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Nonequilibrium Gross-Pitaevskii dynamics of boson lattice models

Anatoli Polkovnikov,* Subir Sachdev,† and S. M. Girvin‡
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Motivated by recent experiments on trapped ultracold bosonic atoms in an optical lattice potential, we
consider the nonequilibrium dynamic properties of such bosonic systems for a number of experimentally
relevant situations. When the number of bosons per lattice site is large, there is a wide parameter regime where
the effective boson interactions are strong, but the ground state remains a superfluid~and not a Mott insulator!:
we describe the conditions under which the dynamics in this regime can be described by a discrete Gross-
Pitaevskii equation. We describe the evolution of the phase coherence after the system is initially prepared in
a Mott insulating state, and then allowed to evolve after a sudden change in parameters places it in a regime
with a superfluid ground state. We also consider initial conditions with a ‘‘p phase’’ imprint on a superfluid
ground state~i.e., the initial phases of neighboring wells differ byp), and discuss the subsequent appearance
of the density wave order and ‘‘Schro¨dinger cat,’’ i.e., macroscopic quantum interference, states.

DOI: 10.1103/PhysRevA.66.053607 PACS number~s!: 03.75.Fi, 05.30.Jp, 64.60.Ht
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I. INTRODUCTION

With the emerging experimental studies of ultracold
oms in a parabolic trap and a periodic optical lattice poten
@1,2# ~the wavelength of the optical potential is much smal
than the dimensions of the trap!, new possibilities for study-
ing the physics of interacting bosons have emerged. At e
librium, the bosons can undergo a transition from a sup
fluid to an insulator as the strength of the optical potentia
increased@3–8#. However, the facile tunability and lon
characteristic time scales of these systems also offer an
portunity to investigate nonequilibrium dynamical regim
that have not been accessible before. In this context, t
have been a few recent theoretical studies of the dynamic
bosons in a periodic potential: Ref.@9# computed the oscil-
lation frequency of the center of mass of a superfluid stat
bosons, while some nonequilibrium issues were addresse
papers@10–12# which appeared while this paper was bei
completed.

A description of the purpose of this paper requires
understanding of the different parameter regimes of the
son system, which we will assume is well described by
single-band Hubbard model:

H5(
j

F2J~aj
†aj 111aj 11

† aj !1Vjaj
†aj

1
U

2
aj

†aj~aj
†aj21!G . ~1.1!

Hereaj is a canonical Bose annihilation operator on sites
the optical lattice~‘‘wells’’ ! labeled by the integerj, J is the
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tunneling amplitude between neighboring lattice sites,U
.0 is the repulsive interaction energy between bosons in
same lattice minimum, andVj is a smooth external potentia
which we will take to be parabolic. We will mainly conside
the case of a one-dimensional optical lattice, relevant to
experiments of Ref.@1#, but generalization to higher dimen
sions is possible. The form ofVj and the chemical potentia
of the bosons determine another important parameter:N, the
mean number of bosons at the central site~more precisely, at
the site whereVj is smallest!; we shall mainly consider the
caseN@1 here. A dimensionless measure of the strength
the interactions between the bosons is the coupling

l[
UN

J
; ~1.2!

the different physical regimes ofH are also conveniently
dilineated by the values ofl.

When the interactions between the bosons are str
enough,l.lSI , the ground state ofH undergoes a quantum
phase transition from a superfluid to a Mott insulator~see
Appendix A!. It is known that@3#

lSI;N2. ~1.3!

So for the case whereN is large, there is a wide regime,
!l!N2, where the interactions between the bosons
very strong, but the ground state is nevertheless a superfl
A description of the dynamical properties ofH in this regime
is one of central purposes of this paper.

For N large, andl smaller thanlSI , it is widely accepted
@10# that the low-temperature dynamics ofH can be de-
scribed by treating the operatoraj as a classicalc number.
~We will investigate the conditions for the validity of thi
classical approximation more carefully in Sec. II, where
will also discuss the time range over which it can be a
plied.! More precisely, we introduce the dimensionless co
plex dynamical variablec j (t) whose value is a measure o
^aj (t)&/AN; then its dynamics is described by the classi
Hamiltonian
©2002 The American Physical Society07-1
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HGP5(
j

F2~c j* c j 111c j 11* c j !1
Vj

J
uc j u21

l

2
uc j u4G

~1.4!

and the Poisson brackets

$c j ,c j
!%5d i j . ~1.5!

Here, and henceforth, we measure time in units of\/J. The
resulting equations of motion are, of course, a discrete
sion of the familiar Gross-Pitaevskii~GP! equations. We will
often impose a parabolic confining potential, in which ca

Vj

J
5

j

2
j 2.

A nonuniform potentialVj also can lead to the localization o
bosons in separate wells; in particular, even without inter
tion (l50), whenuVj 112Vj u>2J, the eigenmodes of Eq
~1.4! become localized. Note that this localization is a pur
semiclassical effect, described by the GP equations. IfVj is
smooth, then forl.lSI the system undergoes a transition
a nonuniform insulating state@13,14#.

Describing the nonequilibrium quantum Bose dynam
for l,lSI is now reduced to a problem of integrating th
classical equations of motion implied by Eqs.~1.4!, and
~1.5!. However, it remains to specify the initial conditions f
the classical equations; these clearly depend upon the p
cal situations of interest, and we shall consider here
distinct cases, which are discussed in the following sectio

A. Mott insulating initial state

Consider the physical situation~of current experimenta
interest@15#! where fort<0 the bosons are in a Mott insu
lating state withl.lSI , and at timet50 the optical lattice
potential is suddenly reduced so thatl,lSI for all t.0.
Clearly, the GP equations should apply fort.0, and the
Mott insulating initial state will impose initial conditions
which we now describe. The required initial conditions a
readily deduced by thinking about the full quantum Heise
berg equations of motion foraj (t) implied by H. By inte-
grating these equations, one can, in principle, relate any
servable to the expectation values of the products of pow
of aj

†(t50) and aj (t50). For the Mott insulator withl
@lSI these expectation values have a very simple struct
they factorize into products of expectation values on e
site, and are nonzero only if the number of creation a
annihilation operators on each site are equal. Furtherm
for largeN, we can also ignore the ordering of theaj andaj

†

operators on each site, and, e.g., we obtain to leading o
in 1/N,

^aj
†n~ t50!a,

m~ t50!&'dnmd j ,~Nj !
n, ~1.6!

where we have accounted for a possible spatial inhomog
ity by introducingNj ~a number of orderN), the number of
bosons at sitej in the Mott insulator. In terms of the classic
variablesc j , the t50 expectation values in Eq.~1.6! are
easy to reproduce. We simply choose
05360
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c j~ t50!5ANj /Neif j , ~1.7!

where thef j are independent random variableswhich are
uniformly distributed between 0 and 2p. In this manner, we
have mapped the fully deterministic quantum time evolut
of H to the stochastic and classical time evolution ofHGP .
In practice, the procedure is then as follows: choose a la
ensemble of initial values off j , and deterministically
evolve HGP for each such initial condition; the expectatio
value of any quantum observable at timet is then given by
the average value of the corresponding classical observ
at timet, with the average being taken over the random va
ablesf j . In particular,

^aj
†n~ t !aj 8

m
~ t !&Q'N^c j

!n~ t !c j 8
m

~ t !& randomf,
, ~1.8!

where we have indicated that the angular brackets on the
represent a traditional quantum expectation value, wh
those on the right represent an average over the indepen
variablesf j specified by Eq.~1.7! at time t50. We will
henceforth implicitly assume that all angular brackets ha
the meaning specified in Eq.~1.8!, depending upon whethe
they contain quantum or classical variables.

An important property of Eq.~1.8! is that while we must
havej 85 j for a nonzero result att50, this is no longer true
for t.0. In particular, nonzero correlations can develop
large u j 82 j u as time evolves, corresponding to a restorat
of phase coherence. Indeed the ground state forl,lSI is
superfluid and thermalization must lead to the increase of
phase correlations. However, in this paper we show that e
without relaxation the coherence can be restored dyna
cally. ~Of course, as we are looking at one-dimensional s
tems and the final state is expected to be thermalized
nonzero temperature, the phase correlations cannot be
long range and must decay exponentially at large eno
scales: however, guided by the experimental situation,
will look at relatively small systems for which this is not a
issue.! Describing the dynamics of the restoration of th
phase coherence is also a central purpose of this paper
shall characterize the phase coherence by studying the ex
tation value of

Dg~ t !5
1

M (
j Þ,

g~ u j 2,u!^c j
!~ t !c,~ t !&, ~1.9!

where M is the number of lattice sites~for a nonuniform
external potentialVj , M is just the ratio of the total numbe
of bosons to the number of bosons in the central well! andg
is some suitably chosen weight function. Observables clos
related toDg are measured upon detecting the atoms a
releasing the trap. At timet50, Dg(0)50, and we will be
interested in the deviations ofDg(t) from this value fort
.0, an increase corresponding to an enhancement of su
fluid phase coherence. We note, in passing, that a clo
related procedure was used earlier@16# to describe the onse
of phase coherence after a sudden quench from high t
perature; here, we are always at zero temperature, and m
into a superfluid parameter regime by a sudden change in
value ofl.
7-2
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We will begin our analysis of the structure ofDg(t) by
considering the case with two wells (M52) in Sec. II A. For
the weakly interacting case (l!1), Dg(t) exhibits Joseph-
son oscillations with a period of order unity; the weak inte
actions lead to a decay of oscillations with a slow (t21/2)
saturation of the coherence at a steady-state value at a
scalet}l21. For l@1 the oscillations are suppressed a
Dg(t) saturates att}1/Al, which is, in fact, shorter than a
single tunneling time. For this two-lattice-site case we c
also obtain a complete solution forDg(t) for the quantum
HamiltonianH ~described in Sec. II A 2!, and this allows a
detailed analysis in the regime of validity of the semiclas
cal GP equations. We show that the semiclassical approa
valid for two lattice sites whenN is large andt,N/l. This
is, in fact, a general result which implies that the quant
mechanics becomes important when time exceeds inv
energy-level spacing. For more than two lattice sites,
energy splitting scales as the inverse of the total numbe
particles, and atl!1, the semiclassical conditions are v
tually always fulfilled. It is surprising that even with a sma
number of particlesN54, and weak interactions, the G
equations give an excellent description of the system ev
tion, apart from the overall numerical prefactor (112/N),
which is not small in this case.

The restoration of coherence is also studied in the ma
well case in Sec. III A. We discuss the case without an
ternal potential in Sec. III A 1; with an equal number of pa
ticles initially in all the wells, phase correlations develo
only in the interacting case (l.0). This is true for both
periodic and open boundary conditions. Similar to the tw
well case, in the weakly interacting regime phase corre
tions will oscillate in time. However, these oscillations w
be periodic only for a particular number of wells:M
52,3,4,6 for periodic boundary conditions andM52,3,5 for
open boundary conditions. For other numbers of wells,
oscillations are chaotic. As for the two well-case, a stron
interaction results in a decay of correlations in time, lead
to the steady state.

Next, in Sec. III A 2, we consider the restoration of pha
coherence for the experimentally important case of a p
bolic potential. The results are quite different for this ca
and phase correlations develop even without interactions
a weak parabolic potential,Dg(t) oscillates with a frequency
that scales as the square root of the parabolicityj. This
frequency is closely related to the oscillation frequency d
cussed recently by Krameret al. @9# for the case where the
center of mass of the atomic gas is displaced. In the pre
situation, there is no displacement of the center of mass,
the same oscillation is excited upon a sudden change in
value of l. The oscillations decay even atl50; weak or
intermediate interactionsl<1 do not change the noninte
acting picture much. The amplitude of the oscillations b
come more pronounced forl'1, but for l@1 the oscilla-
tions are suppressed as for the flat potential.

While this work was being completed, we became aw
of related results of Altman and Auerbach also addressing
restoration of phase coherence in a Mott insulator. Howe
there are some significant differences in the physical si
tions being addressed. Above, we have considered a sy
05360
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deep in the Mott insulating phase~with l@lSI) taken sud-
denly to parameters for which the ground state was dee
the superfluid phase~with l!lSI). In contrast, Ref.@17#
consider the case when both the initial and final values ol
were not too far fromlSI , but remained on opposite sides
it. For l close tolSI , and at temperatures not too small,
‘‘relativistic Gross-Pitaevski’’ equation had been proposed
Ref. @18# as a description of theBose molassesdynamics of
the order parameter. The conditions under which oscillati
in the amplitude of the order parameter would be und
damped were also presented@18#. Altman and Auerbach@17#
advocated that the same equations could describe the
evolution of the amplitude of the order parameter as
evolved from the Mott insulator~with zero amplitude! to the
superfluid ~with finite amplitude! at zero temperature. We
review issues related to the damping of the amplitude m
in Appendix B. Altman and Auerbach@17# also considered
the situation without an external potential (Vj[0). We have
noted above that such a potential changed our results sig
cantly; in Appendix A we discuss the significant role of th
external potential in the equilibrium properties forl'lSI .

B. Modulated phase initial state

A second set of initial conditions we consider is the ca
in which the parameter values always correspond to a su
fluid ground state, i.e.,l,lSI . For time t<0 we imagine
that l takes some fixed value and the phasesf j have some
known set of fixed,nonrandomvalues att50, and we fol-
low the subsequent evolution of the bosons using the disc
GP equation. The phase imprint can be experiment
achieved by, e.g., applying a short~compared to a single
tunneling time! pulse of external field to the condensate.
case of special interest will be when there is a relativep
phase shift between neighboring wells:

f j5 j p. ~1.10!

For two wells with equalNj and relatively smalll, this state
is metastable~this is also the case for evenM and periodic
boundary conditions!. However, if the interactionl becomes
larger than a critical value, this equilibrium becomes u
stable and the bosons spontaneously form a ‘‘dipole’’ st
@10,19,20# in which most of them occupy one of the tw
wells ~see Sec. II B!. Upon accounting for quantum tunne
ing in a system with a finite number of bosons, the st
obtained is a superposition of the two dipole states resto
translational symmetry. However, in the case of infinite nu
ber of wells~see Sec. III B! the tunneling between the tw
dipole configurations is negligible and translational symm
try is broken by the appearance of a density wave of bos
with a period of two lattice spacings. This effect is similar
that studied in Ref.@21# for the case of a Mott insulator in a
strong electric field.

Related to this instability is a very interesting possibili
of forming a Schro¨dinger cat, i.e., macroscopic quantum i
tereference, state@22#. We show in Sec. III B that if the sys
tem is initially in the ‘‘p state,’’ and the interaction is slowly
increased, then at a certain pointall the bosons spontane
ously move into one of the wells. If quantum-mechanic
7-3
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corrections are taken into account, then the final configu
tion is the superposition of the states with all bosons in o
of the wells. This effect opens the possibility of the dynam
cal formation of a strongly entangled state of bosons.

II. SEMICLASSICAL VERSUS QUANTUM DYNAMICS
OF TWO COUPLED INTERACTING BOSE SYSTEMS

The comparison between the semiclassical and quan
theory of the two-well system has been presented earlie
Milburn et al. @23#, although for initial conditions differen
from those we shall consider here.

First we will focus on the semiclassical description of t
two-well system, when the total number of bosons is mu
greater than 1. In this case the Gross-Pitaevskii equat
implied by Eqs.~1.4! and ~1.5! are

i
]c1

]t
52c21luc1u2c1 , ~2.1!

i
]c2

]t
52c11luc2u2c2 . ~2.2!

The total number of bosonsuc1u21uc2u2 is a constant of the
motion; with our normalization forc j described above Eq
~1.4!, we haveuc1u21uc2u252.

We use the parametrization

c1,25A17neiu7 if/2. ~2.3!

Note that only the relative phase ofc1 andc2 is an observ-
able. Substituting Eq.~2.3! into Eqs.~2.1! and~2.2!, we ob-
tain

d2n

dt2
14n14lnA12n2cosf50, ~2.4!

d cosf

dn
5

n

12n2 cosf1
ln

A12n2
. ~2.5!

After further manipulation this system reduces to a sin
second-order differential equation for the continuous varia
n:

d2n

dt2
14n14lnS cosf01

ln2

2 D50 ~2.6!

with initial conditionsn(0)5n0 , dn(0)/dt52sinf0. Simi-
lar equations were derived in Refs.@10,20#. Without interac-
tion (l50) we have a situation of a single Josephson ju
tion described by a free harmonic oscillator. The interact
l is responsible for the anharmonicity. Note that forl<1
the solutionsn50, f50,p are stationary, i.e., the phas
difference between the two wells can be either 0 orp. On
the other hand, forl.1 the solution withf5p becomes
unstable@10,20#, and instead the new minima appear at

nmin56A2~l21!

l2 . ~2.7!
05360
a-
e
-

m
y

h
ns

e
le

-
n

We will now consider the properties of the two-well sy
tem for the two classes of initial conditions discussed in S
I in turn. Each section below also contains a comparison w
the exact results obtained by a full quantum solution ofH.

A. Mott insulating initial state

As in Sec. I A, let us assume that initially the two co
densates are completely uncoupled. We will consider th
evolution in the semiclassical and quantum calculations
turn.

1. Semiclassical theory

From the discussion in Sec. I A, we haven050 andf0 is
a uniform random variable. We will study the correlatio
betweenc1 andc2 as a function of time. It is easy to show
that

^c2* ~ t !c1~ t !1c1* ~ t !c2~ t !&5
l

4
^n2~ t !&, ~2.8!

where the average is taken over all possible initial pha
f0. The correlator is proportional to the product of the co
pling constantl and the variance ofn, reflecting the usual
phase-number uncertainty relation.

Before proceeding with quantitative analysis, let us arg
qualitatively what happens with the system. Supposel!1.
Then Eq.~2.6! is equivalent to the motion of a particle in
harmonic potential with a random initial velocity. Becau
the frequency of the harmonic oscillator does not depend
the amplitude,̂ n2(t)& is a periodic function of time withT
5p/2. If l is still small but not negligible, then Eq.~2.6!
still describes motion in a harmonic potential, which, ho
ever, depends on the initial conditions. As a result, the os
lations of^n2(t)& become quasiperiodic and decay with tim
In the limit of largel the oscillations completely disappea
and the steady-state solution develops during the timt
;1/Al.

For weak couplingl, Eq. ~2.6! can be solved explicitly.
Thus forl50,

^n2~ t !&5
12cos 4t

4
. ~2.9!

For smalll the approximate analytical solution is

^n2~ t !&'
1

4
2

1

2pE0

p

sin2f0 cos~4tA11l cosf0!df0 .

~2.10!

It is easy to see that at larget we have the following
asymptotic behavior:

^n2~ t !&'
1

4
2

1

A16plt
FcosS 4tA11l1

p

4 D
1cosS 4tA12l2

p

4 D G , ~2.11!
7-4
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FIG. 1. Semiclassical variance ofn as a function of time. The inset on the top graph has a different time scale.
o
ith
he

qu

em
and
that

em

r,
so that the variance ofn approaches the steady-state value
1
4 . We note that the amplitude of oscillations decays w
time as t21/2 and on top of that there are beats with t
characteristic frequencyvbeats'4l ~see Fig. 1!. For largel
the oscillations decay very rapidly and^n2(t)& quickly satu-
rates at the steady-state value, which decreases withl ~see
Fig. 1!.

2. Quantum theory

Let us now study the quantum case. The Heisenberg e
tions of motion are

dâj

dt
5 i @H,â j #, ~2.12!

where square brackets denote commutation,j 51,2, and the
HamiltonianH is given by Eq.~1.1!. It turns out to be con-
venient to use the following Heisenberg operators:

F̂5â2
†â12â1

†â2 ,

Ĉ5â2
†â11â1

†â2 , ~2.13!

n̂5â2
†â22â1

†â1 .
05360
f

a-

We introduce hats over the operators to distinguish th
from numbers appearing in the semiclassical treatment
the expectation values of the operators. It is easy to see
the following combination:

Ĉ2
l

2N
n̂2[Ĉ2

U

4J
n̂2 ~2.14!

commutes with the Hamiltonian. Using this fact, the syst
~2.12! can be reduced to a single differential equation:

d2n̂

dt2
14n̂1

2l

N
$n̂,Ĉs%11

l2

N2~2n̂32$n̂,n̂s
2%1!50

~2.15!

with the initial conditions

n̂~0!5n̂s ,
dn̂

dt
U

t50

522i F̂s . ~2.16!

In the equations above$•••%1 denotes the anticommutato
and the subindexs means time-independent Schro¨dinger op-
7-5
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FIG. 2. ~a! Semiclassical~solid line! and quantum variance ofn as a function of time for the weak-coupling casel50.05. Dashed line
corresponds to the total number of particlesN52, dotted line toN54. Solid and dotted lines are indistinguishable on this plot.~b!
Amplitude of the oscillations of the variance ofn versus time.
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erators. We note that the second relation in Eq.~2.16! holds
for all times if we useF̂ instead ofF̂s .

In the noninteracting case (l50), the solution of Eq.
~2.15! is

n̂~ t !5n̂scos 2t2 i F̂ssin 2t. ~2.17!

The initial conditions corresponding to the ground state
l@lSI is uI &[uN/2,N/2&. Note that such a state is possib
only if N is even. The generalization forN odd is straight-
forward, but we will not do it here, since our major goal is
compare quantum and semiclassical pictures. Simple com
tation shows that

n2~ t !

N2 [
1

N2 ^I un̂2~ t !uI &5
12cos 4t

4

N12

N
. ~2.18!

Comparing Eqs.~2.18! and~2.9! we see that the only differ
ence between the semiclassical and quantum results in
noninteracting case is the presence of an extra nume
factor 112/N in Eq. ~2.18!.
t
is

Eq

he
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In the weakly interacting regime (l!1) we can neglect
terms proportional tol2. Then Eq.~2.15! simplifies to

d2n̂

dt2
14n̂1

2l

N
$n̂,Ĉs%150. ~2.19!

It is very convenient to solve this equation in the eigenba

of Ĉs :

uk&5
22N/2

Ak! ~N2k!!
~ â1s

† 1â2s
† !k~ â1s

† 2â2s
† !N2ku0&,

~2.20!

wherek50,1, . . . ,N. One can show that for the initial Foc
stateuI &5uN/2,N/2& the variance ofn is
n2~ t !

N~N12!
5

1

4
2

222N/2

N~N12! (
k50

N/221
~N22k21!!! ~2k11!!!

~N/22k21!!k!

3cos 2tFA12
l

N
~4k132N!1A12

l

N
~4k112N!G . ~2.21!
e of
and
he
Comparing Eqs.~2.21! and ~2.11! we see that in contras
to the continuous integral in the semiclassical case there
discrete sum in the quantum. One can formally obtain
~2.11! from Eq. ~2.21! in the limit N→` using Stirling’s
formula, and transforming the summation overk to integra-
tion. It turns out to be more convenient to normalize t
variance ofn to N(N12) instead ofN2. If the total number
a
.

of particlesN52, there is only one term in Eq.~2.21!, so the
oscillations are completely undamped. ForN54, there are
two terms and we expect perfect beats; i.e., the amplitud
oscillations first goes to zero, then completely restores,
so on. ForN>6 there are several terms contributing to t
sum. At a relatively small time scale,l2t/N!1, frequencies
in different terms are approximately equidistant:DV
7-6
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FIG. 3. Variance ofn as a function of time for intermediate~a! and large~b! coupling constants. Note that for largerN, the semiclassical
approximation works well for a longer time scale, but eventually always breaks down.
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'8l/N so the amplitude of oscillations is a periodic functio
However, at a larger time scale the phases become ran
and periodicity disappears. Figure 2~a! shows the compari-
son of the variance ofn for N52 andN54 with the semi-
classical result. On short time scales alreadyN54 gives an
excellent agreement. In fact the semiclassical and the q
tum curve~for N54) are completely indistinguishable. Th
behavior of the amplitude of oscillations ofn2 is plotted in
Fig. 2~b!. It is clear that with increasingN, the semiclassica
approximation works for longer and longer time scales~see
also Ref.@23#!. However, in a quantum system the recu
rence time is always finite, so ultimately att.1/DV, the
semiclassical description breaks down.

In Fig. 3 we present the numerical solution for the case
intermediate and strong couplings. As was discussed be
for small N, the amplitude of oscillations fluctuates, bein
completely chaotic at large time scales. However, at su
ciently small time, the oscillations gradually decay, a
proaching the semiclassical result. At intermediate times,
amplitude of the oscillations experiences beats~compare
with Fig. 2!. Note that for large coupling, the semiclassic
description breaks down very early.
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B. Modulated phase initial state

We turn next to the initial conditions described in Se
I B, where the initial state has a phase order. In the semic
sical picture,n and f are commuting variables and we ca
fix them att50 independently. For simplicity let us conside
n050. Then from Eq.~2.6! it is obvious that onlyf0

50,p give the stationary solutions. As we discussed abo
n50 andf50 is automatically a ground state for all pos
tive values of interactionl, therefore it is always stable un
der small fluctuations. On the other hand iff05p, thenn
50 is ~meta! stable forl<1 and unstable forl.1 ~see Ref.
@10# for the details!. Suppose that we start fromf5p, n
50, l50 and adiabatically increasel. Then n2 remains
close to zero whilel remains smaller than critical value
After that,n2 rapidly increases and the system spontaneou
goes to the Schro¨dinger cat state, where all the bosons a
either in the left or in the right well. A similar picture hold
in the quantum-mechanical description. The principal diff
ence is that instead of a sharp transition atl5lc , there is a
smooth crossover between the initial and the final states.
ure 4 shows the variance ofn as a function of time. For
FIG. 4. Variance ofn for the two wells for adiabatically increasing interactionl(t). The initial state is~a! antisymmetric (f5p) and~b!
symmetric (f50).
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comparison we consider both symmetric (f50) and anti-
symmetric (f5p) initial conditions.

III. SEMICLASSICAL DESCRIPTION OF MULTIWELL
BOSE GASES

The full quantum solution of the many-well case rapid
becomes numerically prohibitive with increasingN, and so
we will confine our discussion in this section to the semicl
sical GP equation. From Eqs.~1.4! and ~1.5! this is

i
]c j

]t
52~c j 111c j 21!1

Vj

J
c j1luc j u2c j . ~3.1!

The equilibrium number of bosons in the central wellj
50) is N, and souc0u251 in the Mott insulating ground
state.

We divide our discussion according to the initial cond
tions considered in Sec. I.

A. Mott insulating initial state

We will compute the correlation functionDg(t) defined in
Eq. ~1.9! for two limiting possibilities for the weight function
g: g( j )5d j ,1 and g( j )5const, where in the former~latter!
case one computes the nearest-neighbor~global! phase cor-
relation. Using the GP equations~3.1! we can show that

dDg~ t !

dt
5 i (

j Þ,
@Vj1luc j~ t !u2#g~ u j 2,u!

3@c j* ~ t !c,~ t !2c,* ~ t !c j~ t !#. ~3.2!

Note that for uniform potentialDg(t) changes only due to
the interaction. In this case, the ratioDg(t)/l has a finite
limit at l→0. We will consider the solution forDg(t) with
and without an external potential in the following section

1. No external potential and periodic boundary conditions

Let us assume that the lattice forms a periodic array
quantum wells and there is no external potential (Vj[0).
For the nearest-neighbor correlation, similarly to the tw
well case, it is easy to show that

Dg~ t ![(
j

c j
!c j 111c j 11

! c j5
l

2(j
~ uc j u221!2.

~3.3!

This equation shows that the nearest-neighbor cohere
is proportional to the product of the coupling constant a
the sum of the variances of the number of bosons in e
well. From the preceding section we can expect that if
interaction is weak, then the variances ofnj at short time
scales will be fluctuating and governed by the noninterac
tunneling Hamiltonian. With increasing time, the interacti
will suppress the fluctuations leading to some steady stat
the noninteracting case, Eq.~3.1! is just an ordinary Schro¨-
dinger equation with eigenstates
05360
-

f

-

ce
d
h

e

g

In

ck~ j !5
1

AM
e2p ik j /N, ~3.4!

corresponding to the eigenenergies

Ek522 cos
2pk

M
. ~3.5!

Here M is the number of wells. Expanding the initial insu
lating state in terms of the eigenstates defined above
propagating them in time, we obtain

(
j 51

N

@ uc j~ t !u221#25M S 12(
j

uF~ j ,t !u4D , ~3.6!

where

F~ j ,t !5
1

M (
k50

N21

e2i (pk j /M1t cos 2pk/M ). ~3.7!

For several different values ofM the functionD g
M(t) at

vanishingl is

D g
2~ t !5

l

2
sin22t, ~3.8!

D g
3~ t !5

8l

9
~21cos 3t !sin2

3

2
t, ~3.9!

D g
4~ t !5

l

4
~71cos 2t !sin22t, ~3.10!

D g
5~ t !5

4l

25 S 1022 cosA5t2cosA5t

22 cos
5

2
t cos3A5

2
cosA5t D , ~3.11!

D g
6~ t !5

l

36
~6328 cost212 cos 2t224 cos 3t26 cos 4t

212 cos 6t2cos 8t !, ~3.12!

D g
M~ t !→ Ml

2 S 12J0~ t !422 (
m51

`

Jm~ t !4D at M→`.

~3.13!

Clearly D g
M(t) is a periodic function only for M

52,3,4,6~this is in fact true not only for the nearest-neighb
case!. For many wells the number of harmonics contributi
to the variance ofn becomes large and oscillations becom
more chaotic and weaker in amplitude. In the limitM→`,
7-8
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D g
M(t) is a monotonically increasing function. If we add th

interaction, then the overall picture remains similar to t
two-well case. Namely, for smalll the amplitude of oscilla-
tions slowly decays in time. For strong interaction, the va
tt

le
-

c

05360
e

-

ance ofn reaches the steady-state value in a very short t
scale.

In the limit opposite to the nearest-neighbor one,g(u j
2,u)5const, one can show that atl→0,
D g
M~ t !→ 2l

M (
kÞm50

N21
sin2t$11cos~2pk/M !2cos~2pm/M !2cos@2p~k2m!/M #%

11cos~2pk/M !2cos~2pm/M !2cos@2p~k2m!/M #
. ~3.14!

For example,

D g
2~ t !5

l

2
sin22t, ~3.15!

D g
3~ t !5

l

45
~322 cos 3t2cos 6t !, ~3.16!

D g
4~ t !5

l

160
~13212 cos 4t2cos 8t !, ~3.17!

D g
6~ t !5l

1

240
~33116 cost224 cos2t28 cos 6t2cos 8t !, ~3.18!

D g
M~ t !→ Ml

2p2E
0

2pE
0

2p

du1du2

sin2t@11cosu12cosu22cos~u12u2!#

11cosu12cosu22cos~u12u2!
at M→`. ~3.19!
ses
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The behavior ofDg(t) at largeM is very different for
nearest-neighbor and global correlations~see Fig. 5!. While
the former rapidly reaches a steady-state value, the la
oscillates in time. Indeed the denominator in Eq.~3.14! se-
lects only low-frequency harmonics inDg , freezing out
high-frequency oscillations, especially at longer time sca

Figures 6 and 7 showDg(t) for 6 and 12 wells, respec
tively. Six wells give a periodic time dependence, whileN

FIG. 5. Time dependence of the coherenceDg(t) for the weakly
interacting Bose gases at large number of wells (M→`). Note that
nearest-neighbor correlation rapidly saturates, while the global
herence exhibits oscillations.
er

s.

512 corresponds to chaotic behavior. Note that in all ca
high-frequency modes are suppressed for the case of gl
phase correlations.

2. Parabolic confining potential

So far, we have considered the rather hypothetical sit
tion of quantum wells sitting on a ring. However, usually o
achieves confinement using a trap, which is equivalent t
nonuniform external potentialVj in Eq. ~3.1!. The most com-
mon shape of this potential is parabolic (Vj} j 2) and we
focus on this case, although the analysis of other potentia
similar and straightforward. As before, we will first study th
noninteracting system (l50):

i
dc j

dt
52~c j 111c j 21!1

j j 2

2
c j . ~3.20!

This is a linear Schro¨dinger equation with stationary state
found from

Ec j52~c j 111c j 21!1
j j 2

2
c j . ~3.21!

In the Fourier space the same equation looks more fami

Ec~k!522 cosk c~k!2
j

2

d2c~k!

dk2 , ~3.22!

describing the motion of an one-dimensional particle of m
j21 living on a circle with the external potentialU(k)5
22 cos(k). Note that the same type of equation describ

o-
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FIG. 6. Time dependence ofDg(t) for six wells; solid and dashed lines correspond to nearest-neighbor and global correlations,
tively. Without interaction (l→0) Dg(t) shows regular periodic behavior in time. Nonzero interactions lead to decay of oscilla
High-frequency oscillations of the global correlation function are effectively suppressed.
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Josephson junctions with charging energy. If the paraboli
is weak (j!1), then the bosons form closely spaced e
tended states at low energies. In the Fourier space th
equivalent to having a heavy particle in the22 cosk poten-
tial. With a good accuracy one can describe the energy s
trum inside such a well using the WKB approximation. Th
is justified both for low energies, where22 cosk'221k2

and the WKB gives the exact energy spectrum, and for h
energies; WKB works well for any potential. In fact there
a little subtlety near where the energy is close to 2, since
potential there is almost flat and cannot be approximated
a linear function, but this is not very important. So the a
proximate WKB spectrum is given by

E
2p1cos21E/2

p2cos21E/2 A2

j
~E12 cosk! dk5p~n11/2!,

E
2p

p A2

j
~E12 cosk!dk52pn, ~3.23!

where the top~bottom! equation corresponds toE,2 (E
.2). In the first equation, even or oddn describes even an
odd states~in both real and reciprocal space!, respectively.
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For energiesE.2, the second equation gives complete d
generacy between even and odd energy levels. In real sp
roughly all states withE.2 are localized in individual wells
and degenerate, while those withE,2 are spread through
many wells. Figure 8~a! briefly summarizes this discussio
showing the exact spectrum forj50.1. ~The WKB result is
indistinguishable by the eye from this graph.! Clearly the
low-energy levels are approximately equally spaced, rev
ing the famous property of a harmonic potential, the spac
decreases as the energy approaches 2, and starts lin
increasing forE.2 as in a usual square well. Ifj>1 then
bosons become localized within individual wells and th
energies follow external potential. The crossover from we
to strong parabolicity is a finite system analog of the And
son transition. It is important to note that this is a pure
semiclassical transition in this case, because it is derive
the Gross-Pitaevskii picture. The ‘‘quantum mechanics’’ he
originates from the wave nature of the classical fieldc. If the
average number of bosons per well is much larger than o
then the semiclassical picture, where the number of bos
and their phases commute, holds until the typical fluctuati
of c2 becomes of the order of 1/N!1. This occurs deep
inside the insulating regime, where the energy in the
approach is anyway almost phase independent.
7-10



relation

NONEQUILIBRIUM GROSS-PITAEVSKII DYNAMICS OF . . . PHYSICAL REVIEW A 66, 053607 ~2002!
FIG. 7. Same as in Fig. 6 but for 12 wells. Without interaction oscillations are chaotic. Low frequency dominates the global cor
function here as well.
it
E

will
e-
ard
After deriving the energy spectrum we can proceed w
the study of the dynamics of the condensate. Note that
~3.2! yields that the time derivative ofDg(t) is not equal to
zero even without interaction (l50). Therefore we antici-
05360
h
q.
pate that the results for the parabolic and flat potentials
be strongly different, at least in the weakly interacting r
gime. If the initial phases are uncorrelated then it is not h
to show that atl50,
FIG. 8. Energy spectrum of coupled noninteracting Bose gases in a weak~a! and intermediate~b! parabolic potential.
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FIG. 9. Time dependence ofDg for the nearest-neighbor correlation~a! and global correlation~b!. The period of oscillations scales a
1/Aj and the amplitude is finite even without interactionl50. At large l, Dg(t) saturates very fast similarly to the flat potential. A
intermediate couplingl;1, however, the oscillations become more pronounced than in the noninteracting regime.
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Dg~ t !52(
j Þ,

V~ j !g~ u j 2,u!

3 (
p,a,b

N0
pca* ~ j !ca~p!cb* ~p!cb~, !

3

sin2
Eb2Ea

2
t

Eb2Ea
, ~3.24!

whereN0
p is the initial number of Bosons in well numberp,

ca andEa are the eigenfunction and energy of the levela,
respectively. If starting from the ground insulating state, th

N0
p512

Vp

m
for Vp,m, ~3.25!

N0
p50 for Vp.m, ~3.26!

with m being a chemical potential. Let us make a few co
ments about Eq.~3.24!. Levelsb anda must have the sam
parity, meaning the lowest harmonic contributing to the s
will be vmin52 mina (Ea122Ea).0. BecauseN0

p is centered
near the bottom of the well, only levels with delocalize
wave functions will contribute to the sum. In particular, d
generate levels withE.2 can be safely thrown away. I
g(u j 2,u) is constant, then summation overm ensures that
the major contribution comes fromb50; thereforeDg(t)
contains mostly harmonics withv5E22E0 , v5E42E0,
etc., with the strongest weight at the smallest frequency. N
that at small energies and weak parabolicity the lowest
ergy levels are approximately equally spaced, therefore
whole expression forDg(t) will be a quasiperiodic function
of a frequencyv'E22E0. However, because this equidi
tance is not exact, the periodicity will be only approxima
and at a short time scale, the amplitude of oscillations w
slowly decay. On the contrary, for the nearest-neighbor ph
coherenceg(u j 2,u)5d j ,,61 neitherb nor a are bounded to
the ground state and we expect that all kinds of allow
frequenciesEa2Eb will give contributions. Clearly in this
05360
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case, dephasing occurs much earlier and the amplitud
oscillations is much weaker. Also the characteristic f
quency of the oscillations for the nearest-neighbor case
be somewhat larger than that for the global case since
level separation decreases with energy. Figure 9 shows
dependence ofDg for nearest-neighbor and global correl
tions at the parabolicityj50.08. From the above analysis w
should expect the major oscillations at the period

T5
2p

E22E0
'

p

A2j
'8, ~3.27!

which is indeed very close to the numerical value.
Interesting things happen if we turn on the interaction.

particular, ifl is of the order of one, the oscillations becom
much more pronounced and smooth compared to the no
teracting case~see Fig. 9!. This is at first quite an unexpecte
result, since we know that the interaction leads to decoh
ence and saturation ofDg . However this is not the whole
story. In the previous analysis we saw that at least for
Dg(t), interaction ‘‘kills’’ high-frequency contributions first
But that is precisely what we need for harmonic behavior.
crudely speaking, small or intermediate interaction remo
harmonics causing dephasing of the noninteracting func
Dg . If interactions become strong,l@1, then the noninter-
acting picture is irrelevant and we come back to the us
behavior with fast saturation ofDg . Notice from Fig. 9 that
the noninteracting and interacting pictures are quite differ
at small time. This can be also understood naturally a
result of interplay of many harmonics at an early stage of
evolution. Hence we expect that the typical time scale for
first maximum in the interacting problem will be of the ord
of the tunneling time, which is much shorter than inver
level spacing. However at later times, only slow harmon
survive, leading to slight modifications of the noninteracti
picture.

B. Modulated phase initial state

It is also straightforward to generalize the discussion
Sec. II B to the case of the periodic lattice. Namely, if t
7-12
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number of wells is even, then the state with a relative ph
shift p, and equal numbers of bosons in the wells, is me
stable for weak interaction. Ifl increases gradually, the
when it reaches a critical valuelc , this state becomes un
stable@24,25#. The critical value ofl can be found from the
linear analysis of Eq.~3.1! near thep state@24,25#:

c j~ t !'eip j 2 i (21l)t~11ueiq j 2 ivt1v* e2 iq j 2 ivt!,
~3.28!

whereu andv are the small amplitudes andqÞ0 is the wave
vector of the perturbation. Substitution of this expansion i
Eq. ~3.1! gives the following secular equation for the eige
frequenciesv:

Uv1222 cosq2l 2l

2l 2v1222 cosq2l
U50,

~3.29!

which has two solutions

v562A~12cosq!22l~12cosq!. ~3.30!

Clearlyv is real if l,12cosq. Otherwise, fluctuations with
wave vectorq become unstable since the frequency becom
complex. The lowest nonzeroq for the periodic boundary
conditions is 2p/M , so the critical value of the interaction
where thep state becomes the saddle point rather than lo
minimum, is

lc52 sin2
p

M
. ~3.31!

Similar to the two-well case, the bosons undergo a sponta
ous transition to the superposition of states, where all
them are in one of the wells. The time dependence of
variance ofN is analogous to that plotted on the top graph
Fig. 4 ~see Fig. 10!. We remark that a ‘‘slow’’ or adiabatic
increase of interaction must be understood carefully. In

FIG. 10. Sum of the squares of the number of bosons in dif
ent lattice sites~with normalization( jnj51). Clearly uniform dis-
tribution is stable until interaction is smaller than the critical val
3.31. At t→` we have( jnj

2→1, implying that all the bosons
populate one of the wells.
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GP picture, an adiabatic increase of interaction means
the characteristic time scale is much smaller than the tun
ing time (d ln l/dt!1). On the other hand, for the quantu
problem, adiabaticity would imply thatd ln l/dt is much
smaller than the level spacing, which is proportional to t
inverse number of bosons. If the interaction is increas
adiabatically in the quantum-mechanical sense, then the
tem would follow the local minimum of the metastable sta
and whenl becomes larger than the critical value, it w
undergo a spontaneous transition to the dipole state~or a
superposition of the dipole states! with broken translational
symmetry.

IV. CONCLUSIONS

We have studied the nonequilibrium temporal behavior
coupled bosons in a lattice. We predicted the dynamical
toration of the phase coherence after a sudden increase o
tunneling in a system initially in a Mott insulating state.
the strongly interacting case,l@1, the coherence reaches
steady state rapidly~within a Josephson time!. On the other
hand, time evolution in the weakly interacting regimel&1
depends strongly on the details of the confining potential.
predicted that in a parabolic potentialVj5j j 2/2 the coher-
ence exerts decaying oscillations with periodT}1/Aj @see
Eq. ~3.27!#. The period and the amplitude of oscillations on
depend weakly on interaction in this case. On the other ha
if the confining potential is flat, then the oscillations are
ther periodic~for a particular number of wells in a lattice! or
chaotic. Here the interaction leads to the decay of the os
lations with time. In both cases the system ultimately reac
the steady state with nonzero coherence~dynamical Bose-
Einstein condensate!.

For the two-well case we explicitly tested the validity
the GP approach. It was shown that the mapping of the
terministic quantum-mechanical motion to the stochastic
equations is essentially exact for time less than the cha
teristic inverse level spacingt,N/l. Apart from the slight
renormalization of the overall constant, the mapping is
ready excellent in this time domain for two bosons per we
For stronger interactions, the semiclassical and quant
mechanical trajectories start to depart faster, as expecte

We also considered the dynamical appearance of
‘‘Schrödinger cat’’ state under a slow increase of interacti
from an initial phase modulatedp state. Thep state is stable
while interaction is weak and becomes unstable whenl
.lc . In the GP picture, this instability leads to the symm
try breaking, so that all the bosons spontaneously popu
one of the wells. Quantum mechanically this means that
final configuration is the superposition of states in whi
bosons occupy different lattice sites. This approach can
used experimentally for the creation of strongly entang
states.

We close by making a few remarks on the experimen
implications and limitations of our theory. Real condensa
exist in three dimensions, so the one-dimensional descrip
used here is valid provided there is strong confinement in
transverse directions. Furthermore, the condensate shou
well isolated for a time significantly longer than a hoppin

r-
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or a collision time. The latter are accounted for by the qua
term in the GP equation in the degenerate regime, and by
analysis in Appendix B in a nondegenerate regime; howe
we have neglected phase relaxation from thermally exc
atoms outside the initial condensate. It does appear that t
requirements can be met with the current experimental te
niques, and that our theoretical predictions will provide
consistent interpretation of experimental results@15#.
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APPENDIX A: MEAN-FIELD GROUND STATE
OF THE BOSON LATTICE SYSTEM

IN A PARABOLIC POTENTIAL

The problem of the Mott insulator transitions for infini
arrays of bosons have been extensively studied during
last decade, see, for example, Refs.@3–5#. It was shown@4#
that the field-mean calculations qualitatively capture the t
possible phases and give a good estimate for the p
boundary. Recently, using quantum Monte Carlo methods
exact ground state for the system of bosons in a parab
potential was found@13#. It was shown that near the expecte
transition, the global compressibility does not vanish due
the spatial inhomogeneity. However, still the bosons fo
local insulating domains separated by narrow superfluid
gions. The Monte Carlo approach, though very powerful
incapable of solving the problem with many bosons per w
Therefore we think that for qualitative understanding of t
ground state as a function of the interaction strength, i
worthwhile to do a mean-field calculation.

The details of the derivation of the mean-field equatio
can be found in Ref.@4#. Here we will only outline the prin-
cipal steps.

The mean-field Hamiltonian obtained from Eq.~1.1! is

HMF52(
j

J~bjaj
†1bj* aj !1~Vj2m!aj

†aj

1
U

2
aj

†aj~aj
†aj21!, ~A1!

wherem is the chemical potential. The variational free e
ergy is that ofHMF plus additional contributions, which de
pend upon the complex variational parametersbj @4#. Mini-
mizing this free energy yields the optimum values ofbj :

bj5
^aj 111aj 21&

2
, ~A2!
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where the average is taken over the density matrix of
~A1!. We also define the order parameter

r5(
j

bj* bj . ~A3!

The self-consistent evaluation of the mean-field param
bj is straightforward, and the resulting order parameter
plotted in Fig. 11 forT50. The graph~a! corresponds to a
few bosons per lattice site. If the interactionU is strong
enough, then the order parameter forms a domain struc
similar to that predicted in Ref.@13#. For a large number of
bosons per well, the quantum fluctuations start playing a r
whenU becomes of the order of the number of bosons in
central well (N'm/U), and the smooth GP shape of th
boson densityr breaks down. For very strong interaction, th
actual profile ofr becomes sensitive to small variations
the mean density of bosons per central well.

APPENDIX B: AMPLITUDE FLUCTUATIONS NEAR
THE SUPERFLUID-INSULATOR TRANSITION

This appendix reviews results on the damping of the a
plitude oscillation mode near the superfluid-insulator tran
tion, motivated by the recent paper of Altman and Auerba
@17#. As we discussed in Sec. I A, we have considered
system deep in the Mott insulating phase~with l@lSI)
taken suddenly to parameters for which the ground state
deep in the superfluid phase~with l!lSI), while Altman
and Auerbach consider the case when both the initial
final values ofl were not too far fromlSI , but remained on
opposite sides of it.

A key ingredient in the dynamics of the amplitude mo
for l,lSI is the damping induced by the emission of t
Goldstone ‘‘spin wave’’ or ‘‘phonon’’ modes. This problem
was considered in Refs.@18,26#, and it was found that the
amplitude oscillations were overdamped in thel,lSI scal-
ing limit associated with the second-order superflu
insulator transition. We will review these results below, a
display expressions which also allow us to move beyond
scaling limit to values ofl much smaller thanlSI @see Eq.
~B8!#; the amplitude mode can become oscillatory in t
latter regime@17,18#. This is also consistent with the consid
erations of the present paper, where we have found that
oscillations of the superfluid coherence were present in
parabolic multiwell case forl55 in Fig. 9, but were fully
overdamped forl510 ~not shown!. We found similar behav-
ior in the complete quantum solution for the two-we
problem—however in the latter case, the oscillations re
peared at very largel;N2: these are the ‘‘number’’ oscilla-
tions of the Mott insulator, and were also found in Ref.@18#.
The fate of these very small and very largel oscillations in
the multiwell case nearlSI requires a treatment of the inte
acting quantum dynamics; this was done in Refs.@18,26#,
and the results are reviewed here.

As is well known, we can describe the superflui
insulator transition by theN52 case of theN-componentw4

field theory, where the superfluid order parameterc in Sec. I

c;w11 iw2 . ~B1!
7-14
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FIG. 11. Mean-field order parameter for different interactions in a parabolic potential (Vj5j j 2/2) at T50. Graph~a! corresponds to a
few bosons per site and the other two graphs to many bosons.
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. The action forl close tolSI is

S5E ddxdtF1

2
~¹xwa!21

1

2c2
~]twa!22

~r c1s!

2
wa

2

1
u

2N
~wa

2 !2G , ~B2!

wherea51, . . . ,N, c is a velocity,d is the spatial dimen-
sionality, andu is a quartic nonlinearity. The coefficient o
wa

2 is used to tune the system across the transition, and
value of r c is chosen so that the transition occurs ats50,
i.e., s;l2lSI . We assume that in the superfluid pha
^wa&5N0da,1 . The oscillations of the spin-wave modes a
given by the transverse susceptibilityx'(k,v), while those
of the amplitude mode are given by the longitudinal susc
tibility x i(k,v); herek is a wave vector,v is a frequency,
and the susceptibilities are defined by

x'~k,v!5^uw2~k,v!u2&,
~B3!

x i~k,v!5^uw1~k,v!u2&2N0
2~2p!d11d~k!d~v!.
05360
he

-

Expressions forx',i were given in Refs.@18,26# using
both the perturbation theory inu and the large-N expansion.
Here, we collect them with a common notation, and interp
them in the present context. To first order inu, the position of
the critical point is determined by

r c5
2u~N12!c

N E dd11p

~2p!d11

1

p2
, ~B4!

where p5(k,2 iv/c) is the (d11)-dimensional Euclidean
momentum. In the limit of largeN, but u arbitrary, the value
of r c is given simply by theN→` limit of Eq. ~B4!. To first
order inu, we obtain forx' ,

x'
21~p!5p22

8csu

N E dd11q

~2p!d11

1

q212s
S 1

~p1q!2
2

1

q2D ,

~B5!

whereq is also a (d11)-dimensional Euclidean momentum
at N5` we have simplyx'

21(p)5p2. The expression~B5!
describes the spin-wave oscillations, along with their ess
tially negligible damping from their coupling to the ampl
7-15
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tude mode~as can be verified by taking the imaginary part
the loop integral in Eq.~B5! after analytic continuation to
real frequencies!.

The damping in the longitudinal modes is much mo
severe, and we will consider it explicitly. To first order inu,
we obtain the expression

x i
21~p!5p212s2

4csu~N21!

N
P~p!1dx i

21~p!.

~B6!

Here the strong damping term has been included inP(p)
whose explicit form is discussed below in Eq.~B9!, while
dx i contains additional nonsingular terms that we can sa
neglect. For completeness, we give the expression for
latter:

dx i
21~p!5

12uc

N E dd11q

~2p!d11 S 1

q2
2

1

q212s
D

2
36csu

N E dd11q

~2p!d11

1

~q212s!@~p1q!212s#
.

~B7!

Note that these terms always involve coupling to an am
tude mode fluctuation~with ‘‘mass’’ 2s) and this is the rea-
son their contribution is nonsingular. We find below in E
~B9! that theP(p) contribution in Eq.~B6! involves only
spin-wave fluctuations and hence it becomes very larg
low frequencies, where the perturbative expansion in
~B6! can no longer be trusted. Fortunately, a resummatio
these singular corrections is provided by the large-N expan-
sion, which yields

x i
21~p!5p21

2s

112cuP~p!
. ~B8!
A

e

le

.
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It is satisfying to check that Eqs.~B8! and ~B6! are entirely
consistent with each other in their overlapping limits of v
lidity of small u and largeN. The expression~B8! was given
earlier @18# in the scaling limit, which corresponds to igno
ing the 1 in the denominator becauseP(p) becomes large.
The utility of Eq. ~B8! is that it does not have divergen
behavior at smallp.

We turn, finally, to the expression forP(p), which is

P~p!5E dd11q

~2p!d11

1

q2~p1q!2
5Fdupud23, ~B9!

whereFd is a numerical prefactor which is not difficult t
obtain explicitly. Notice thatP(p) is singular asp→0 in d
,3, and this is the reason for the strong damping of
amplitude mode. After analytic continuation to real fr
quences, we have ind52,

P~k,v!5
1

8Ak22~v/c!2
, d52, ~B10!

this has a nonzero imaginary part forv.ck, which leads to
the damping of the amplitude mode. The expression
P(p) is infrared divergent ind51, and this is the signal tha
there is no true long-range order; nevertheless, its imagin
part remains well defined asd↘1, and we find

Im P~k,v!5
1

4@~v/c!22k2#
u~vck!, d51, ~B11!

which again predicts strong damping at low frequencies. T
expressions~B8!–~B11! can be used to describe the evol
tion of the weakly damped amplitude mode atv
5Ac2k212s at larges deep in the superfluid, to the ove
damped mode with no sharp resonance at this frequency
small s.
tt.

u-
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