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Equivalent linear two-body method for Bose-Einstein condensates
in time-dependent harmonic traps
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The recently developed time-independent effective linear two-body méshéthys. B: At., Mol. Opt. Phys.
33, 55(2000] has been generalized for time-dependent traps. The method is used to describe the dynamics of
trapped Bose-Einstein condensates beyond the Thomas-Fermi regime. The calculated aspect ratios after bal-
listic expansion are found to be in good agreement with experimental data obtained recentlglitzyeGal.
[Phys. Rev. Lett87, 130402(2001)].
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[. INTRODUCTION dependent ELTB equation. We conclude the paper in Sec. VI
with a brief summary.

The newly created Bose-Einstein condensaB&C) of
Weakly interacting alkali-metal aton[S] stimulated a num- 1I. TIME-INDEPENDENT TRAP
ber of theoretical investigationsee recent reviey2]). Ac-
cording to the Hohenberg theordB], the BEC is impossible ~ For the stationariN-body system, our method for obtain-
in (one-dimensional1D and 2D homogeneous Bose gasesiNd the ELTB equation consists of following two steps.
But BEC can occur in inhomogeneous systems, for example, 1he first step is to give theN-body wave function
in atomic traps/4]. The theoretical aspects of the BEC in ¥(I1:72;...) @particular functional form,
highly elongated shaped trafgguasi-one-dimensional re- _
gime) have been reported in many papgss13. The Gross- p(ry,ra,.)~(L1,42.83), (1)
Pitaevskii(GP) equation[14] is widely used to describe the
experimental results for BEC. In RgB] it was found that where{;, ,, and{3 are known functions. We limit’s to
the GP predictions for nonlinear dynamigthe aspect ratio three variables in order to obtain the ELTB equation, since a
after ballistic expansionare in good agreement with those relative motion in the two-body problem depends on one
observed in a recent experimdi6]. We note thata priori, ~ Vector described by three component variables. We note that
it was not obvious that the GP equation gives the correc@PProximation(1) allows us to study systems that are not
description of the nonlinear dynamics of the quasi-1D BEC SPherically symmetric. The second step is to derive an equa-

Recently, an alternative method of equivalent linear two-tion for ¢x(¢1,¢>,{3) by requiring thai must satisfy a varia-
body (ELTB) equations for many-body systems has been detional principle
veloped based on the variational principl6—-19. It was
shown that the ELTB method gives a good result for the S(Y|H| =0 2
ground state of Bose-condensed atoms in harmonic traps.

The purpose of this Wprk is to generalize the ELTB method, i, 4 subsidiary conditior{lTMTﬁ):l. H is the Hamiltonian.
[16-19 for the dynamics of trapped Bose-condensed gaseshis |eads to a linear two-body equation from which both
A recently developed approximatidb] provides the possi- eigenvalues and eigenfunctions can be obtained.

bility of avoiding extensive numerical integration of the "1 fix collective coordinateg, , {,, and{s, we note that
time-dependent ELTB equation. As an example of its appliyhe hyper radius Foe '

cation, this approximation is used to describe the ballistic
expansion of the BEC after the cigar-shaped trap is switched N
off. The calcylated aspect raths are foun.d to be in good pzzz (X12+Yi2+2i2) 3)
agreement with the GP calculations and with the recent ex- i
perimental result§l5].
In Sec. Il we derive the ELTB method for the time- for an isotropic cas€l6] and also collective variables
independent trap. The accuracy of the ELTB method is con-
firmed by numerical computations. Section Il considers the N N N
largeN limit. In Sec. IV, we developed an analytical formula 2= X2, y’=> y3, 2= 7 (4)
for the lower bounds to the ELTB ground-state energy. Sec- [ [ [
tion V develops the analytical approximation for the time-
for an anisotropic casfl7—-19, yield good results for the
dilute BEC of atoms in harmonic traps for both positive and
*Email address: yekim@physics.purdue.edu negative scattering length. This success motivates us to in-
TEmail address: zubareva@physics.purdue.edu troduce more general collective variables:
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N N N
XPl:Ei Xipl, ypzzzi yipZ, ZQ:Ei Ziq, (5)

where optimal values op,, p,, andq, restricted to even
numbers, are to be chosen to minimize the energy.

We considemN identical bosonic atoms confined in a har-
monic trap with the following Hamiltonian:

2l ml
He—om 2 At 5 2 [0 (¢ +yD) + 0l

+ Zj Vi Fi— 7). (6)

We use the Fermi pseudopotential approximationVgy,

___ 4wh%a
Vint(Fi —Fj) =

S(F1—T)), 0

wherea is the scattering length. For the eigenfunctigrof
H, we assume the following form:

lp(rl!"'er)%a(raZ)r (8)

where rP=3N (xP+yP) and z9=3=N.,z%. The ELTB
method leads to the equation f@t

Y |~ ~
1-2/p 2 1-2/q 2 2/p+1/g+1 —
Ho+N a r‘+N a,z°+N = y=Ey,
9
where
oo #? 3 2N-1 ¢ 2
0" 2m, NI-2P T oar]  2m,NT?A
3 N-1 4 10
o2t 7 @) (10
_ mI(1/p)(2/p)*~ #P¥(2N/p,2— 2/p,0)
M= 2T (2—1/p) ’
mI(1/)(1/9)*~ #%(N/q,2—2/9,0)
m,= , (11
2T (2-1/9)
mI(3/p) w?
“+ 7T (1p)(2/p)?P5(2NIp,2/p,0)’
ml'(3/q) w?
” (3/0) w3 (12

2 (1/9)(1/a)?%(N/q,2/0,0)
and

_ whi*a(N—1)%(2N/p,0,— 2/p)%(N/q,0,— 1/q)
YT T am(1p)Z 2P(1g)t TOr2(1/p)T (Llq) 2™

(13

with
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FIG. 1. Ground-state energy per particlegN, of 8’Rb atoms
in a trap withh = /8, in units ofAw, , as a function of the number
of particles in the trap. Solid circles, diamonds, dashed line, and
solid line represent the results of theoretical calculations using the
ELTB method, thep=2, q=2 approximation, the variational
Monte-Carlo method21], and the GP equatiof20], respectively.

T(z+a)
T(z+b)

Y(z,a,b)=2" (14)

Equation (9) simplifies if we introduce the new function
u(r,z),

~ u(r,z)
Y(r,z)= N D2 N D2 (15
In terms ofu(r,z) Eq. (9) reads
h? 9? h? 9?
- 2m, NI 2P 2 2m.NI-2a a?’LVeﬁ(r,Z)
zZ
Xu(r,z)=Eu(r,z). (16

The effective potentiaV/¢«(r,2) is given by formula

#2(2N—1)(2N—-3) #3(N—1)(N-23)

Vewl(r,z)= — —
ef'f( ) 8mLNl Z/pr2 8mZNl 2/q22
N2/p+1/q
+ o N 2Pr2 4 o N1-20Z2 4 o 7
17)

To study the validity of the ELTB method, we consider an
example of the ground-state 8fRb atoms in a harmonic
trap, as investigated in RgR20] with the Swave triplet-spin
scattering lengtla= 1008z, whereag is the Bohr radius, the
axial frequencyw,/27m=220 Hz, and asymmetry parameter
A=w,/w, =+/8. The calculated energies per particéN
are compared with those obtained from the solutions of the
GP equation[20] and with the variational Monte Carlo
(VMC) calculationg21] in Fig. 1. These comparisons show
that the optimal choice of the parametgrsand q greatly
improves the results witlp=q=2 [17-19. For 10G=N
<20 000, the difference between our results and those of the
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solution of the GP equatiof20] are about 2%, and the dif- In Ref.[19], it was shown that in the case of larbethe
ference between our results and the calculatj@i$are less  ground-state wave function & bosons confined in a har-
than 1%. monic anisotropic trap can be written in a separable form as

Referencd 22] proves that the GP mean-field theory de-
scribes correctly the energy and particle density of a dilute W(y,Fp,....FN)=71(X,Y,2) x(Q)), (29
3D Bose gas in a trap to the leading order in the small pa-
rameterpa® (wherep is the mean density aralis the scat-  wherex?=3Nx2, y2=3Ny2 22=3N 72 andQ is a set of
tering length whenN is large buta is small with fixedNa. (3N—3) angular variables.

We note also that for the case of lower dimensiahs Equation(24) may explain why the ELTB results are ex-
<3, it is known that the quantum-mechanical two-bodypected to be valid and are so close to the GP results for 3D
t-matrix vanishe$23] at low energies. Therefore the replace- dilute systemsga®<1). However Eq(24) is valid also for
ment of the two-body interaction by thienatrix, as done in  nondilute systems, while the GP mean-field theory is proven
deriving the GP mean-field theory, is not correct in generato be applicable for dilute systems. Therefore, we may ex-
for thed<3 case[24]. pect that the ELTB approach will not be quantitatively

The ELTB can be applied td<3 cases. To illustrate this equivalent to the solution of the GP equation for these cases.
let us consider the McGuire-YariylY ) 1D N-body problem  In our future work, we hope also to investigate the large gas
[25] with the Hamiltonian parameter regimei6].

N Here we note that if scattering lengthis larger than the
12 D van der Waals length, [27], there is a regime when the
T 24 dx +C,<J S(Xi = X;). 18 pose system is dilute, but with respectrtg, pra<1 [28].
For these systems the three-body contributions, given by the
For the case o6<0, there is one bound state for a system ofEfimov effect[29], can become the dominant term of the
N bosons with the wave function energy functional28].

c
'Jf(X)IeXF{EE Ixi — x|
i<

(19) Ill. LARGE- N LIMIT

To consider the largét limit, we rescale variablesandz

and the energy of this state is given by in Eq. (15),
N(N?—1) r=NY7, z=NYz, (25)
E=— CZT. (20

and rewrite Eq(16) as

The MY N-body problem provides a unique possibility of
checking the validity of various approximations made for the
Schralinger equation describing one-dimensional particles
interacting via short-range potentials. For this case we seek E
the ELTB wave function in the form off(X;,X5,....Xy) =—uf?). (26)
~(p), wherepP=3N . |x|P. Using Eq.(2) we obtain in N
the leading order oN— oo,

oM N2 2 2mN? ﬁ*’veﬁ(T,?))U(T,NZ)
zZ

In the largeN limit, ¥ in Egs. (11)—(13) is of the order of

N3 unity and the expression fof.x(T,2) simplifies to
2
E=-c 23°2hT (1p)T(2—1/p) @) 52 ﬁz
Veﬁ(’rv’z) ,,..,2 ,~2+meal 2+ mw2 i 2
Choosing an optimal value @f which minimizes the energy, 2mm;T mm,z
leads to A2aN 5’ ,
TTm o @
pNER —0.041217 2. (22
where
On the other hand, for largd, we have from Eq(20
* 420 T(Up)(2p)2 %, T(Ua)(Lig)> 2
E 1 M ="Zre2-up @ ™ Te-1q
NG 24 —0.0416667. (23 (28)
The relative error for the binding energy between Hg®)  and
and(23) is about 1%. Therefore, we have demonstrated that
the ELTB method is a very good approximation for the MY o = I'(3/p) ol = '(3/q) (29)
N-body problem for largeN. LT (Up)(2ip)P 27 2T (1) (Lig)Za’
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2—2lp~1—1/
o L R

!

Y T AT (Up) A (1g) 256

(30

Quantum fluctuations are unimportant in the linht

—oo, and the most significant contribution to the ground-

state energy is given by

E: Nveﬂ(ro,ZO), (31)
wherer, andz, are to be obtained from
Newlro,2 NVeil(rg,2
eff( 0 O) _ eff( 0 0)=0. (32)

arg 9z

Obviously Eq.(31) fails if the effective potential does not
possess a minimum.

Instead of variableg andZ, we introduce the new quan-
tities
(33

ri=tla,, z=7la,,

wherea, = JAi/(mw, ).
On making the substitutiof33), Egs.(27) and (30) be-
come

1
_ ’ .2 15,2
Veﬁ(rt,zt)—ﬁwi —2m1rt2+—8m22t2+airt+)\2azzt
7/
+N(a/a,) |, (34)
rez,
with
2 ’y,
airi—(ala, )N——=—,
Lt Lz, 2myre
2)\2a’zt2—(a/aL)N—32/ =—, (35
‘ reze 4myz

and\=w,/w, .
In the case of larg&l(a/a, ), solutions of Eqs(35)

re=[N(a/a,)y’ V2\2aila/*1*5,

13 211/5
z,= N(a/al)y’(r%;) o (36)
give for the ground-state energy
E _ 12, 12 1\1/5
Nﬁwl(N)\a/al)Z’S_Z_‘”E(aL Y Cay) (37

Optimal values ofp=4 andq=4 minimize the energy, Eq.
(37), and we have

E
Niw, (N a/a,)?®

1.08199. (39)
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kinetic-energy term in the Ginzburg-Pitaevskii-Gross equa-

tion (the Thomas-Fermi approximatipf30,31 as

5 2
|2

E 5[/1 1/5
Nﬁwl(N)\a/al)Z’E‘:?{(?

—1.05506. (39

Comparing Eq(38) with Eqg. (39), we can see that for the
case of largeN the ELTB method p=4,0=4) is a very
good approximation, with a relative error of about 2.5% for
the binding energy(note that thep=2, q=2 case gives
about 8.2% error for the binding enejgy

IV. LOWER BOUNDS

In this section we formulate a lower-bound method for the
solution of the ELTB equationi9). Following Ref.[5], we
introduce auxiliary Hamiltonians

’ h? 7 L 2N-14 N2y 2
LT 2m N2 g2 rooor ar

o h? 9 NZ1 ), 2
=T OmNT 02T T 7 a2 @zt
(40
and

Hl:hN ZaL')/L/mJ_'l'N1_2/paj_(1_’yj_)r2’

~ &N
HZZT V2az'}’z/mz'l'Nl_z,qaz(l_'}’2)22' (41)

wherey, andy, are parameters, restricted by@/, <1 and
0=1vy,<1, respectively. Using these auxiliary Hamiltonians
we write the ELTB energy functional as

E=(¥|(H,+H,—H,—H)|¥)

~ |~ ~ Y\ ~
(I Ho A H NPT ). (42)

Omission of H, +H,—H, —H,) yields a lower bound for

the ground-state energy. Projecting on the complete basis
states|n), obtained from

h|n>:€n|n>!
where
h=Hy+N'"2Pq, y r2+ N2y ,y,7?,

we get

D=3 el @nxnT)=e

:Nﬁ(\/zal')’i /mL"_%\/Z“z'}’z/mz)- (43

Therefore a set of optimal values of parametgrsand vy,

For the case of larghl, one can obtain an essentially exact which maximizes our lower bound, will yield an optimal
expression for the ground-state energy by neglecting théower-bound value for the ground-state energy given by
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TABLE I. Calculated results for the lower bourt],, /N, EQ.

(36), and for the ground-state energy per partié@iéN, ELTB Eq. i% ﬂ =|Ho+N"2Pq (t)r2+N12Mq,(1)2?
(9), in units ofhw, , for the same case as in FigA.is defined as ot
A=(E—Eoy)/E. o ¥ ]
p+1ig+
N Eiow/N E/N A N f_%}qf' “n
100 2.66093 2.662 86 7210°* where
200 2.866 33 2.867 97 5710
500 3.34259 3.34378 361074 B ml(3/p) w? (t)
1000 3.91311 3.91392 24104 ()= T'(1/p)(2/p)?P3(2N/p,2/p,0)’
2000 4.696 83 4.697 42 13104
5000 6.25503 6.255 39 5810 ° mI(3/q) w2(t)
10000 7.94076 7.94101 3d10°° V)= ST (1) (1) *5(NI . 2/0.0) (48)
15000 9.17208 9.17227 21075 T
20000 10.1877 10.1879 2Q10°°

with the initial conditionW (r,z,0)= (r,z), wherey(r,z) is
a ground-state solution of the time-independent ELTB equa-
tion (9) with «, (0)=«a, , a,(0)=a,.

E We substitute the following Eq(49) into Eq. (4
= max| fi(\2a, v, Im, +3\2ayy,/m,) (5.95 33 g Eqal49 a. (47
YL Y2
5 e q)(r/)\L(t)!Z/)\Z(t)vt)
2 2 _ 2 _ 1/5 i\ ,Z,t) =
+oml el (1-y)al(1-7)]". (44 (120 = —— g
Using this approximation we calculate the energy per par- Xexpg —ip)+i(fL (Oro+f,(0z9)],
ticle, E/N, for the same case as in Fig. 1. The calculated (49
results are compared with those obtained from the numerical
solutions of the ELTB equation in Table 1. These compari-where
sons show that the analytical approximation, E), gives ) )
excellent results. The difference betwe®tN, Eq. (44) and fone A, (tym, N1~2P - A,(t)m,N1~2a
numerical solutions of the ELTB equation is less than 0.07% (== 2N, (1) A)=- 2hN,(1)
for 100=N=<5000 and less than 0.006% fiN>5000. (50)
V. TIME-DEPENDENT TRAP and B, A, , and\, are solutions of the following equations:

In this section, we consideN identical bosonic atoms E T ANVZa (07T 1 1
confined in a time-dependent harmonic trap with the Hamil- p= A2\, @1 (0)y, /m, N2ON2,
tonian

AN 1
p2 N mN +7V2az(0)yz/mz(F_W)a B(0)=0,
H=—5-2 A+ 5 2 [of (O0F+Y]) +wi(D)7]] S
2mi=y =1 (51)
Amh?
+ B s, m. @ (0)y,  a (0)(1-y)
m = ' S A= (At N3 N :
€ 17z
pri:]'((:)ipcl)ebtam the wave function, we apply the variational Mo 2(0)y, ay(0)(1—v,)
2 Mz a; z )\g )\i)\g )

6A=0, (45) . }
N (0)=1, N\, (0)=0, N\,(0)=1, N\,(0)=0. (52
where the action integrad is given by o ] S
The above substitution yields the following time-dependent

t 9 _ ELTB equation:
A:f <\If|[ihﬁ—H(t)}|\P>dt, (46)
o o® |H,-H, H,-H, 1 (. _
_ Iﬁﬁz )\2 )\2 +)\2)\ H +H,
and W (r,z,t) is the trial wave function. L z L7z
This generalizes the time-independent ELTB equation y
[16—19 for time-dependent traps and leads to the equation + Nz’p”’q“r—z—z— E) }(b. (53

053602-5



YEONG E. KIM AND ALEXANDER L. ZUBAREV

By neglecting €, —H,) and H,—H,) in Eq. (53), we
obtain a generalization of the approximation of R&f] to
the time-dependent ELTB equation

CPrINL(1),20(1))
R WGINED

xexd —iB(t)+i(f (H)r2+f,(t)z2)], (54)

V(r,zt)

where all the dynamics is in the evolution of the scaling

parameters | (t) and\,(t), Eq. (52).

The aspect ratio of the cloud in the approximation, Eq.

(54) is given by

XD A1)

A1)

R(t)= R(0). (55)

Z(1)
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FIG. 2. Aspect raticR of the ZNa atom cloud after a ballistic
expansion of=4 ms, as a function of the number of atoMswith
,(0)=27X360 Hz,w,(0)=27X 3.5 Hz. Experimental datd@®)

As an example, we consider the application of the abovérom Ref.[15] are compared with the results of theoretical calcula-

results to the experimental data wittNa atoms obtained in

tions using Eqs(48) (—), the GP equation&¢ ), 1D approxima-

the loffe-Pritchard-type magnetic trap with radial and axialtion (— — —), and the TF approximatior--—-—-—).

trapping frequencies ofv, /(27)=360 Hz and w,/(2)
=3.5Hz [15], respectively. In our analysis, we use
=2.75nm, t=4ms, andal/a, =2.488<10 3, where a,

=\h/mw, . As in Ref.[5], we consider a sudden and total

opening of the trap at=0. For this case, Eq$52) become
d2)\i + 1_ ’yl
AN )

Y1

a2 N

:

wherer=w, (0)t ande= w,(0)/w, (0)<1, and

Yz

d?\,
Y

d7?

1_’)/2 2
)\ﬁ\z)é , (56)

b — p?T(3/p)I'(2—1/p)
L T2(1/p)5(2N/p,2/p,0)%(2N/p,2— 2/p,0) '

- q°T'(3/g)'(2—1/q)
2 T2(1/q)¥(N/q,2/q,0)%(N/q,2— 2/q,0)

(57)

To zeroth order ine?, we havex,=1 and\, =\1+b, 2.
For the experimental conditiond5], the terms ine® are
negligible. Our calculated results f&(t) are compared with
those obtained from the solution of the GP equafi®ipwith
the Thomas-Ferm(iTF) approximation, and with experimen-

We consider 1D approximation, when the radial motion of
the atoms becomes frozen and is governed by the ground-
state wave function of the radial harmonic oscillaf6r8].
From Fig. 2 one can see that the 1D approximation provides
reasonable results with a relative error of less than 10% for
the case oN<10"

One can also see that even for the relatively large TF
parameterNa/a;,~ 100, a,,,= \/h/(mwfngI 3, the TF ap-
proximation is not valid, the error is larger than 20%.

VI. SUMMARY AND CONCLUSION

In summary, we have generalized the time-independent
ELTB method[16-19 to the time-dependent case. As ex-
amples of application, we have studied the problem of the
ballistic expansion of the condensate after the cigar-shaped
traps are switched off. The approximation developed in Ref.
[5] provides a possibility of avoiding extensive numerical
integrations of the time-dependent ELTB equation.

The calculated aspect ratios after ballistic expansion are
found to be in a good agreement with experimental data
obtained recently by a group at MIT.
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