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Phase-dependent interaction in a four-level atomic configuration
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We study a four-level atomic scheme interacting with four lasers in a closed-loop configuration With a
(diamond geometry. We investigate the influence of the laser phases on the steady state. We show that,
depending on the phases and the decay characteristic, the system can exhibit a variety of behaviors, including
population inversion and complete depletion of an atomic state. We explain the phenomena in terms of
multiphoton interference, and compare our results with the phase-dependent phenomena in thé double-
scheme. This investigation may be useful for developing nonlinear optical devices, and for the spectroscopy
and laser cooling of alkali-earth atoms.
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[. INTRODUCTION configuration, is a periodic function of the relative phase
between the excitation paths, which contribute to the scatter-

Absorption and emission of monochromatic light in two- ing between any initial and final state of the scheme. In par-
level atomic transitions are well-understood processes iticular, the steady state is determined by the concurrence of
qguantum opticd1]. Their properties, however, can changethe phase-dependent Hamiltonian dynamics and the relax-
drastically if transitions to a third atomic level have to be ation processes. We will show that, dependingdo@mnd on
included. This is the case, for instance, in theconfigura-  the lifetimes of the intermediate states, tke system can
tion where two stable states are coupled to a common exciteshow a variety of behaviors including population inversion,
state by laser fields, thus providing two excitation pathsCPT, and phase-dependent refractive indices. It is worth not-
which can interfere. This interference lies at the heart ofing that the doublek and the® schemes are governed by
coherent population trappin@PT) [2]. Here, destructive in- the same Hamiltonian, but are characterized by different re-
terference between the transition amplitudes gives rise to kxation processes. This results in critical differences in the
superposition of atomic statédark statg that is decoupled dynamics, which we will point out in our discussion.
from coherent radiation but populated by spontaneous emis- Excitation configurations like the> scheme have been
sion. Consequently the atom becomes “trapped” in this co-nvestigated in the literature as a model for observing
herent superposition. pressure-induced resonand€g, and can be found, for in-

For configurations like theé\ scheme, the relative phase stance, in experiments with gases of alkali-earth atoms which
of the laser fields does not affect the steady-state dynamicajm at optical frequency standarfi&0] or at reaching the
in the sense that there always exists a reference frame muantum degeneracy regime by all-optical mepild. Our
which the Rabi frequencies are real. This is no longer ful-investigation may contribute to the spectroscopy of these
filled in closed-loop configurationis3,4], i.e., when a set of systems and to the development of new and efficient meth-
atomic states igquas) resonantly coupled by laser fields, ods of laser cooling.
such that each state of the set is connected to any other via This paper is organized as follows. In Sec. Il we introduce
two different paths of coherent photon scattering: In thisthe model and the basic equations. We discuss the properties
case, the relative phade between the transitions determines of the system, and identify some relevant parameter regimes.
the interference and hence critically influences the dynamict Sec. Il we calculate the steady-state solutions as a func-
and the steady state of the systE8r-5]. Previous studies of tion of the relative phase between excitation paths for certain
closed-loop configurations often featured douhlesystems, parameters, and discuss the results. In Sec. IV we draw the
where two-stable or metastable states are, each, coupled ¢onclusions and present some outlooks.
two common excited stat¢5—8]. These works have shown
a rich variety of nonlinear optical phenomena.

In this paper, we investigate the phase-dependent dynam-
ics of a closed-loop configuration, consisting of four transi- We consider a dilute gas of atoms of magsn a thermal
tions driven by lasers. One ground state is coupled in alistribution at temperaturk. The atoms are free, and interact
V-type structure to two intermediate states, which are themwith a multichromatic light field. For a sufficiently dilute
selves coupled to a common excited state i-type struc- gas, each atom interacts individually with the light, which
ture. We label this system the (diamond scheme. The couples to a set of atomic levels as depicted in Fig. 1. This
steady state of thed scheme, like that of the double- set contains a ground stafE), two intermediate statg®)

and |3), and an excited stat¢4). The transitions|1)
—12),|3) and|2),|3)—|4) are optical dipoles with decay
*Present address: Abteilung Quantenphysik, University of Ulmratesy,, ys, ya2, andy,s, respectively. Each dipole tran-
Albert-Einstein-Allee 11, D-89081 Ulm, Germany. sition is driven resonantly by a laser, which is here consid-

Il. THE MODEL
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FIG. 1. Atomic level scheme and nomenclature or the relevan
levels for the & configuration. The inset displays the double-
system for comparison.
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wherey,= y4o+ va3is the total decay rate from levpt). In
writing Eq. (3) we have neglected the mechanical effects of
light on the atomic center-of-mass motion that accompany
the photon emission. In fact, in the main body of the paper
we assume that the thermal enekgyT is much larger than
the recoil energied?k?/2m. In this limit, we can treat the
atomic motion classically and neglect the effects of the pho-
ton recoil on the center-of-mass dynamjdg].

The Hamiltonian(1) is explicitly time dependent. For the
configuration we consider here there exists in general no ref-
erence frame in which this explicit time dependence can be
eliminated. This is a characteristic of “closed-loop” configu-
{at|ons[4] and it is a manifestation of the intrinsic phase
sensitivity of the dynamics. However, in an adequate refer-
ence frame, the Rabi frequencies can be chosen such that
only one is complex, with its phask being a function of all

ered to be a classical running wave, propagating along thiser phases. Without loss of generality, we move to a refer-

z axis. The laser coupling to the transitiin—|j) is char-
acterized by the frequency;; and the wave vectok;;,
while the strength of the coupling is given by the Rabi fre-
quencyg”e'Xu whereg;; is real andy;; is a constant phase,

ence frame wheré is associated with the laser coupling to
the transition3)—|4), so that the coherent dynamics of the
system is now described by the Hamilton{&)

2 4

determined by the phase of the atomic dipole and by the H(q))_p_+z ﬁ5|1><]|+ (912|2><1|+913|3>(1|

phase of the laser at tinte=0 and positiore=0. The state
of one atom at time is described by the density matrix,
which obeys the master equation

1
0'=%[H(t),o']+£0'. (1)

at

Here, the Hamiltoniard (t) contains the coherent dynamics
of the atom and the LiouvilliarC describes the relaxation
processes. The Hamiltonia(t) reads

p2 4
=55+ 2, oyl
B S (e
255

+gj4e (@iatKaZ " X19|4) (| + H.c). ()

+0244)(2] +934€%4)(3| +H.c), (4)
where® =®(t,z). The detunings; in Eq. (4) are given by

klzpz hkiz

0= (wy— wyp) + 2m )
K1gp 2
3= (wg— w1 + —— >m’
(Kiztkog)p,  fi(Kyotkog)?

04=(w4— 01— w34)

m 2m

and the phasé@ is defined as

The first term corresponds to the kinetic energy of the atomi(‘,Nhere

center of mass, wheng, is its momentum along the axis
(for simplicity, we consider only the component of the
atomic motion along the axis). The second term corre-
sponds to the internal Hamiltonian, whefie»; denote the
energies of the atomic statg9 relative to the energy of the
state|1). The remaining term describes the atom-laser inter-
action.

The relaxation processes are assumed to be solely radi
tive, and the LiouvillianZ in (1) has the form:

Lo= 3 yyli)alala)il- 5 (440 + olaya)

1
+.2 | 1D4lali= 5 iilo+eliiD|,

©)

®=Awt—Akz+Ay, ®)
Aw=w1F 0~ 013~ 034, (6)
Ak=KqpF Koy~ K13~ Kag, (7)
AX= X12F X24— X13™~ X34- (8

The phaseb is the relative phase between the two excitation
Raths characterizing any transition between two atomic
states. This phase is in general time and position dependent,
and it results from the multiphoton detunidgy, the wave-
vector mismatchAk, and the initial laser and atomic-dipole
phasesAy.

We denote withp the density matrix in the new reference
frame. Its evolution is described by the master equation

[H(®),p]+ Lp. 9

atp_m
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The one-atom density matrix is given byp

= [dzdp,n(z,p,) p(p,,2), wheren(z,p,) is the atomic den-
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photon coherences” or “two-photon coherences,” depending
on whether the involved states are coupled at lowest order by

sity as a function of the position and the momentum, andhe scattering of one or two photons, respectively.

p(z,p,) obeys the master equatioi®) at the parameters
=(i|p(z,p,)|j) its elements, with

z,p,. Denoting with p;;

A. Discussion

i,j=1,2,3,4[we drop the explicit dependence on the param-

eters g,p,)], the optical Bloch equationfOBE) have the

form
P11—| (P12 P21)+| (P13 P31 T Y2P221 ¥3P33,
(10
. O12
p22=—15 (P12~ P21)+| = (Paa— Pad) + Vasaa— V2P2.
(11
< 13 934 o i
P33—_|7(P13_P31)+|7(e' P34~ € " P43) T YVazpas
~ Y3p33, (12
paa=1—p11—poo—pss, (13
. J24
p12= ('52 2)P12 (Pzz p11)— 2 P32+|2 P14,
(14
. V3 .J13 12 934 i,
p13= ('53 2)P13 — (p3z—p11) — 2 P23+| —d%py4,
(15
. Ya J24 O12
p2a=| —i(J, 54)_T)P24_|7(P44_P22)_|7P14
+ i%eﬁi(bpzsy (16
. . V3T Va Y31 _p
P3a= —|(53—54)—T P34—|7e (Pas—p33)
J13 .J24
=5 p1at 1= Paz, (17)
. Ya Y12 913 O24
14= '54_? P15 P2~ 15 — Ppaati—- > P12
*'g734€"‘1’p13, (18)
. . Y2t v3 912 24
pP23= { —i(82— 63)— T}Pza_ 15 P137 15 Pa
O13 934 ;4
T P21+| —€%po4, (19)

andpji

=(pij)*. In the following we will refer to the diago-

Equations (10)—(19) exhibit a parametric time depen-
dence, which enters through the phdses in Eq.(5). Such
behavior imposes limitations on the existence of a steady-
state solution. Neglecting the coupling of the internal degrees
of freedom with the external ones, two cases can be identi-
fied where the internal steady state existis: when the
scheme is driven well below saturation, and{oy for Aw
=0. In (i), the processes leading to the absorption of two
photons are negligible, and the relevant dynamics takes place
between the ground staid) and the intermediate states
|2),|3), coupled in a(open-loop V-type configuration. In
(i), the steady-state solution is defined for any value of the
other parameters. F&kxw=0 andAk=0, ® is determined
solely by the initial laser and dipole phases. While the dipole
phases are fixed by the quantum numbers of the atomic tran-
sitions, the laser phases can be modified. In this regime,
which we study in the remainder of the paper, the dynamics
of the ¢ configuration shares some analogies with an inter-
ferometer, the arms of which are formed by the multiphoton
excitation paths and the phase difference between them is
given by the relative phaské. Such analogy was first drawn
in Ref. [3] for the coherent dynamics of a closed-loop
scheme. In this spirit we interpret some of the results, pre-
sented below and in the following section, which have been
obtained in the presence of relaxation processes.

An interesting manifestation of the phase-dependent dy-
namics is the probability of two-photon absorption on the
transition|1)—|4). In the limit of weak excitations it has the
form P1.4%|912924/ (82— iv2/2) + 9139348Xp(P)/ (53
—iys/2)|?, where the first and second terms on the right-
hand side describe the transitions via the intermediate states
|2) and|3), respectively. Thus, both the phase differedee
as well as the ratio of the laser detuningg,d3 and the
decay ratesy,,y; determine the interference between the
two paths. In the special case of equal Rabi frequengijes
=g, and ford,= 83, y,= vy, the role of® is singled out,

d
P1H4occ0525. (20)

Thus, the transition probability from the ground to the ex-
cited level is modulated bgp. In particular, it is maximal for
the valuesb =2n4 (wherenis an integex, while it vanishes
for ®=(2n+1)s. At the latter value, no transition tjgt)
occurs. In the following section we will show th#t; .,
always vanishes forb=(2n+1)7 at steady state, even
when the system is driven at saturation. We remark that the
appearance of this behavior requires a “symmetric” excita-
tion configuration, meaning that each two-photon excitation
path from|1) to |4) has, separately, the same probability.

A further understanding of the problem can be gained by

nal elements as “populations,” giving the occupation of themoving to a suitable basis, following the analysis of R8&f.
atomic states, and to the off-diagonal elements as “oneThis basis is chosen appropriate to the structure of the
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the states{|1),|4),|W,5(0)),|¥o5())} for the
\ Y Y casesb=(2n+1)7 (a) and®=2nm (b).
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4 4
11> |®,40))
Hamiltonian(4) and the relaxation processes in KE8). For Ya
gij=9 and §;=0 the dynamics offers simple interpretations v (23

for ®=nr.

~ We first focus on the valuesb=(2n+1)m. Here, Thys for d=2n7 and a>1 (a<1) the dark state
it is convenient to wuse the orthogonal ba5|5|q,23(77)> (| 14(m))) is long lived with respect to all other

set {|1>’|4>1|f1if923(0)>'  |Was(m)},  where  giates and, at steady state, it has a high probability of occu-
|W55(6))=[2) +€"*|3)]/ 2 with 6=0,m. In this basis, the pation. This probability increases the masediffers from
Hamiltonian(4) can be rewritten as unity and it approaches 1 far— (a—0), corresponding
- to_”theh systﬁm Zeing tra;]ppedﬁ.ﬂfm(w))l (|.\If14_(77)))._ We
F(2n+ D m = S w00l + 145w +Hel, will show that due to this effect population inversion can
(« )™ \/§[| 2 O)(LH[4) (W 2o )| ¢l occur on the transition1)—|2),|3) for @>1 and on

(21)  |2),|3)—14) for @<1. Such behavior disappears asap-

) . ) proaches 1, and foe=1 and at saturation, the system is
where we have omitted the atomic motion. Thus, B2l)  equally scattered among all states.

describes two-level dynamics within the orthogonal sub-
spaces {|1),|¥,5(0))} and {|4),|W,4(w))} which are
coupled by spontaneous decay. The coupling between states
due to coherent and incoherent processes is represented inln the absence of spontaneous decay,®heonfiguration
Fig. 2(@). From the structure of the decay it is evident thatis formally identical to the doublé- scheme, extensively
the atom is eventually pumped inf¢l),|¥,4(0))}. Hence, studied in the literaturg4—6]. Thus, the symmetries induced
the steady state of the system for this value of the phasen the coherent dynamics by the phase are exactly the same
corresponds to that of the driven two-level transition[3]. We have discussed, however, that the steady state is criti-
[1)—|W,4(0)). cally determined by the concurrence between this symmetry
For ®=2n7 we describe the system in the orthogonaland the relaxation processes. Thus, the introduction of the
basis set{|W14(0)),| W 14(m)),|¥,5(0)),|¥,4(m))}, where spontaneous decay leads to critical differences between the

|W14(0))=[|1)+€?4)]/ V2 with 6=0,7. In this basis, the two systems. For an easier comparison we are labeling the
HamiltonianH can be written as atomic states of the double-system as shown in the inset of

Fig. 1. In this scheme the excited staté$ and|4) decay

o - +HcC. spontaneously into the stable or metastable stgpsand

H2nm) =Ag[[z40) (V1 0) +H.c], @2 |3). In the & scheme, the excited staté) decays into the
describing coherent two-level dynamics between the statéstermediate statg®) and|3), which themselves decay into
|W,40)) and|¥,4(0)). The states¥,(7)) and|¥,5(7))  the ground stategl). A first difference is that in the®
are decoupled from the coherent drive because of destructigeheme the dynamics will be phase sensitive only when the
interference between the corresponding excitation paths, andor the A scheme(or both are driven at saturation, while
from this point of view they are dark states. However, theybelow saturation it will reduce to the well-knowconfigu-
are not stable, but decay with ratgs and y,+ v5, respec- ration. In the doublex system, on the other hand, phase-
tively. The level scheme in the new basis is plotted insensitive dynamics survives also well below saturafi®in
Fig. 2(b). Here, it is evident that the system is incoherently ~When looking at the behavior as a function @f, the
pumped among the driven transitig’ ,5(0))— | ¥ 14(0)) differences are more striking: ét=(2n+ 1), for instance,
and the two dark states. One could say that the steady statetiie ¢ scheme is pumped into the subsp&®,| ¥ ,40))},
determined by the competition between the Hamiltonian dywhich is a closed two-level transition, for the coherent drive
namics and the relaxation processes. Thus, some localizati@s well as for the relaxation processes. In the double-
in one of the dark superpositiot€PT) can occur, if this is scheme, instead, the atom can be found in any of the four
more stable than the other, i.e., if the rate of pumping into itstates due to incoherent couplifi8]. At & =2n, the role
is much larger than its decay rate. In order to quantify thisof the dark states differs between the two configurations. In
effect, we introduce the parameteras the doubleA system CPT occurs in the staf,(m)),

B. Comparison with the double-A configuration
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which is completely dark and, in the absence of other sources 04 4 8 16}

of decay, stable. In this configuration, and for equal decay PE;?ZﬁCOS?E 1+ §Qz+ §Q4sin2§), 27
rates from the excited states, the stie, (7)) is never

accessed. In the> scheme, instead, both dark states are 3

Q
accessed, angpartia) CPT occurs only when their decay — u{$Y=—-u{$)=——sin®

2 8 ]
_ 20241 Z 04—
1+39 +QQ smzz},

rates differ substantially from one another. 2D 28
Ill. STEADY-STATE SOLUTIONS [0 1 o
v =0vP=—|1+ —92( 7+3 sir?—)
. i : . 12 13 D 3 2
In this section we study the steady-state solution of Eq.
(9) as a function of the phask. We consider laser frequen- 4 o\ 2
cies and geometries that fulfilk=0 andAw =0, so that® +—04 3+sirP—| + _Qﬁsinzq)}, (29)
does not depend on time and space. In order to obtain simple 9 2] 9

analytic solutions we consider resonant drives so that 03 8 ®
fo. Further, we assume that the moduli of the Rabi f(equen- u(234$): —Egis)z—sindb( 14202+ — Q%sirt— |,

cies are all equaly;; =g, and that the decay rates fulfill the 2D 9 2
relation y,=y3="y, ¥4=vas=v4/2. Under these assump- (30
tions, the system exhibits symmetry in the clockwise and

. . o . 3
counterclockwise multiphoton excitation paths, the differ-

~ Q P 4 8

b
Q4S|n25) ,

ence being the phask. 9
In this limit, we report and discuss the steady-state solu- (31
tions of the OBE in Eqs10)—(19) as a function of the phase 0? ® ®
® and of the dimensionless parametdds=g/y and a s9_ 7 L,P 4 5 4 40P
— ,/(27), defined in Eq(23). We remark that in the fol- Ui == cos 5| 1+ 30%+ gQisi o], (32)

lowing the rotated one-photon coherence
2

Q
v$I=_—sind

4 4 ®
—021L —0%ird—
1+3Q +9Q smzz}, (33

P3a=p3e"” (24 2b
2
. . . . . (s9 2 2 R @
is reported in the results. This frame allows us to identify the Uz’ = |1+ 3027 2+3 S'FFE
real and imaginary parts gf;,, pis, pa, pas With the dis- © o
persive and absorptive response of the atomic medium to the f 42X P
fields which couple the corresponding transiti¢thg]. * 9Q sirf 2 1+3sir? 2/ (34)
At the end of this section we will discuss experimental
situations under which the assumptions given above are jus- (59 Q- 2 , ,®
tified and discuss our results for generic valuesspin re- 03y =~ 5 sin®| 1+ Z O%sirf =, (39
lation to the assumption of classical motion, and for unequal
Rabi frequencies and decay rates. where
22 4 ) 16 (0]
A. Casea=1 D=1+—20%+ 504(7sir12§+27 +§Qs(sin2§+3
We first consider the case=1. For convenience, we
separate the real and imaginary part of the coherences, de- § 5
noting them withu;;=Re{pj;}, vij=Im{p;;}, respectively * 99 Sif®. (36)

here, Us,= Re{pas}, v34=1m{pas}). The steady-state solu- , o _
t(ions of3t4he g{éjé‘l}havgthe f{o’??’:}) Y The form of the solutions allows us to identify the contribu-

tions of the various multiphoton processes to the steady state.
For instance, at second order éh (i.e., at second order in
g/vy) only p;, depends on the phase while the populations,
one-photon coherences apg; are independent ob, and
Paa,P24,P34,U12,U13, @andu,g vanish. In fact, this limit cor-
responds to weak drives, and the relevant processes consist
of resonant scattering on the transitida$— |2),|3). Thus,

at second order if) the system is equivalent to\aconfigu-

1 16 19 ()
(s — — 02 04 oain2
1+ 39 + 99 (sm22+3

P11 D

4 ()]
—_06 v
+99 (55|r122+3

+§QBSin2(I)}, (25

2 1 d ration driven below saturation
(s9_ (s9__"_ — 02 i . ' .
P22"= P33~ 1+ 3Q 7+3sirf 2) At higher order, the steady-state solutions are phase de-
4 o 2 pendent. This is evident, e.g., in the excited-state population,
Y Rl Rl Y o which is proportional to cd$®/2). In particular, at lowest
Tg¥ 3+sir? 75" szq)}’ 28 order iNQ, pa~Q%og(P®/2). However, ad) is increased
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populations

FIG. 3. Steady-state values of populations and
coherences as a function of the phdséor reso-
nant drives and different decay rates= 0.1 with
v4=0.2y andg=2y (left column, a=1 with
v4=27y andg=2y (center columjy =10 with
v4= 20y andg= v, (right column). Subplots(a),

(b), and (c), populations ofpq4 (solid), ps=p33
(dotted, andpy4, (dashed ling Subplots(d), (e),
and (f), real part of the one-photon coherences;
U= — U3 (solid) and u,,=—Ug, (dotted ling.
Subplots(g), (h), and (i), imaginary part of the
one-photon coherences;,=v 3 (solid) and vy,
=73, (dotted ling. Subplots(j), (k), and(l), real
part of the two-photon coherences;; (solid),
Uy, (dotted ling. Subplots (m), (n), and (o),
imaginary part of the two-photon coherences;
(solid), v44 (dotted ling. Note the different scal-
ing factor of the vertical axis in subplgb).

one-photon coherences

two-photon coherences

this modulated dependence of the populations is lost: at leadaterpreted as interference of multiphoton scattering at all
ing order inQ), and for® # (2n+ 1), all states are equally orders.
populated. An exceptional behavior occurs @t=(2n The two-photon coherencep,, is proportional to
+1)m. Here, pss=0 at all orders, while at leading order cos/2), in agreement with Eq20). The interpretation of
p11=2p2o=2p33=1/2. In Fig. 3b) the populations are plot- the two-photon coherences becomes more transparent by em-
ted as a function of the phase f6d=2 and a=1. [For  ploying the basis of the preceding section. For instapgg,
comparison, Figs. (&) and 3c) plot the populations fow can be expressed as
<1 anda>1, respectively; we will discuss these regimes in
the following subsectionh.For the chosen parametes,;,
paa Vary with @, while p,,, p33 are almost independent of
the phase.

Figures 3e) and 3h) show the one-photon coherences v1a=IM{{W 14(7)|p| W 14(0))}.
[Egs. (28)—(31)] as a function of® for =2 anda=1.
Their real parts vanish fob=ns, and one can easily verify Analog equations hold fou,; and v,3. Thus, uj,=—1/2
from Eqgs.(28)—(31) that this occurs at all orders d. This  (+1/2) corresponds to the system being in the state
is a feature of resonantly driven two-level systems, and thi$W 4(7)) (|¥14(0))). The imaginary part;, measures the
result is consistent with the analysis of the preceding sectiorcoherence between these two states. We now look at Egs.
Moreover, ford=(2n+ 1) one findsp,,=p3,=0, which  (32)—(35) as a function ofP, which are plotted in Fig. &)
is consistent with the vanishing pf,,. It is worth noting that and 3n) for 1 =2. The behavior we observe is consistent
uq, andu,3 can show additional zeros, as can be seen fronwith the above interpretation in the superposition basis, and
their analytic form. These zeros depend on the value$ of with the discussion of the populations and one-photon coher-
and Q, which for a=1 satisfy the relation sfitd/2) ences. At® =2ns the imaginary partw 4 (v,3) vanishes,
=3(3—202)/80%. Thus, they exist only for a certain range supporting the hypothesis of no coherence between
of values of the Rabi frequency. Their existence can béW¥ 4(m)) and |¥14(0)) (|¥,5(m)) and |¥,50))). More-

1
U14=§[<‘I’14(0)|P|‘1’14(0)>_<‘I’14(7T)|P|‘I'14(7T)>]
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Populations One-photon coherences Two-photon coherences
0.15 0.2
0.1f e
0.1 Ot
-0.1¢
0.05 -0.2}
0 23 c)
-0.
0 v 2 4 6 8 10
a a a

FIG. 4. Level populations and associated coherence®fen# as a function of the balance of the decay rate®r g=2y (wherey
is kept constant (a) Populationsp; (solid line), p,,= p33 (dotted ling, p,,4 (dashed ling (b) One-photon coherences;,=v 15 (solid line),

V4= D34 (dotted ling. (c) Two-photon coherencesi,; (solid line), u,, (dotted lind. All other coherences vanish.

over, U,= —U»3<0, which implies, after a straightforward 14202
calculation, that the probability to find the system in the dark pﬁ:—z, (37)
states is 1/2. Thus, it is not proper to speak of CPT for these 1+4Q
parameters.
At leading order in{) the coherences vanish fop s ss 0?
=2nm, in agreement with the expectation that at saturation P22~ P33:m' (38)
the system is equally distributed between all states®At
=(2n+1)7 one findsp;,=v,3=0 While u,g is positive and pas=0, (39

exhibits a local maximum. This is consistent with the picture
of two-level dynamics betweed) and|¥ ,5(0)). 0

So far we have discussed the case 1, when the relax- ss_ ss_
V1= V13— (40

ation rates of the two-photon coherences are the same. We 1+402°

have seen that the features of the phase-induced dynamics

are always recognizable in the coherences. However, at 02

steady state the atom is not localized in a particular atomic u§§:—2, (41
level or coherent superposition of atomic levels. In general, 1+4Q

the dependence of the populations on the phase is washed ss s ss_ s ss_ ss

out for increasing Rabi frequencies, except for the vanishing U1p=U33= p24= P34= U23= p14=0, (42

of pyy at ®=(2n+1)a. This is understood by considering ) )

that the steady state is given by the concurrence of the cdVhich have been evaluated fd=g/y and an arbitrary
herent drive, which has a phase-dependent symmetry, and tig/ue ofa=y4/2y. In these solutions, the parameterdoes
relaxation processes with a fixed structure of the couplindOt appear, showing once again that the lgvgl does not
between the atomic states. For any valuabof (2n+ 1), affect the_ stea_dy-state dynamics for this vall_Je of the phase.
the two effects compete, and at saturation the atomic states A Striking difference among the three regimes appears at
are equally populated. On the contrary, fbe=(2n+ 1), va!ues_ of tht_a phase close @=2n. Here, we find popu-

an eigenspace of the coherent scattering processes exists 4aHon inversion on the transitiond)—|2),|3) for «=10,

is preserved by the action of the incoherent processes. Cofl2):|3)—(4) for @=0.1), while the real part of the two-

sequently, at any value d? and a the occupation of the Photon coherencep; (uy4) approaches the value 1/2. At
state|4) vanishes. this value of®, we write the steady-state solutions as a

function of y, a= y,4/2y andQ =g/ vy,
B. Casea#1

1

Figures 3a)—3(0) plot the steady-state solutions of the Pi§:5[02(1+ 2a)+0%a(3+5a+4a?)+Q4(1+2a)],
OBE fora=0.1, 1, 10. Comparing the curves, we see some (43)
general features in the behavior at differentFor instance,
the population of the statpt) is always zero ford=(2n a?
+1)r. This value of the phase is also a pole of the coher- /fégztf’?S:T[Ot(lﬁL26¥)+92(£hL 2)], (44)
encesp,a, psa, p1a, and of the real parts,,, u,3. Here, the
population of the statfl) and the real part of the two-photon 04
coherencai,; exhibit a local maximum. These results are all pjj:H(lJr 2a), (45)

consistent with the picture of two-level dynamics between
|1) and|¥,4(0)), as discussed in the preceding section. The o
- o
si?ggiit)a;e e\1/r€];1(ljur(.-:‘(:)sadhave a very transparent form dfor v§§=vi§=F[a(l+2a)+Qz(2+a)], (46)
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o ~ss 03 =min(vy,v,). Provided that the linewidtli’ is much larger
v24=v3= 5 (1+2a), (47) than the recoil frequencied;>%k?/2m, the presented re-
sults describe sensibly the atomic response to the drive.
. 02 5 When the medium is Doppler broadened, i.e., iyT
Uzs=5 [a(l+2a)+ Q% (1-a)], (48  >#T/2 (still keeping the constraint on the recoil energjes
many features discussed for the case 0 survive and will
2 appear in the signal measured over the ensemble, provided
uis=— D Lal+ 2a)+0%(1-a)], (49 that 5,=68;=46 6,=0, so that two-photon transitions are

Doppler-free. This situation can be realized for degenerate
intermediate-state energies{= w3), resonant drivesd,
=w13= Wy— W1, W= W3= Ws— w,), and laser geometries
where such that the wave vectors fulfill the relatidq,=k;3~
—ky4=—kzs=K. In this way® does not depend on time and

D=a?(14+2a)+Q%a(3+ 7a+8a?) +20% 1+ 4a+ a?). space Aw=0, Ak=0), and§ is given bykp,/m. Also in

(51)  this regime we find that fod = (2n+ 1) the population of
|4) vanishes independently of, together with the coher-
encespys, pPaa, andpy,. For ®=2n7 and a sufficiently

ss_ ,,SS_ .. SS_ _SS__ , ,SS_T'SS__
U7p= Uj3= 014= U 3= Uy = U3,=0, (50)

These results are plotted as a functionofin Fig. 4, by

keepingy and( as fixed parameters. Here, we see that f0lyiterent from unity, population inversion can be observed,
a<1 the system is localized in the atomic stdtes|4), and provided the atomic transitions are saturajtes].

the coherencey, has a maximum absolute value. In particu-~ ginaly, we remark that only a part of these considerations
lar, for «—0 the populations of the staté®),[3) vanish  can e applicable to “asymmetric” configurations, i.e., for
together with the imaginary part of all coherences. In this 5 es of the Rabi frequencies, eigenenergies, decay rates,
case the atom is in the dark st ()), which is stable, gtc  which change the structure of the Hamiltonian and re-
and CPT occurs. Such localization persists for small valuegyvation processes, introducing thus either different weights
of @, although the populations of the intermediate states, ang, the interfering excitation paths, and/or additional relative
the incoherent scattering processes, increase@proaches  phases, and/or different resonances. Here, the dependence of
1. Itis interesting that for thessmal) values ofa the sys-  the steady state on the phade cannot often be simply
tem exhibits population inversion on the transitid@$,[3)  singled out. The dynamics is a complex combination of all
—14). Analogously, it can be verified that, fixegh andg,  parameters, and exhibits an extremely rich variety of phe-

for y—0 the system is trapped in the dark sti&,(7)):  nomena, which will be subject to future investigations.
CPT occurs in this coherence, and this implies population

inversion on the trgnsitiom>ﬂ|_2.>,|3). Note that the local- IV. CONCLUSION
ization in an atomic superposition persists in the neighbor-
hood of the value of the phask=2ns, as it is visible in We have studied the dynamics of a four-level system in-
Figs. 3a) and 3c). For instance, fora>1 the population teracting with lasers in a configuration which we have la-
inversion occurs on the transitid@),|3)—|1) on an inter- beled the$ scheme because of its geometry. This scheme
val of values 2n7— ®,,2n7+ ®,]. The phaseab, satisfies has a closed-loop excitation structy&4], i.e., any transi-
the relationp,,(®o),ps3(Po) = p11(Py), and in generap,  tion amplitude between two given states is the sum of two
can be said to separate two regimes, where the dynami@ntributions, corresponding to two excitation paths, which
associated with the symmetry at phasen2 or with &  may interfere. The dynamics is determined by a large num-
=(2n+1)= prevails. ber of parameters. Here, we have considered that both paths
It is interesting to note that fo =2n the populations have the same weight, while they differ by a relative phase
and, in particular, the decay-dependent population inversio?. We have discussed the origin @, and investigated the
show trends typical of a three-level cascade system while fogteady state of the interacting system as a functiog ofn
®=(2n+1)m the system is effectively reduced tovacon-  the regime where the steady-state solution exists.
figuration because gf,,=0. For the chosen parameters, the steady-state solution is
Finally, we emphasize the additional poles of the onephase sensitive. This is particularly evident in the coher-
photon coherences which we have identified in the analyticagnces, whereas, in general, the phase dependence of the
solutions fora=1. We have interpreted their origin as due to population is particularly enhanced for certain ranges of val-
photon scattering at all orders. We remark that they appear ides of the relaxation rates. In particular, when the lifetimes
Uy, anduys for @=0.1, see Fig. @), and inu,, and1~134 for of the intermediate states are conS|deral_3Iy dlfferent_ from that
a=10, see Fig. @). of the upper state, the system can exhibit population inver-
sion for some values of the phase arodnd 2n7. We have
interpreted and discussed this result in terms of coherent
population trapping. Nevertheless, in all regimes here con-
The analysis of this section is restricted to the choice okidered the population of the upper state vanishesdfor
parameterss;=0, which corresponds here to valuesmf =(2n+1)m. We have explained these behaviors using a
~0. This describes the behavior of a gas after Doppler cooleonvenient basis, showing that the dynamics is given by the
ing, at a thermal energy ofxkgT~Al'/2, with T concurrence of the Hamiltonian evolution, which is phase

C. Discussion
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sensitive, with the structure and nonunitarity of the relax-cooling schemes for these kind of atoms could be developed,

ation processes. In particular, fdr=(2n+1)# the steady by exploiting the phase properties due to the atomic motion

state of the system corresponds to the steady state of ia proper laser geometri¢46].

(closed two-level transition. Finally, the & scheme exemplifies a system where non-
The phase dependence of the Hamiltonian evolution idinear optics with resonant atoms can be realized. Here, the

closed-loop schemes shares many analogies with an atophase is a control parameter capable to change the response

interferometer{3]. The phase dependence survives also abf the medium to the drivg5-8,17,18. This will be the

steady stat¢4,5], and the response of the system could beobject of future investigations.

used as a device for measuring the relative phase between

laser fields. For instance, in tm; system the phase could be ACKNOWLEDGMENTS
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