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Motivated by recent experiments on trapped ultracold bosonic atoms in an optical lattice potential, we
consider the nonequilibrium dynamic properties of such bosonic systems for a number of experimentally
relevant situations. When the number of bosons per lattice site is large, there is a wide parameter regime where
the effective boson interactions are strong, but the ground state remains a suganfiunbt a Mott insulator
we describe the conditions under which the dynamics in this regime can be described by a discrete Gross-
Pitaevskii equation. We describe the evolution of the phase coherence after the system is initially prepared in
a Mott insulating state, and then allowed to evolve after a sudden change in parameters places it in a regime
with a superfluid ground state. We also consider initial conditions withrgphase” imprint on a superfluid
ground statdi.e., the initial phases of neighboring wells differ k), and discuss the subsequent appearance
of the density wave order and “Schtimger cat,” i.e., macroscopic quantum interference, states.
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[. INTRODUCTION tunneling amplitude between neighboring lattice sitbs,
>0 is the repulsive interaction energy between bosons in the
With the emerging experimental studies of ultracold at-same lattice minimum, and; is a smooth external potential
oms in a parabolic trap and a periodic optical lattice potentiaivhich we will take to be parabolic. We will mainly consider
[1,2] (the wavelength of the optical potential is much smallerthe case of a one-dimensional optical lattice, relevant to the
than the dimensions of the tramew possibilities for study- experiments of Ref.1], but generalization to higher dimen-
ing the physics of interacting bosons have emerged. At equisions is possible. The form &f; and the chemical potential
librium, the bosons can undergo a transition from a superef the bosons determine another important paramblethe
fluid to an insulator as the strength of the optical potential ismean number of bosons at the central Git®re precisely, at
increased[3—8]. However, the facile tunability and long the site whereV; is smallest, we shall mainly consider the
characteristic time scales of these systems also offer an opgaseN>1 here. A dimensionless measure of the strength of
portunity to investigate nonequilibrium dynamical regimesthe interactions between the bosons is the coupling
that have not been accessible before. In this context, there
have been a few recent theoretical studies of the dynamics of UN
bosons in a periodic potential: R¢®] computed the oscil- =3 1.2
lation frequency of the center of mass of a superfluid state of
bosons, while some nonequilibrium issues were addressed the different physical regimes df are also conveniently
papers[10-12 which appeared while this paper was beingdilineated by the values of.
completed. When the interactions between the bosons are strong
A description of the purpose of this paper requires anenough)\>\g,, the ground state df undergoes a quantum

understanding of the different parameter regimes of the bophase transition from a superfluid to a Mott insulatsee
son system, which we will assume is well described by theappendix A). It is known that[3]

single-band Hubbard model:
Ag~N2. (1.3
H:; [—J(a;raj+1+a;r+1aj)+vja;‘aj So for the case wherd is large, there is a wide regime, 1
<\<N?2, where the interactions between the bosons are
very strong, but the ground state is nevertheless a superfluid.
A description of the dynamical properties&fin this regime
is one of central purposes of this paper.
Herea; is a canonical Bose annihilation operator on sites of ForN large, and\ smaller than\ g, it is widely accepted
the optical lattice“wells” ) labeled by the integgr Jis the  [10] that the low-temperature dynamics &f can be de-
scribed by treating the operataf as a classicat number.
(We will investigate the conditions for the validity of this

U
+—alaj(ala—1)|.

5 (1.9
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V; A (t=0)=N, /N€?i, 1.
HGp:; —(lﬁrlﬂjﬂ*“ﬁﬁllﬁj)*‘T]|¢j|2+§|¢j|4 =0 J | 7

(1.4) where the¢; areindependent random variableghich are
' uniformly distributed between 0 andn2 In this manner, we

and the Poisson brackets have mapped the fully deterministic quantum time evolution
. of H to the stochastic and classical time evolutionHyp.
{4, 471= 55 . (1.5  In practice, the procedure is then as follows: choose a large

ensemble of initial values ofp;, and deterministically

. ; . * evolve Hgp for each such initial condition; the expectation
resulting equations of motion are, of course, a discrete ver;5 e of any quantum observable at timis then given by

sion of the familiar Gross-PitaevskiGP) equations. We will - 1o average value of the corresponding classical observable
often impose a parabolic confining potential, in which case 4 fimet, with the average being taken over the random vari-
V. & ables¢; . In particular,

J 2
' (a]" (0@l ()= N(Y " O randoms,, (1.8

Here, and henceforth, we measure time in unitéaf. The

5 =5

J 2

A nonuniform potential/; also can lead to the localization of  here e have indicated that the angular brackets on the left

bosons in separate wells; in particular, even without 'nteracfepresent a traditional quantum expectation value, while

tion (\=0), when|V; ;- V,[=2J, the eigenmodes of EQ. 556 on the right represent an average over the independent
(1.4) become localized. Note that this localization is a purely

variables ¢; specified by Eq(1.7) at timet=0. We will
semiclassical effect, described by the GP equationg; it ¢; Sp y Eq(1.7

i henceforth implicitly assume that all angular brackets have
smooth, then foh >\ g, the system undergoes a transition to 4, meaning specified in E¢L.8), depending upon whether
a nonuniform insulating stafe 3,14.

L o _they contain quantum or classical variables.
Describing the nonequilibrium quantum Bose dynamics  Ap, important property of Eq(1.8) is that while we must

for A<M, is now reduced to a problem of integrating the p4yei’—j for a nonzero result at=0, this is no longer true
glassical equations Of. motion "T‘p"ed .b.V. Ec{i.4).,_and for t>0. In particular, nonzero correlations can develop for
(1.5. Hov_vever, it remains to specify the initial conditions for large|j’ —j| as time evolves, corresponding to a restoration
the classical equations; these clearly depend upon the physj; phase coherence. Indeed the ground state\fon, is

C‘."ll situations of Interest, _and we ?ha” conS|d_er here_tw%uperfluid and thermalization must lead to the increase of the
distinct cases, which are discussed in the following sectlon%hase correlations. However, in this paper we show that even
without relaxation the coherence can be restored dynami-
A. Mott insulating initial state cally. (Of course, as we are looking at one-dimensional sys-
Consider the physical situatioff current experimental tems and the final state is expected to be thermalized at a
interest[15]) where fort<0 the bosons are in a Mott insu- nonzero temperature, the phase correlations cannot be truly
lating state with\ >\ g, and at timet=0 the optical lattice long range and must decay exponentially at large enough
potential is suddenly reduced so that\g, for all t>0. scales: however, guided by the experimental situation, we
Clearly, the GP equations should apply for0, and the Will look at relatively small systems for which this is not an
Mott insulating initial state will impose initial conditions, issue) Describing the dynamics of the restoration of this
which we now describe. The required initial conditions arePhase coherence is also a central purpose of this paper. We
readily deduced by thinking about the full quantum Heisen-shall characterize the phase coherence by studying the expec-
berg equations of motion fom;(t) implied by /. By inte-  tation value of
grating these equations, one can, in principle, relate any ob-
servable to the expectation values of the products of powers Dy(t)= i
of ajT(tZO) and a;(t=0). For the Mott insulator with\ g M
>\ g, these expectation values have a very simple structure: ) _ ) )
they factorize into products of expectation values on eachvhere M is the number of lattice sitegfor a nonuniform
site, and are nonzero only if the number of creation andEXtérnal potentiaV/;, M is just the ratio of the total number
annihilation operators on each site are equal. Furthermor®f bosons to the number of bosons in the central maeidg
for largeN, we can also ignore the ordering of thpandajT is some suitably chosen weight function. Observables closely

operators on each site, and, e.g., we obtain to leading ord&flated toDy are measured upon detecting the atoms after
in 1N releasing the trap. At timé=0, Dy(0)=0, and we will be

interested in the deviations dPy(t) from this value fort
<a;r“(t=0)a2"(t=0)>~ 5nm5].€([\|j)n, (1.6 >0, an increase corresponding to an enhancement of super-
fluid phase coherence. We note, in passing, that a closely
where we have accounted for a possible spatial inhomogeneelated procedure was used earl[i#6] to describe the onset
ity by introducingN; (a number of ordeN), the number of of phase coherence after a sudden quench from high tem-
bosons at sitg¢in the Mott insulator. In terms of the classical perature; here, we are always at zero temperature, and move
variables;, the t=0 expectation values in Eq1.6) are into a superfluid parameter regime by a sudden change in the
easy to reproduce. We simply choose value of\.

9(lj = €D{a] (D (D)), 1.9

J#€
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We will begin our analysis of the structure @fy(t) by  deep in the Mott insulating phaseith A>\g) taken sud-
considering the case with two wellM(=2) in Sec. Il A. For  denly to parameters for which the ground state was deep in
the weakly interacting casex&1), Dy(t) exhibits Joseph- the superfluid phaséwith A<\g)). In contrast, Ref[17]
son oscillations with a period of order unity; the weak inter-consider the case when both the initial and final values of
actions lead to a decay of oscillations with a slow ¥?) were not too far from\ g, but remained on opposite sides of
saturation of the coherence at a steady-state value at a tinitie For A close to\g,, and at temperatures not too small, a
scaletc\ 1. For A\>1 the oscillations are suppressed and“relativistic Gross-Pitaevski” equation had been proposed in
Dy(t) saturates atoe 1/\/X, which is, in fact, shorter than a Ref.[18] as a description of thBose molassedynamics of
single tunneling time. For this two-lattice-site case we carthe order parameter. The conditions under which oscillations
also obtain a complete solution fdp(t) for the quantum in the amplitude of the order parameter would be under-
Hamiltonian (described in Sec. Il AR and this allows a damped were also presenfdd]. Altman and Auerbachl7]
detailed analysis in the regime of validity of the semiclassi-advocated that the same equations could describe the time
cal GP equations. We show that the semiclassical approach éyolution of the amplitude of the order parameter as it
valid for two lattice sites wheiN is large and<<N/\. This  evolved from the Mott insulatoiwith zero amplitudgto the
is, in fact, a general result which implies that the quantunrsuperfluid (with finite amplitude at zero temperature. We
mechanics becomes important when time exceeds invergeview issues related to the damping of the amplitude mode
energy-level spacing. For more than two lattice sites, thén Appendix B. Altman and Auerbacfi7] also considered
energy splitting scales as the inverse of the total number dhe situation without an external potentid;&0). We have
particles, and ah <1, the semiclassical conditions are vir- noted above that such a potential changed our results signifi-
tually always fulfilled. It is surprising that even with a small cantly; in Appendix A we discuss the significant role of the
number of particlesN=4, and weak interactions, the GP external potential in the equilibrium properties for\g;.
equations give an excellent description of the system evolu-
tion, apart from the overall numerical prefactor 2/N), B. Modulated phase initial state
Wh.'lf:r?e'srer;?(t)rj:grl]l l;g:)'ﬁ;aei%e is also studied in the many- A second set of initial conditions we consider is the case

. . . in which the parameter values always correspond to a super-
well case in Sec. Il A. We discuss the case without an ex

ternal potential in Sec. Il A 1; with an equal number of ar-ﬂmd ground state, .6l <As,. For timet<0 we imagine
) pot ) ' ' d . Parihat\ takes some fixed value and the phagedhave some
ticles initially in all the wells, phase correlations develop

only in the interacting casen(>0). This is true for both known set of fixednonrandomvalues att=0, and we fol-

periodic and open boundary conditions. Similar to the tWo_Iow the subsequent evolution of the bosons using the discrete

well case, in the weakly interacting regime phase correla-GP equation. The phase imprint can be experimentally
tions will oscillate in time. However, these oscillations will achieved by, e.g., applying a shdompared to a single

be periodic only for a particular number of well tunneling time¢ pulse of external field to the condensate. A

a 2o . case of special interest will be when there is a relative
=2,3,4,6 for perlodlc.b_oundary conditions akt=2,3,5 for ghase shift between neighboring wells:
open boundary conditions. For other numbers of wells, th

oscillations are chaotic. As for the two well-case, a stronger bi=jm. (1.10
interaction results in a decay of correlations in time, leading
to the steady state. For two wells with equaN; and relatively smalk, this state

Next, in Sec. Il A 2, we consider the restoration of phaseis metastabléthis is also the case for evevi and periodic
coherence for the experimentally important case of a parasoundary conditions However, if the interaction becomes
bolic potential. The results are quite different for this casejarger than a critical value, this equilibrium becomes un-
and phase correlations develop even without interactions. Igtable and the bosons spontaneously form a “dipole” state
a weak parabolic potentialy(t) oscillates with a frequency [10,19,2Q in which most of them occupy one of the two
that scales as the square root of the paraboligityThis  wells (see Sec. Il B Upon accounting for quantum tunnel-
frequency is closely related to the oscillation frequency dising in a system with a finite number of bosons, the state
cussed recently by Kramet al. [9] for the case where the obtained is a superposition of the two dipole states restoring
center of mass of the atomic gas is displaced. In the presentanslational symmetry. However, in the case of infinite num-
situation, there is no displacement of the center of mass, buter of wells(see Sec. Ill B the tunneling between the two
the same oscillation is excited upon a sudden change in thgipole configurations is negligible and translational symme-
value of N. The oscillations decay even at=0; weak or try is broken by the appearance of a density wave of bosons
intermediate interactions<1 do not change the noninter- with a period of two lattice spacings. This effect is similar to
acting picture much. The amplitude of the oscillations be-that studied in Ref{21] for the case of a Mott insulator in a
come more pronounced far~1, but forA>1 the oscilla- strong electric field.
tions are suppressed as for the flat potential. Related to this instability is a very interesting possibility

While this work was being completed, we became awaref forming a Schrdinger cat, i.e., macroscopic quantum in-
of related results of Altman and Auerbach also addressing theereference, stafe22]. We show in Sec. Il B that if the sys-
restoration of phase coherence in a Mott insulator. Howevettem is initially in the “# state,” and the interaction is slowly
there are some significant differences in the physical situaincreased, then at a certain powt the bosons spontane-
tions being addressed. Above, we have considered a systesusly move into one of the wells. If quantum-mechanical
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corrections are taken into account, then the final configura- We will now consider the properties of the two-well sys-
tion is the superposition of the states with all bosons in ongéem for the two classes of initial conditions discussed in Sec.
of the wells. This effect opens the possibility of the dynami-I in turn. Each section below also contains a comparison with
cal formation of a strongly entangled state of bosons. the exact results obtained by a full quantum solutiorHof

II. SEMICLASSICAL VERSUS QUANTUM DYNAMICS A. Mott insulating initial state

OF TWO COUPLED INTERACTING BOSE SYSTEMS . Lo
As in Sec. | A, let us assume that initially the two con-

The comparison between the semiclassical and quantusiensates are completely uncoupled. We will consider their
theory of the two-well system has been presented earlier bgvolution in the semiclassical and quantum calculations in
Milburn et al. [23], although for initial conditions different turn.
from those we shall consider here.

First we will focus on the semiclassical description of the 1. Semiclassical theory
two-well system, when the total number of bosons is much  From the discussion in Sec. | A, we hawg=0 and¢y is

greater than 1. In this case the Gross-Pitaevskii equationg yniform random variable. We will study the correlation

implied by Eqs.(1.4) and(1.5) are betweeny; and i, as a function of time. It is easy to show
oy that
ia_tl:_lﬂ2+>\|'ﬁ1|2¢1a 2.1 \
(B OO+ Y1 (D)= 2(n*(1), 28
J
i%:—l//1+)\|¢2|2¢2- 2.2

where the average is taken over all possible initial phases
¢o. The correlator is proportional to the product of the cou-
pling constant\ and the variance o, reflecting the usual
phase-number uncertainty relation.

The total number of bosong,|?+ |,|? is a constant of the
motion; with our normalization for}; described above Eq.

(1.4), we have|y,|+| ’PZ!ZZ?- Before proceeding with quantitative analysis, let us argue
We use the parametrization qualitatively what happens with the system. Supposel.
— Then Eq.(2.6) is equivalent to the motion of a particle in a
— 0Fipl2 _ R : o X
Y12=V1¥ne ' 23 harmonic potential with a random initial velocity. Because
Note that only the relative phase ¢f and i, is an observ- the frequency of the harmonic oscillator does not depend on

L : the amplitude{n?(t)) is a periodic function of time witT
le. Eq2. Egs.(2.1 2.2 -
able. Substituting Eq2.3) into Egs.(2.1) and (2.2), we ob =/2. If \ is still small but not negligible, then Eq2.6)

tain . . > i . .
still describes motion in a harmonic potential, which, how-
d?n ever, depends on the initial conditions. As a result, the oscil-
gz T4n+4rnyl-n“cos¢=0, (2.4  lations of(n?(t)) become quasiperiodic and decay with time.
In the limit of large\ the oscillations completely disappear
d cosé n AN and the steady-state solution develops during the time
= —— COSp+ 25  ~1KX. _ N
dn 1-n 1-n? For weak coupling\, Eq. (2.6) can be solved explicitly.
Thus forA=0,
After further manipulation this system reduces to a single
second-order differential equation for the continuous variable 1—cos4
n: <”2(t)>:T- (2.9
d?n An? . . o
W+4n+4)\n( COSpo+ T) =0 (2.6) For small\ the approximate analytical solution is
with initial conditionsn(0)=no, dn(0)/dt=2sindy. Simi-  (n2(t))~ %_ Zi " sir? g cos 41\ T X coseo)debo.
lar equations were derived in Refd.0,20. Without interac- mJo
tion (\=0) we have a situation of a single Josephson junc- (2.10
tion described by a free harmonic oscillator. The interaction _ .
\ is responsible for the anharmonicity. Note that foe 1 It is easy to see that at largewe have the following

the solutionsn=0, ¢=0,7 are stationary, i.e., the phase aSymptotic behavior:
difference between the two wells can be either OmorOn

the other hand, fon>1 the solution with¢= 7 becomes <n2(t)>~1— 1
unstable[10,20, and instead the new minima appear at 4 \[16mrt

4t\1+ N+ il
co Z

Nmin= * \/2()\)\—;1). 2.7 +coa(4t\/l—)\—%”, (2.11
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FIG. 1. Semiclassical variance nfas a function of time. The inset on the top graph has a different time scale.

so that the variance af approaches the steady-state value ofWe introduce hats over the operators to distinguish them
7. We note that the amplitude of oscillations decays withfrom numbers appearing in the semiclassical treatment and
time ast™ 2 and on top of that there are beats with thethe expectation values of the operators. It is easy to see that
characteristic frequencype.:~ 4N (see Fig. L For largen the following combination:
the oscillations decay very rapidly afid?(t)) quickly satu-
rates at the steady-state value, which decreases\itee ~ N . . U.
Fig. 1). V- 5N n?=v— ﬁnz (2.14
2. Quantum theory

. commutes with the Hamiltonian. Using this fact, the system
__Letus now study the quantum case. The Heisenberg equs 12 can be reduced to a single differential equation:
tions of motion are

day . d>n . 2n . . N,
. (2.15

where square brackets denote commutatjenl,2, and the
Hamiltonian is given by Eq.(1.1). It turns out to be con-  \uith the initial conditions
venient to use the following Heisenberg operators:

D=ala. —al5 “ “ dn -

D=2z~ 413, A(0)=hs, 5| =—2idb,. (2.16

~ Aga Aga =0

Vv=ala,;+ala,, (2.13 '

~ s e In the equations abovg - -}, denotes the anticommutator,

n=aa,—a;a;. and the subindeg means time-independent Schiger op-

053607-5



POLKOVNIKOV, SACHDEYV, AND GIRVIN PHYSICAL REVIEW A 66, 053607 (2002

05 -. 0.25 4
a &
N ™~
[ =
044 % 0.20
()
034 &
A £ 0151
~ =
[ [3]
V 02 8 0.10-
S
[)]
0.1 3 0.0s-
s
Y E
0.0 T r T S o < 000 -
0 2 4 6 8 10 0 50 100 150 200
Time Time

FIG. 2. (a) Semiclassicalsolid line) and quantum variance afas a function of time for the weak-coupling case 0.05. Dashed line
corresponds to the total number of partics-2, dotted line toN=4. Solid and dotted lines are indistinguishable on this plo}.
Amplitude of the oscillations of the variance pfversus time.

erators. We note that the second relation in €416 holds In the weakly interacting regimen&1) we can neglect
for all times if we used instead ofd.. terms proportional ta.2. Then Eq.(2.15 simplifies to
In the noninteracting casex&0), the solution of Eq.
(2.19is
. . d>n . 2\ . .
n(t)=ngcos 2 —idsin . (2.17) W+4n+ W{n,‘l’s}+=0- (2.19

The initial conditions corresponding to the ground state for

A>\g is [I)=|N/2,N/2). Note that such a state is possible

only if N is even. The generalization fof odd is straight- It is very convenient to solve this equation in the eigenbasis
forward, but we will not do it here, since our major goal is to of ¥ :

compare quantum and semiclassical pictures. Simple compu-

tation shows that

—N/2
n’(t) 1 1—cos4 N+2

N2 Em<||ﬁz(t)||>:TT. (2.18 |k>:m(éis—'—égs)k(éls_ézs),\l_k'O%
(2.20

Comparing Egs(2.18 and(2.9) we see that the only differ-

ence between the semiclassical and quantum results in the

noninteracting case is the presence of an extra numericatherek=0,1, ... N. One can show that for the initial Fock
factor 1+ 2/N in Eq. (2.18. state|l)=|N/2,N/2) the variance of is

nt) 1 2272 NZ(N-2k- 1)l (2k+ 1)
N(N+2) 4 N(N+2) &b (N/2—k—1)!k!

X cos &

Vi i
1- G (4k+3=N)+\/ 1~ T (4k+1-N)|. (2.2

Comparing Eqs(2.21) and(2.11) we see that in contrast of particlesN=2, there is only one term in E2.21), so the
to the continuous integral in the semiclassical case there is@scillations are completely undamped. Fo=4, there are
discrete sum in the quantum. One can formally obtain Eqtwo terms and we expect perfect beats; i.e., the amplitude of
(2.17) from Eq. (2.21) in the limit N—o using Stirling’s  oscillations first goes to zero, then completely restores, and
formula, and transforming the summation o¥eto integra- so on. ForN=6 there are several terms contributing to the
tion. It turns out to be more convenient to normalize thesum. At a relatively small time scal®?t/N<1, frequencies
variance ofn to N(N+2) instead ofN?. If the total number in different terms are approximately equidistank()
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05{2)

Time Time

FIG. 3. Variance oh as a function of time for intermediata) and large(b) coupling constants. Note that for largér the semiclassical
approximation works well for a longer time scale, but eventually always breaks down.

~8\/N so the amplitude of oscillations is a periodic function. B. Modulated phase initial state
However, at a larger time scale the phases become random
and periodicity disappears. Figur¢a? shows the compari- We turn next to the initial conditions described in Sec.
son of the variance aof for N=2 andN=4 with the semi- | B, where the initial state has a phase order. In the semiclas-
classical result. On short time scales alredtly4 gives an  Sical picture,n and ¢» are commuting variables and we can
excellent agreement. In fact the semiclassical and the quaifix them att=0 independently. For simplicity let us consider
tum curve(for N=4) are completely indistinguishable. The No=0. Then from Eq.(2.6) it is obvious that only ¢
behavior of the amplitude of oscillations of is plotted in = 0,7 give the stationary solutions. As we discussed above,
Fig. 2b). It is clear that with increasindy, the semiclassical N=0 and¢=0 is automatically a ground state for all posi-
approximation works for longer and longer time scalgse  tive values of interaction, therefore it is always stable un-
also Ref.[23]). However, in a quantum system the recur-der small fluctuations. On the other handdif=, thenn
rence time is always finite, so ultimately &t-1/AQ, the =0 is(metg stable for<1 and unstable fox>1 (see Ref.
semiclassical description breaks down. [10] for the detail$. Suppose that we start fromh=, n

In Fig. 3 we present the numerical solution for the case of=0, A=0 and adiabatically increase. Thenn? remains
intermediate and strong couplings. As was discussed befordose to zero whilex remains smaller than critical value.
for small N, the amplitude of oscillations fluctuates, being After that,n? rapidly increases and the system spontaneously
completely chaotic at large time scales. However, at suffigoes to the Schainger cat state, where all the bosons are
ciently small time, the oscillations gradually decay, ap-either in the left or in the right well. A similar picture holds
proaching the semiclassical result. At intermediate times, thé the quantum-mechanical description. The principal differ-
amplitude of the oscillations experiences be&empare ence is that instead of a sharp transitior\at\ ., there is a
with Fig. 2). Note that for large coupling, the semiclassical smooth crossover between the initial and the final states. Fig-

description breaks down very early. ure 4 shows the variance of as a function of time. For
1.0 0.25 : .
b) Symmetric Initial State
0.204 2=0.005t
——N-=
N N - - N=
N N N=16
6 i - N, - N=
0.10 RS
02 .- i Antisymmetric 0.05 ]
| A Initial State | | T
""'--',./':‘ ---------- e ]
0'0 = II T T T 0'00 T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

FIG. 4. Variance of for the two wells for adiabatically increasing interactio(t). The initial state iga) antisymmetric ¢p= ) and(b)
symmetric =0).
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comparison we consider both symmetri¢=0) and anti-

symmetric =) initial conditions. h(j)=— \/M e?mkIIN, (3.9
I1l. SEMICLASSICAL DESCRIPTION OF MULTIWELL ) ] )
BOSE GASES corresponding to the eigenenergies
The full quantum solution of the many-well case rapidly 2.k
becomes numerically prohibitive with increasihy and so E,=—-2 cos - (3.5

we will confine our discussion in this section to the semiclas-

sical GP equation. From Eqgl.4) and (1.5 this is _ _ o
Here M is the number of wells. Expanding the initial insu-

lating state in terms of the eigenstates defined above and

(’[lJ — (1t g—)+ j¢j+)\|<pj|2¢j. (3.)  propagating them in time, we obtain
N
The equilibrium number of bosons in the central well ( (112-1 2=M(1— E(it 4) 36
=0) is N, and so|o|?=1 in the Mott insulating ground 1‘21 [0l I ; IFGLOl 39

state.
We divide our discussion according to the initial condi- where
tions considered in Sec. I.
N—-1

A. Mott insulating initial state F(, t)— Z g2 (mki/M +t cos 2rkiM) (3.7

We will compute the correlation functioRy(t) defined in
Eq. (1.9 for two limiting possibilities for the weight function For several different values df the functionD™(t) at
g: 9(j) = 6,1 and g(j) =const, where in the formeflatted anishinga is g
case one computes the nearest-neighigmba) phase cor-
relation. Using the GP equatioi3.1) we can show that N
2 _ i
dDy(t) , Dg(t)= 5 sif2t, (3.9
dr =12 Vit M u el - €

* * 3 8\ .3
X[Y7 (O -y (D] B2 Dg(t)= 5 (2+cos A)sir 5 t, 3.9

Note that for uniform potentiaDy(t) changes only due to \

the interaction. In this case, the ratfd,(t)/\ has a finite 4y _ :

- . i : : Dy(t)=—(7+ 2 1
limit at A —0. We will consider the solution foDgy(t) with o(t) 4( cos 2)sirr2t, (310
and without an external potential in the following sections.

1. No external potential and periodic boundary conditions (t) = (10 2 COS\/—'[ COS\/—t
Let us assume that the lattice forms a periodic array of
quantum wells and there is no external potentid|=0). 5 \F
For the nearest-neighbor correlation, similarly to the two- —2cos;tcos3\ 5 cos/5t|, (311

well case, it is easy to show that

A
. . A D8(t)= ==(63—8 cost— 12 cos 2— 24 cos 3— 6 cos 4
Dg(t)E; i ¢j+1+wj+l¢j:§; (l1= 1) o() 36(

3.3 —12cos@—cos8q), (3.12
This equation shows that the nearest-neighbor coherence M o
is proportional to the product of the coupling constant and p (t)—»—( 1—Jo(t)*— 22 (1) ) at M—oo.
the sum of the variances of the number of bosons in each

well. From the preceding section we can expect that if the (3.13
interaction is weak, then the variances mfat short time

scales will be fluctuating and governed by the noninteracting Clearly Dg (t) is a periodic function only forM
tunneling Hamiltonian. With increasing time, the interaction =2,3,4,6(this is in fact true not only for the nearest-neighbor
will suppress the fluctuations leading to some steady state. loas¢. For many wells the number of harmonics contributing
the noninteracting case, E(B.1) is just an ordinary Schro to the variance oh becomes large and oscillations become
dinger equation with eigenstates more chaotic and weaker in amplitude. In the lifit— oo,
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D, M(t) is a monotonically increasing function. If we add the ance ofn reaches the steady-state value in a very short time

mteractlon then the overall picture remains similar to thescale. o _ . .
two-well case. Namely, for small the amplitude of oscilla- In the limit opposite to the nearest-neighbor ogg|]
tions slowly decays in time. For strong interaction, the vari-—¢|) =const, one can show that &t-0,

28 b sirtt{1+cog27k/M)—cog 2mm/M) —cog 2m(k—m)/M ]}

DY (= 20~ 1t cod27KIM)—cos 2mmIM) — cod 2a(k—m)/M] (3.14
For example,

2 A H
Dy(t)= > sirf2t, (3.15
g('[)—4—,:_)(3 2cos3—cos@), (3.1

PHt)= - (13-12cos 4—cos & 3.1
o= 160( cos4—cos &), (3.17)
’Dg(t)=)\240(33+16cost 24.cos2—8 cos@—cos &), (3.18
MM\ (27 (2m Sirft[ 1+ cosf; — cosf,—cog 0;— 65,)]
M

Pg(®) f f 2 1+cosf;—cosh,—cog 0;— 6,) at M-—e. (319

|

The behavior ofDy(t) at largeM is very different for =12 corresponds to chaotic behavior. Note that in all cases

nearest-neighbor and global correlatiqese Fig. 5. While  high-frequency modes are suppressed for the case of global
the former rapidly reaches a steady-state value, the lattgthase correlations.
oscillates in time. Indeed the denominator in E8.14) se-

lects only low-frequency harmonics iy, freezing out
high-frequency oscillations, especially at Ionger time scales. So far, we have considered the rather hypothetical situa-

Figures 6 and 7 show,(t) for 6 and 12 wells, respec- tion of quantum wells S|tt|ng on aring. However, usually one

tively. Six wells give a periodic time dependence, while achieves confinement using a trap, which is equivalent to a
nonuniform external potentiad; in Eq. (3.1). The most com-

mon shape of this potential is paraboli¥ <j%) and we

2. Parabolic confining potential

0.5 — focus on this case, although the analysis of other potentials is
N similar and straightforward. As before, we will first study the
0.4- — Nearest neighbors noninteracting system\(=0):
v [ === Allwelis "
< [l lﬂ] + §J ) (3 2@
S 0.3 l‘ ,‘\ . ($J+l ‘//] 1) lzbj' .
E ' l, \‘ ” \ "\\’I\"—\l,\-’-“
Es 02 '\,' ¢ " This is a linear Schuinger equation with stationary states
o found from
0.1 &j°
El//j:_((/fj+l+‘//jfl)+7’/fj- (3.21)
0.0 — i i iliqr
o 70 % 20 - 20 In the Fourier space the same equation looks more familiar:
Time (t) E 2y(k)

FIG. 5. Time dependence of the coherefiggt) for the weakly
interacting Bose gases at large number of weMls{>). Note that  describing the motion of an one-dimensional particle of mass
nearest-neighbor correlation rapidly saturates, while the global cog~1 Jiving on a circle with the external potentidl (k)=
herence exhibits oscillations. —2 cosk). Note that the same type of equation describes
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4.0 0_12
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0.0 . . :
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Time (t)

FIG. 6. Time dependence @(t) for six wells; solid and dashed lines correspond to nearest-neighbor and global correlations, respec-
tively. Without interaction X —0) Dy(t) shows regular periodic behavior in time. Nonzero interactions lead to decay of oscillations.
High-frequency oscillations of the global correlation function are effectively suppressed.

Josephson junctions with charging energy. If the parabolicityror energieE>2, the second equation gives complete de-
is weak ¢<1), then the bosons form closely spaced ex-generacy between even and odd energy levels. In real space,
tended states at low energies. In the Fourier space this i®ughly all states witfE>2 are localized in individual wells
equivalent to having a heavy particle in th€2 cosk poten-  and degenerate, while those wifh<2 are spread through
tial. With a good accuracy one can describe the energy spegnany wells. Figure &) briefly summarizes this discussion
trum inside such a well using the WKB approximation. This showing the exact spectrum fge=0.1. (The WKB result is

is justified both for low energies, where2 cosk~—2+k* indistinguishable by the eye from this grapiClearly the

and the WKB gives the exact energy spectrum, and for highow-energy levels are approximately equally spaced, reveal-
energies; WKB works well for any potential. In fact there iS jng the famous property of a harmonic potential, the spacing
a litle subtlety near where the energy is close to 2, since thgecreases as the energy approaches 2, and starts linearly
potential there is almost flat and cannot be approximated by, creasing forE>2 as in a usual square well. =1 then

a linear function, but this is not very important. So the ap-posons become localized within individual wells and their

proximate WKB spectrum is given by energies follow external potential. The crossover from weak
to strong parabolicity is a finite system analog of the Ander-
o lEn 2 son transition. It is important to note that this is a purely
f N _1E/2\ /E(E+2 cosk) dk=m(n+1/2), semiclassical transition in this case, because it is derived in
—a+ CO0S

the Gross-Pitaevskii picture. The “quantum mechanics” here
5 originates from the wave nature of the classical figldf the
m _ average number of bosons per well is much larger than one,
\/=(E+ = . ) : .
J_W f(E 2 cosk)dk=2mn, (323 then the semiclassical picture, where the number of bosons
and their phases commute, holds until the typical fluctuations
where the top(bottom) equation corresponds tB<2 (E of ¢ becomes of the order of N&<1. This occurs deep

>2). In the first equation, even or odgiddescribes even and inside the insulating regime, where the energy in the GP
odd stateqin both real and reciprocal spaceespectively. approach is anyway almost phase independent.
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FIG. 7. Same as in Fig. 6 but for 12 wells. Without interaction oscillations are chaotic. Low frequency dominates the global correlation

function here as well.

After deriving the energy spectrum we can proceed withpate that the results for the parabolic and flat potentials will
the study of the dynamics of the condensate. Note that Ecpe strongly different, at least in the weakly interacting re-

(3.2 yields that the time derivative dPy(t) is not equal to
zero even without interactiol\& 0). Therefore we antici-

to show that ah =0,

gime. If the initial phases are uncorrelated then it is not hard

a) £=0.1 21b
. ) &=1
104
D 44 n 8
[ @
> > 64
(b} 4]
I =
> 2-\\ — > 4
5 | =~ | 8
2 AN 7 D
] 04 \\ // ]
0- N
2 — 2] S—r"
T T T T T T T T T T T T T T T T T
3 -2 -1 0 1 2 3 -3 -2 -1 0 1

Wave vector (k)

Wave vector (k)

FIG. 8. Energy spectrum of coupled noninteracting Bose gases in a (@eakd intermediatéb) parabolic potential.
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FIG. 9. Time dependence @, for the nearest-neighbor correlati¢® and global correlatiorib). The period of oscillations scales as
1/J€ and the amplitude is finite even without interactinre0. At large \, Dy(t) saturates very fast similarly to the flat potential. At
intermediate coupling.~ 1, however, the oscillations become more pronounced than in the noninteracting regime.

case, dephasing occurs much earlier and the amplitude of

Dy(t)=22, V(j)g(|j—¢]) oscillations is much weaker. Also the characteristic fre-
7t quency of the oscillations for the nearest-neighbor case will
be somewhat larger than that for the global case since the

X NOWH (1) a(P) 5 (P) hp(€) level separation decreases with energy. Figure 9 shows time
pre.p dependence oD, for nearest-neighbor and global correla-
Es—E, tions at the parabolicitg= 0.08. From the above analysis we
S > should expect the major oscillations at the period
X——, (3.29
e = 2T T g (3.29)
whereN§ is the initial number of Bosons in well numbpry E:-Bo J2¢ '

¢, andE, are the eigenfunction and energy of the lewel

respectively. If starting from the ground insulating state, theﬁ"’hICh is indeed very close to the numerical value.

Interesting things happen if we turn on the interaction. In
Vv particular, if\ is of the order of one, the oscillations become
Ng=1——= for V,<u, (325  much more pronounced and smooth compared to the nonin-
® teracting casésee Fig. 9. This is at first quite an unexpected
result, since we know that the interaction leads to decoher-
ence and saturation dPy. However this is not the whole

with 4 being a chemical potential. Let us make a few com-Story. In the previous analysis we saw that at least for the
ments about Eq(3.24). Levels 8 anda must have the same Dg(t), interaction “kills” high-frequency contributions first.

parity, meaning the lowest harmonic contributing to the sumBuUt that is precisely what we need for harmonic behavior. So
will be pin=2 min, (E,.,—E,)>0. Because\p is centered Crudely speaking, small or intermediate interaction removes
near the bottom of the well, only levels with delocalized Narmonics causing dephasing of the noninteracting function
wave functions will contribute to the sum. In particular, de-Pg - If intéractions become strong>1, then the noninter-

generate levels witfE>2 can be safely thrown away. If &cting picture is irrelevant and we come back to the usual
g(|j—¢|) is constant, then summation overensures that Pehavior with fast saturation @, . Notice from Fig. 9 that

the major contribution comes from=0; thereforeD,(t) the noninteracting and interacting pictures are quite different
contains mostly harmonics with=E,— E, a)=E4—gE0 at small time. This can be also understood naturally as a

etc., with the strongest weight at the smallest frequency. NotEesult of interplay of many harmonics at an early stage of the
that at small energies and weak parabolicity the lowest en€Volution. Hence we expect that the typical time scale for the
ergy levels are approximately equally spaced, therefore thiirst maximum in the interacting problem will be of the order
whole expression foDg(t) will be a quasiperiodic function of the tunneling time, which is much shorter than inverse
of a frequencyw~E,— E,. However, because this equidis- Ievel_ spacing. Howe\_/er at Iat_e_r times, only slow_harmomcs
tance is not exact, the periodicity will be only approximate, SUrvive, leading to slight modifications of the noninteracting
and at a short time scale, the amplitude of oscillations willP'Cture-
slowly decay. On the contrary, for the nearest-neighbor phase
coherencg(|j —€|)= 8, (-1 neitherB nor a are bounded to

the ground state and we expect that all kinds of allowed It is also straightforward to generalize the discussion of
frequenciesE,,— E4 will give contributions. Clearly in this Sec. Il B to the case of the periodic lattice. Namely, if the

NE=0 for Vy>u, (3.26

B. Modulated phase initial state
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1.0 GP picture, an adiabatic increase of interaction means that
09 2=0.005t the characteristic time scale is much smaller than the tunnel-
] ing time (d In \/dt<1). On the other hand, for the quantum
problem, adiabaticity would imply thadl In A/dt is much
smaller than the level spacing, which is proportional to the
inverse number of bosons. If the interaction is increased
adiabatically in the quantum-mechanical sense, then the sys-
tem would follow the local minimum of the metastable state,
and when\ becomes larger than the critical value, it will
undergo a spontaneous transition to the dipole statea
superposition of the dipole stajewith broken translational
symmetry.

0 100 200 300 400
Time IV. CONCLUSIONS

FIG. 10. Sum of the squares of the number of bosons in differ- We have studied the nonequilibrium temporal behavior of
ent lattice sitegwith normalizationz;n;=1). Clearly uniform dis-  coupled bosons in a lattice. We predicted the dynamical res-
tribution is stable until interaction is smaller than the critical value toration of the phase coherence after a sudden increase of the
3.31. Att—e we haveXinf—1, implying that all the bosons tunneling in a system initially in a Mott insulating state. In
populate one of the wells. the strongly interacting casa&>1, the coherence reaches a

_ _ ) steady state rapidlgwithin a Josephson timeOn the other
number of wells is even, then the state with a relative phasgand, time evolution in the weakly interacting regine 1
shift 77, and equal numbers of bosons in the wells, is metagepends strongly on the details of the confining potential. We
stable for weak interaction. Ik increases gradually, then predicted that in a parabolic potenti|= &j 2/2 the coher-
when it reaches a c_rl_tlcal value;, this state becomes un- once exerts decaying oscillations with peridet 1/\ [see
stable[24,25. The critical value of\ can be found from the g4 (3 29)]. The period and the amplitude of oscillations only
linear analysis of Eq(3.1) near thew state[24,25: depend weakly on interaction in this case. On the other hand,
lp_(t)%eiﬂj_i(zﬂ)t(yrueiqj_iwurv*e_iqj_iwt) if the cqnfining potent!al is flat, then the osci'llations' are ei-
] ’(3 28 ther periodic(for a particular number of wells in a latticer
' chaotic. Here the interaction leads to the decay of the oscil-
whereu andy are the small amp”tudes amﬁ& 0 is the wave lations with time. In both cases the System Ultlmat9|y reaches
vector of the perturbation. Substitution of this expansion intothe steady state with nonzero cohereridgnamical Bose-
Eq. (3.1) gives the following secular equation for the eigen- Einstein condensate

frequenciesw: For the two-well case we explicitly tested the validity of
the GP approach. It was shown that the mapping of the de-
w+2—2cosq—A\ -\ terministic quantum-mechanical motion to the stochastic GP
=0, i i ' i -
N —w+2-2cosq—\ equations is essentially exact for time less than the charac

(3.29 teristic inverse level spacing<N/\. Apart from the slight
' renormalization of the overall constant, the mapping is al-

which has two solutions ready excellent in this time domain for two bosons per well.
For stronger interactions, the semiclassical and quantum-
w=*+2+(1—cosq)’—\(1—cosq). (3.30 mechanical trajectories start to depart faster, as expected.

We also considered the dynamical appearance of the
Clearlyw is real if A <1—cosqg. Otherwise, fluctuations with  “Schrodinger cat” state under a slow increase of interaction
wave vectorg become unstable since the frequency becomefrom an initial phase modulated state. Ther state is stable
complex. The lowest nonzerq for the periodic boundary while interaction is weak and becomes unstable when
conditions is 2r/M, so the critical value of the interaction, >\.. In the GP picture, this instability leads to the symme-
where ther state becomes the saddle point rather than localry breaking, so that all the bosons spontaneously populate
minimum, is one of the wells. Quantum mechanically this means that the
final configuration is the superposition of states in which
bosons occupy different lattice sites. This approach can be
used experimentally for the creation of strongly entangled
states.
Similar to the two-well case, the bosons undergo a spontane- We close by making a few remarks on the experimental
ous transition to the superposition of states, where all ofmplications and limitations of our theory. Real condensates
them are in one of the wells. The time dependence of thexist in three dimensions, so the one-dimensional description
variance ofN is analogous to that plotted on the top graph ofused here is valid provided there is strong confinement in the
Fig. 4 (see Fig. 10 We remark that a “slow” or adiabatic transverse directions. Furthermore, the condensate should be
increase of interaction must be understood carefully. In thevell isolated for a time significantly longer than a hopping

=2 sir?%. (3.3

053607-13



POLKOVNIKOV, SACHDEYV, AND GIRVIN PHYSICAL REVIEW A 66, 053607 (2002

or a collision time. The latter are accounted for by the quartiovhere the average is taken over the density matrix of Eqg.
term in the GP equation in the degenerate regime, and by th@\1). We also define the order parameter

analysis in Appendix B in a hondegenerate regime; however

we have neglected phase relaxation from thermally excited =E b* b (A3)
atoms outside the initial condensate. It does appear that these P T

requirements can be met with the current experimental tech- g seif_consistent evaluation of the mean-field parameter
niques, and that our theoretical predictions will provide abj is straightforward, and the resulting order parameter is

consistent interpretation of experimental res{s]. plotted in Fig. 11 forT=0. The grapha) corresponds to a
few bosons per lattice site. If the interactidh is strong
ACKNOWLEDGMENTS enough, then the order parameter forms a domain structure

similar to that predicted in Ref13]. For a large number of
We are indebted to M. Kasevich and A. Tuchman for sharbosons per well, the quantum fluctuations start playing a role
ing the results of their ongoing experiments and for numerwhenU becomes of the order of the number of bosons in the
ous very useful discussions. We thank E. Altman and Acentral well N~ u/U), and the smooth GP shape of the
Auerbach for communicating their results prior to publica-boson density breaks down. For very strong interaction, the
tion and for an illuminating correspondence. This researchctual profile ofp becomes sensitive to small variations of
gfg;é%%ported by NSF Grant Nos. DMR 0098226 and DMRhe mean density of bosons per central well.

APPENDIX B: AMPLITUDE FLUCTUATIONS NEAR

OF THE BOSON LATTICE SYSTEM This appendix reviews results on the damping of the am-
IN A PARABOLIC POTENTIAL plitude oscillation mode near the superfluid-insulator transi-

The problem of the Mott insulator transitions for infinite fion, motivated by the recent paper of Altman and Auerbach

arrays of bosons have been extensively studied during the-7)- As we discussed in Sec. | A, we have considered a
last decade, see, for example, R¢&-5]. It was showr[4]  System deep in the Mott insulating phaggith A>\sg))

that the field-mean calculations qualitatively capture the twd@ken suddenly to parameters for which the ground state was
possible phases and give a good estimate for the pha§€ep in the superfluid phageith A<\g)), while Altman
boundary. Recently, using quantum Monte Carlo methods, aﬁ”d Auerbach consider the case when both the_ initial and
exact ground state for the system of bosons in a parabolitn@l values ofx were not too far froms,, but remained on
potential was foun@13]. It was shown that near the expected OPPOsite sides of it. _ .

transition, the global compressibility does not vanish due to A key ingredient in the dynamics of the amplitude mode
the spatial inhomogeneity. However, still the bosons formfor A<Ag, is the damping induced by the emission of the
local insulating domains separated by narrow superfluid reGoldstone “spin wave” or “phonon” modes. This problem
gions. The Monte Carlo approach, though very powerful, igvas considered in Ref$18,26, and it was found that the
incapable of solving the problem with many bosons per wellamplitude oscillations were overdamped in the'A, scal-

Therefore we think that for qualitative understanding of theing limit associated with the second-order superfluid-
ground state as a function of the interaction Strength’ it iénsulator transition. We will review these results below, and

worthwhile to do a mean-field calculation. display expressions which also allow us to move beyond the
The details of the derivation of the mean-field equationsscaling limit to values ok much smaller thang, [see Eq.
can be found in Ref4]. Here we will only outline the prin- (B8)]; the amplitude mode can become oscillatory in the
cipal steps. latter regime[17,18. This is also consistent with the consid-
The mean-field Hamiltonian obtained from Hq.1) is erations of the present paper, where we have found that the
oscillations of the superfluid coherence were present in the
parabolic multiwell case foh =5 in Fig. 9, but were fully
Hye=— 2, J(bjaj_’r+ b¥aj)+(V;— ,u)a]-Ta,- overdamped fok = 10 (not shown. We found similar behav-
] ior in the complete quantum solution for the two-well
U problem—however in the latter case, the oscillations reap-
+—ala(afai—1), (A1)  peared at very largk ~N?: these are the “number” oscilla-
2 1 tions of the Mott insulator, and were also found in Ré8].

The fate of these very small and very largescillations in
where 1 is the chemical potential. The variational free en-the multiwell case neaxs, requires a treatment of the inter-
ergy is that ofH,= plus additional contributions, which de- acting quantum dynamics; this was done in R¢is3,26),
pend upon the complex variational parameter$4]. Mini- ~ and the results are reviewed here.

mizing this free energy yields the optimum valuesbof ~ As is well known, we can describe the superfluid-
insulator transition by th&l=2 case of thé\-componenip*

field theory, where the superfluid order parameten Sec. |
:<aj+1+aj—1>

b~ @1 tig,. (B1)
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FIG. 11. Mean-field order parameter for different interactions in a parabolic potebr;ialé,(jZIZ) atT=0. Graph(a) corresponds to a
few bosons per site and the other two graphs to many bosons.

. The action for\ close to\g is Expressions fory, | were given in Refs[18,26 using
both the perturbation theory imand the largeN expansion.

1 1 (rots) Here, we collect them with a common notation, and interpret
S= f d9%dr *(waa)2+ﬁ(ﬂ7¢a)2—07¢i them i.n_ the prgsgnt contexﬁ. To first ordetirthe position of
2 2c 2 the critical point is determined by

i 2\2
+2N(%)

) B2 d+1
(B2) _2u(N+2)cf d ?iz B4)

e N

wherea=1,... N, cis a velocity,d is the spatial dimen-
sionality, andu is a quartic nonlinearity. The coefficient of Wherep=(k,—iw/c) is the @+ 1)-dimensional Euclidean
¢ is used to tune the system across the transition, and tH@omentum. In the limit of largé, butu arbitrary, the value
value ofr, is chosen so that the transition occurssato,  ©Of Fc is given simply by theN— o limit of Eq. (B4). To first
i.e., S~\—\g,. We assume that in the superfluid phaseOrder inu, we obtain fory, ,
(¢4)=Nod,1. The oscillations of the spin-wave modes are
given by the transverse susceptibility (k, ), while those gcsuf dd*+1q 1
(

of the amplitude mode are given by the longitudinal suscep- )(Il(p)= p?-

1 1)
(p+a)? q?/)’

d+1 2
tibility x|(k,®); herek is a wave vectorp is a frequency, N 2m)* g+ 2s
and the susceptibilities are defined by (BS)
X1 (k@) ={| @a(k, )[2) whereq is also a @+ 1)-dimensional Euclidean momentum;

(B3) atN=o we have simply)(Il(p)= p®. The expressioliB5)
) 5 di1 describes the spin-wave oscillations, along with their essen-
x|(k,w)=({|ea(k,0)|*) =Ng(2m)"" (k) o(w). tially negligible damping from their coupling to the ampli-
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tude modegas can be verified by taking the imaginary part of It is satisfying to check that Eq$B8) and (B6) are entirely
the loop integral in Eq(B5) after analytic continuation to consistent with each other in their overlapping limits of va-
real frequencies lidity of small u and largeN. The expressiofiB8) was given
The damping in the longitudinal modes is much moreearlier[18] in the scaling limit, which corresponds to ignor-
severe, and we will consider it explicitly. To first orderuin  ing the 1 in the denominator becauddp) becomes large.
we obtain the expression The utility of Eq. (B8) is that it does not have divergent
behavior at smalp.

4csuN-1) We turn, finally, to the expression fai(p), which is

x| 1(p)=p?+ 25— ————TL(p) + 8x| '(p)-

(B6) g 1 .

)= | b= =Fpl* % (B9)

Here the strong damping term has been includedlI{p) (2m) q<(p+aq)

whose explicit form is discussed below in E@®9), while : . L e
whereF 4 is a numerical prefactor which is not difficult to

dx| contains additional nonsingular terms that we can safely btain explicitly. Notice thalI(p) is singular as»—0 in d

neglect. For completeness, we give the expression for thg& and this is the reason for the strong damping of the

latter: amplitude mode. After analytic continuation to real fre-
5X“_l(p): lZucf dd+1q (i_ 1 guences, we have id=2,
" emTHat gtr2s IT(k w)=; d=2 (B10)
36csu[ ditlg 1 ’ 8Vk?—(wlc)?’ ’
N J (2m)9* L (g2+2s)[(p+q)2+2s] this has a nonzero imaginary part fet>ck, which leads to

(B7) the damping of the amplitude mode. The expression for
I1(p) is infrared divergent id=1, and this is the signal that
Note that these terms always involve coupling to an amplithere is no true long-range order; nevertheless, its imaginary
tude mode fluctuatiofwith “mass” 2s) and this is the rea- part remains well defined ab\ 1, and we find
son their contribution is nonsingular. We find below in Eq.
(B9) that thell(p) contribution in Eq.(B6) involves only
spin-wave fluctuations and hence it becomes very large at
low frequencies, where the perturbative expansion in Eq.
(B6) can no longer be trusted. Fortunately, a resummation ofvhich again predicts strong damping at low frequencies. The
these singular corrections is provided by the lakjexpan-  expressiongB8)—(B11) can be used to describe the evolu-

1
Im H(k,w)= mﬁ(ka), d=1, (Bll)

sion, which yields tion of the weakly damped amplitude mode ai
=/c?k?+ 2s at larges deep in the superfluid, to the over-
“L(p)=p?+ 2s (B8) damped mode with no sharp resonance at this frequency for
X 1+2cull(p)” smalls.
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