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Giant hole and circular superflow in a fast rotating Bose-Einstein condensate
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A fast rotating Bose-Einstein condensate confined in a quadratic-plus-quartic potential is found to dynami-
cally generate a ‘‘giant vortex’’ that absorbs all phase singularities into a central low density hole, thereby
sustaining a quasi-one-dimensional circular superflow at a supersonic speed.
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Gaseous Bose-Einstein condensates~BECs! are an ex-
tremely versatile testing ground for superfluidity particula
when an externally driven rotation exists. Through a num
of experimental@1–4# and theoretical studies@5# on rotating
BECs, the argument now extends to the fast rotating reg
@6–10#. For a harmonic trapping potential (1/2)mv'

2 r 2, the
centrifugal force prevents a BEC from rotating at frequen
V beyond the radial trapping frequencyv' . However, a
recent experimental development@11# should enable one to
create a confinement potential tighter than harmonic, t
opening a possible method to explore the nature of fast
tating BECs.

In this article, we extend our previous studies@12# to the
dynamics of vortex lattice formation of a BEC in
quadratic-plus-quartic potential withV greater thanv' .
Here, the stable vortex configuration, realized at a value oV
much greater thanv' , is not triangular but rather a circula
array around a central low density hole@see Fig. 1~e! below#.
This hole is created where singly quantized vortices are c
together but do not completely overlap. Surprisingly, asV is
further increased, all the vortices are absorbed into the c
tral low density hole, around which persistent current circ
lates. This superflow is supersonic, which offers an avenu
research in superfluidity, because it has been difficult to
tain a circular superflow in superfluid helium@13#. For an
atomic-gas BEC, a circular superflow can occur in an id
situation and the superfluid speed is easily controlled
changingV. This opens up possibilities of studying pha
slippage@14# and the stability of a controlled superflow.

We consider a two-dimensional system subject to rota
V5V ẑ by assuming translation symmetry along thez axis.
In a frame rotating with frequencyV around thez axis, the
dynamics of a condensate ‘‘wave function’’C is described
by the Gross-Pitaevskii equation

i
]C

]t
5~2¹21Vtrap2m1CuCu22VL̂z!C, ~1!

wherem is the chemical potential and the wave function
normalized to unity:*dxdyuCu251. The units of energy
length, and time are given by the corresponding scales of
harmonic potential, that is,\v' , b'5A\/2mv', andv'

21 ,
respectively, wherem is the atomic mass andv' the fre-
quency of the harmonic potential. The strength of the me
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field interaction between atoms is characterized byC, which
is proportional to thes wave scattering lengthas as C
58pN2Das , where N2D is the particle number per uni
length along thez axis. The trapping potential isVtrap(r )
5r 2/41kr4/16, wherer 2[x21y2 and k is the strength of
the quartic term. The quartic part ofVtrap allows us to in-
creaseV abovev' . For a rotating condensate an effectiv
potential in the radial direction is

Vtrap
eff ~r !5

1

4 F ~12V2!r 21
1

4
kr4G . ~2!

This potential has a ‘‘Mexican hat’’ structure forV.1,
which changes the dynamics of vortex lattice formation
shown below.

FIG. 1. Time development of the angular momentum per at
,z ~a! and the condensate densityuCu2 for V52.5 ~b!–~e!. Times
v't542 ~b!, 50 ~c!, and 78~d!. The lower panel shows the densit
~e! and phase~f! profiles of the final stationary state of this dynam
system. The value of the phase varies continuously from 0~black!
to 2p ~white!. The discontinuity lines between black and white a
the branch cuts in the complex plane. The termination of e
branch cut is a vortex, or equivalently phase defects.
©2002 The American Physical Society06-1
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Now, we investigate the dynamics of vortex lattice form
tion @15#. The stationary solution of Eq.~1! for a nonrotating
trap is used as the initial state. The rotating drive is sudde
turned on by introducing a small anisotropy of the harmo
trap as (exx

21eyy
2)/4 @1,12#. Because the transition from

nonvortex state to a vortex state requires energy dissipa
a phenomenological damping constantg is put in Eq.~1! by
replacing i ]/]t with ( i 2g)]/]t @12,16#. Finally, the small
trap anisotropyex,y is turned off adiabatically to obtain th
axisymmetric stationary state.

Numerical simulations were done for several values ofV
at fixedC5250 andk51. Dynamics that are unique to th
quadratic-plus-quartic potential occur whenV.1. Figure 1
shows the time development of the angular momentum

atom,z5*dxdyC* L̂zC, and the density and phase profil
for V52.5. The ripples are excited on the surface@Fig.
1~b!#, and some ripples penetrate into the condensate
develop into vortex cores@Fig. 1~c!#. Some penetrating vor
tices move toward the center, merging together to mak
hole at the center@Fig. 1~d!#. During the period between tha
shown in Fig. 1~c! and that in Fig. 1~d!, additional vortices
entered the condensate successively, which gradually
creased the angular momentum. The density and phase
files of the final steady state are shown in Figs. 1~e! and 1~f!,
respectively. A hole appears at the center, around which s
vortices form a circular array. Furthermore, near the cente
the condensate, some phase defects come very close to
other without overlapping@Fig. 1~f!#.

As V is further increased, all vortices generated from
condensate surface are absorbed into the central low de
hole as shown in Fig. 2~a!. Note that this central hole is
composed of 24 singly quantized vortices packed toge
@Fig. 2~b!#. This packing is possible for high rotation fre
quencies (V.1) because the centrifugal force decreases
condensate density near the center; thus packing vor
costs little energy. The minimum of Eq.~2! determines the
radius of the ring condensate in Fig. 2 asR
5A2(V221)/k. Here we call a set of vortices such as th
in Fig. 2 a ‘‘giant vortex’’ to indicate that a number of phas
defects are contained in a single hole@see Fig. 2~b!#. Such a

FIG. 2. The condensate density~a! and phase field~b! of the
vortex state with circulation 24h/m for V53.2. The phase field
region in~b! is the central low density region of~a!, where 24 phase
defects are marked by open circles.
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density depression with a concentration of vorticity occurs
rotating superfluid helium@17#.

Figures 1~f! and 2~b! show that the phase singularities d
not completely overlap. The condensate inside the hole h
very low density and hence a long coherence length, so
the vortex cores have a nearly uniform density. Thus, o
the locations of singularities matter and one can assume
the interaction energy between the singularity points is p
portional to2rk2ln d, wherer is the condensate density,k
the quantum circulation, andd the distance between defect
The logarithmic divergence atd→0 prevents the phase sin
gularities from merging together.

The appearance of such a density hole is relevant to re
studies on fast rotating BECs that used the Thomas-Fe
and Wigner-Seitz approximation@6,8#. Fischer and Baym
evaluated the vortex core size self-consistently by minim
ing the Gross-Pitaevskii energy functional and using a va
tional wave function@8#; they showed that vortex cores nev
overlap, in agreement with our finding. They also show
that the giant vortex state is energetically favorable at la
V. Although the Thomas-Fermi approximation accurate
describes stationary solutions such as that in Fig. 1~e!, it fails
when the width of the ring condensate becomes thin suc
that in Fig. 2. Even ifV is not large enough, a pinning
potential might be used to stabilize the giant vortex@18#.

For sufficiently largeV, the ring structure of Fig. 2~a!
offers some insights into circular superflow, which has be
studied for a torus@13#. The superfluid velocity is given by
the gradient of the phase of the wave function asvs
5(\/m)“u; the circulation along a closed loop is quantiz
asrvs•dl5kn with k[h/m being the quantum circulation
The quantum numbern is equal to the number of branch cu
of the phase field along the loop or, equivalently, the num
of phase defects in the low density hole. If there is sufficie
dissipation, some vortices in the low density hole sho
spiral out of the condensate whenV is abruptly decreased
from that of Fig. 2~a!. The motion of these vortices acros
the circular superflow causesvs to decay. This is known as
phase slippage@14#, which is a characteristic feature of su
perfluidity.

Measurement of the angular momentum of the giant v
tex allows the phase slippage to be observed well under c
trol. For example, phase slippage was observed in hel
superflow through microapertures@19#, but it was difficult to
control single phase slips and giant slips. Figure 3 shows
time development of the angular momentum and phase fi
resulting from a decrease inV from V53.5 (n532) to V
53.2. Here we assumed a small anisotropy in the trapp
frequencies to break the rotational symmetry. Some ph
defects are released from the low density hole, jostling at
inner border of the ring condensate. We see that four vort
cross the superflow by phase slippage and then escape
side~only one escape is shown in Fig. 3!, thus decreasing the
angular momentum.

When the ring radiusR is sufficiently large, the circular
flow becomes quasi-one-dimensional for the following re
son. The radial wave function of the stationary giant vort
state is obtained by substitutingC> f (r )einu into Eq. ~1!:
6-2
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F2
]2

]r 2
2

1

r

]

]r
1

n2

r 2
1Vtrap1Cu f u22nVG f 5m f . ~3!

The excitation of the radial component is easily obtained
writing f 1d f ; the effective potential ford f is then given by

Veff~r !5Vtrap1
n2

r 2
12Cu f ~r !u22m2nV. ~4!

Becausen5VR2/2 in the limit of a rigid body rotation@6,7#,
the radial zero-point energy around the minimum of the
tentialVtrap1n2/r 2 becomes larger than the mean-field inte
action strengthCu f (r )u2 for largeR. Such a high excitation
gap freezes the motion of the radial wave function wh
keeping the motion free along theu direction. To investigate
the stability of this one-dimensional superflow, we substit
C(r ,u,t)5 f (r )c(u,t) into Eq. ~1! to obtain

i
]c

]t
5S 2

1

R2

]2

]u2
1Er1CPucu22 iV

]

]u D c, ~5!

where

Er5
1

AE rdr f * F2
]2

]r 2
2

1

r

]

]r
1Vtrap2mG f ,

R22.
1

AE rdr u f u2r 22, P5
1

AE rdr u f u4

FIG. 3. The top figure shows the time evolution of the angu
momentum per atom,z for a change ofV from 3.5 to 3.2. The
bottom figures show the phase profiles and line contours of
density for half of thex-y plane atv't5102, 107, 112, and 116
from left to right. Arrows show how one vortex escapes via ph
slippage.
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with A5*rdr u f u2. The wave function is linearized a
c(u,t)5e2 imt$einu1h@e2 ivtu(u)1eiv* tv* (u)#%. The re-
sulting eigenvalue problem with the ansatzu(u)
5uqei (n1q)u and v(u)5vqei (2n1q)u yields the dispersion
relation

vq,65
q

R H S 2n

R
2RV D6AS q

RD 2

12CPJ , ~6!

whereq/R is the wave number of the excitation. The seco
term on the right-hand side of Eq.~6! gives the sound veloc
ity c5A2CP. The superflow is stable whenvs,c according
to the Landau criterion. The values of the parameters and
form of f (r ) of Fig. 2~a! yield c53.75 and the circular flow
velocity vs52n/R.12 ~in units of b'v'). Becausevs.c,
the circular flow is supersonic and energetically unstable

Impurities and walls can cause dissipation for a sup
sonic superflow. For example, Ref.@20# used the Gross-
Pitaevskii equation for bulk condensates and ordin
trapped condensates to show that the dissipation of the
perflow is caused by vortex-pair creation at an impurity o
ject. This was shown experimentally@21#. However, this
does not apply to the present case of quasi-one-dimensi
superflow because of the tight radial confinement@22#. To
show the influence of impurities, we introduce an impur
potential of Gaussian form asVimp5V0exp@2$(x2x0)

21(y
2y0)

2%/s2# ~at rest in the laboratory frame!, where$x0 ,y0% is
the impurity position. Figure 4 shows an example of t
destabilization process of the giant vortex state byVimp , for
which V0 is chosen to be larger thanVtrap(R) ands smaller
than the width of the ring condensate. Becausevs exceeds
the Landau critical velocityc, the impurity excites the longi-
tudinal density waves along the ring condensate, thus p
ducing a drag force. Due to the presence of dissipation
the rotating drive, the system reaches a steady state as s
in Fig. 4~b!. Therefore, the quadratic-plus-quartic system
fers a scheme for studying the stability of a quasi-on
dimensional superflow.

In conclusion, a fast rotating BEC in a quadratic-plu

r

e

e

FIG. 4. Snapshots of the numerical simulation of a giant vor
state~Fig. 2! that is perturbed by an impurity potential. Parame
values forVimp are V05100, s50.1, x053.94, andy050. The
impurity potential is at rest in the laboratory frame, and thus rota
in the rotating frame.
6-3
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quartic potential can generate a giant vortex and circular
perflow around it by absorbing singly quantized vortices in
a central low density hole. The circular superflow is qua
one-dimensional and goes at a supersonic speed. We
hope that this system will encourage experiments to st
low dimensional superfluidity in atomic-gas BECs.
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