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Microwave ionization of alkali-metal Rydberg states in a realistic numerical experiment

Andreas Krug and Andreas Buchleitner
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Straße 38, D-01187 Dresden, Germany

~Received 4 July 2002; published 26 November 2002!

We describe an original approach for the accurate description of alkali-metal Rydberg states exposed to
intense electromagnetic fields. Our method combines Floquet andR-matrix theory, complex dilation of the
Hamiltonian, a Sturmian basis set to describe the atomic degrees of freedom~including the continuum!, and,
last but not least, an efficient parallel implementation of the Lanczos algorithm on some of the most powerful
supercomputers currently available. Without adjustable parameters, thisab initio approach opens a route to the
comprehensive understanding of an abundance of laboratory data on the microwave ionization of one-electron
Rydberg states. The versatility of our theoretical/numerical machinery is illustrated in the specific case of
microwave driven lithium, faithfully mimicking every single step of the laboratory experiment.
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I. INTRODUCTION

For more than two decades, periodically driven on
electron Rydberg states of hydrogen@1# and of alkali-metal
atoms@2# are amongst the preferred, experimentally acc
sible objects to study the transition from regular and pred
able to highly complex dynamics in simple quantum syste
exposed to strong perturbations. Whilst the Keplerian
namics of a Rydberg electron on its elliptic orbit around t
nucleus incarnates the correspondence between the m
scopic quantum world and the clocklike precision of pla
etary motion@3#, chaos invades the electron’s classical ph
space when it is subject to an oscillating force near reson
with the classical Kepler frequency@4–7#. Much like a
comet on a chaotic trajectory@8#, which finally disappears in
the depth of outer space, the Rydberg electron will fina
ionize in a laboratory experiment on the real, and this is
the quantum-mechanical atom, upon absorption of, say,
proximately 10, . . . ,100 photons from the low-frequenc
driving field in the microwave regime. Remember that, as
immediate corollary of the correspondence principle, a d
ing field frequency that is resonant with the classical Kep
motion is resonant with the atomic transitionn0→n011 be-
tween the neighboring Rydberg manifolds labeled by
principal quantum numbern0 ~inherited from the classica
principal action, via Bohr’s quantization!. This is the origin
of the experimentalist’s choice of microwave frequenc
when he aims at realizing the chaotic escape of a come
the atomic scale. However, from a more traditional quantu
mechanical point of view based on our understanding of
photoelectric effect or on common intuition on high-ord
terms in perturbative expansions, efficient ionization me
ated by high-order transition amplitudes from the atomic i
tial state to the atomic continuum is rather unexpect
Moreover, as realized in the early days of quantum mech
ics @9#, the highly suggestive quantum-classical corresp
dence, built on the semiclassical analogy between the hy
gen atom and a planet’s orbit around the sun, does not c
over in a simple way to Hamiltonian systems with nonin
grable classical dynamics. It is therefore by no means o
ous that efficient~chaotic! ionization of a Rydberg electron
can indeed be induced by a microwave field, and y
1050-2947/2002/66~5!/053416~10!/$20.00 66 0534
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by now, this is an experimentally well-established fa
@1,10–12#. Put differently, this very experimentalobservatio
is arguably one of the most dramatic and most tangible
gerprints of chaos in real quantum systems, and hence, o
prevalence of quantum-classical correspondence bey
regular dynamics. Let us also note here that dynamical lo
ization @13–15#, a quantum interference effect that decrea
the experimentally observed ionization yield as compared
the classical prediction, in a certain parameter regime~which
we shall come back to in the sequel of this paper!, doesnot
obliterate this statement. On the contrary, precisely the c
sically nonintegrable dynamics provides the indispensa
randomization@16# of the quantum-mechanical transitio
matrix elements, which allows for a globally destructive i
terference correction to the classical transport coefficient

However, how to interprete such fingerprints of classi
chaos in the quantum dynamics, if no classical Hamilton
dynamics can be unambiguously identified? Indeed, as
plicit in the above argument, ‘‘chaotic’’ ionization and dy
namical localization are even observed for one-elect
alkali-metal Rydberg states of lithium, sodium, and r
bidium, without the availability of a well-defined, classic
one-electron Hamiltonian—different phenomenological cl
sical potentials lead to the same quantum spectrum of
unperturbed atom upon quantization@17–19#. Furthermore,
all available experimental data@12,20,22# suggest@21# that
periodically driven, nonhydrogenic initial states of alkali a
oms ~i.e., low-angular-momentum states with nonvanishi
quantum defectsd,) exhibit dramatically enhancedioniza-
tion as compared to atomic hydrogen, whereas hydroge
initial states also display hydrogenic yields@2#. Hence, there
is an abundance of laboratory results that remain to be
onciled with each other, and with the above picture, beyo
hand waving arguments that consider alkali-metal Rydb
states as essentially equivalent to Rydberg states of ato
hydrogen. As a matter of fact, for reasons of experimen
convenience, almost all of the different experimen
@1,2,11,12,20,22–25# performed on the different atomic spe
cies were so far performed in slightly different parame
regimes—i.e., under slightly different physical conditio
—which is not the optimum demarche to identify the orig
of physically different behavior in a ‘‘chaotic’’ setting, i.e
©2002 The American Physical Society16-1
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A. KRUG AND A. BUCHLEITNER PHYSICAL REVIEW A 66, 053416 ~2002!
under conditions of a strong sensitivity of the system’s
sponse to initial and/or boundary conditions. Therefore, o
recently@26–29# some of the different pieces of this puzz
have been put together in a numerical experiment that c
pares the ionization dynamics of different atomic species
der precisely identicalconditions, for typical laboratory pa
rameters (n0528, . . . ,80, thedriving field frequency being
36 GHz!. In the present contribution, we will expand on th
details of the theoretical/numerical framework of the eme
ing picture, and complement some of the results presente
Refs.@27,29#.

The paper is organized as follows. Section II presents
theoretical ‘‘setup’’ based on an exact description of the at
in the field, without adjustable parameters, which is nota
designed for direct access to the detailed spectral struc
underlying the quantum transport problem we are dea
with. Section III accounts for the numerical implementati
of our setup in an actual numerical experiment, with so
details on numerical convergence and on memory requ
ments. Section IV presents a numerical experiment on n
hydrogenic Rydberg states of lithium, which faithfully mim
ics each single step of the laboratory experiment. Besid
direct comparison of lithium and hydrogen ionization d
namics over a broad parameter range, we also discuss
role of the atom-field interaction time as an additional, e
perimentally controllable@2,12# parameter. Section V con
cludes the paper.

II. THEORY

The object we have to describe here with a minimum
approximations is a Rydberg atom exposed to a perio
monochromatic driving field. The Rydberg electron moves
three-dimensional configuration space, subject to the c
bined potentials of the nucleus and, possibly, of the mu
electron core, and is driven and eventually ionized by
external field. Our theoretical description therefore has
account for the following:

~i! the unperturbed one-electron dynamics within
Coulomb-like potential, amended by the multielectron co

~ii ! the spectrum of the atom ‘‘dressed’’ by~i.e., in the
presence of! the field, including the atomic continuum;

~iii ! the parameter dependence of the ionization proc
where the parameter space is spanned by the quantum
bers that define the initial atomic stateun0 ,0 m0& (,0 and
m0 stand for the angular momentum and its projection on
quantization axis, respectively!, and by the amplitudeF, the
angular frequencyv, and the interaction timet, which char-
acterize the driving field.

To do so, we have to combine various tools as follows.
Let us start with the Hamiltonian of an atom with on

active electron, exposed to a linearly polarized microwa
field of frequencyv52p/T and amplitudeF. In dipole ap-
proximation, employing the length gauge and neglect
relativistic and QED effects, the Hamiltonian in atomic un
reads
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H~ t !5
p2

2
1Vatom~r !1F•r cosvt, r .0, ~1!

whereVatom(r ) denotes the atomic potential seen by the v
lence electron, which we shall specify later. Since Eq.~1! is
periodic in time, i.e.,

H~ t1T!5H~ t !, with T52p/v, ~2!

we can make use of the Floquet theorem@30–32# to access
the eigenstatesu« j& and eigenvalues« j of the atom in the
field, which solve the stationary eigenvalue problem

Hu« j&5« j u« j& ~3!

on the extended Hilbert space of square integrable, tim
periodic functionsL 2(R3) ^ L 2(Tv).1 The latter is the do-
main of the Floquet Hamiltonian

H5H2 i ] t , ~4!

the spectrum of which is invariant under translations byv.
Knowledge of theu« j& and « j inside a given Floquet zone
~the equivalent of a Brillouin zone in solid-state physi
@33#! of width v is therefore sufficient for a complete de
scription of the dynamics. Introducing the Fourier comp
nents of the Floquet eigenstatesu« j&,

u« j&5 (
k52`

k51`

exp~2 ikvt !u« j
k&, ~5!

we can recast the periodically time-dependent problem~3!
into the following coupled set of time-independent equ
tions:

S p2

2
1Vatom~r ! D u« j

k&1
F•r

2
~ u« j

k11&1u« j
k21&)

5~« j1kv!u« j
k&, kPZ, ~6!

where the additional quantum numberk counts the number
of photons exchanged between the atom and the field@32#.

Sincek is running from2` to 1` in Eq. ~6!, the dipole
term in Eq. ~1! couples all bound states of the field-fre
Hamiltonian to the atomic continuum. Therefore, the sp
trum of Eq. ~6! no longer consists of a discrete and a co
tinuum part, but rather of resonance states with quasiener
« j , and finite lifetimes 1/G j , embedded in the continuum
@34#. Precisely the ionization ratesG j will finally determine
the experimentally measured ionization yield of the atom,
a specific choice of the field parameters. To extract th
quantities from Eq.~6!, we use the method of complex dila
tion @34–40#, which allows to separate the resonance sta
from the continuous part of the spectrum. Complexificati
of the position and momentum operators according to

r→r exp~ iu!, p→p exp~2 iu! ~7!

1With Tv5R\(2p/v) the unit circle.
6-2
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transforms the Floquet Hamiltonian in a complex symme
operator with complex eigenvalues. More precisely, the sp
trum of the dilated Hamiltonian has the following properti
@34–36,38#:

~a! The spectrum is periodic with periodv, as for the
original Hamiltonian.

~b! There are continuous spectra along half lines star
at energieskv ~i.e., at multiphoton ionization thresholds!,
rotated away from the positive-energy axis into the low
complex plane, by an angle22u.

~c! There are isolated complex eigenvalues« j5Ej
2 iG j /2 in the lower half plane, corresponding to the res
nance states ofH. They are stationary under changes ofu,
provided the dilation angle is large enough to uncover th
location on the second Riemannian sheet of the resolven
H. The associated eigenfunctions are square integrable
contrast to the eigenfunctions of the undilated Hamiltoni
which are outgoing waves@37#.

~d! Apart from exceptional values ofF and v, there are
no real eigenvalues, since under periodic driving all atom
bound states turn into decaying states.

OnceH has been subjected to the nonunitary transforma
@39# induced by Eq.~7!, all relevant physical information is
therefore directly obtained by a subsequent diagonalizat

While our above discussion is valid for any atomic~or
ionic! system with one active electron, at this point we ne
to specify the atomic potential in Eqs.~1! and ~6!. Whereas
for atomic hydrogen,Vatom is given by the attractive Cou
lomb potential21/r , no uniquely defined one-particle pote
tial is available for multielectron atoms. Therefore, we ge
eralize a variant ofR-matrix theory, which was used earlie
@41# to describe alkali-metal atoms in static electric and
magnetic fields, to the case of periodically driven syste
Accordingly, we split configuration space in three regio
~see Fig. 1!, distinguished by the relative strengths of t
external and of the multiparticle atomic fields@42#. In region
a, i.e., for 0,r ,r core ~wherer core determines the extent o
the atomic core!, the amplitude of the external field can b
neglected, and the dynamics is governed by complica
multiparticle effects. Here we cannot write down a on
particle wave function for the valence electron. Outside
atomic core, but not far away from the origin~in region b,
r core,r ,r 0), the external field is still small compared wit
the field between atomic core and valence electron. In
region, the radial wave functionF,,E(r ) of the Rydberg elec-
tron with angular momentum, and energyE can be speci-
fied, with the help of quantum-defect theory@43#, as a super-
position of regular and irregular Coulomb functionss,,E and
c,,E ,

F,,E~r !5cos~pd,!s,,E~r !1sin~pd,!c,,E~r !, ~8!

where the d, denote the angular-momentum-depend
quantum defects that specify the different alkali atoms.
nally, in regionc ~i.e., for r>r 0), the potentialVatom can be
described as a Coulomb potential21/r . However, the eigen-
function in regionc has to be matched smoothly to the wa
function ~8! in region b. This determines the phase shift
05341
c
c-

g

r

-

ir
of
in
,

c

n

n.

d

-

r
s.
s

d
-
e

is

t
i-

the alkali-metal Rydberg electron’s wave function as co
pared to the hydrogenic one, due to the scattering of
valence electron off the multiparticle core.

To solve Eq.~6! for alkali-metal Rydberg states, we thu
have to substituteVatom(r )521/r , in the reduced ranger
.r 0.0. However, the operatord2/dr2 is no more Hermit-
ian on the interval (r 0 ,`). ~Note that the loss of Hermiticity
has nothing to do with the complex dilation~7! of position
and momentum operators. It simply illustrates that Hermit
ity of an operator crucially depends on its domain@44#.! To
enforce Hermiticity of the second derivative forr P(r 0 ,`),
we have to add a surface term

2d~r 2r 0!S ]

]r
1C,,« j D ~9!

to the Hamiltonian. In the constant termC,,« j
, the matching

condition between regionsc and b, and thus the nonhydro
genic phase shift of the alkali-metal wave function for lar
r is incorporated. We defineC,,« j

as the logarithmic deriva-

tive of the wave functionF,,E(r )5F,,« j ,k(r ), evaluated at

energy« j1kv ~which is an eigenvalue of the Floquet pro
lem! and positionr 0:

C,,« j ,k5
1

F,,« j ,k~r !

]

]r
F,,« j ,k~r !. ~10!

Since« j is not known beforehand, in principle, an iter
tive procedure is required to solve Eq.~6! under the con-
straint~10!. Such a procedure, however, guarantees only
convergence of one single eigenvalue« j ~with the associated
eigenvector! which coincides with the energy at which th
surface term is evaluated. To obtain more than just one c

FIG. 1. Division of configuration space for our implementatio
of the R-matrix method@41,42#. In the inner regiona, r ,r core,
complicated multielectron interactions dominate the dynamics—
multiparticle wave function is unknown. In regionb, r core,r ,r 0,
the force of the driving field on the Rydberg electron is negligible
compared to the influence of the core potential. The Rydberg e
tron’s wave function can be represented as a linear combination~8!
of regular and irregular Coulomb functions. In regionc, r .r 0, the
Rydberg electron moves under the combined influence of the d
ing field and of an effectively hydrogenic Coulomb potential, due
the screening of the nuclear charge by the multielectron core
obtain the quasienergiese j and ionization ratesG j of the atom in the
field, the Floquet eigenvalue problem~6! is solved in the outer
regionc, with the appropriate boundary condition~10! at the match-
ing radiusr 0.
6-3
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verged eigenvalue per diagonalization we expand the sur
term @41#, which is a smooth function of energy, in a pow
series:

C,,« j ,k5C,,« j ,k
(0) 1~«1kv!C,,« j ,k

(1) 1•••. ~11!

Instead of the exact termC,,« j ,k , we employ only the con-

stant and the linear terms,C,,« j ,k
(0) andC,,« j ,k

(1) , respectively.

These are found by computing the Coulomb functio
s,,« j 1kv(r ) andc,,« j 1kv(r ) over a suitable energy grid, an
fitting the logarithmic derivative to a linear function. Th
approach finally allows us to obtain some hundred—inst
of one—converged eigenvalues, with one single diagonal
tion @28# of the eigenvalue problem~6!.

The complex dilated Floquet Hamiltonian amended by
core induced surface term is now represented in a suit
basis set. An appropriate choice are the real Sturmian b
functions@45,46#. In spherical coordinates, they are given
the expression

^r ,u,fuSn,,,m
(a) &5D~n,, !expS 2r

a D S 2r

a D ,

3Ln2,21
(2,11)S 2r

a DY,,m~q,f!, ~12!

with D~n,, !5A~n2,21!!/ ~n1, !!, umu<,,n,

where theY,,m(q,f) denote the usual spherical harmoni
@47#, andLn2,21

(2,11)(r ) denote the associated Laguerre polyn
mials @47#. The ideal suitability of the Sturmians for Cou
lomb ~-like! problems consists in the fact that they perfec
match the internal symmetry of the Coulomb potential. F
thermore, they form a discrete basis set that spans the e
Hilbert space, including both the discrete and the continu
part of the spectrum. This is paid by the minor disadvant
that they are orthonormal with respect to a scalar prod
involving a factor 1/r , instead of the usual scalar product o
L2(R3). Hence, our eigenvalue problem~6! transforms into a
generalized eigenvalue problem of the form

~A2« jB!u« j&50, ~13!

where bothA andB are nondiagonal. However, the integra
defined by the matrix representation of Eq.~13! now become
simple expressions, slightly complicated for alkali-metal
oms, but always with strong selection rules. Indeed, for
ear polarization of the driving field along theẑ axis, what we
shall assume in the following, and after integration of E
~13! over the solid angle, we haveDm50, due to the rota-
tional symmetry of the problem with respect to the polariz
tion axis,

D,50, Dk50, ~14!

for the atomic part, and

D,561, Dk561, ~15!
05341
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for the atom-field coupling term in Eq.~6!. These selection
rules express that the external~dipole! field couples only the
neighboring angular momenta. Hence, changing the ang
momentum by one quantum requires the absorption or em
sion of a photon~which can carry one quantum!, and the
eigenvalue problem~13! consequently factorizes into tw
subspaces labeled by the eigenvalues61 of the generalized
parity,

P5~21!,1k, ~16!

which is conserved by the external field. To obtain all r
evant information on the ionization process, the Floq
Hamiltonian has to be diagonalized on both subspac
which, however, each can be explored with half the to
memory requirement.

The flexibility of Sturmian functions is yet enhanced b
the real scaling parametera in Eq. ~12!, which determines
the spatial resolution of the basis. Comparison of Eq.~12! to
the analytical form of hydrogen wave functions shows th
~apart from normalization constants! thenth bound hydrogen
wave function can be identified with thenth Sturmian func-
tion, provided thatr hydro5r sturmn/a. Thus, a suitable choice
of a enables us to define the spatial region where the bas
optimally adapted to represent the electronic wave functi
even for a basis size that is not too large.

In a numerical simulation we obviously have to introdu
a cutoff nsup of the Sturmian basis, due to the finite memo
of any computer~see also Sec. III!. This implies a shift of the
continuum threshold towards a valuenmax

eff ,`. Since the ex-
pectation value of the position operator^r hydro& scales asn2,
the above scaling argument for Sturmians yields^r sturm&
;na. Hence, the expectation valuêr sturm& of the nsupth
Sturmian function scales asnsupa, and the effective con-
tinuum thresholdsnmax

eff andEcont
eff are given by, respectively,

nmax
eff 5Ansupa, Econt

eff 52
1

2nsupa
. ~17!

Note also that in laboratory experiments an effective cut
quantum numbernmax

eff is introduced, i.e., highly excited
bound states withn.nmax

eff cannot be distinguished from con
tinuum states. There, the existence of an effective continu
threshold is caused by unavoidable stray electric fields
ated by contact potentials@10,12# ~which, of course, is noth-
ing but an experimental limit to the spectral resolution!.

Now all is set to diagonalize the generalized eigenva
problem ~13!, in order to obtain the quasienergies« j , the
decay ratesG j , and the associated eigenstatesu« j& of the
microwave driven atom. These constitute the raw data of
numerical experiment, as illustrated in Fig. 2. The expe
mental quantity of interest, the ionization probability~aver-
aged over the initial phase of the driving field! at timet of an
atom initially prepared in the stateun0 ,,0 ,m0&, is easily de-
duced through@48#

Pion~ t !512(
« j

wjexp~2G j t !, ~18!
6-4
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with wj the ~phase averaged! overlap of the atomic initial
state with the atom-field eigenstateu« j& @48#. The sum is
understood to run over all eigenstates in one Floquet zon
both parity subspacesP561. Sincewj andG j are obtained
for a fixed value of the driving field amplitudeF, the finite
switching time~when the amplitude is ramped from 0 toF,
or from F to 0! of the field in any experiment is neglecte
Whilst recent experiments on lithium atoms@2#, which used
a switching time of approximately three field cycles~com-
pared to a total atom-field interaction time oft.100 field
cycles!, almost realize this ideal situation of a rectangu
pulse, earlier experiments@10# switched on a considerabl
longer time scale~turn on and turn off of.50 field cycles
each, flat top of.300 field cycles!. However, it is known
@49–52# that the pulse envelope has no decisive effect on
experimentally observed onset of ionization, for the typi
field strengths and interaction times of microwave ionizat
experiments, except for specific values ofn0.

Finally, let us note that, unlike methods that propagate
initial wave packet in time~and which, on the other hand, a
well suited to track pulse-induced effects!, our Floquet ap-
proach provides thecompletespectral information on the
driven atom. Since the spectral ingredients of Eq.~18! do
neither depend ont nor on the atomic initial state, we ca
easily determinePion(t) for different values ofn0 , ,0, andt
(m0 is invariant, due to the rotational symmetry around t

FIG. 2. Complex eigenvaluese j2 iG j /2 of the complex dilated
Hamiltonian of microwave driven lithium atoms, exposed to a fie
amplitudeF52.331029 a.u. and frequencyv/2p536 GHz. The
plot shows the spectrum in two adjacent Floquet zones, for ge
alized parityP511; see Eq.~16!. According to the mathematica
theory of complex dilation@35,36,38#, the continua are rotated in
the lower complex plane~‘‘second Riemann sheet’’!, ideally by an
angle22u. This is approximately true only very close to the re
energy axis, as displayed in the inset@the branching point defined
by Eq. ~17! is located roughly in the middle of the inset, whic
extends over an energy range of aboutv/10]. The ionization rates
G j of the relevant resonances, which contribute to the ioniza
probability of the desired initial states through nonvanish
weightswj in Eq. ~18!, are of the orderG j.1029–10213 a.u. They
appear as black dots in the immediate vicinity of the~real! energy
axis in the plot. Few spurious eigenvalues with positive imagin
parts are also observed, which have to be rejected as physi
unacceptable solutions. Since they exhibit vanishing weightswj ,
this does not affect the resulting ionization yield.
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field polarization axis!, with one single diagonalization. W
shall take advantage of this feature in Sec. IV.

III. NUMERICAL IMPLEMENTATION

We have now collected all the tools for an accurate
scription of the atomic excitation and decay process un
periodic driving, without any adjustable parameters. Still,
have to adapt this machinery to the specific physical situa
under study, defined by

~1! the quantum defectsd, of the atomic species,
~2! the atomic initial stateun0 ,0 m0&, and
~3! amplitudeF and the frequencyv of the driving field.

While the d,—obtained from highly accurate spectroscop
experimental data@53#—determine the number of angula
momentum channels with nontrivial matching conditio
~10! and ~11!, the ~invariant! value m0 of the angular-
momentum projection sets the minimum value of,, which
can be reached during the atomic excitation process, see
~12!. In view of the limited memory of any computer, w
also seek to impose an upper limit,max on the angular-
momentum component of our basis set, without loss of c
vergence. As a rule-of-thumb, we found,max.,01kmax to
suffice, wherekmax is the upper bound that we impose in th
Fourier expansion~5! of the Floquet eigenstates, i.e.,
physical terms, the maximum number of photons absor
by the atom from the field. Obviously, in order to induc
efficient population transfer across the effective ionizat
threshold Econt

eff , Eq. ~17!, we need kmax.kcont5(Econt
eff

2E0)/v, with E0521/2(n02d,)2 being the energy of the
unperturbed atomic initial state. Hence, the order of the
evant multiphoton process increases with decreasingn0 or
v, and so dokmax and,max. In our present treatment, usin
the length gauge@see Eq.~1!# to allow for a transparen
partition of configuration space as illustrated in Fig.
we achieved numerical convergence forkmax
.1.5kcont, . . . ,2kcont, which is a considerably larger photo
basis size than reported in Ref.@48#. In these hydrogen cal
culations, however, no matching condition had to be fulfill
and the velocity gauge—which is known to lead to cons
erably faster numerical convergence than the length ga
@54,55#—was used. With the above values ofkmax, ,max typi-
cally reaches values betweennmax

eff and nsup21, with the
strongest reduction of memory demand for the largest d
ing field frequencies considered hereafter.

Whereas the maximum number of photons absorbed f
the field,kmax, clearly may not be smaller thankcont, we can
impose a tighter bound on the maximum number of phot
emitted into the field,kmin . For the typical parameter value
considered in the following section,kmin.210 turned out to
be a good choice. This dramatic asymmetry in the trunca
of the photon component of our basis (kmax can reach values
larger than 100!! is a consequence of the anharmonicity
the Rydberg spectrum, which leads to rapidly decreas
transition amplitudes fromun0 ,0 m0& towards lower-lying
states@28#.
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As the last component of our basis set, we have to tr
cate the principal quantum numbern, with an upper limit
nsup already introduced in the preceding section. Motiva
by the analogy between the finite spectral resolution in
laboratory and in the numerical experiment@see the discus
sion of Eq. ~17! in Sec. II above#, we chosensup and the
Sturmian scaling parametera in such a way that these mimi
an effective continuum threshold atnmax

eff .104 ~specifically,
we seta570 andnsup5155), comparable to state of the a
experiments withnmax

eff .90 @10#, .135 @12#, and.280 @2#.
Finally, we still have to fix the matching radiusr 0 and the

dilation angleu. For our subsequent calculations on lithiu
with n0528, . . . ,80, r 0510, . . . ,18~similar to the radius
employed in Ref.@41#! andu50.02, . . . ,0.06 led to optimal
convergence. Note that large values ofn0 favor the numeri-
cal stability under changes ofr 0, since the largern0, the
smaller the electronic density close to the matching reg
@28#.

With these premises, we arrive at basis sizesnbasis and
bandwidthsnband of the eigenvalue problem~13! ranging
from nbasis5279 072,nband54862~for atomic initial states in
the vicinity of n0570) tonbasis51 010 016,nband56306~for
n0.30), in our subsequent calculations on lithium. The c
responding quantum defects ared,5050.399 468, d,51
50.047 263, d,5250.002 129, and d,53527.731025

@53#. To compute the ionization probability~18! of a specific
atomic initial state, not all eigenvalues of these huge ma
ces are needed, but only those approximately 4000 r
nances that have a nonvanishing overlapwj with the initial
state. Since this is a small number compared tonbasis, the
Lanczos algorithm@48,56,57# is ideally suited to extract the
required spectral information from such large matrices.
order to handle their enormous size~approximately 20–97
Gbytes of memory are needed to store the complex symm
ric matrices!, we use an efficient parallel implementation
the algorithm@58#, and work on some of the largest supe
computers~i.e., on the HITACHI SR8000-F1 of the LRZ
Munich and the CRAY T3E of the Rechenzentrum Garchin!
accessible in the academic realm@28,29#.

IV. NUMERICAL EXPERIMENTS

Let us now come to the results of our numerical expe
ment. At first we study typical ionization yields of micro
wave driven lithium atoms, which exhibit similar qualitativ
features as observed for microwave driven atomic hydrog
Here we focus on the dependence of the ionization proba
ity on the laboratory field amplitude, for fixed frequency a
variable initial atomic states. From that we will extract t
driving field amplitudeF10% which defines the ionization
threshold, for different principal quantum numbers, and
nally address the apparent differences in the ionization p
cess of alkali-metal and hydrogen atoms.

For the sake of comparison, we choose exactly the la
ratory parameters of the experiment reported in Ref.@10#,
where the microwave ionization of atomic hydrogen w
studied. More precisely, we employ a linearly polarized m
crowave field with fixed frequencyv/2p536 GHz, and
principal quantum numbersn0528, . . . ,80 of theatomic
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initial state. Since we are interested in nonhydrogenic effe
induced by the atomic core@27–29#, we prepare the atoms in
low-angular-momentum states,050 with the largest quan-
tum defectd,0

50.399 468@53#. Note that this is in contras

to the hydrogen experiment@10#, where only the principal
quantum numbern0 of the initial state was well defined, an
,0 was smoothly distributed over the energy shell. Howev
since the driving field efficiently mixes different, states
@59,60#, this does not affect our expectation for the glob
dependence of the ionization yield onn0 @52,60#.

Let us first come back to Fig. 2, which shows the nume
cal raw data in the complex plain, obtained from one sin
diagonalization, for F52.331029 a.u..11.83 V/cm and
v/2p58.7131027 a.u.536 GHz. By virtue of Eq.~18!, the
imaginary parts2 iG j /2 of the different resonance states, t
gether with the overlapswj of the associated eigenstates wi
the atomic initial state, allow to extract the ionization pro
ability Pion(t;F,v), after summation over all resonances
Fig. 2. It should be noted as a side remark that the pre
physical situation obviously cannot be described by any s
of single-pole approximation widely used for the descripti
of the ionization of ground-state atoms by optical fields@61#.
This is just a consequence of the broad distribution
the wj andG j ~over several orders of magnitude!
@12,23,28,51,52,62,63#, which is a direct spectral signatur
of ‘‘quantum chaos.’’ Such broad distributions generica
lead to algebraic rather than exponential temporal deca
the survival probability 12Pion , a resurgent matter of inter
est in the context of classically mixed regular-chaotic tra
port @64–68# in mesoscopic devices@69,70#.

Furthermore, note that there are few spurious soluti
with positive imaginary parts in Fig. 2, which have to b
rejected as unphysical. Consistently, however, these st
always have vanishing overlap with the atomic initial sta
and discarding them does not imply a loss of the norm of
initial state represented in the Floquet basis. Zooming i
the spectrum in the vicinity of an effective continuum thres
old, Eq. ~17!, the inset of Fig. 2 additionally shows that th
numerically obtained spectrum of the complex dilat
Hamiltonian does not display a straight-line continuu
swept by 2u into the complex plane, as expected from t
mathematical theory@34#. Rather several continua appear
emanate from the branching point, as a consequence o
lifted angular-momentum degeneracy of the continuum sta
in a truncated basis, interacting with close-by resonan
@48,52,71,72#.

Figure 2 provides the elementary building block of t
numerical experiment, which is reproduced for several v
ues ofF, in order to extract the ionization yield as a functio
of the driving field amplitude. Figure 3 shows the result f
five atomic initial states un0 ,,05m050&, with n0
561,63,65,67,69, in close qualitative agreement with la
ratory ionization yields, and with the characteristic thresh
behavior. Below a certain threshold amplitude, the Coulo
field largely dominates the external drive, and the dynam
is governed by the spherical symmetry of the bare atom. T
is the perturbative regime where the field does not ind
appreciable ionization. Above threshold, the external fi
6-6



-
rg

e

b-
m
os

a
th
tu
en
so

c

nt

ta
e

e

t

ia

c-
-
,

c-
m

n

y
ates

es
ing
ble
-
er
Let
re-
ro-

h-
re
-

tion
the

x-

the

y-

uc

the
din
es

tion

ni-

nly

MICROWAVE IONIZATION OF ALKALI-META L . . . PHYSICAL REVIEW A 66, 053416 ~2002!
~which has cylindrical symmetry! dominates over the Cou
lomb attraction, and induces a strong coupling of a la
number of atomic bound~and continuum! states, leading to
enhanced ionization. This manifests in a steep increas
Pion , and justifies the~traditional! definition of the ionization
threshold by that amplitude (F10%) which causes 10% of the
atoms to ionize@21#. Besides the threshold structure exhi
ited by the five curves in Fig. 3, we also observe, in so
cases, a local maximum on top of the global trend, m
dramatically forn0563, atF.2.331029 a.u..0.42 V/cm.
Such a local enhancement of the ionization probability c
be attributed to an anticrossing of two Floquet states in
quasienergy spectrum, under changes of the field ampli
@28,51#. Near degeneracies between two atom-field eig
states at a given field amplitude reflect multiphoton re
nances between atomic bound states. These enhance the
pling to the continuum, and thus also the ionization ratesG j
of the atom-field eigenstates that are involved in the a
crossing. In the present case, the projectionswj of these
near-degenerate Floquet states on the atomic initial s
un0563,,05m050& are larger than their projection on thos
initial states withn0561,65,67,69, and hence then0563
state exhibits a larger ionization probability than the oth
four states atF52.331029 a.u. @see Eq.~18!#. Increasing
the field amplitude further, the anticrossing is passed, and
ionization probability of then0563 state decreases again.

From the definition~18! of the ionization probability of a
given initial state as a weighted sum over the exponent
exp(2Gjt) of the ionization ratesG j of all atom-field eigen-
states, it is clear thatPion depends on the atom-field intera
tion time @48,51,52,73#, in qualitative agreement with labo
ratory experiments on rubidium@12,23#, and, more recently
lithium @2#. In Fig. 4, we plotPion as a function ofF, for the
initial state un0563,m5,50&, and for several interaction

FIG. 3. Ionization probability vs field amplitudeF of five dif-
ferent initial statesun0 ,,05m050& of lithium, for n0561 ~circles!,
63 ~squares!, 65 ~diamonds!, 67 ~crosses!, and 69~stars!. Atom-field
interaction time and driving field frequency are fixed att5327
32p/v and v/2p536 GHz, respectively, precisely as in the h
drogen experiment reported in Ref.@10#. On top of the global
threshold behavior of all ionization signals there are local str
tures, most prominent in the local maximum of then0563 signal, at
F.2.331029 a.u. Such local extrema can be attributed to
avoided crossings in the Floquet spectrum, with a correspon
enhancement of the ionization rates, caused by multiphoton r
nances that facilitate the electronic transport to the continuum.
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timest5(227, . . . ,3286)32p/v. Although neither the glo-
bal trend ofPion vs F nor the threshold fieldF10% depend
very sensitively ont, we observe a change in the local stru
ture of the ionization yield. The rather pronounced maximu
in the vicinity of F52.331029 a.u., for t522732p/v,
flattens out for longer interaction times, until the ionizatio
yield is almost constant in the intervalF5(2.2
31029) –(2.431029) a.u. for t.202332p/v. While, at
F52.331029a.u., the ionization probability is dominated b
the ionization rates of the near-degenerate Floquet st
~which also cause the maximum of then0563 yield in Fig.
3, see our discussion above! on short time scales, these stat
already decayed for long interaction times. The remain
part of the electronic population is spread over more sta
atom-field eigenstates. Hence, ast increases, the atomic de
cay atF52.331029 a.u. slows down as compared to larg
field amplitudes, which explains the observed behavior.
us mention here that a similar observation was recently
ported on laboratory experiments on the ionization of hyd
genic initial states of lithium@2#. There@see Fig. 3~a! of Ref.
@2## the ionization probability is essentially flat below thres
old for short interaction times, while a shoulderlike structu
emerges for longer timest, leading additionally to an observ
able effect in the experimental ionization threshold~Fig. 4 of
Ref. @2#!.

Having understood the essential features of the ioniza
yield of a given atomic initial state, we can now address
dependence of the ionization thresholdF10% on the initial
state’s principal quantum number. Figure 5~a! compares our
numerical lithium thresholds to the results of laboratory e
periments on hydrogen@10# and lithium @22#, respectively.
Whereas the hydrogen experiment was performed under
same conditions as our numerical experiment~see above!,

-

g
o-

FIG. 4. Ionization probability of the initial stateun0563,,0

5m050& as a function of the driving field amplitudeF, for six
different interaction timest522732p/v ~circles!, 32732p/v
~squares!, 56032p/v ~diamonds!, 92532p/v ~crosses!, 2023
32p/v ~stars!, and 328632p/v ~triangles!. The frequency is the
same as in Fig. 3. Since the time dependence of the ioniza
probability differs for different values ofF @different values ofF
lead to different distributions of the weightswj and ratesG j , which
enter Eq.~18!#, the local structure inF changes with increasing
interaction time, as evident from the flattening out of the local mi
mum atF.2.331029 a.u., ast is increased from its minimum to
its maximum value. The 10% ionization threshold, however, is o
weakly affected by changes of the interaction time.
6-7
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the laboratory lithium data have been obtained with a low
driving field frequencyv/2p515 GHz and at longer atom
field interaction timest515 00032p/v.

Inspection of Fig. 5 leads to the following observation
~1! For low principal quantum numbersn0<42 @regime

~III !#, the numerical thresholds show approximately the sa
algebraic dependence onn0 as the experimental lithium data

~2! All three curves exhibit algebraic decayF10%;n0
2g ,

FIG. 5. ~a! Numerical ionization thresholdF10% of lithium
Rydberg statesun0 ,,05m050& ~diamonds!, as a function of the
principal quantum numbern0, on a double-logarithmic scale. Th
numerical data are compared to laboratory thresholds@10# of atomic
hydrogen~stars! and of lithium~circles! @22#. The numerical and the
hydrogen experiment were performed at precisely the same lab
tory parameters~frequency v/2p536 GHz, interaction timet
532732p/v, principal quantum numbersn0528, . . . ,80), while
the lithium results from the laboratory were obtained at lower f
quencies (v/2p515 GHz) and longer interaction times (t
51500032p/v). Alkali-metal and hydrogen thresholds diffe
qualitatively and quantitatively in regimes~III ! and ~II !, while the
numerical alkali-metal thresholds mimic the hydrogenic ones
high principal quantum numbers@regime~I!#, and match the alkali-
metal thresholds from the laboratory in the low-n0 regime.~b! Hy-
drogen and numerical lithium data as in~a!, now in scaled vari-
ables, F0,10%5F10%n0

4 and v05vn0
3 ~inherited from the scale

invariance of the classical, periodically driven two-body Kep
problem!. Since both data sets were obtained for the same value
v, t, and n0, a comparison in scaled units does not imply a
additional hypothesis on the scaling laws for nonhydrogenic alk
metal Rydberg states. Clearly, lithium exhibits dynamical locali
tion in regimes~I! and~II !, and unexpectedly, the same threshold
hydrogen in the high-frequency domain~I!. All laboratory data on
nonhydrogenic Rydberg states@2,12,20,23# have so far been pro
duced in regimes~II ! and~III !, and this explains the experimental
observed enhanced ionization as compared to atomic hydroge
05341
r

e

with a clear change of the decay exponent of the~numerical!
lithium curve atn0542 @thus defining the transition from
regime~III ! to ~II !#.

~3! For n0*54 @regime ~I!#, the m05,050 lithium
thresholds agree well with the hydrogen results.

As pointed out in Refs.@27–29#, the distinct behavior of
the ~alkali-metal! ionization dynamics in the three regime
and the differences between the alkali-metal and the hyd
gen thresholds, can be explained by the level structure of
different atomic species. In regime~I!, the external frequency
v exceeds or equals the splitting between the unpertur
hydrogen manifoldsn0 andn011. Here, the external driving
field easily induces a near-resonant one-photon coupling
adjacent hydrogenic~emerging from angular-momentum
states with vanishing quantum defects! and nonhydrogenic
~emerging from angular-momentum states with nonvanish
quantum defects! energy levels in the alkali-metal atom
much the same as a coupling of adjacent levels in ato
hydrogen.

For lower quantum numbers@in regime~II !#, the splitting
between unperturbed hydrogenic energy levels exceeds
external driving frequency. Thus, the external field can
induce efficient mixing of adjacent hydrogen levels a
more, and consequently, the experimental hydrogen d
change their slope atn0.54 in Fig. 5~a!. In contrast, while
the external field cannot drive one-photon transitions
tween hydrogenic energy levels in regime~II !, it can effi-
ciently do so between the low-angular-momentum sta
~with nonvanishing quantum defects! of the alkali atom.
Hence, the functionaln0 dependence of the alkali thresho
remains unaffected when proceeding from regime~I! to re-
gime ~II ! for lithium atoms, as observed in the plot.

In regime ~III !, however, also the alkali-metal spectru
does no more offer any near-resonant one-photon transit
to the external field. Starting fromn0541 ~and progressively
so for lower principal quantum numbers!, the transition
un0 ,,050&→un0 ,,051& demands more energy than offere
by one single photon of the drive. In this regime our nume
cal ionization threshold tends to the same algebraic dep
dence onn0 as observed in the low-frequency experiment
lithium, which was attributed to a series of Landau-Zen
transitions connecting the atomic initial state to the atom
continuum in Ref.@22#. Since the lithium experiment@22#
was performed with rather low principal quantum numbe
at a low frequency of the drive, the transition from regim
~III ! to regime~II ! could not be observed in this experimen
Our above analysis of the numerical results leads to the
diction that this transition will occur only atn0.54, where
the driving frequencyv/2p515 GHz matches the transitio
un0554,,050&→un0554,,051&. Since these experiment
additionally employed longer atom-field interaction time
the transition will furthermore be observed at lower fie
amplitudes as compared to our numerical experiment. T
however, leaves the functional dependence ofF10% on n0
unaffected, consistent with our discussion of Fig. 4.

Let us finally interpret our results in the context
classical-quantum correspondence discussed in the Intro
tion above. For this purpose, we have plotted the labora
hydrogen data and the numerical lithium data of Fig. 5~a! in
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classically scaled variablesF05Fn0
4 and v05vn0

3 ~which
are inherited from the scale invariance of the classical eq
tions of motion describing the driven two-body Coulom
problem@74#! in Fig. 5~b!. Here this is perfectly legitimate
since both these datasets were obtained for precisely
same values ofn0 , v, andt—and the use of scaled variable
does therefore not imply any additional hypothesis. Hen
in this plot, all hydrogen data can be identified with a we
defined classical phase-space structure, fixed throughF0 and
v0 @21,74#. We see that the smaller slope of the threshold
the large-n0 part of Fig. 5~a! translates into increasing thres
olds in Fig. 5~b!, for increasing scaled frequencies, abo
v0.0.4 ~for Li ! andv0.0.85~for H!. This is a clear signa-
ture of dynamical localization@10,12,75#, which stabilizes
the atom against chaotic ionization through quantum inter
ence effects@13–15,76#, and is here unambiguously repro
duced also by the lithium data—in the absence of a w
defined classical analog. Obviously, however, a sequenc
near-resonant one-photon transitions—with quasirandom
tunings from exact resonance, leading to strong fluctuati
in the corresponding transition matrix elements@16,63#—
connecting the atomic initial state to the continuum is ea
established for the lithium atom, even down to lower valu
of n0, due to the core-induced energy shift of the lo
angular-momentum states. Consequently, efficient ioniza
of lithium remains possible in regime~II !, where the hydro-
genic thresholds increase with decreasingv0, leading to an
increasing gap between the alkali-metal and the hydro
thresholds forv0,0.8. It is precisely in these paramet
regimes~II ! and~III ! that all experimental data on nonhydr
genic Rydberg states have been obtained so far@2,12,23#,
thus explaining the apparently enhanced ionization of n
hydrogenic alkali-metal Rydberg states@28#. Alkali Rydberg
states therefore provide a perfect scene for quantum ch
which, much as quantum mechanics compared to class
mechanics, has to host a larger class of systems than clas
chaos: sequences of near-resonant one-photon trans
~with quasirandom detunings! can be induced by classica
chaos~as they are in periodically driven atomic hydrogen!,
but equally so by quantum phase shifts due to core sca
ing, unavailable in the classical dynamics of a point partic
A
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V. SUMMARY

We have given a detailed description of theab initio treat-
ment of microwave driven alkali-metal Rydberg states in
parameter regime of state of the art laboratory experime
Unaffected by pragmatic considerations~such as the avail-
ability of laser sources to excite the initial Rydberg lev
from the atomic ground state@20#! which mostly lead the
experimentalists to perform experiments on different atom
species in slightly different parameter regimes, we are n
able to compare the ionization dynamics of Li Rydberg sta
to the one of atomic hydrogen, in precisely the same par
eter regime, with the nonvanishing quantum defect of
alkali-metal initial state as the only essential difference. O
numerical experiment followed the laboratory experime
step by step:

~i! measurement of the ionization yield vs driving fie
amplitude, at fixed driving field frequency and interactio
time, for a given quantum numbern0 of the initial state;

~ii ! deduction of the ionization threshold from~i!, for dif-
ferent values ofn0; and

~iii ! comparison to the classical, driven two-body Co
lomb dynamics, in scaled variablesF0 andv0;

and allowed us to identify the cause of the apparently
hanced ionization of nonhydrogenic alkali-metal Rydbe
states. Furthermore, it led us to the unexpected predic
that nonhydrogenic and alkali-metal Rydberg states sho
exhibit quantitatively comparable thresholds in the frequen
regimev0.1—so far unexplored in the laboratory.
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