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Theoretical studies of the long-range Coulomb potential effect on photoionization by strong laser
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Using the second-order Coulomb-corrected Volkov function as a continuum state, we derive quantum me-
chanically analytical formulas for the photoionization rate of hydrogen atoms irradiated by a linearly polarized
electric field in the tunneling regime. From the analytical formula is directly drawn the important conclusion
that the role of the first-order Coulomb correction is to reduce the ionization potential. As a result, the
photoionization rate is enhanced compared with that in the absence of the Coulomb correction. In addition, the
second-order correction modifies the Keldysh parameter, decreases the binding energy, and increases the
photoionization rates relative to those of the first-order Coulomb correction. We estimate the effects of the
respective Coulomb corrections on the resonance structure of the photoionization rate, Keldysh parameter, and
ponderomotive energy.
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I. INTRODUCTION

In recent years, owing to the rapid development of la
technology, much attention has been paid to photoioniza
and photodissociation processes of atoms and molecule
order to understand and/or extend our knowledge to com
cated atomic and molecular systems, it is necessary to cla
the mechanism of photoionization processes of hydroge
hydrogenlike atoms in more detail. Even for the hydrog
atom, it is not possible to claim that we know the detail
mechanism of the photoionization process.

The most important and well-known theories for descr
tion of the photoionization rate of hydrogenlike atoms we
proposed by Keldysh, Faisal, and Reiss~KFR! @1–3#. In the
KFR theory, due to the fact that it presumes photoionizat
from a short-range potential, whereas the real potential ex
a long-range Coulomb force between the residual core
the ionizing electron, one would not expect good agreem
between experiments and theoretical predictions. Howe
at relatively high intensities and high orders, where exter
electromagnetic field effects on the electron become do
nant, good agreement can be expected. The principal c
of the problem mentioned above is that Keldysh used
Gordon-Volkov function@4,5# as the final state of the photo
ionized electron. This normal Volkov function is an exa
solution of the quantum-mechanical equations of motion
a free electron in a plane-wave electromagnetic field. Ho
ever, in the presence of an atomic potential among partic
the Volkov function is not necessarily an exact description
the motion of the photoionizing electron. In order to inco
porate appropriately the effect of the atomic potential in
the Volkov function, there have been many efforts so
@6–16# and the revised Volkov function is usually called th
‘‘Coulomb-Volkov function.’’

Therefore, it is essential to construct a theory to bridge
large discrepancy between the results based on the no
Volkov function and on the Coulomb-corrected Volkov fun
tion.

For this purpose, Reiss and Krainov@16# improved the
free-electron Volkov function and obtained a first-ord
1050-2947/2002/66~5!/053408~10!/$20.00 66 0534
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Coulomb-corrected Volkov function for an electron irrad
ated by a circularly polarized electric field. In addition, th
demonstrated numerically that the time-dependent ph
shift included in the Coulomb-Volkov function leads to
greatly enhanced photoionization rate compared to that
culated by using the free-electron Volkov function.

Later, based on the development of Reiss and Krain
Bauer @17# introduced one more unitary transformation f
the Hamiltonian and the Coulomb-Volkov function and su
ceeded in deriving a second-order Coulomb-correc
Volkov function for an electron irradiated by a circular
polarized electric field. However, in his paper, the kind
effect introduced into the photoionization rate formulas
such an improvement of the Volkov function was not cla
fied.

Based on their ideas, we derive analytical photoionizat
rate formulas for hydrogen atoms irradiated by a linea
polarized electric field in the presence of a Coulomb inter
tion.

Our strategy is as follows. We express the final ioniz
state using the Coulomb-Volkov function instead of the n
mal Volkov function that was utilized by Keldysh. As in ou
previous paper@18#, we avoid using the saddle-point metho
for the integration ofL(pW ) of Eq. ~15! in Ref. @1#. Instead,
we use the residue theorem for its evaluation. The dep
dence of the preexponential factors onpW ~the momentum
vector of the electron!, ignored by Keldysh in the expressio

2Apa0
3 I 0

eFa0

\v

~12us
2!1/2

3expF i

\v E
0

usH I 01
1

2m S pW 1
eFW

v
v D 2J dv

~12v2!1/2G ,
~1.1!

will be incorporated in our derivation. In addition, we chan
the summation ofS(g,x) in Eq. ~18! of Ref. @1# into an
integration with respect ton. It will be shown that these
modifications allow us to obtain insightful analytical expre
©2002 The American Physical Society08-1
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sions for the photoionization rate in the simultaneous pr
ence of an electric field and a Coulomb potential.

The present paper is organized as follows. In Sec. II,
show a derivation of Keldysh-like photoionization rate fo
mulas for hydrogenlike atoms, taking into account the m
influence of the long-range Coulomb potential on the Volk
function. As for the initial state, we focus on the 1s state of
hydrogenlike atoms. In Sec. III, we numerically show t
validity of performing the integration overn for S(g,x) and
discuss the features of our formulas. Section IV is devote
the concluding remarks.

II. THEORY

Let us consider a hydrogenlike atom in the 1s state which
is excited directly to the continuum state. We assume that
initial 1s state is not perturbed by the laser field.

First of all, we have to define the wave function of th
continuum state in such a way that it involves the effect
the long-range Coulomb potential~Coulomb-Volkov func-
tion!. The Schro¨dinger equation to be solved for the co
tinuum statecA(rW,t) is expressed as

i\
]cA~rW,t !

]t
5H 1

2m
@2 i\¹W 2eAW ~ t !#21V~rW !J cA~rW,t !,

~2.1!

whereV(rW) is the potential between the nucleus and the e
tron andAW (t) is the vector potential. Hereafter we adopt t
dipole approximation: AW (t) is independent of the locationrW
of the electron.

Let us transform the wave function in Eq.~2.1!, cA(rW,t),
to F(rW,t) by the following relation:

cA~rW,t !5expS 2
ie2

2m\ E
2`

t

AW 2~t!dt D
3exp~aW •¹W !F~rW,t !, ~2.2!

where

aW ~ t !5
e

m E
2`

t

AW ~t!dt. ~2.3!

Here, it is assumed that the laser field is adiabatically tur
on at t52`. Note that the phase-factor transformation
not applied@19#. The quantityaW (t) denotes that the classica
electron driven by the laser fieldAW (t) has a quiver motion of
the vector radius.

Using the Kramers-Henneberger transformation@20#, it is
shown that the wave functionF(rW,t) satisfies the following
Schrödinger equation:

i\
]F~rW,t !

]t
5H 2

\2¹W 2

2m
1V„UrW2aW ~ t !U…J F~rW,t !.

~2.4!
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Equation~2.4! is the space-translated version of the Sch¨-
dinger equation. In the special case of the Coulomb poten
V(rW)52Ze2/r , whereZ is the nuclear charge,V in Eq. ~2.4!
is given by

V„urW2aW ~ t !u…52
Ze2

urW2aW ~ t !u
. ~2.5!

Equation~2.4! cannot be solved in simple closed form owin
to the presence of the term of Eq.~2.5!.

We assume that

a0@a0 /Z, ~2.6!

wherea0 is the radius of the quiver motion of a classic
electron in a laser field. The quantitya0 is the Bohr radius. In
the case of a linearly polarized laser field, the maximu
quiver radiusa0 can be determined as@21,22#

a05
eF

mv2 , ~2.7!

whereF is the laser amplitude andv is the laser frequency
Because we are interested in the tunneling process, the
sumption~2.6! is valid in most cases.

In the approximation, we obtain in the second-order Co
lomb correction

V„urW2aW ~ t !u…'2Ze2H 1

a0
1

rW•aW ~ t !

a0
3 1O~a0

23!J . ~2.8!

For a Taylor expansion similar to that in Eq.~2.8!, Reiss
and Krainov and Bauer assumed that the incident lase
circularly polarized. In this case, the absolute value ofaW (t)
is constant so that the expansion~2.8! is valid for any timet.
However, we are interested in thelinearly polarized electric
field. In this case, the absolute value ofaW (t) varies with time
so that the Taylor expansion~2.8! is not necessarily adequate

Based on a rough estimation, let us discuss the condit
of validity of using the approximation Eq.~2.8! in the case of
the linearly polarized electric field. The mean tunneling tim
t t is given by

t t5
AmI0

&eF
, ~2.9!

where I 0 is the ionization potential. Usually, tunneling ca
take place whent t is less than half the period of the incide
laser. Therefore, until the tunneling is almost over, the ph
of the laser field will roughly change from zero tovt t ,
which is of a small magnitude. In this case,aW (t) will hardly
change. Within this restriction, we can apply the approxim
tion of Eq. ~2.8!.

Substituting Eq.~2.8! into Eq. ~2.4!, the approximate
Schrödinger equation is of the form
8-2
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i\
]F~rW,t !

]t
5F2

\2¹W 2

2m
2Ze2H 1

a0
1

rW•aW ~ t !

a0
3 J GF~rW,t !.

~2.10!

Let us transform the wave function in Eq.~2.10!, F(rW,t),
into F8(rW,t) by the following unitary transformation:

F8~rW,t !5exp$ ibAW ~ t !•rW%F~rW,t !, ~2.11!

where

b5
Ze3

\mv2a0
3 . ~2.12!

Then, the wave functionF8(rW,t) satisfies

i\
]F8~rW,t !

]t
5F \2

2m
$2 i¹W 2bAW ~ t !%22

Ze2

a0
GF8~rW,t !.

~2.13!

The wave functionF8(rW,t) can be directly obtained from
Eq. ~2.13!:

F8~rW,t !5expF i

\ H pW •rW2
p2

2m
t

2
1

2m E
2`

t

dt@22\bpW •AW ~t!1\2b2AW 2~t!#

1
Ze2

a0
tJ G . ~2.14!

The wave functionF(rW,t) is easily obtained from the trans
formation of Eq. ~2.11!. Therefore, the second-orde
Coulomb-corrected Volkov function in the velocity gaug
cA(rW,t) is obtained from the transformation of Eq.~2.2!:
05340
cA~rW,t !5expF i

\ H pW •rW2
p2

2m
t

2
1

2m E
2`

t

dt@22epW •AW ~t!1e2AW 2~t!#1
Ze2

a0
t

2
1

2m E
2`

t

dt@22\bpW •AW ~t!1\2b2AW 2~t!#

2\bAW ~ t !•@rW1aW ~ t !#J G . ~2.15!

Equation~2.15! can further be transformed into the leng
gauge:

cpW~rW,t !5expF i

\ H @pW 2eAW ~ t !#•rW2
p2

2m
t

2
1

2m E
2`

t

dt@22epW •AW ~t!1e2AW 2~t!#1
Ze2

a0
t

2
1

2m E
2`

t

dt@22\bpW •AW ~t!1\2b2AW 2~t!#

2\bAW ~ t !•@rW1aW ~ t !#J G . ~2.16!

In Eq. ~2.16!, the term containinga0 is the first-order and
those involvingb are the second-order Coulomb correction
Note that, if the second-order Coulomb correction can
neglected (b50), the Coulomb-Volkov function utilized in
Ref. @1# is recovered. The above mentioned derivation is
sentially the same as that reported by Bauer@17#. As was
pointed out above, however, Bauer did not derive the pho
ionization rate in his paper@17#. In the following, we show
the derivation of analytical formulas using the second-ord
corrected Coulomb-Volkov function defined by Eq.~2.16!.

To be specific, we consider a hydrogenlike one-elect
atom in the presence of a monochromatic electric field. T
rate of photoionizationw0 for direct transition from the
ground bound state to the continuum state is given by
w05
2

\2 lim
T→`

ReE d3p

~2p\!3 E
2`

T

dt cos~vT!cos~vt !V0* S pW 1
ēFW

v
sin~vT! DV0S pW 1

ēFW

v
sin~vt ! D

3expF i

\ E
T

t

dtH I 081
1

2m
S pW 1

eFW

v
sin~vt! D 2

1
1

2m
S 2\b

v
pW •FW sin~vt!1

\2b2FW 2

v2 sin2~vt! D 12B̃ cos~2vt!J G ,

~2.17!

where

I 085I 01Ã, ~2.18!

Ã52
Ze2

a0
, ~2.19!
8-3
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I 052Eg5
Z2e2

2a0
~ ionization potential!, ~2.20!

ē5e1\b, ~2.21!

B̃52
\beF2

2mv2 5
Ã

2
, ~2.22!

V0~pW !5^exp~ ipW •rW/\!ue~FW •rW !ucg~rW !&, ~2.23!

andFW is the maximum amplitude of the electric field inclu
ing the linear polarization.

At this point, it should be noted that the essential diff
ence between this work and the previous study@18# is that
the effective ionization potentialI 08 is smaller than that when

the usual Volkov function is used (I 0) by the termÃ(5
2Ze2/a0). The effect of this phase-shift term is of course
decrease of the binding energy. Notice that in the calcula
the quiver radiusa0 cannot be too small, because then t
effective binding energyI 08 in Eq. ~2.17! would be negative,
which is unphysical.

Carrying out the integration overt and taking infinity for
T yields

w05
2p

\ E d3p

~2p\!3 uL~pW !u2 (
n52`

`

dS Ĩ 091
p2

2m
2n\v D ,

~2.24!

where

Ĩ 095I 081
E2F2

4mv2 5I 01
E2F2

4mv2 1Ã, ~2.25!

E5Ae21\2b2, ~2.26!

and

L~pW !5
16ieI0

3Apa0
7

p\

3 R du
FW @pW 1~ ēFW /v!u#

$I 01~1/2m!@pW 1~ ēFW /v!u#2%3

3expF i

\v
E

0

u dv

A12v2
H I 081

1

2m
S pW 1

ēFW

v
v D 2

12B̃~12v2!J G . ~2.27!

Notice that the singular point of the integrand in E
~2.27! is different from the zero point of the time derivativ
of the exponent. This is the point most different from Keld
sh’s theory, where they coincide.

One of the singularity points ofL(pW ), us , reads
05340
-

n

.

us5ḡS 2
p

A2mI0
cosu1 iAp2 sin2 u

2mI0
11D , ~2.28!

where

pW •FW 5pF cosu ~2.29!

and the ‘‘modified’’ Keldysh parameter

ḡ5
vA2mI0

ēF
. ~2.30!

Note that the second-order Coulomb correction of
Volkov function b is introduced in the Keldysh paramete
while the first-order correction does not affect the adiaba
parameter. In addition, we can see that the modified Keld
parameterḡ is always smaller than the original Keldysh p
rameter,

g5
vA2mI0

eF
, ~2.31!

provided that the laser amplitudeF and the frequencyv are
the same: the photoionization rate tends toward the tunne
ionization region in the presence of a Coulomb potential.

In principle, contour integration with the residue theore
of Eq. ~2.24! can be carried out including thepW dependence
of all the preexponential factors, which leads to the m
accurate formula. However, it is sometimes quite cumb
some and difficult. Therefore, in the present work, the si
plest expression will be presented. When the Coulomb c
rection up to second order is included and all t
preexponential factors of Eq.~2.24! are pW independent, we
have

w05N~g,ḡ,v,I 0 ,Ã,B̃!3expF2
2

\v H Ĩ 0S sinh21ḡ

2
ḡA11ḡ2

112ḡ2 D 1Ã sinh21ḡ

1B̃~sinh21ḡ1ḡA11ḡ2!J G , ~2.32!

where

Ĩ 05I 01
ē2F2

4mv2 5I 0S 11
1

2ḡ2D . ~2.33!

The definition ofN(g,ḡ,v,I 0 ,Ã,B̃) is given in Appendix A.
However, it should be noted that it sometimes happens
the behaviors of the photoionization rates at the tunne
limit are quite different depending on the various treatme
of the preexponential factors~see Sec. III!. For comparison,
the photoionization rates for different treatments of the p
exponential factors in the first-order Coulomb correctionb
50) are presented in Appendix B.

As mentioned above, the main role of the first-order Co
lomb correction is to lower the ionization potential@see Eq.
8-4
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~2.18!#. Here, let us discuss the effect of the second-or
Coulomb correction. In fact, by comparing the first-ord
Coulomb-corrected Volkov function,

cpW~rW,t !5expF i

\ H @pW 2eAW ~ t !#•rW2
p2

2m
t2

1

2m

3E
2`

t

dt@22epW •AW ~t!1e2AW 2#2ÃtJ G ,
~2.34!

and the second-order corrected function of Eq.~2.16! with a
changed order of terms in the exponent,

cpW~rW,t !5expF i

\ H @pW 2~e1\b!AW ~ t !#•rW

2
p2

2m
t2

1

2m E
2`

t

dt@22~e1\b!pW •AW ~t!

1~e21\2b2!AW 2~t!#2Ãt2\bAW ~ t !•aW ~ t !J G ,
~2.35!

we could easily have obtained some hint as to what kind
photoionization rate formulas should finally be derived.

First, it is apparent that when we include the second-or
correction the following transformations have to be p
formed:

e→e1\b ~2.36!

and

e2→e21\2b2. ~2.37!

In Eqs.~2.32! and ~A6!, the electron chargee is included in
the Keldysh parameter and the effective ionization poten
However, it is not necessarily apparent which transformat
@Eq. ~2.36! or ~2.37!# would affect the Keldysh parameter o
ionization potential without careful derivation. Neverthele
it can be qualitatively concluded that the second-order c
rection b lowers the Keldysh parameter and enhances
effective ionization potential.

Secondly, it is noted that the extra term2\bAW (t)•aW (t)
in Eq. ~2.35! is not contained in Eq.~2.34!. The main role of
this term is to add an extra term ofB̃(sinh21ḡ1ḡA11ḡ2) in
the exponents of Eqs.~2.32! and ~A6!, and to reduce the
effective ionization potential@note that B̃ defined by Eq.
~2.22! is negative#.

Notice that our expression is almost the same as tha
Keldysh if Ã5B̃50 ~no Coulomb effect!, although ours is
larger than that of Keldysh by a factor of 4. This is due to t
fact that we utilized the residue theorem for the evaluation
Eq. ~2.27!, whereas Keldysh used the saddle-point meth
for that purpose.

An important conclusion can be drawn from Eq.~B3!
with the assumption of Eqs.~B10! and ~B11!, and that with
05340
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the assumptionÃ50 ~no Coulomb effect!. By comparing
these, one notices that the preexponential factors and
exponents of the former are always larger than those of
latter @note thatÃ is negative and thatĨ 08 of Eq. ~B3! is
defined by Eq.~B2!#. Therefore, we can predict that th
photoionization rate in the presence of the Coulomb poten
is always larger than that in its absence. This tendency
already been observed in several papers@15,16#. Intuitively,
one can easily suppose that reducing the binding ene
gives rise to an increase of the photoionization rate. Ho
ever, from our formula, one can understand this tendenc
a more insightful way and interpret the phenomenon anal
cally.

III. RESULTS AND DISCUSSION

In this section, first we show numerically the validity o
the approximation~A14! for Eq. ~A11!. Next, we demon-
strate the procedure used to obtain the photoionization r
by our formulas and compare some physical quantities in
first- and second-order Coulomb corrections.

Figure 1 comparesScalculated by summation@Eq. ~A11!#
and that by integration@Eq. ~A14!#. The ordinatey2 corre-

FIG. 1. Comparison ofS calculated by~a! summation@Eq.
~A11!# and ~b! integration@Eq. ~A14!#. The ordinatey2 is cos2 u

where u is the angle betweenpW and FW . In this figure, ln(S) is
plotted. The wavelength of the incident laser is assumed to be
mm. For the summation in Eq.~A1!, 500 000 terms from the lowes
limit were summed up. Notice the quite good agreement betw
~a! and ~b!.
8-5



se
se
la

q

nc

-

t is
n

c
e

c
he
g

en
it

e

es

th
n

nt

s-
t
e
sts

in
the
t

idly

in

on
tion
e,

ow
the
hly
is

l is
the
its

ity
ll.
ant
m-
rder

to
ion
nd-

MISHIMA et al. PHYSICAL REVIEW A 66, 053408 ~2002!
sponds to cos2 u whereu is the angle betweenpW andFW . Note
that ln(S) is plotted in the direction of thez axis. It is evident
that both of them agree quite well over a wide range of la
intensity. This shows that a simple integration can be u
for calculating the ionization rate; in this case, our formu
tion is much easier than Keldysh’s.

If the field intensity is small, that is,d in Eq. ~A12! is
small, it might be conjectured that the summation in E
~A11! and the integration in Eq.~A14! may be quite differ-
ent. However, in such a case,g becomes large andK in Eq.
~A13! may be a large positive number in the exponent, si
K is a monotonically increasing positive function ofg for all
y values between21 and 1 in the tunneling regime. There
fore, in the low field intensity range,S is quite small as can
be seen in the figure.

On the other hand, when the field intensity is large, tha
d in Eq. ~A12! is large, it is conjectured that the summatio
in Eq. ~A11! and the integration in Eq.~A14! may be of
almost the same magnitude. We have confirmed that ln(S) is
actually of the same magnitude down to two places of de
mals at high field intensity. Although we do not show oth
calculations for various laser frequenciesv, the above argu-
ment holds in a wide range ofv.

According to Keldysh, neglecting the Coulomb intera
tion in the final state, which is well known, changes t
power ofF in the preexponential expression without chan
ing the exponential itself. However, our formulas includingpW
dependence of the preexponential factors show this tend
even if the Coulomb effect vanishes in the tunneling lim
For instance, in the tunneling limit (g50) for cases~i! and
~iii ! in Appendix B, we have

w0523/4A3p
I 0

\ S m1/2I 0
3/2

\eF D 1/2

3
1

11A2mI0
3/\eF

expS 2
4A2mI0

3

3\eF
D . ~3.1!

On the other hand, for cases~ii ! and~iv! in Appendix B, we
obtain

w0521/4A3p
I 0

\ S \eF

m1/2I 0
3/2D 1/2

3expS 2
4A2mI0

3

3\eF
D . ~3.2!

For comparison, we show the Keldysh formula in the tunn
ing limit,

w05
A3p

2

I 0

\ S m1/2I 0
3/2

eF\ D 1/2

expS 2
4A2mI0

3

3\eF
D . ~3.3!

Equation~3.1! shows that the photoionization rate increas
saturates, and decreases to zero eventually, while Eq.~3.2!
has a tendency to increase unilaterally to infinity. This is
same tendency as that of the Keldysh and Amnosov-Delo
Krainov ~ADK ! models @23#. Note thatÃ vanishes in the
05340
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tunneling limit in our approximation. The remarkable poi
to note is that in Eq.~3.1! the factor 11A2mI0

3/\eF is rela-
tively large in the tunneling limit below the barrier suppre
sion ionization~BSI! region. This kind of factor was no
found in the theories of Keldysh and ADK. It should b
noted that this factor may amount to 2 or more. This sugge
that this term is not negligible.

Next, we show how to estimate the photoionization rate
the tunneling regime. The procedure is as follows. For
approximation of Eq.~2.8! to be valid, we have to check tha

cos~v/w0!'1, ~3.4!

where the photoionization ratew0 is calculated by Eqs.
~2.32!, ~A6!, ~B1!, or ~B3!. Equation~3.4! indicates that the
photoionization process should terminate much more rap
than the laser cycle.

To assure that we are in the tunneling region,

F,
Z3e5m2

16\4 ~3.5!

and

g,0.5. ~3.6!

Equation~3.5! ensures that the photoionization is not with
the BSI region@23–26#. On the other hand, Eq.~3.6! prohib-
its the photoionization process from lying in the multiphot
regime. The value 0.5 was adopted following the assump
of Ref. @24#. If Eqs.~3.4!–~3.6! are satisfied at the same tim
the most exact photoionization rate will be obtained.

As was pointed out in the last section, our formulas sh
that the photoionization rate is larger in the presence of
Coulomb potential than in its absence. This can be roug
explained as follows. In its absence, the barrier width
I 0 /(eF) and the barrier height isI 0 . On the other hand, in its
presence, the barrier width isAI 0

224Ze3F/(eF) and the bar-
rier height is I 02A(Ze/F). It is evident that the barrier
width and height are smaller when the Coulomb potentia
present than when it is absent so that the tunneling rate in
presence of the Coulomb potential is larger than that in
absence. Our formula~B3! with Eqs. ~B10! and ~B11! re-
flects this fact. It should be noted that in the high-intens
limit the effect of the Coulomb potential is negligibly sma

The second-order Coulomb correction is less signific
than the first correction in the tunneling regime. Let us co
pare some physical quantities in the first- and second-o
corrections.

First, becauseI 05Z2e4m/(2\2), Ã522\3vg/(Z2me4)
and L̃[\2F2b2/(4mv2)5\6v2g4/(2Z4m2e8). The former
is the contribution of the first-order Coulomb correction
the shift of the resonance structure of the photoionizat
rate versus laser intensity and the latter that of the seco
order correction. Due to the assumption that

g!1 and \v/I 052\3v/~Z2me4!!1, ~3.7!
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L̃ is much smaller thanÃ. Therefore, it can be seen that th
contribution from the second-order Coulomb correction
much smaller than that from the first-order correction.

Secondly, the Keldysh parameter is affected only by
second-order Coulomb correction. From Eq.~2.30!,

ḡ5
g

11\3vg3/~Z2me4!
. ~3.8!

The part \3vg3/(Z2me4) is the contribution from the

second-order correction. If we compare this withÃ, it is
evident that the second-order correction is smaller by m
orders of magnitude than the first-order correction.

Thirdly, the ‘‘modified’’ ponderomotive energie
ē2F2/(4mv2) andE2F2/(4mv2) are introduced by includ-
ing the second-order Coulomb correction. The contribut
of the second-order correction\b5Zm2v4/F3 is also much
smaller than the elementary electron chargee.

From the above arguments, it is concluded that
second-order Coulomb correction is negligibly small co
pared to the first-order correction in the tunneling limit.

IV. CONCLUDING REMARKS

Including the principal effect of the long-range Coulom
potential in the Volkov function~the approximate Coulomb
Volkov function!, we derived analytical formulas for th
photoionization rate for hydrogenlike atoms followin
Keldysh’s procedure@1#, not depending on the crude quas
classical analysis for the preexponential factors that w
adopted by Keldysh. An important point is that our formul
are quite simple and insightful and do not require huge co
puter memory for the calculation, and physical meaning
easily be deduced. For example, comparing Eq.~B3! with
the assumption of Eqs.~B10! and ~B11!, and with the as-
sumptionÃ50 ~no Coulomb effect! one can draw the im-
portant conclusion that the photoionization rate in the pr
ence of the Coulomb potential is always larger than tha
the absence of the Coulomb potential.

As for the derivation method, Keldysh used the sadd
point method for the contour integration of Eq.~2.27!. Our
derivation shows that we do not have to use the saddle-p
method; instead, we can perform the contour integration
the residue theorem. We have also reduced the infinite s
mation to integration as shown in Eq.~A8!, which renders
the final photoionization rate formula quite simple. O
simple formulas Eqs.~A6! and~B3! are free from the infinite
summationS(g, Ĩ 0 /\v) in Eq. ~16! of Ref. @1# and Daw-
son’s integral of Eq.~A2!.

In summary, the role of the first-order Coulomb correcti
is to lower the ionization potential and enhance the pho
ionization rates and the second-order correction modifies
Keldysh parameter, decreases the binding energy, and
creases the photoionization rates.
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APPENDIX A: DEFINITION OF N„g,ḡ,v,I 0 ,Ã,B̃… AND
INTEGRATED FORM OF EQ. „2.32…

The preexponential factorN(g,ḡ,v,I 0 ,Ã,B̃) in Eq.
~2.32! is given by

N~g,ḡ,v,I 0 ,Ã,B̃!

54A2I 0v/\S ḡ

g D 2S ḡ

A11ḡ2D 3/2
C1

C2
(
n50

`

3expF22S K Ĩ 09

\v
11L 2

Ĩ 09

\v
1nDC3G

3QF H 2ḡ

A11ḡ2
C2

2S K Ĩ 09

\v
11L 2

Ĩ 09

\v
1nD J 1/2G ,

~A1!

where the symbol̂x& denotes the integer part of the numb
x andQ(x) is Dawson’s integral,

Q~x!5exp~2x2!E
0

x

exp~y2!dy. ~A2!

Other quantities in Eq.~A1! are defined by

C15H 12
Ã~21ḡ2!

2I 0~11ḡ2!
1

Ã2

2I 0\v

ḡ

A11ḡ2

1
2ḡA11ḡ2

I 0\v
ÃB̃2

213ḡ2

I 0
B̃1

2ḡ~11ḡ2!3/2

I 0\v
B̃2J 2

,

~A3!

C25A11
Ã

2I 0~11ḡ2!
1B̃

112ḡ2

I 0
, ~A4!

C35sinh21 ḡ2
ḡ

A11ḡ2
1

Ãḡ3

2I 0~11ḡ2!3/2

2
B̃ḡ3

I 0A11ḡ2
. ~A5!

Aside from the Keldysh-like form of Eq.~A1!, it is in-
sightful to integrate it overn. By so doing, Eq.~2.32! reduces
to
8-7
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w05A2pI 0v/\S ḡ

g D 2 ḡ2

11ḡ2

C1

C4AC3

3expF2
2

\v H Ĩ 0S sinh21 ḡ2
ḡA11ḡ2

112ḡ2 D
1Ã sinh21 ḡ1B̃~sinh21 ḡ1ḡA11ḡ2!J G , ~A6!

where

C45sinh21 ḡ1
Ãḡ

2I 0A11ḡ2
1

B̃ḡA11ḡ2

I 0
. ~A7!

Note thatĨ 09 disappears in Eq.~A6!, while Eq. ~A1! con-
tains this term. The resonance structures detected by u
Eq. ~A1! are expected to show a shift from the counterpar
Ref. @1# and that including the first-order Coulomb correcti
~see Appendix B!.

An important approximation involved in the prese
theory is to change the summation with respect ton ~propor-
tional to the excess photon number absorbed above thr
old! to integration,

(
n.^ Ĩ 09/\v&

`

An\v2 Ĩ 09 expH 2
2

\v
~n\v2 Ĩ 09!~G2Hy2!J

'E
Ĩ 09/\v

`

dnAn\v2 Ĩ 09

3expH 2
2

\v
~n\v2 Ĩ 09!~G2Hy2!J , ~A8!

where

G5sinh21 ḡ1
Ãḡ

2I 0A11ḡ2
1

B̃ḡA11ḡ2

I 0
~A9!

and
05340
ing
n

h-

H5
ḡ

A11ḡ2
1

Ãḡ

2I 0~11ḡ2!3/21
B̃ḡ~112ḡ2!

I 0A11ḡ2
.

~A10!

This approximation needs to be examined. For this purpo
we consider

S5(
n

An2d exp@2K~n2d!#, ~A11!

where

d5
Ĩ 09

\v
~A12!

and

K52~G2Hy2!. ~A13!

S in Eq. ~A11! should be compared with

S5E
d

`

dnAn2d exp@2K~n2d!#5 1
2 Ap/K3. ~A14!

An important feature of the approximation~A14! is that it is
independent ofd. In Sec. III, we show numerically the va
lidity of the approximation Eq.~A14! for Eq. ~A11!.

The formula Eq.~A6! is quite simple and the infinite sum
mation of Eq.~A1! is unnecessary. By adopting Dawson
integral, as the tunneling limit approaches, the computa
time for obtaining converged results becomes quite large
cause the summation overn requires many iterations. In tha
case, the above formulas integrated overn, such as Eq.~A6!,
are quite convenient.

APPENDIX B: PHOTOIONIZATION RATES IN THE
FIRST-ORDER COULOMB CORRECTION

In this appendix, we show explicitly the terms appeari
in Eq. ~2.32! for different treatments of the preexponenti
factors. Here, we show four cases that we can consider.

Generally, the photoionization rate can be expressed
w054A2I 0v/\S g

A11g2D 3/2
@12Ã~21g2!/2I 0~11g2!1~Ã2/2I 0\v!~g/A11g2!#2

A11Ã/2I 0~11g2!1B
expF2

2

\v
H Ĩ 08S sinh21 g

2
gA11g2

112g2 D 1Ã sinh21 gJ G (
n50

`

expF22S K Ĩ 08

\v
11L 2

Ĩ 08

\v
1nD H sinh21 g2

g

A11g2
1

Ãg3

2I 0~11g2!3/2

1C2
g

A11g2
BJ GQF H 2g

A11g2
BS K Ĩ 0

\v
11L 2

Ĩ 0

\v
1nD J 1/2G , ~B1!

whereQ(x) is the Dawson integral defined by Eq.~A2! and

Ĩ 085I 01
e2F2

4mv2 5I 0S 11
1

2g2D . ~B2!
8-8
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Furthermore, if we perform the summation overn in the above equation, then the following simpler expression is obtai

w052ApI 0v

\

g2

11g2 S 12
Ã~21g2!

2I 0~11g2!
1

Ã2

2I 0\v

g

A11g2D 2

3

expF2
2

\v
$ Ĩ 0@sinh21 g2gA11g2/~112g2!#1Ã sinh21 g%G

@sinh21 g1~Ã/2I 0!~g/A11g2!12C#A2$sinh21 g2g/A11g21~Ã/2I 0!@g3/~11g2!3/2#1C2~g/A11g2!B%
.

~B3!
rs
~i! If we assume that all of the preexponential facto
depend onpW ,

B5
\v

2I 0b4
2

g3

~11g2!3/2

3H 12
3Ã

2I 0~11g2!
1

Ã2g

\vI 0A11g2J 2

1
\v

2I 0b4

1

g~11g2!3/2

3H 2~4g211!1
3Ã~2g612g417g212!

2I 0~11g2!

1
Ã2g~g424g221!

\vI 0A11g2 J ~B4!

and

C52
\v

2~11g2!I 0b4
H ~112g2!2

Ã~4g4113g216!

2I 0~11g2!

1
Ã2g~112g2!

\vI 0A11g2 J . ~B5!

~ii ! If we assume thatus depends onpW but cosupF does
not (cosupF51),

B5
\v

2I 0b4
2

g3

~11g2!3/2

3H 12
3Ã

2I 0~11g2!
1

Ã2g

\vI 0A11g2J 2

1
\v

2I 0b4

g

~11g2!3/2 H ~g222!1
Ã~2g428g215!

2I 0~11g2!

1
2Ã2

\vI 0

g~g221!

A11g2 J ~B6!

and
05340
C52
\vg2

2~11g2!I 0b4
H 12

3Ã

2I 0~11g2!

1
Ã2g

\vI 0A11g2J . ~B7!

~iii ! If we assume that cosupF depends onpW but us does
not (us5 ig),

B52
\vA11g2

2gI 0b4
H 11

Ãg2

I 0~11g2!
1

Ã2g

\vI 0~11g2!

2
3Ã

I 0A11g2J ~B8!

and

C52
\v

2I 0b4
H 12

Ã~2g213!

I 0~11g2!
1

Ã2g

\vI 0A11g2J . ~B9!

~iv! If we assume that cosupF and us are pW independent
(cosupF51 andus5 ig),

B50 ~B10!

and

C50. ~B11!

In Eqs.~B4!–~B9!, b4 is defined by

b45211
Ã~21g2!

2I 0~11g2!
2

Ã2g

2I 0\vA11g2
. ~B12!
8-9
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