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Giant hole and circular superflow in a fast rotating Bose-Einstein condensate
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A fast rotating Bose-Einstein condensate confined in a quadratic-plus-quartic potential is found to dynami-
cally generate a “giant vortex” that absorbs all phase singularities into a central low density hole, thereby
sustaining a quasi-one-dimensional circular superflow at a supersonic speed.
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Gaseous Bose-Einstein condensatBEC9 are an ex- field interaction between atoms is characterizedChyvhich
tremely versatile testing ground for superfluidity particularlyis proportional to thes wave scattering lengtlag as C
when an externally driven rotation exists. Through a number87N,pas, where N, is the particle number per unit
of experimenta[1—4] and theoretical studig$] on rotating  length along thez axis. The trapping potential i¥,r)
BECs, the argument now extends to the fast rotating regime-r “/4+kr*/16, wherer?=x*+y* andk is the strength of
[6—10]. For a harmonic trapping potential (1fa)?r2, the the quartic term. The quartic part &, allows us to in-
centrifugal force prevents a BEC from rotating at frequencycréasel) abovew, . For a rotating condensate an effective
Q beyond the radial trapping frequenay, . However, a Potential in the radial direction is
recent experimental developmdrtl] should enable one to

1 1
create a confinement potential tighter than harmonic, thus Vfrgp(r): 7 (1-Q)r?+ Zkr4 . 2
opening a possible method to explore the nature of fast ro-
tating BECs. This potential has a “Mexican hat” structure fd>1,

In this article, we extend our previous stud[é2] to the  which changes the dynamics of vortex lattice formation as
dynamics of vortex lattice formation of a BEC in a shown below.

quadratic-plus-quartic potential witf) greater thanw, .

Here, the stable vortex configuration, realized at a valu@ of s @
much greater thaw, , is not triangular but rather a circular
array around a central low density hdtee Fig. 1e) below]. 10f

This hole is created where singly quantized vortices are close sk (b)

together but do not completely overlap. Surprisingly(ags 5 ]
further increased, all the vortices are absorbed into the cen- g, 6 X 0

tral low density hole, around which persistent current circu- 41 ]
lates. This superflow is supersonic, which offers an avenue of 2 350 5 3
research in superfluidity, because it has been difficult to ob- 6 y ]

tain a circular superflow in superfluid helium3]. For an :

atomic-gas BEC, a circular superflow can occur in an ideal -2 ; ; y ;

situation and the superfluid speed is easily controlled by

changing(). This opens up possibilities of studying phase

slippage[14] and the stability of a controlled superflow. ’
We consider a two-dimensional system subject to rotation

Q=07 by assuming translation symmetry along thaxis.
In a frame rotating with frequenc§ around thez axis, the X0
dynamics of a condensate “wave functio¥ is described ‘
-5 -
N o qi oy Ty
=0 = (= Vot Vigg— w+ ClW[* = QL) W, ()
FIG. 1. Time development of the angular momentum per atom

by the Gross-Pitaevskii equation
. . . .. ¢, (a and the condensate densjt¥|? for Q=2.5 (b)—(e). Times
where u is the chemical potential and the wave function is wit:42 (b), 50 (c), and 78(d). The lower panel shows the density

normalized to unlty:f(_:ixdy1\lf|2= 1. The units of energy, () and phaséf) profiles of the final stationary state of this dynamic
length, and time are given by the corresponding scales of th§ystem. The value of the phase varies continuously frofilack
harmonic potential, that i, , b, =\A/2mw,, andw;*,  to 2 (white). The discontinuity lines between black and white are
respectively, wherem is the atomic mass ana, the fre- the branch cuts in the complex plane. The termination of each
guency of the harmonic potential. The strength of the meanbranch cut is a vortex, or equivalently phase defects.
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(a) (b) density depression with a concentration of vorticity occurs in
T B ¥ ' rotating superfluid heliunh17].

Figures 1f) and 2b) show that the phase singularities do
not completely overlap. The condensate inside the hole has a
very low density and hence a long coherence length, so that
the vortex cores have a nearly uniform density. Thus, only
the locations of singularities matter and one can assume that
the interaction energy between the singularity points is pro-
portional to— px?Ind, wherep is the condensate density,
the quantum circulation, andithe distance between defects.
The logarithmic divergence at— 0 prevents the phase sin-

FIG. 2. The condensate densitg) and phase fieldb) of the  gularities from merging together.
vortex state with circulation 2¢m for Q=3.2. The phase field The appearance of such a density hole is relevant to recent
region in(b) is the central low density region &), where 24 phase  studies on fast rotating BECs that used the Thomas-Fermi
defects are marked by open circles. and Wigner-Seitz approximatiofs,8]. Fischer and Baym

evaluated the vortex core size self-consistently by minimiz-
ing the Gross-Pitaevskii energy functional and using a varia-

Now, we investigate the dynamics of vortex lattice forma-tional wave functiorf8]; they showed that vortex cores never
tion [15]. The stationary solution of Eq1) for a nonrotating overlap, in agreement with our finding. They also showed
trap is used as the initial state. The rotating drive is suddenlyhat the giant vortex state is energetically favorable at large
turned on by introducing a small anisotropy of the harmonicQ). Although the Thomas-Fermi approximation accurately
trap as €x>+ eyyz)/4 [1,12]. Because the transition from a describes stationary solutions such as that in Fig), i fails
nonvortex state to a vortex state requires energy dissipationvhen the width of the ring condensate becomes thin such as
a phenomenological damping constanis put in Eq.(1) by  that in Fig. 2. Even ifQ) is not large enough, a pinning
replacingid/at with (i—+y)dlat [12,16]. Finally, the small  potential might be used to stabilize the giant vorf2®g].
trap anisotropye, , is turned off adiabatically to obtain the For sufficiently large(), the ring structure of Fig. (3)
axisymmetric stationary state. offers some insights into circular superflow, which has been

Numerical simulations were done for several value$lof studied for a toru$13]. The superfluid velocity is given by
at fixed C=250 andk=1. Dynamics that are unique to the the gradient of the phase of the wave function \as
quadratic-plus-quartic potential occur whén>1. Figure 1 = (/m)V 6; the circulation along a closed loop is quantized
shows the time development of the angular momentum peS$Vs-dl=xn with x=h/m being the quantum circulation.
atom¢,= [dxdyW* [ ¥, and the density and phase profiles The quantum .number is equal to the nur_nber of branch cuts
for 0=2.5. The ripples are excited on the surfdedg. of the phase fleld'along the loop or, equivalently, ;he number

. : of phase defects in the low density hole. If there is sufficient
1(b)], and some ripples penetrate into the condensate a

develon int ; : S trati ssipation, some vortices in the low density hole should
1€Velop Into vortex corefFig. 1(c)]. ome penetrating vor- spiral out of the condensate whéh is abruptly decreased
tices move toward the center, merging together to make

) ) : ftom that of Fig. Za). The motion of these vortices across
hole at the centefiffig. 1(d)]. During the period between that he circular superflow causes to decay. This is known as

shown in Fig. 1c) and that in Fig. id), additional vortices phase slippagfl4], which is a characteristic feature of su-
entered the condensate successively, which gradually iNserfluidity.
creased the angular momentum. The density and phase pro- Mmeasurement of the angular momentum of the giant vor-
files of the final steady state are shown in Fige) &ind Xf),  tex allows the phase slippage to be observed well under con-
respectively. A hole appears at the center, around which somegol. For example, phase slippage was observed in helium
vortices form a circular array. Furthermore, near the center ofuperflow through microaperturgs9], but it was difficult to
the condensate, some phase defects come very close to eagntrol single phase slips and giant slips. Figure 3 shows the
other without overlappingFig. 1(f)]. time development of the angular momentum and phase field
As Q) is further increased, all vortices generated from theresulting from a decrease i from Q1 =3.5 (n=32) to
condensate surface are absorbed into the central low density3.2. Here we assumed a small anisotropy in the trapping
hole as shown in Fig. (2). Note that this central hole is frequencies to break the rotational symmetry. Some phase
composed of 24 singly quantized vortices packed togethedefects are released from the low density hole, jostling at the
[Fig. 2(b)]. This packing is possible for high rotation fre- inner border of the ring condensate. We see that four vortices
quencies (2>1) because the centrifugal force decreases theross the superflow by phase slippage and then escape out-
condensate density near the center; thus packing vorticesde(only one escape is shown in Fig, 8hus decreasing the
costs little energy. The minimum of E¢2) determines the angular momentum.
radius of the ring condensate in Fig. 2 aR When the ring radiusR is sufficiently large, the circular
=2(0%—1)/k. Here we call a set of vortices such as thatflow becomes quasi-one-dimensional for the following rea-
in Fig. 2 a ‘giant vortex” to indicate that a number of phase son. The radial wave function of the stationary giant vortex
defects are contained in a single hpdee Fig. 20)]. Such a  state is obtained by substituting=f(r)e"? into Eq. (1):
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FIG. 4. Snapshots of the numerical simulation of a giant vortex
state(Fig. 2 that is perturbed by an impurity potential. Parameter
values forVi,, are Vo=100, 0=0.1, X,=3.94, andy,=0. The
impurity potential is at rest in the laboratory frame, and thus rotates
in the rotating frame.

FIG. 3. The top figure shows the time evolution of the angularwith A= [rdr|f|2. The wave function is linearized as
momentum per atond, for a change of2 from 3.5 to 3.2. The  y(g,t)=e “ e+ yle '“tu(h) +e'“ tv*(6)]}. The re-

bottom figures show the phase profiles and line contours of thgyiting eigenvalue problem with the ansatm(6)
density for half of thex-y plane atw, t=102, 107, 112, and 116 — /("* 00 gnd y(g)=p e/ (""" D’ yields the dispersion
from left to right. Arrows show how one vortex escapes via phaserelaq[ion q

slippage.

2
+2C P] , (6)

2n q
E—Rﬂ)i (ﬁ

_q
# 149 n , wq’+_§[
_P_Fﬁ+r—2+vtrap+c|f| —nQ|f=uf. (3

whereg/R is the wave number of the excitation. The second

The excitation of the radial component is easily obtained byierm on the right-hand side of E) gives the sound veloc-

writing f+ &f; the effective potential fosf is then given by ity ¢=y2CP. The superflow is stable when< ¢ according
to the Landau criterion. The values of the parameters and the

n2 form of f(r) of Fig. 2(a) yield c=3.75 and the circular flow
Veii(1) = VigapT —2+2C|f(r)|2—,u—nQ_ (4)  velocity vs=2n/R=12 (in units ofb, w, ). Because s>c,
r the circular flow is supersonic and energetically unstable.

Impurities and walls can cause dissipation for a super-
Becausen= Q) R?/2 in the limit of a rigid body rotatiofi6,7], sonic superflow. For example, Rdf20] used the Gross-
the radial zero-point energy around the minimum of the po-Pitaevskii equation for bulk condensates and ordinary
tential Viapt n?/r? becomes larger than the mean-field inter-trapped condensates to show that the dissipation of the su-
action strengthC|f(r)|? for large R. Such a high excitation perflow is caused by vortex-pair creation at an impurity ob-
gap freezes the motion of the radial wave function whileject. This was shown experimental[21]. However, this
keeping the motion free along thedirection. To investigate does not apply to the present case of quasi-one-dimensional
the stability of this one-dimensional superflow, we substitutesuperflow because of the tight radial confinemgf]. To
w(r,0,t)="1(r)¥(6,t) into Eq.(1) to obtain show the influence of impurities, we introduce an impurity
potential of Gaussian form a‘simp=voexq—{(x—x0)2+(y
—Yo)?}/d?] (at rest in the laboratory framewhere{xy,yo} is
the impurity position. Figure 4 shows an example of the
destabilization process of the giant vortex stateviy,, for
which Vy is chosen to be larger than, . R) and o smaller
than the width of the ring condensate. Becaugeexceeds
where the Landau critical velocitg, the impurity excites the longi-
tudinal density waves along the ring condensate, thus pro-
ducing a drag force. Due to the presence of dissipation and
f, the rotating drive, the system reaches a steady state as shown
in Fig. 4(b). Therefore, the quadratic-plus-quartic system of-
fers a scheme for studying the stability of a quasi-one-

1 di ional rflow
R 2= —f rdr|f|?r 2, P=—f rdr|f|* Imensional supe : . . .
A u I In conclusion, a fast rotating BEC in a quadratic-plus-

2

Y 19 , 0
— —+E+CP|y| —|Q%)¢/, (5)

"t | TR a6
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