp__}%
® dt 2 dx
Apparently, the right-hand side and part of the nonlinear 3 [+ exp( — 2X)
terms of Eq.(8) can be treated as a perturbation. To obtain + Zb f dx ” " )
the contribution of the nonlinear terms within perturbation 0 [cosi(X—=Xq)—COosH(x+Xo)]
theory, we may use Eq#4) and (6) and approximatei? as (14

uZ~uz+2uof, based on the smallness of the functit(x) o o

(due to the slowly varying properties of the trapping poten_Where we assume additionally that the dark soliton is close to

tial and the smallness of the paramebecharacterizing the 2 Plack one, i.e.¢ is sufficiently small. Evaluating the inte-

impurity). In this way, and upon introducing the transforma- S in Eq.(14) and using the definition of Eq12), we

tions t—u2t, x—upx, we obtain the following perturbed obtain the following effective equation for the soliton center:
oY 1

NLS equation for the dark soliton:

d2X0 dw (15)
1 dt? dxo’
vt 5 v ([1]2 = D)v=P(v), €)
2 It is readily seen that Eq15) represents an equation of
motion for a classical particle with the coordinaiemoving
where the total perturbatioR(v) has the form in the effective potential,
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0.15 T T T T T T T T T
E—— 1 oar 1
2 cosﬁxo] 19 £ oosf 1
ok _
It is important to notice that, in the absence of the impurity -oos—————————— Mg e
(b=0), Eq.(15) describes the motion of a dark soliton inthe 45 , , . . , , , ,
presence of a trapping potential, and it predicts that the soli- /s"\/—\c\
ton oscillates in a harmonic trap. An equation similar to Eqgs. &, , > = 2
(15), (16) has first been stated without derivation in Ref. N \e\/\/
[10], but without the factor of 1/2. The same equation found _, . . . : . . s CE
in Ref.[10] is derived in Ref[11] by considering the dipole s s 20248
mode of a condensate carrying a dark soliton, and thus it is '
not Q|rectly related.to E_q(15). The correct result has been . /7“
obtained by a multiple time scale boundary layer theory re- 8 ° &%/
cently developed by Busch and Anglii2] who assumed o |
that the potential, the background density, and velocity vary 2% = = = = P S S S
slowly on the soliton scale. .
In the general case#0, we do not assume that the im- £ 2 (9 The effective potentialW(xo) = (1/2)(0.05q)?
purity potential varies slow on the soliton scale, however, wey. (p4)cosh?(x,) for a repulsive impurityb=0.15(solid line), and
take into account the modification of the condensate groungy attractive impurityb=—0.15 (dotted ling. (b) The associated
state in the presence of the impurity. It is important to menphase plane fob=+0.15, where several trajectories are shown.
tion that the term proportional toin the potential16) does  Dots, small circles, diamonds, and stars correspond to the numerical
not possess the appearance one might expect by inspectirgsults obtained by direct integration of the GP equation for differ-
Egs. (5) and(6). This reflects the pointlike character of the ent initial positions of the soliton taken inside, outside, or on the
impurity: the healing length is the shortest length available irleft-hand separatrix, respectively. The corresponding types of the
the condensate with respect to density variations and the e$oliton dynamics are shown in Figs. 3, 4, 5, and 6, respectiv@ly.
fective pointlike impurity generates a disturbance of theThe associated phase plane fbx —0.15, where several trajecto-
background cloud on the same length scale as the dark solies are shown. Stars correspond to the numerical results obtained
ton. by the GP equation fot=0,5,8,15,20,30, for a black soliton ini-
The resulting equatiofiL.6) shows that the character of the fially placed atxo=—1.
effective potential is changed in the vicinity of the impurity
(i.e., in a localized region around=0): In particular, it (@) For|xq(0)|<5.48 (corresponding to the phase curves
becomes repulsivéattractive for b>0 (b<<0) for the dark  surrounding the elliptic fixed pointghe dark soliton ise-
soliton due to the presence of the impurity localized at thejectednearly elastically by the impurity, and then it oscil-

1
W(xq) = E[ U(Xo)+

05 T T T T T T

> o

center of the trapping potential. lates in a relatively small spatial regigsee Fig. 1b)], as
compared to the entire length of the condengtite latter is
IIl. NUMERICAL RESULTS L~56).

(b) For |x(0)|>5.48 (corresponding to the phase curves

Adopting the particle picture of the dark soliton describedsurrounding the separatyisthe dark soliton istransmitted
above, we now analyze the soliton dynamics in the framenearly elastically through the impurity, and then it oscillates
work of Egs.(15) and(16). In particular, we assume that the in a relatively large region irx, as compared to the entire
effective potential is given by W(xo)=(1/2)(kx0)2 length of the condensate.
+(b/4)cosh®(xp) (the values of the parameters ake (c) The point|xy(0)|=5.48 corresponds to a critical re-
=0.05 andb=+0.15, see Fig. 1 gime described by the figure-eight separatrix; in this case the

At first, in the case of a repulsive impuritp$0) [see interaction time is very large.
W(x,) in Fig. 2@)], it is clear that the dynamical system in  On the other hand, in the case of an attractive impurity
hand is characterized by three fixed points, namely, two el¢{b<0), as shown in Fig. @), it is clear that the dynamical
liptic (stable located atxq~=2 and one hyperboli¢un-  system in hand is characterized by a single fixed point,
stablg located atx,=0. Figure 2Zb) shows the associated namely, an elliptiqstablé one, located ax,=0. Figure Zc)
phase plane Xp,dX,/dt) including several phase curves. shows the associated phase plane including several phase
The separatrix passing through the hyperbolic fixed point aturves. Apparently all trajectories are periodic and the spatial
(0,0) possesses the appearance of an intersecting double lodpmain where the soliton oscillates is the same as in the case
and, by definition, separates two types of motion taking placé=0. Thus, the presence of the attractive impurity does not
in a single well or above both wells. As a result, different qualitatively affect the soliton motion, but rather modifies
types of the soliton dynamics and soliton-impurity interac-locally (i.e., in the vicinity of the site of the impurijythe
tion are expected, depending on the initial conditipresall  soliton’s kinetic energy.

that we consider almost black solitons with ggs1, i.e., the The above theoretical predictions have been checked by
initial soliton velocity is sinp~0, and, as a result, the initial direct numerical simulations of the GP equation. In particu-
conditions refer solely to the initial soliton positiog(0)]: lar, we have used a split-step Fourier methad] to inte-
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grate the GP equatiofil) with an initial condition of the
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15

t=17

15

form

u(x,0)=up(x)tani x—xo(0)], 17
whereu,(x) =1+ f(x) is the effective TF-like wave function
modified by the localized impurityf(x) is given in Eq.(6)
with ug=1] and xy(0) is the initial soliton position. This
initial condition represents a dark soliton with ags1 [see
Eqg. (11)], i.e., a black soliton with zero initial velocity. No-
tice that the particular choice of the initial conditidf?)
implies that the characteristic lengkh* of the trapping po-
tential is much larger than the soliton width, i.&;>1
(recall that we have takek= 0.05), a fact indicating that in
this regime the validity of the perturbation theory presented
in the preceding section is guaranteed.

Finally, it is important to notice that since the initial con-
dition used[see Eq.17)], is obviously only an approxima-
tion and not an exact solution of the GP equation with the FIG. 3. Evolution of a black soliton density|? on top of the
impurity, it does not describe the pure soliton state, but als@ffective TF cloud(solid), with the potentialV(x) (dotted being
includes various phonon modes. Consequently, in the niuthe same as the one in Figal The dark soliton is initially placed
merical results presented beIOW, Changes in the backgrourﬁ!Xo(O): -3 and, in accordance with the analytical prediction, itis
density of the condensate, even “far” away from the soliton, reflected by the imp_uritYattw_ 28_) and then oscillat_es in the inter-
are observed. Also in an experiment, the prepared soIitoMa' .—3<.x<—1. This behavior is effectively described by.the pe-
does not perfectly coincide with the theoretical analytically_r'Od'_C trajectory surrounded by the left part of the separatrix shown
or numerically obtained soliton. We expect that our analyti-" F19- 2b)-
cal predictions and numerical resulighich, as we will see
below, are in a fairly good agreememan be verified in a qualitative but quantitative, since the maximum relative error
corresponding experiment. found in the soliton velocity does not exceed 20%.

Using the same initial configuration for a dark soliton
initially placed atxo(0)= —8, in Fig. 4 we show the evolu-
tion of the soliton density which, in this case, is transmitted

Tlhﬁ threed(jlftferentt_ typeﬁ), (), alngl (C)_ of th_te SOI't(;)_nt dnearly elastically through the impuritpo emission of radia-
evolution and interaction with a repuisive Impurnty predictedy;q , js opservey i.e., it is oscillating in the intervat-8<x

above, have been investigated numerically upon considering7.5_ Thus, the soliton motion takes place in a relatively

the initial soliton positionsxy,(0)=—-3, —8, —5.48, and - .
_5.5, respeciively. large spatial region compared to the condensate |lefingite

In particular, Fig. 3 shows the evolution of the soliton
density|u|?, corresponding to Eq17) with xo(0)=—3, on
top of the effective TF cloudsolid line), with a potential
V(x) = (0.05)?+ 1.5 cosh?(x/0.05) (dotted ling. Notice !
that both the effective TF wave function and potential are the’=
same as the ones illustrated in Figa)l As can be seen in
Fig. 3, the dark soliton is reflected by the impuritst t
~28; see third panglnearly elastically, and it oscillates in °
the interval—3<x<—1. The oscillations of the soliton take
place in a spatial domain significantly smaller than the ex-
tension of the BEC traghere the corresponding fraction is
2/56). According to the particle picture of the soliton
adopted in the preceding section, this behavior is effectively !
described by a periodic trajectory inside the separatrix loop*
on the left-hand side of Fig.(B). To illustrate this, the nu-
merically obtained soliton positions and velocities
(Xg, dXxp/dt) corresponding to the instants of the six sub- °
figures of Fig. 3 are shown by six dots in Figh®, starting
from (—3,0) and taking place clockwise. It is clearly seen  F|G. 4. The same as in Fig. 3 but for the dark soliton initially
that the relevant analytical prediction, according to which theplaced atx,(0)= —8. According to the analytical results, the soli-
soliton center follows the periodic trajectory is in fairly good ton is transmitted through the impurity and then oscillates in the
agreement with the numerical result obtained by the direcinterval —8<x<7.5. This behavior is effectively described by the
integration of the GP equation. This agreement is not onlyeriodic trajectory enclosing the separatrix in Fi¢p)2
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FIG. 5. The same as in Fig. 3 but for the dark soliton initially ~ FIG. 6. The same as in Fig. 3 but for the dark soliton initially
placed atxy(0)= —5.48. The soliton reaches the poiit 0, thenit  placed atxy(0)= —5.5. The soliton reaches the poii0, then it
is quasitrapped by the impurity for some finite time, and eventuallyis quasitrapped by the impurity for some finite time, and eventually
oscillates following a periodic trajectory enclosed by the left part ofoscillates following a periodic trajectory that encloses the right part
the separatrix in Fig. (®). of the separatrix in Fig. ®).

the fraction is=15.5/56). This behavior is effectively de- the impurity (at t~30) first is trapped untit~38, as in the
scribed by the periodic trajectory enclosing the separatriprevious case. However, fae>38 the soliton escapes to a
shown in Fig. 2b). As done above the soliton’s position in nearby periodic trajectory surrounding the separatrix, even-
phase space corresponding to the instants of the six subfigually performing an oscillation in a relatively large spatial
ures of Fig. 4 are indicategmall circle$ in Fig. 2(b). They  domain. This behavior can also be seen in Fig) hdicated
follow the corresponding periodic trajectory and a goodby triangles that follow the separatrithe maximum relative
agreement between the analytical prediction and the numererror in the soliton velocity found does not exceed 10%),
cal results is found agaiithe maximum relative error in the while the last two triangles follow a periodic trajectory sur-
soliton velocity is found to be slightly smaller in this case, rounding the separatrix. It is worth mentioning that, in both
i.e., of the order of 15%). cases mentioned above, the trapping time is estimated to be
We will now investigate the third possible type of soliton- of ordert,~ 10.
impurity interaction corresponding to a critical regime. In  Generally speaking, the initial conditions located in the
Fig. 5, we show the evolution of a dark soliton with an initial neighborhood of the separatrix lead to a quasitrapping phe-
position corresponding to the extremal vabyg,, of the left-  nomenon characterized by a relatively large titpef inter-
hand part of the separatrix in Fig(f. According to the action between the dark soliton and impurity. This phenom-
previous discussion, it is expected that the dark soliton willenon is followed by either reflection or transmission and
interact infinitely long with the impurity approaching the eventual oscillation of the soliton. Apparently, quasitrapping
pointx=0. As can be seen in Fig. 5, in direct simulations thecannot be understood quantitatively in terms of perturbation
dark soliton reaches the impurity sitat t~30) and it re- theory since the latter predicts that the soliton will remain
mains “quasitrapped” by the impurity tilt~38. Neverthe- infinitely long at the impurity. However, it is worth mention-
less, the numerical simulations show that for38 the soli-  ing that the perturbation theory developed above is based on
ton is released by the impurity, i.e., the soliton center, insteathe particlelike properties of the dark soliton, and it does not
of remaining on the separatrix, escapes to a periodic trajedake into account the radiation component of the field, which
tory inside the separatrix and eventually performs an oscilladescribes the wave properties of the soliton. We strongly
tion. This behavior can be seen in Figb® where the first surmise that the quasitrapping effect is a signature of the
four of the soliton’s phase space poiterresponding to the wave nature of the soliton excitation, but its detailed inves-
six subfigures of Fig. bare indicated by stars and follow the tigation is beyond the scope of this paper.
separatriXthe maximum relative error in the soliton velocity =~ We have also carried out numerical simulations for nearly
found does not exceed 10%), while the last two phase spad#ack solitons characterized by a small initial velodig/g.,
points follow a periodic trajectory inside the separatrix. sing~0.1); these results provide a qualitatively similar pic-
A slightly different initial soliton position, but still close ture for both the soliton evolution and soliton-impurity inter-
to the separatrix, i.e.xq(0)=—5.5 (note: this value is action. This can be understood in terms of the presented
slightly smaller than the extremal valug,,) produced simi- analysis, since nearly black solitons follow the trajectories on
lar results for the soliton-impurity interaction, but instead itthe phase plane in the neighborhood of the corresponding
leads to the soliton traversal through the impurity. This resulones followed by the black solitons. For example, an initially
is illustrated in Fig. 6, where the dark soliton, after reachingfinite soliton velocity may result in a change of reflection
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FIG. 7. Evolution of a black soliton densityi|? on top of the FIG. 8. The effective potentidlV(X,) in the case of a steadily

effective TF cloud(solid), with the potentialV(x) (dotted being  moving attractive impurity wittb=—0.15 and velocity =0.1 for
the same as that in Fig(l). The dark soliton that is initially placed time instants corresponding to the snapshots of Fig. 7t €di the
atxy(0)=0 is captured and dragged by a steadily moving attractivesoliton performs oscillations in the deepest part of the potential,
(b=—0.15) impurity with a velocityv=0.1. This occurs up td thus being pulled by the impurity. At~40 the formation of an
~40, when the soliton is released by the impurity, and eventuallyadditional maximum is observed and the potential becomes shal-

oscillates following a periodic trajectory in the interval4<x lower, allowing the soliton to gain energy. This effect may qualita-
=4. tively explain the release of the soliton by the moving impurity for
later times.

into transmission, which can easily be understood, since this

change of the initial conditions drives the solit@fter inter-  ¢55e the question arises whether this steadily moving impu-
acting for some finite time with the impurityto follow @ it may drag a black soliton, which is stationary if it is
periodic orbit enclosing the separatrix. initially placed at the bottom of the trapping potentiad (
=0), or it slightly oscillates in the well induced by a static
attractive impurity. Apparently this issue is important for ap-
Here we investigate numerically the dynamics of a nearlyplications, since it would directly demonstrate the possibility
black soliton in the presence of an attractive impurity ( of controlling the motion of black solitons in BECs, by
<0). As discussed above, in this case the effective potentiaheans of artificial impurities induced by properly tuned,
becomes attractive for the dark soliton in the vicinity of the sharply focused laser beams.
impurity (i.e., atx=0) as shown in Fig. @). However, if a In order to investigate this issue, we have integrated nu-
dark (black soliton is initially located far away from the merically the original GP equation with the modified poten-
impurity (i.e., for [xo|>2), there is no way to be trapped tjal V(x;t)=(0.05)?— 1.5 cosh 7 (x—vt)/0.05] and with an
since its initial potential energidue to the trapping poten- njtial condition u(x,0)=uy(x)tanh(), i.e., a black soliton
tial) is larger than the depth of the impurity-induced well. Onnjtially placed at the location of the impurity. In the numeri-
the other hand, ifxo| <2 the black soliton oscillates in the 4 simulations, varying the value of the velocityof the
attractive_impurity-induced we_II, occupyi_ng a _comparativelyimpurity, we observed that far>v .~0.25 the black soliton
small region around the location of the impurity. Both theseremains immobile and the moving impurity causes strong

results have bee_n conﬂrmed by direct numer!cal S'mmat'onﬁuctuations in the condensate background wave function. On
of the GP equation. Particularly, the oscillation of a black : L
the other hand, when is taken below . the soliton is able

soliton, initially placed atxo=—1,—2,—6, is illustrated in o0 follow the i i f finite i . |
the associated phase plane shown in Fig) By the corre- o follow the Impurity for a finite ime, INVETsely propor-
tional to the value ob. Such a case is illustrated in Fig. 7,

sponding periodic trajectoriesolid lineg. Again, the nu- ) ) '
merically found soliton positions and velocitiésee points Where the evolution of a black soliton, dragged by a steadily
depicted by stars in Fig.(8)] in the case of a black soliton Moving impurity withv=0.1, is shown. It is clearly seen
with xo=—1 (i.e., initially located inside the well induced that the soliton is captured and pulled by the impurity up to
by the impurity, are in a fairly good agreement with the t~40, but later on it escapes and, having gained energy, it
analytical predictions. starts to oscillate in the interval{4,4) (note that att=40

In this context, an interesting issue is to consider an adiathe soliton center is placed at=4). In order to get a quali-
batically moving attractive impurity, which moves with a tative insight into this effect, in Fig. 8 we show the succes-
small constant velocity on top of the background TF wave sive forms of the relevant effective potenthi(x,) for the
function without inducing significant perturbations. In this time instants corresponding to the snapshots in Fig. 7.

B. Attractive impurity
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For t<40 the potential is always purely attractive and thement between the analytical and numerical results for the
dark soliton gets trapped and is transported by the impuritysoliton reflection and transmission through the impurity.
performing, at the same time, small oscillations inside theNear the critical regime we observe a quasitrapping phenom-
well. However, at approximately=40 an additional maxi- enon, characterized by a relatively large interaction time and
mum forms and the potential becomes shallower. This allowsubsequent reflection or transmission of the dark soliton.
the soliton to gain enough energy for performing larger os- The dynamics of a dark soliton in the presence of an
cillations (ignoring the barrier that is going to be formed attractive impurity has been studied as well. In this case, we
finally leading to an escape of the soliton from the movinghave shown that the soliton motion is not qualitatively af-
impurity. fected by the impurity, since the soliton oscillates in the same
spatial domains as in the case of a purely harmonic confining
IV. SUMMARY AND CONCLUSIONS potential. Nevertheless, we have demonstrated that a black
) ) ) ) _soliton, initially placed at the bottom of the confining poten-
We have studied the interaction of a dark soliton with atjg|, can be captured and dragged by an adiabatically moving
|'Oca.|ized Impurlty in Bose-Einstein Condensate§. Th|S Situaattractive impurity, up to a certain time inverse|y propor-
tion has been modeled by an external potential in the Gional to the dragging velocity. It is found that the impurity-
equation, which, apart from the conventional confining po-induced convection of the soliton occurs for impurity veloci-
tential of the trap, incorporates an additiomalike potential.  ties below a certain threshold. The release of the soliton by
The latter provides a phenomenological description of thehe impurity after finite time has qualitatively been explained
presence of a sufficiently narrow impurity compared to thepy adopting the particle picture of the soliton and its motion
BEC's length. Experimentally, such an impurity could be re-jn the relevant effective time-dependent potential.
alized by a correspondingly focussed laser beam intersecting The above results show that spatially fixed or adiabati-
the condensate. The impurity potential modifies the backcally moving impurities represent an effective tool for ma-
ground Thomas-Fermi wave function by forcing a holenjpylating the soliton motion in the condensates: qualita-
(hump at the location of a repulsivéattractive impurity.  tively different processes can, to some extent, be controlled
We have studied the dynamics of a dark soliton placed on 0By, e.g., the coupling strength of the impurity. Higher dimen-
of the effective TF cloud employing the perturbation theorysjons than the effective one-dimensional situation considered
for dark solitons earlier developed in opti20]. According  here as well as further possible elements to control the mo-

to this approach, the soliton-impurity interaction is effec-tion of nonlinear excitations are relevant issues to be consid-
tively described in terms of a collective variable, the solitongred in future investigations.

center.

In the case of a repulsive impurity, we have demonstrated
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