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Theoretical studies of the long-range Coulomb potential effect on photoionization by strong lasers
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Using the second-order Coulomb-corrected Volkov function as a continuum state, we derive quantum me-
chanically analytical formulas for the photoionization rate of hydrogen atoms irradiated by a linearly polarized
electric field in the tunneling regime. From the analytical formula is directly drawn the important conclusion
that the role of the first-order Coulomb correction is to reduce the ionization potential. As a result, the
photoionization rate is enhanced compared with that in the absence of the Coulomb correction. In addition, the
second-order correction modifies the Keldysh parameter, decreases the binding energy, and increases the
photoionization rates relative to those of the first-order Coulomb correction. We estimate the effects of the
respective Coulomb corrections on the resonance structure of the photoionization rate, Keldysh parameter, and
ponderomotive energy.
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I. INTRODUCTION Coulomb-corrected Volkov function for an electron irradi-
ated by a circularly polarized electric field. In addition, they
In recent years, owing to the rapid development of lasedemonstrated numerically that the time-dependent phase
technology, much attention has been paid to photoionizatioghift included in the Coulomb-Volkov function leads to a
and photodissociation processes of atoms and molecules. gieatly enhanced photoionization rate compared to that cal-
order to understand and/or extend our knowledge to compliculated by using the free-electron Volkov function. .
cated atomic and molecular systems, it is necessary to clarify Later, based on the development of Reiss and Krainov,
the mechanism of photoionization processes of hydrogen ;éauer[lﬂ introduced one more unitary transformation for
hydrogenlike atoms in more detail. Even for the hydrogenthe Ham|l_t0n|an _and the Coulomb-Volkov function and suc-
atom, it is not possible to claim that we know the detailedc®eded in deriving a second-order Coulomb-corrected
mechanism of the photoionization process. Volkov function for an electron irradiated by a circularly
The most important and well-known theories for descrip-Polarized electric field. However, in his paper, the kind of
tion of the photoionization rate of hydrogenlike atoms were€ffect introduced into the photoionization rate formulas by
proposed by Keldysh, Faisal, and Re{&&R) [1-3]. In the s_uch an improvement of the Volkov function was not clari-
KFR theory, due to the fact that it presumes photoionizatiorfied: . ) ) o
from a short-range potential, whereas the real potential exerts Based on their ideas, we derive analytical photoionization
a long-range Coulomb force between the residual core antité formulas for hydrogen atoms irradiated by a linearly
the ionizing electron, one would not expect good agr(:’.emerﬁ:olanzed electric field in the presence of a Coulomb interac-
between experiments and theoretical predictions. HoweveHON: _ o
at relatively high intensities and high orders, where external Our strategy is as follows. We express the final ionized
electromagnetic field effects on the electron become domistate using the Coulomb-Volkov function instead of the nor-
nant, good agreement can be expected. The principal cau§edl Volkov function that was utilized by Keldysh. As in our
of the problem mentioned above is that Keldysh used th@revious papef18], we avoid using the saddle-point method
Gordon-Volkov functior{4,5] as the final state of the photo- for the integration ofL.(p) of Eq. (15) in Ref. [1]. Instead,
ionized electron. This normal Volkov function is an exactWe use the residue theorem for its evaluation. The depen-
solution of the quantum-mechanical equations of motion foidence of the preexponential factors pn(the momentum
a free electron in a plane-wave electromagnetic field. HowVector of the electronignored by Keldysh in the expression
ever, in the presence of an atomic potential among particles,

the Volkov function is not necessarily an exact description of 3 lo hw

the motion of the photoionizing electron. In order to incor- 2 V”aoﬁ (1-ud)12

porate appropriately the effect of the atomic potential into s

the Volkov function, there have been many efforts so far i [us 1 (. eF \? dv
[6—16] and the revised Volkov function is usually called the xexp s f ot S| PF jv) ]mf ’

“Coulomb-Volkov function.”
Therefore, it is essential to construct a theory to bridge the (1.9

large discrepancy between the results based on the normal

Volkov function and on the Coulomb-corrected Volkov func- will be incorporated in our derivation. In addition, we change

tion. the summation ofS(y,x) in Eq. (18) of Ref. [1] into an
For this purpose, Reiss and Kraing¥6] improved the integration with respect ta. It will be shown that these

free-electron Volkov function and obtained a first-order modifications allow us to obtain insightful analytical expres-
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sions for the photoionization rate in the simultaneous presEquation(2.4) is the space-translated version of the Sehro

ence of an electric field and a Coulomb potential. dinger equation. In the special case of the Coulomb potential
The present paper is organized as follows. In Sec. II, we/(F) = — Z€?/r, whereZ is the nuclear chargd/ in Eq. (2.4)

show a derivation of Keldysh-like photoionization rate for- is given by

mulas for hydrogenlike atoms, taking into account the main

influence of the long-range Coulomb potential on the Volkov 72
function. As for the initial state, we focus on the &tate of V(F—a(t)|)=—- F=amol (2.5
hydrogenlike atoms. In Sec. Ill, we numerically show the

validity of performing the integration ovaer for S(y,x) and ) o )
discuss the features of our formulas. Section IV is devoted t&duation(2.4) cannot be solved in simple closed form owing
the concluding remarks. to the presence of the term of E@.5).

We assume that

Il. THEORY — 2.6

Let us consider a hydrogenlike atom in the state which
is excited directly to the continuum state. We assume that th@here «,, is the radius of the quiver motion of a classical
initial 1s state is not perturbed by the laser field. electron in a laser field. The quantiy is the Bohr radius. In

First of all, we have to define the wave function of the the case of a linearly polarized laser field, the maximum
continuum state in such a way that it involves the effect ofgujver radiusae, can be determined 481,22
the long-range Coulomb potenti@Coulomb-Volkov func-
tion). The Schrdinger equation to be solved for the con-

tinuum statey,(F,t) is expressed as ao:e_Fz, (2.7)
mw
. alpA(F!t) L2 e A 2 > > . . .
ih— = 5y [ 1RV =AD"+ V(1) ga(F,1), whereF is the laser amplitude and is the laser frequency.

(2.2) Because we are interested in the tunneling process, the as-
sumption(2.6) is valid in most cases.

whereV(r) is the potential between the nucleus and the elec- In the app_roximation, we obtain in the second-order Cou-
P . lomb correction
tron andA(t) is the vector potential. Hereafter we adopt the
dipole approximation: A(t) is independent of the locatiah .
. 1 r-a(t) 3
of the electron. V(F—a(t))~-2e* —+ —5—+0(ay%|. (2.9
Let us transform the wave function in E@®.1), (F,t), o @
to d(r,t) by the following relation:
For a Taylor expansion similar to that in E@.8), Reiss
. ie? [t - and Krainov and Bauer assumed that the incident laser is
yalf,)=exp — 5 — ffo (ndr circularly polarized. In this case, the absolute valueagf)
is constant so that the expansi¢@®) is valid for any timet.
Xexpa- ﬁ)@(r t) (2.2) However, we are interested in tliaearly polarized electric
field. In this case, the absolute valueda(ft) varies with time
so that the Taylor expansidB.8) is not necessarily adequate.

where Based on a rough estimation, let us discuss the conditions
of validity of using the approximation E¢2.8) in the case of
e (t . . : L . .
a(t)= _f A(7)dr. (2.3 the linearly polarized electric field. The mean tunneling time
mJ-—e t, is given by
Here, it is assumed that the laser field is adiabatically turned Iml,
on att=—o0. Note that the phase-factor transformation is tt:x/ieF’ (2.9

not applied 19]. The quantitya(t) denotes that the classical

electron driven by the laser fiel(7) has a quiver motion of ] o ] )
the vector radius. wherel, is the ionization potential. Usually, tunneling can
Using the Kramers-Henneberger transformafia@l, itis ~ take place whet, is less than half the period of the incident

shown that the wave functio® (,t) satisfies the following laser. Therefore, until the tunneling is almost over, the phase
Schralinger equation: of the laser field will roughly change from zero tot;,

which is of a small magnitude. In this casgt) will hardly
change. Within this restriction, we can apply the approxima-
)J d(F 1), tion of Eq.(2.9).
Substituting Eqg.(2.8) into Eq. (2.4), the approximate
(2.4  Schralinger equation is of the form

+V(|r—a(t)

" T 2m

. ID(F,t) #2v2
at a
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ad(Ft) #2v2 1 fat) N {i _ . p?
=| - - 7 Ft)y=exg+{p-F— 5=t
h—r T -l | LGOS Yalf,) 1P T o
(2.19 1 [t R _ ze?
o . - = d7 —2ep-A(7)+e?A%(7)]+ —t
Let us transform the wave function in E@.10, ®(r,t), 2mJ o

into @' (r,t) by the following unitary transformation:

1t _ "
~ 5 j_wdr[—2ﬁ,8ﬁ~A(T)+ﬁ2B2A2(T)]

' (F,t)=expi BA(t) - F}D(F 1), (2.12)
—hBA(t)-[F+ &(t)]”. (2.15
where
Equation(2.195 can further be transformed into the length
zel gauge:
B rmotad (212 )

Then, the wave functio® '’ (r,t) satisfies

ID' (F 1)

i P

- a2 L ) ze?|
= %{—|V—BA(’[)} . d'(r,1).
(2.13

The wave functiond’(r,t) can be directly obtained from
Eq. (2.13:

oo = | 9= eR0 1 7~ St

m

1 [t

dr —2ep- A(7)+e2A? +Zezt
om | d7l—2ep-A(r) +e°A%(7)] g

—ift dr — 218 A(7) + 1 ?B2A2
om | ATl =28Bp-A(7) +Ai°B°A%(7)]

(2.16

—hBA(L)-[F+ &(t)]] .

i p2 In Eqg. (2.16), the term containingy, is the first-order and
O'(r,t)= exr{%{ p-r— ﬁt those involvingg are the second-order Coulomb corrections.
Note that, if the second-order Coulomb correction can be

—ift dr — 2% Bp-A(7)+h2B?A%(7)
om | ATl =28Bp-A(T) +h7BA%(7)]
(2.14

The wave functionb (r,t) is easily obtained from the trans-
formation of Eq. (2.11). Therefore,

neglected B=0), the Coulomb-Volkov function utilized in
Ref.[1] is recovered. The above mentioned derivation is es-
sentially the same as that reported by BalEf|. As was
pointed out above, however, Bauer did not derive the photo-
ionization rate in his papdri7]. In the following, we show
the derivation of analytical formulas using the second-order-
corrected Coulomb-Volkov function defined by E&.16).

To be specific, we consider a hydrogenlike one-electron

the second-order atom in the presence of a monochromatic electric field. The

Coulomb-corrected Volkov function in the velocity gauge rate of photoionizationw, for direct transition from the

Ya(F,1) is obtained from the transformation of E@.2):

2 im ke[ o [ dtcosuTicoswnvs
Wo—gz im Re W » tcogwT)cog wt)Vj

Tow

eF
p+ Ksm(wT))Vo

ground bound state to the continuum state is given by

_eF
p+ ?sm(wt)

thd L efF 21 208 72 B2F2 » 25 cod
X ex 7. T 0+% p+jsm(wr) +% Tp- sin(wr) + o2 sif(w7) | +2Bcoq2w7) | |,
(2.17
where
lo=1o+A, (2.18
~ Ze?
A=——, (2.19
Qo
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Z2%e?

lo=—E,=—— (ionization potential, 2.2
0=~ Eg=5g | potential,  (2.20
T=e+hp, (2.21)

5 npeF? A -
T ome? 2 (222
Vo(P)=(exp(ip-F/h)|e(F-N)|yy(N),  (2.23

andF is the maximum amplitude of the electric field includ-

ing the linear polarization.

At this point, it should be noted that the essential differ-

ence between this work and the previous st{iti§] is that

the effective ionization potentia}, is smaller than that when

the usual Volkov function is usedi{) by the termA(=

—Z€% ay). The effect of this phase-shift term is of course a
decrease of the binding energy. Notice that in the calculation
the quiver radiusyy cannot be too small, because then the

effective binding energyy in Eq. (2.17 would be negative,
which is unphysical.

Carrying out the integration ovérand taking infinity for
T yields

27 d¥p “ [ p?
_ - >\ [ 2 " =
Wo=—7 J(ZWﬁ)3|L(p)| n;xé |°+2m nﬁw),
(2.24
where
- E°F? E°F2
|g=|(’,+4mw2 lot =2 +A, (2.25
E=\e’+#4°p% (2.26
and
_leieljymay
AT
F[p+ (eF/w)u]
X jgdu —
{lo+ (1/2m)[ §+ (eF/w)u]?}®
ifu dv L eF )2
X — ot —| p+—
ex hoJoJ1—p2 % 2m P o'
+2§(1—02)H. (2.27

PHYSICAL REVIEW A 66, 053408 (2002

UZ‘(— P COSO+i M+1 (2.28
: J2ml, 2mlg T

where
p-FE=pFcosé (2.29
and the “modified” Keldysh parameter
_ wy2mly
== (2.30

Note that the second-order Coulomb correction of the
Volkov function g8 is introduced in the Keldysh parameter,
while the first-order correction does not affect the adiabatic
parameter. In addition, we can see that the modified Keldysh
parametery is always smaller than the original Keldysh pa-
rameter,

w\/Zmlo

oF (2.31

y=
provided that the laser amplitudeand the frequencw are
the same: the photoionization rate tends toward the tunneling
ionization region in the presence of a Coulomb potential.

In principle, contour integration with the residue theorem
of Eq. (2.29 can be carried out including th& dependence
of all the preexponential factors, which leads to the most
accurate formula. However, it is sometimes quite cumber-
some and difficult. Therefore, in the present work, the sim-
plest expression will be presented. When the Coulomb cor-
rection up to second order is included and all the
preexponential factors of Ed2.24) are p independent, we
have

~ =~ 2 |~
WOZN(’)/,V,&),Io,A,B)XeXF{_%{I()(Sinh17
14292 Y
+B(sinh T+ 9y1+72 )] } (2.32
where
. e%F? 1
IOZIO_’_W:IO 1+ﬁ . (2.33

The definition ofN(y,7,®,lo,A,B) is given in Appendix A.
However, it should be noted that it sometimes happens that
the behaviors of the photoionization rates at the tunneling
limit are quite different depending on the various treatments
of the preexponential factofsee Sec. I). For comparison,

Notice that the singular point of the integrand in Eq.the photoionization rates for different treatments of the pre-
(2.27 is different from the zero point of the time derivative exponential factors in the first-order Coulomb correctigh (
of the exponent. This is the point most different from Keldy- =0) are presented in Appendix B.

sh’s theory, where they coincide.
One of the singularity points df(p), us, reads

As mentioned above, the main role of the first-order Cou-
lomb correction is to lower the ionization potentjakee Eq.

053408-4



THEORETICAL STUDIES OF THE LONG-RANG . .. PHYSICAL REVIEW A 66, 053408 (2002

(2.18]. Here, let us discuss the effect of the second-order
Coulomb correction. In fact, by comparing the first-order
Coulomb-corrected Volkov function,
1031 -- 12.00
i p? 1 8.625 — 10.31
(P t)= _l[R—aA L S 6.938 -- 8.625
‘pp(r’t)_ex%ﬁ [[p eAn)]-r th m 5.250 - 6.938
3.563 -- 5.250
‘ 1.875 -- 3.563
_ — 2827 R 0.1875 -- 1.875
XJloodT[ 2ep-A(7)+eA7] At”, 500 . GoETE
(2.39
0 T 100 200 ad0 400 500
and the second-order corrected function of Eg16 with a ; . 2
changed order of terms in the exponent, ® Flsld: Intsnsity:(P¥ien )
i e —
wﬁ(rit)=exp[g{[p—(e+ﬁﬁ)A(t)]-r
2 1031 -- 12.00
p ¢ 1 ft dr—2(e+B)p 5\( ) 8.625 - 10.31
—as === T — . T 6.938 - 8.625
2m 2m J_. 5.250 — 6.938
3.563 - 5.250
2 2 2\ R ~ N R 1.875 - 3.563
+(e“+AB)AY(T)]-At=FBA(t)-a(t); |, 0.1875 - 1.875
-1.500 -- 0.1875
(2.35
we could easily have obtained some hint as to what kind of 0'00 100 200 300 400 . 500
photoionization rate formulas should finally be derived. (b) Field Intensity (PW/cm®)

First, it is apparent that when we include the second-order

correction the following transformations have to be per- FIG. 1. Comparison ofS calculated by(a) summation[Eq.
(A11)] and (b) integration[Eq. (A14)]. The ordinatey? is cog @

formed: -
where 6 is the angle betweep and F. In this figure, In§ is
e—e+hp (2.36 plotted. The wavelength of the incident laser is assumed to be 10
um. For the summation in EgA1), 500 000 terms from the lowest
and limit were summed up. Notice the quite good agreement between
(a) and(b).
e’—e?+h2p2. (2.37

In Egs.(2.32 and(A6), the electron charge is included in EE:sgsSgrzgpagm;so ﬂ{lr;:l? t%gubrr;:x egfr?é);tii{ f(:():fcgpr): r:;r?d the
the Keldysh parameter and the effective ionization potential, ' ts of the f pl pl than th £ h
However, it is not necessarily apparent which transformatiory PONENts ot the .ormer ar.e always a~rg,;er an ose. otthe
[Eq. (2.36 or (2.39] would affect the Keldysh parameter or latter [note thatA is negative and that, of Eq. (B3) is
ionization potential without careful derivation. Nevertheless,defined by Eq.(B2)]. Therefore, we can predict that the
it can be qualitatively concluded that the second-order Corphot0|on|zat|on rate in the presence of the Co_ulomb potential
rection B lowers the Keldysh parameter and enhances thé always larger than thgt in its absence. This tendency has
effective ionization potential. already been observed in several pajéf;16. Intuitively,
Secondly, it is noted that the extra teravi BA(t) - (t) one can easily suppose that reducing the binding energy

in Eq. (2.35 is not contained in Eq2.34. The main role of gives rise to an increase of the photoionization rate. How-
T e ever, from our formula, one can understand this tendency in

this term is to add an extra term B{sinh *y+7/1+%°) in  ; nore insightful way and interpret the phenomenon analyti-
the exponents of Eqg2.32 and (A6), and to reduce the cally.
effective ionization potentialnote thatB defined by Eq.

(2.22 is negativé.

Notice that our expression is almost the same as that of
Keldysh if A=B=0 (no Coulomb effedt although ours is In this section, first we show numerically the validity of
larger than that of Keldysh by a factor of 4. This is due to thethe approximation(A14) for Eq. (A1l). Next, we demon-
fact that we utilized the residue theorem for the evaluation oftrate the procedure used to obtain the photoionization rates
Eq. (2.27), whereas Keldysh used the saddle-point methody our formulas and compare some physical quantities in the
for that purpose. first- and second-order Coulomb corrections.

An important conclusion can be drawn from E@®3) Figure 1 compareS calculated by summatidriEq. (A11)]
with the assumption of Eq$B10) and (B11), and that with  and that by integratiofiEq. (A14)]. The ordinatey? corre-

III. RESULTS AND DISCUSSION
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sponds to cdsd whered is the angle betweef andE. Note  tunneling limit in our approximation. The remarkable point

that In@ is plotted in the direction of theaxis. It is evident  to note is that in Eq(3.1) the factor & \2mlg/aeF is rela-

that both of them agree quite well over a wide range of lasefively large in the tunneling limit below the barrier suppres-

intensity. This shows that a simple integration can be usedion ionization(BSI) region. This kind of factor was not

for calculating the ionization rate; in this case, our formula-found in the theories of Keldysh and ADK. It should be

tion is much easier than Keldysh’s. noted that this factor may amount to 2 or more. This suggests
If the field intensity is small, that is§ in Eq. (A12) is  that this term is not negligible.

small, it might be conjectured that the summation in Eq. Next, we show how to estimate the photoionization rate in

(A11) and the integration in EqA14) may be quite differ- the tunneling regime. The procedure is as follows. For the

ent. However, in such a casgbecomes large anld in Eq.  approximation of Eq(2.8) to be valid, we have to check that

(A13) may be a large positive number in the exponent, since

K is a monotonically increasing positive function pfor all cog w/Wg)~1, (3.9

y values between-1 and 1 in the tunneling regime. There-

fore, in the low field intensity ranges is quite small as can \yhere the photoionization rates, is calculated by Egs.
be seen in the figure. (2.32, (A6), (B1), or (B3). Equation(3.4) indicates that the

_On the other hand, when the field intensity is large, that isphotojonization process should terminate much more rapidly
din Eq. (A12) is large, it is conjectured that the summation than the laser cycle.

in Eq. (A11) and the integration in Eq(A14) may be of To assure that we are in the tunneling region,
almost the same magnitude. We have confirmed th& is(

actually of the same magnitude down to two places of deci- 73e5m?2

mals at high field intensity. Although we do not show other F<W (3.5

calculations for various laser frequenciesthe above argu-
ment holds in a wide range @j.

According to Keldysh, neglecting the Coulomb interac-and
tion in the final state, which is well known, changes the
power ofF in the preexponential expression without chang- v<0.5. (3.6
ing the exponential itself. However, our formulas includpg

dependence of the preexponential factors show this tendengyquation(3.5) ensures that the photoionization is not within
even if the Coulomb effect vanishes in the tunneling limit. ;e Bg| regior{23—26. On the other hand, E¢3.6) prohib-
For instance, in the tunneling limity=0) for casedi) and  jts the photoionization process from lying in the multiphoton
(iii ) in Appendix B, we have regime. The value 0.5 was adopted following the assumption
| 112312, 172 of Ref.[24]. If Egs.(3.4)—(3.6) are satisfied at the same time,
Wo=23/4\/§—0( m™1o ) the most exact photoionization rate will be obtained.
h\ heF As was pointed out in the last section, our formulas show
5 that the photoionization rate is larger in the presence of the
« 1 exp( 4 2m|0> 3. Coulomb potential than in its absence. This can be roughly
1+2mid/heF 3neF | ' explained as follows. In its absence, the barrier width is
Io/(eF) and the barrier height i. On the other hand, in its
On the other hand, for caség) and(iv) in Appendix B, we  presence, the barrier width iﬁ 02—4Ze3F/(e F) and the bar-

obtain rier height isly,—(Z€/F). It is evident that the barrier
" width and height ar_e_smaller when the Coulomk_) potenti_al is
W 21,4\/52 heF present than when it is absent so that the tunneling rate in the
0 i\ mY4 832 presence of the Coulomb potential is larger than that in its

absence. Our formuléB3) with Egs. (B10) and (B11) re-
4 2m|(3) flects this fact. It should be noted that in the high-intensity
xexp( ~ 3heF ) (32 |imit the effect of the Coulomb potential is negligibly small.
The second-order Coulomb correction is less significant
For comparison, we show the Keldysh formula in the tunnelthan the first correction in the tunneling regime. Let us com-

ing limit, pare some physical quantities in the first- and second-order
corrections.
3wl mtAgE Y2 4\2mi3 First, becausé,=Z2e*m/(242), A= — 243w y/(Z2me")
W= % | Tern BET andL =%2F%B%/(4mw?) =h%w?y*1(2Z*m?e®). The former

is the contribution of the first-order Coulomb correction to
Equation(3.1) shows that the photoionization rate increasesthe shift of the resonance structure of the photoionization
saturates, and decreases to zero eventually, whilsf&E®. rate versus laser intensity and the latter that of the second-
has a tendency to increase unilaterally to infinity. This is theorder correction. Due to the assumption that
same tendency as that of the Keldysh and Amnosov-Delone-

Krainov (ADK) models[23]. Note thatA vanishes in the y<1 andZo/ly=2k%w/(Z?me)<1, (3.7
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L is much smaller thai\. Therefore, it can be seen that the ACKNOWLEDGMENTS
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second-order Coulomb correction. From E#.30),

APPENDIX A: DEFINITION OF N(7,7.0.l0.A,B) AND
INTEGRATED FORM OF EQ. (2.32

_ Y
= . (3.8 o -
7T 14730y (ZPmé) The preexponential factomN(y,7,w,19,A,B) in Eq.

(2.32 is given hy

The part #%wy®/(Z?me*) is the contribution from the

: PO N(y,7,0,10,A,B
second-order correction. If we compare this whAh it is (vy@.lo )

evident that the second-order correction is smaller by many Mk Y S2n =
. . . 1
orders of magnitude than the first-order correction. =4\/2|ow/ﬁ(:) =| ¢, <
Thirdly, the “modified” ponderomotive energies Y 1+y 2n=0

€%F2?/(4mw?) and E?F?/(4mw?) are introduced by includ- ~n Tr

ing the second-order Coulomb correction. The contribution Xexp{ -2 <—° 1> -24n Cs}
of the second-order correctidn3=Zm?w*/ F3 is also much hw w

T

smaller than the elementary electron chaege o5 " T 12
From the above arguments, it is concluded that the X @ [ 7_2 c2 <_°+1> _ ﬁo +n ] ’

second-order Coulomb correction is negligibly small com- Vity w w

pared to the first-order correction in the tunneling limit. (A1)

where the symbo{x) denotes the integer part of the number

IV. CONCLUDING REMARKS x and ®(x) is Dawson’s integral,

Including the principal effect of the long-range Coulomb
potential in the Volkov functiorithe approximate Coulomb- X
Volkov functior), we derived analytical formulas for the O (x)=exp(—x?) jo exp(y?)dy. (A2)
photoionization rate for hydrogenlike atoms following
Keldysh's procedur¢l], not depending on the crude quasi- o )
classical analysis for the preexponential factors that wa§ther quantities in EqAL) are defined by
adopted by Keldysh. An important point is that our formulas
are quite simpl;a anr(]j insilghtlful. and dod n%t rgqulire huge com- . A(2+72) N A2 7

uter memory for the calculation, an sical meaning can C;=) 1— —

gasily be de?:lluced. For example, corr?pgring (:213)) WitrfJ 2o(1+y7) 2ok 1477
the assumption of Eq$B10) and (B11), and with the as- . 25 W;j

sumption'A:O (no Coulomb effegtone can draw the im-
portant conclusion that the photoionization rate in the pres-
ence of the Coulomb potential is always larger than that in (A3)
the absence of the Coulomb potential.

As for the derivation method, Keldysh used the saddle-
point method for the contour integration of E@.27). Our \/ ~1+2%?2
derivation shows that we do not have to use the saddle-point Co=\ 1+ 20o(1+92) +B—— (A4)

. . ) 0 Y 0

method; instead, we can perform the contour integration by
the residue theorem. We have also reduced the infinite sum-

1

24372, 231+ A |°

Ioﬁw |0 Ioﬁw ’

Ay

mation to integration as shown in EGA8), which renders - Y

the final photoionization rate formula quite sim_ple_. Our Cz=sinh™ " y— WJF 21o(1+ 732

simple formulas EqgA6) and(B3) are free from the infinite

summationS(y,1o/%w) in Eq. (16) of Ref. [1] and Daw- BY®

son’s integral of Eq(A2). ———. (A5)

In summary, the role of the first-order Coulomb correction
is to lower the ionization potential and enhance the photo-
ionization rates and the second-order correction modifies the Aside from the Keldysh-like form of Eq(Al), it is in-
Keldysh parameter, decreases the binding energy, and isightful to integrate it oven. By so doing, Eq(2.32 reduces
creases the photoionization rates. to
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2 =2 - e B —2
AR Y Ay By(1+2v)
Wo= V2l w/h(j) H= + + .
0 "y 1+9% ¢\, V1+72 201+ y)% 0 | J1+72
el YNty
xexp{ - —{ Io< sinh 17y — 1427 This approximation needs to be examined. For this purpose,
we consider
+Asinh 1+ B(sinh 7 y+7V1+72 )H (A6) =S Jn=sex—K(n—], (ALD)
n
where
where
Cy=sinh Yy+ Ay +~I37 Ly (A7) 15
’ TN A P 0=5o (A12)
Note thatl o disappears in EqA6), while Eg.(Al) con- and
tains this term. The resonance structures detected by using K =2(G—Hy?) (A13)

Eqg. (Al) are expected to show a shift from the counterpart in
Ref.[1] and that including the first-order Coulomb correction gjn gq. (A11) should be compared with
(see Appendix B

An important approximation involved in the present [~ .
theory is to change the summation with respeat tpropor- S= 5 dnyn—dexfd —K(n—9)]=2Va/K". (Al4)
tional to the excess photon number absorbed above thresh-

old) to integration, An important feature of the approximatidAl14) is that it is
. independent of. In Sec. Ill, we show numerically the va-
= 2 ~ lidity of the approximation Eq(Al14) for Eq. (A11).
" " 2
><TE% : Nnfio—1lg exp{ ~ 7, (Nho—15)(G—Hy )] The formula Eq(A6) is quite simple and the infinite sum-
n o/hw

mation of Eq.(Al) is unnecessary. By adopting Dawson'’s
w _ integral, as the tunneling limit approaches, the computation

o ﬁ dnynfiw—1g time for obtaining converged results becomes quite large be-
lolhe cause the summation overequires many iterations. In that

2 ~ case, the above formulas integrated avesuch as Eq(A6),
X exp[ ~ 7o (nho— (G- Hyz)], (A8)  are quite convenient.
where APPENDIX B: PHOTOIONIZATION RATES IN THE
FIRST-ORDER COULOMB CORRECTION
G sinh- 151 Ay N Byvi+y? (A9) In this appendix, we show explicitly the terms appearing
Y 211+ 72 lo in Eq. (2.32 for different treatments of the preexponential
factors. Here, we show four cases that we can consider.
and Generally, the photoionization rate can be expressed as
|
vy \PI1-A@+ 92121 (1+ 42 + (B2 i) (N1 + 1) ] 2 (.
Wo=42lqw/h : — exg ——1 14| sinhty
Vity V1+A214(1+ 9% +B o
Wit92) o - To To y Ay
————|+Asinh! exg —2| | —+1)——+n]|{sinhty— +
11252 ' 7] 2 X‘{ <<hw fro YT T 2 211t A
~ 1/2
y 2y ( < Iy > I
+C————=B{ |0® Bl (—+1)——+n , (B1)
V1492 ] V1492 ho Lo
where®(x) is the Dawson integral defined by E@2) and
To=1 +—eZF2—| 1+ ! B2
o=lot gz =lol 1+ 502/ (B2)
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Furthermore, if we perform the summation ovein the above equation, then the following simpler expression is obtained:

) [mlgw 52
Wnh=
0 o1+

A2+ v?) A? y
- +
2lg(1+7%)  2lgho 1442

2 ~
exp[ - ﬁ—{l ofsinh™ ! y— yJ1+y2/(1+2y?)]+Asinh 1y}
w

X .
[sinh L 5+ (A/21 ) (y/ 1+ v2) +2CTV2{sinh L y— y/ 1+ Y2+ (A2 ) [ Y3/ (1+ 4232+ C— (5 1+ 2B}
(B3)
[
. () I(]; we assume that all of the preexponential factors o hwy? . 3A
epend ore. T 21+ A)bs | T 20o(1H D)
B= fro 73 2
21gb2 (1+ %)% + L] : (B7)
B -, ) hol g1+ 92
X{l_ A Ay ]
21o(1+ 52 Ny
o140 hwloVity (ii) If we assume that cage depends orp but ug does
. ho 1 not (Us=ivy),
2lgby y(1+ %)
, 3A(29%+2y4+7y%+2) __hoV1+y? 14 Ay’ A%y
X —(4y + D+ 2o(11 ) 2ylob, lo(1+9%)  hwlo(1+97)
R2y(y'~ 4y~ 1) 3A ]
+ B4 Y (B8)
ol Lt 2 (4 loVL+ 7
and
and
ho A(4y*+13y°+6
= 2 A0 {(szz)_ (ZT (1+y2) ) ~ ~
v o o=y ol ho [ A2Y+Y Ry ©9)
AZy(1+297) (85) 2lgby lo(1+ %) ﬁwloxll—i-yz -
holgyl+y? .

(ii) If we assume thati; depends orp but cosf,e does
not (cosfpe=1),

(iv) If we assume that ca%e and ug are p independent
(cospe=1 andug=ivy),

3
B:ﬁ_“’y_ B=0 (B10)
21b2 (14 %)%?
3A AZy 2 and
X1 1- -+
210(1+%9)  hwlgyl+y?
~ C=0. B11
ho Y 2 A(2y*—89%+5) (B1Y
+— -2t ————
21ob, (1+72)%2 (v=2) 210(1+ 72
In Egs.(B4)—(B9), b, is defined by
2A% y(y*~1)
+_hw| —— (B6) B ~
o Vi+y A2+ v?) A%y
b,= (B12)

and

-1+ -~ :
2101+ 9%) 2l w1+ 42
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