
al

PHYSICAL REVIEW A 66, 052902 ~2002!
Computer-simulation calculations of the electronic stopping of slow, heavy charges by a classic
harmonic oscillator

E. R. Custidiano,* F. J. Pe´rez de la Rosa, and M. M. Jakas†

Departamento de Fı´sica Fundamental y Experimental, Universidad de La Laguna, 38201 La Laguna, Tenerife, Spain
~Received 26 June 2002; published 26 November 2002!

The interaction between slow, heavy pointlike charges and a classical electron harmonically bound to a
heavy nucleus was studied by means of computer simulations. It is found that the equation of motion governing
the interaction between a charge and classical harmonic oscillator can be conveniently scaled up so that the
number of independent parameters is significantly reduced. Therefore, the stopping cross sectionS appears to
be a universal function of Bohr’sj parameter, the sign of the ion charge, and, with less significance, the scaled
initial amplitude of the harmonic oscillator. Strikingly however, the stopping cross section of positive charges
appears to be larger than that of negative ions at the samej. Moreover,S is found to be a linear function of the
ion velocity for positive ions, whereas it is a nearly quadratic function for negative charges. It turns out that the
mechanism responsible for the energy loss of positive ions is completely different from that of negative charges
and, in both cases, different from those assumed in previous models of stopping of low-energy ions.
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I. INTRODUCTION

In order to calculate the electronic stopping of fast, hea
charges by solid matter, Bohr@1# replaced atoms by the ubiq
uitous classical harmonic oscillator~CHO!. Since then, the
CHO model has become widely used in dealing with
interaction of fast ions with solids, and this remains so ev
though more accurate quantum calculations have been
lished ~see Refs.@2# and @3# and references therein!. It is
needless to say that the success of the CHO model is a
uted to the fact that it is simple and yet fairly rich in terms
the number of processes it accounts for@4–6#. In addition,
Bohr’s CHO calculations were proven to be fairly accurate
high ion velocities.

The motion of a classical electron bound to a harmo
force and subjected to the Coulomb attraction of a mov
charge constitutes a fairly complex problem. Actually, sin
it does not have exact analytical solutions, Bohr had to
course to several approximations. The most important am
these is the concept ofclose and distant collisions. These
approximations allowed Bohr to calculate the mean ene
loss as a function of the impact parameter in a simp
straightforward manner. However, while thedistant colli-
sions approximation poses no difficulties, in solving t
close collisions Bohr neglected the harmonic forces and
sumed that the ion-electron interaction is described by
Rutherford scattering law. By doing this, however, the sto
ping cross section so obtained is limited to cases of high
velocities. At the time Bohr published his paper, this was
a serious drawback because most experiments were,
performed using high-velocity ions from radioactive dec
Later on, however, interest shifted to lower energies, wh
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both theory and experiment have found significant diffic
ties.

It was not until recently, however, that Sigmund@4# man-
aged to extend Bohr’s stopping theory down to low velo
ties. But the results in Ref.@4# are based on anad hocpro-
cedure devised to interpolate between the close and dis
collision approximations, rather than on physical argume
Therefore, one cannot regard them as a rigorous extensio
Bohr’s CHO model to low bombarding energies. Motivat
by this, we decided to carry out numerical simulations of t
interaction between a pointlike charge and a classical e
tron harmonically bound to a heavy, positively charg
nucleus. The results show that the CHO responds to a slo
moving charge in quite an interesting manner. Furthermo
the scaling law in Refs.@1,4# appears to be a feature of th
combined Coulomb-harmonic potential itself and is n
linked to any of the approximations introduced by Bohr
his calculations. A neat asymmetry appears between pos
and negative charged ions. This low-velocity extension of
so-called Barkas effect~see Ref.@7# and references therein!
suggests that the underlying mechanisms of the stopp
strongly depend on the sign of the ion charge. A more
tailed study, aimed at clarifying the origin of this asymmet
shows that positive ions may literally trap the electron with
the Coulomb potential for some time during the passage
the ion, a result that may have important implications for t
assumption, commonly employed in stopping theories, t
the electron absorbs energy in a single-scattering event.

It must be mentioned that no comparisons of our res
with experimental data are produced in this paper. This ste
from the fact that, to do so, it would imply deviating from
our objective of studying the CHO model in the low-ener
regime just ‘‘as is,’’ i.e., with no additional assumptions a
no approximations of any sort. In the following section t
main assumptions utilized in these calculations are p
sented. The results of our simulations are shown in Sec
together with a discussion of the most important con
quences of our findings in this paper. Finally, a brief su
mary is offered in Sec. IV.
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II. CALCULATIONS

In this paper we assume that a heavy, pointlike char
particle approaches fromy52` along a straight trajectory
with impact parameterp and constant velocityv0 . At the
origin of the frame of reference a heavy nucleus hold
classical electron through a harmonic force~see Fig. 1!.
Therefore, the equation governing the motion of the elect
can be written as

m
d2r

dt2
52mv2r2Ze2

r2R

ur2Ru3 , ~1!

whereR5kz p1kyv0t and

r ~ t !5A~n1 cosvt1n2 sinvt ! for t→2`, ~2!

whereZ is the number charge of the projectile,e is the unit
charge,v is the frequency of the harmonic potential,m is the
electron mass and,ky andkz denote unit vectors alongy and
z directions, respectively. Similarly,A is the amplitude of the
oscillation, andn1 and n2 are three-dimensional vector
which are subject to the equationn1

21n2
251.

It can be readily verified that if one replacesr andt by the
dimensionless variablesr and t, where r5rv/v0 and t
5tv, then Eq.~1! can be rewritten as

d2r

dt2 52r2S 1

j D r2P

ur2Pu3
, ~3!

P5kzb1kyt, and

r~ t !5a~n1 cost1n2 sint! for t→2`, ~4!

wherej5mv0
3/Ze2v, b5pv/v0 , anda5Av/v0 .

It must be noticed that by using the scaling above o
reduces the number of independent parameters from
namely,Z, v, v0 , A, andp, to three:a, j, andb. As a con-
sequence, the energy transferred to the electron previo
divided by the unit of energy, namely,mv0

2, must be a func-
tion of a, j, andb and, similarly, the scaled stopping cro
sectionS̃ must be asole function of a andj, i.e.,

2pE D«b db5S̃~a,j!, ~5!

FIG. 1. Classical electron harmonically bound to a nucleus
exposed to the Coulomb attraction of a heavy ion.
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whereD« denotes the mean energy loss value, in redu
units, averaged over a distribution of initial conditions.

In order to obtainD« a computer program was develope
which simulates the motion of the electron during the p
sage of the ion. Our approach is similar to that used in R
@8# to study the ionization of hydrogen by fast ions. He
Eq. ~3! is solved by means of a standard four-point Rung
Kutta scheme with an adaptive time step as described in
@9#. As initial conditions, we place the projectile to the left
a distance from the nucleus so that the potential energy of
electron in the field of the ion is negligible. Similarly, th
position and velocity of the electron are assumed to be
tropically distributed, with the condition that the spatial am
plitude of the oscillations is fixed and equal toa. Finally, the
integration is stopped when the projectile is far away to
right of the nucleus and the ion-electron potential h
dropped below the same value as that used before the c
sion. Finally, the energy loss for a particular ion trajectory
obtained by subtracting the final and the initial energy of
electron for such a trajectory, i.e.,

D« j5« j
~ f !2« j

~ i ! , ~6!

where« j
( i ( f )) stands for the total initial~final! energy of the

electron in thej th trajectory. In connection with this, it mus
be mentioned that the numerical program verifies that
difference between the final and initial potential energy
the electron in the field of the ion is negligible and that it h
no significant effects on the energy-loss calculations.

After simulating N statistically independent trajectorie
we can calculate the mean energy loss for a given imp
parameter as in

D«5
1

N (
j 51, . . . ,N

D« j , ~7!

where N is determined by the statistical significance r
quested forD«. In this regard, it must be mentioned th
most results in this paper have a relative error of 10%,
less. Therefore, depending on the case,N may run from few
hundreds up to several thousands trajectories. Similarly,
whole process can be repeated for a set of impact param
and so, the stopping cross section is obtained as indicate
Eq. ~5!.

III. RESULTS AND DISCUSSION

In this section we present the results of calculating
stopping cross sectionS̃ according to the numerical proce
dure described in the preceding section. In Fig. 2 we ploS̃
as a function ofj for positive and negative charged ions, a
the electron in the harmonic oscillator with no initial energ
i.e., a50. It must be noted though that in this sectionj will
be assumed to be a positive number, with the sign of the
charge@sgn(Z)# as an independent parameter.

In the first place, the results in Fig. 2 show that the sign
the ion charge appears to be an important parameter her
fact, one can readily see that, depending on the sign ofZ, the
stopping cross sections can be grouped into two differ

d
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COMPUTER-SIMULATION CALCULATIONS OF THE . . . PHYSICAL REVIEW A 66, 052902 ~2002!
curves. Notably enough, that of positive ions appears to
proportional toj21 whereas that of the negative ions lie
below the former and exhibits a smaller slope, i.e.,S}j2n

with n between2
3 and 3

4. It must be stressed, however, that t
fact that for positive chargesS is proportional toj21 implies
that the stopping cross sectionS, in normal units, is a linear
function of the ion velocity, i.e.,S}v0 , whereas for negative
ions one hasS}v0

1.75– 2. In both cases, however, and th
must be remarked, the present simulations do not agree
the predictions in Ref.@4#.

Figure 3 shows that giving the electron an initial amp
tudea510 leads to smaller stopping cross sections. Furth
more, the reduction seems to be larger, the greater thej; and
observe that positive charges seem to be more sensitiv
such an increase than negative ions. Actually, in the cas
negative charges one has to go to aj as large as 1023 to see
a significant difference between the results ofa510 and
those ofa50, whereas for positive ions the two curves a
already separated atj51025. The fact that the stopping be
comes less sensitive toa with a decrease ofj can be readily
explained using the scaled equation of motion derived in
preceding section. In fact, Eq.~3! shows that a decrease ofj
leads to a stronger ‘‘reduced’’ Coulomb potential, and the
fore, by reducingj while keepinga fixed, one is reducing the
electron’s initial energy compared to the interaction ener
One can conceivably expect, therefore, that with a decre
of j, the electron motion, and so the stopping, becomes
dependent ona. With regard to the different degrees of se
sitivity exhibited by positive and negative ions again
changes ofa, we can offer no explanation other than sayi
that it seems to be linked to the difference that appear

FIG. 2. Stopping cross section as a function ofuju. Results of
simulations appear as symbols:d for positive ands for negative
ions, respectively. In both cases, the amplitude of the harmo
oscillator isa50. Theoretical results in Ref.@4# appear as a dashe
curve. To compare the slope of simulations, functionsj21 ~dotted!,
j23/4 ~dot-dashed!, andj22/3 ~double-dot-dashed! are plotted in the
same figure.
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exist between the mechanism responsible for the energy
of positive and negative charges.

In order to understand the results in Fig. 2 we shall ca
out order-of-magnitude estimates of the mean energy loss
positive and negatively charged particles and for the limit
cases of low bombarding velocities. To begin with, let
consider a negatively charged projectile. In this case, as
ion approaches the harmonic oscillator, the electron is
pelled and pushed away from the ion path~see Fig. 4!.
Therefore, one can conceivably assume that the electro
never exposed to the strong core of the Coulomb potentia
in the case of a positive charge. This suggests that Bo

ic

FIG. 3. Stopping cross section as a function ofuju for positively
~solid symbols! and negatively~open symbols! charged ions, and
initial amplitude of the harmonic oscillatora50 ~squares! and 10
~down triangles!.

FIG. 4. Trajectory of the electron during the passage of a ne
tively charged ion with impact parameterb50.5 anduju51023.
2-3
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concept of distant collision might hold though; in order
use the same procedure as that of Bohr’s, some additi
assumptions must be made.

In the first place, one may assume that the electron is
the time, oscillating around the point where the net force
zero, i.e.,r0 . This ‘‘zero-force’’ position can be readily cal
culated using Eq.~3!, i.e.,

r052S 1

j D r02P

ur02Pu3 , ~8!

where, as was previously defined,P5kzb1kyt.
Furthermore, one can reasonably assume thatr0

5r0v/v0 will be parallel toP5Rv/v0 , though with oppo-
site direction~see Fig. 5!. Therefore, we can disregard th
vector nature ofr0 and P, and work with them as if they
were scalar variables, i.e.,r0 andP. In consequence, assum
ing thatP is positive,r0 can be obtained as the real root
the cubic equation,

r0~r02P!21
1

j
50, ~9!

which can be conveniently scaled up usingr̃05r0j1/3 and
P̃5Pj1/3, thus the dependence withj is removed and we
obtain the equation

r̃0~ r̃02 P̃!21150, ~10!

which be readily solved, the result being@10#

r̃05s11s21 2
3 , ~11!

where

s152F S P̃

3
D 3

1
1

2
1A1

4
1S P̃

3
D 3G1/3

,

FIG. 5. Equilibrium or zero-force position of the electron in th
harmonic oscillatorr0 under the repulsive force of a negative
charged ion located atR.
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s252F S P̃

3
D 3

1
1

2
2A1

4
1S P̃

3
D 3G1/3

. ~12!

Using the expressions above one can easily verify t
r̃0521 for P̃50, and thatr̃0}2 P̃22 with P̃@1 as shown
in Fig. 6.

According to our previous arguments, we can use the
polar approximation introduced by Bohr to obtain the me
energy loss in the distant collisions, i.e.,@11#,

DE~p!5
p

e2 uĒ~v,p!u2, ~13!

provided that the Fourier transform of the electric field d
to the ion, i.e.,Ē(v,p), is not evaluated right at the center o
the harmonic oscillator as Bohr did, but at the instantane
oscillation centerr05v0r0 /v ~see the Appendix!. That is,

Ē~v,p!5
Ze

A2p
E

2`

1`

dt
r02R

ur02Ru3
e2 i tv, ~14!

which, using the previously introduced dimensionless va
ables, reduces to

Ē~v,b!5
Zev

A2pv0
2 E

2`

1`

dt
r02P

ur02Pu3
e2 i t, ~15!

and according to the frame of reference shown in Fig. 5 a
the parity of the integrands, we thus have

Ē~v,b!5
Zev

A2pv0
2

3E
2`

1`

dt
kz cosu cost2kyi t sinu sint

~r02P!2 ,

~16!

where cosu5t/P and sinu5b/P.

FIG. 6. The zero-force position,r05r 0v/v0 , for the electron as
a function of the distance of the negatively charged ionP
5Rv/v0 measured with respect to the center of the harmonic
tential @see Eqs.~8!–~12!#.
2-4
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COMPUTER-SIMULATION CALCULATIONS OF THE . . . PHYSICAL REVIEW A 66, 052902 ~2002!
For smallj values, however, not onlyr0 is a fairly slowly
varying function of t, but alsor0@P for a considerably
large range oft aroundt50. In that case, (r02P)2 can be
taken out of the integration and replaced by (j21/31b)2,
thus Eq.~16! can be written as

Ē~v,p!'
Zev

A2pv0
2~j21/31b!2

g~b!, ~17!

where

g~b!5E
2`

1`

dt~kx cosu cost2kyi t sinu sint!

52b@kzK1~b!2kyiK 0~b!#, ~18!

whereK0 and K1 are the modified Bessel function of firs
and second order, respectively@10#.

Since bothK0(b) and K0(b) drop to zero faster than
(j21/31b)22, we can write

Ē~v,b!'
Zevj2/3

A2pv0
2

g~b! ~19!

and

DE~p!'
Z2e4j4/3v2

2mv0
4 ugu2~pv/v0!5

mv0
2

2j2/3 ugu2~pv/v0!.

~20!

Finally, the stopping cross section becomes

S'4p
mv0

4

v2j2/3, ~21!

or

S̃5Sv2/~mv0
4!54pj22/3, ~22!

a result that agrees fairly well with simulations~see Fig. 9!.
We now turn our attention to the case of positive

charged ions. The fact that the Coulomb potential is n
attractive makes the situation completely different. Duri
the approaching stage, when the ion is far away from
harmonic oscillator, the harmonic potential prevents the e
tron from getting close to the ion. At some point, when t
ion gets close enough to the center of the harmonic poten
the electron can be captured by the ion and, from that m
ment the electron remains orbiting around the ion until
process just described occurs in a reverse order: The
releases the electron and it comes back to the harmonic
tential.

Since the binding energy in the harmonic potential is
finite, the electron cannot be captured by the ion. Theref
the word ‘‘capture’’ is used here in the sense of identifyi
the potential which dominates and, consequently, determ
ing the electron’s motion. In connection with this, it is wor
adding that our simulations show that, in the case of posi
ions, the electron’s trajectories appear to be dominated
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only one potential at a time, that is, either by the harmonic
by the ion’s Coulomb potential, but not the two of the
simultaneously. This should not be confused with what h
pens in Bohr’s close collisions where the Coulomb and
harmonic potentials can be thought of as acting separa
because of the huge difference that exists between the
scaling of these two interactions.

To begin with, we shall calculate the distance at which
electron can be captured by the ion. To this end, one m
conceivably assume that the ion is in a position of captur
the electron if no point exists along the straight line whi
connects the ion and the center of the harmonic poten
where the force is directed towards the latter. This obviou
occurs when, along that line, the potential energy has
extreme which is also an inflexion point, i.e.,r1 in Fig. 7.

Using the previously introduced dimensionless variabl
the distance of the ion at which capture may occur
measured from the center of the harmonic potentia
becomes

P053/~4j!1/3. ~23!

Second, we assume that the ion captures the electro
soon as it is situated at the previously calculated dista
from the origin, i.e.,P0 . From that moment, the electron
subjected to the strong, attractive field of the ion and sta
orbitting around it. This remains so until the ion is foun
again at a distanceP0 during the second half of the collision
Then the electron may escape from the Coulomb attrac
of the ion and starts oscillating around the origin again. T
last process however may take some additional time, s
the electron may accompany the ion beyond the critical d
tanceP0 . Obviously, such additional distance is determin
by the time the electron may need to actually escape from
Coulomb attraction, namely,fT, whereT is the period of the
electron in the Coulombic trajectory, andf is a non-negative,
less than unity number, indicating that it may take a fract
of the periodT.

According to the previous, approximate description of t
interaction between the positive charge and the harmonic
cillator, the energy is transferred to the electron as a resu
the difference between distances up to which the electro

FIG. 7. Potential energy of the electron as a function of
position, in reduced units, at the critical distance of the ion
capturing the electron (P0).
2-5
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CUSTIDIANO, PÉREZ de la ROSA, AND JAKAS PHYSICAL REVIEW A66, 052902 ~2002!
taken at the time of release from the Coulomb field and c
ture into the Coulomb field, respectively. This is illustrated
Fig. 8 from where one can readily verify that

DE~p!' 1
2 mv0

2@~y01 f Tv!22y0
2#, ~24!

where y05AP0
22(pv/v0)2 and f Tv accounts for the dis-

tance the ion moved during timefT, in reduced units.
In the first place, observe that within the approximati

above, a maximum impact parameter does exist for wh
DE(p)Þ0, namely,pmax5v0P0 /v. Furthermore, since at low
ion velocitiesy0 is generally much more larger thanf Tv,
we may therefore write

DE~p!'mv0
2y0f Tv. ~25!

In order to proceed with our calculation we need an e
mate forT. However, as is well known, for a Coulomb po
tential @12# T52pm1/2Ze2/(2uEu)3/2, where E is the total
energy of the electron. The latter can be readily calculated
taking into account that for low ion velocities, the total e
ergy is given by the potential energy the electron has righ
the time of being captured by the ion, that is,2Ze2v/(v0r1)
~see Fig. 7!. Since r152/(4j)1/3 we thus obtain E5
2(4mZ2e4v2)1/3/2 and T5p/v. By combining these re-
sults, we find

DE~p!'pp f mv0
2AP0

22~pv/v0!2, ~26!

which can be also written as

DE~p!'
3p f mv0

2

~4j!1/3 A12@~4j!1/3pv/~3v0!#2. ~27!

From this equation, and taking into account thatDE(p)50
for p.pmax, one can readily obtain the stopping cross s
tion. The result becomes

S5
9p2

2

f mv0
4

v2j
'44f

mv0
4

v2j
; ~28!

FIG. 8. Capture~A! and release~B! of the electron by the posi
tively charged ion during the first and second halves of the co
sion, respectively. This trajectory is the result of simulating
passage of a positive ion with impact parameterb51 and uju
51023.
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alternatively, using our previously mentioned scaling, o
has

S̃5Sv2/~mv0
4!544f /j, ~29!

a result that can be readily brought into coincidence w
simulations if one choosesf '1/4; thus,S̃'11/j.

We have plotted our ‘‘order-of-magnitude’’ estimates
Fig. 9 and one can readily see that our results, i.e., Eqs.~22!
and ~29!, compare remarkably well with simulations. Th
tells us that the two approximate models above are e
more accurate than one could have possibly imagined a
consequently, that the energy loss of slow ions stems fr
mechanisms that substantially differ from those of swif
ions.

IV. SUMMARY AND CONCLUDING REMARKS

With the purpose of extending Bohr’s stopping theo
down to low-velocity ions, we have simulated the interacti
between a slowly moving, heavy charge and a classical
monic oscillator. The results in the present simulations c
be summarized as follows.

~1! The stopping cross sectionS previously multiplied by
v2/(mv0

4) seems to be auniversal function of j
5mv0

3/(uZue2v), the sign of the ion charge, i.e., sgn(Z), and,
to a lesser degree, the initial amplitude of the electron mot
in the harmonic oscillator.

~2! In the case of negatively charged ions, one can ap
Bohr’s concept ofdistant collisions all the way down to
small impact parameters. The difference, however, being
when using the dipolar approximation, the electric field
the ion should not be calculated right at the center of

i-

FIG. 9. Same as Fig. 2. Lines, however, stand for theoret
results in Eqs.~21! ~dashed! and ~29! ~dotted!.
2-6



e’

ry
-

om

th
re
th

ic
c
or
c
n
s
w
i

se
rk

l
e

in

ive

orce

it
ith

in
by

COMPUTER-SIMULATION CALCULATIONS OF THE . . . PHYSICAL REVIEW A 66, 052902 ~2002!
harmonic oscillator, as Bohr did, but along the ‘‘zero-forc
position ~see text!.

~3! For positive ions things are totally different. Contra
to what is assumed in Ref.@4#, the electron appears to un
dergo not just one but a series of scatterings with the inc
ing ion. Strikingly however, the energy loss does not seem
be caused by these multiple interactions, but mainly by
fact that the electron is literally captured by the ion and
leased in a high-energy state during the second half of
ion-CHO interaction.

Although the results in this paper are based on a class
harmonic oscillator and one cannot guarantee that they
be observed in a quantum oscillator or apply to other, m
realistic potentials, the important role that multiple intera
tions appear to have, particularly in the case of positive io
is remarkable. This warns us that single-scattering-ba
models may not accurately describe the stopping of lo
velocity ions. Actually, a model such as that described
Ref. @13# appears to be more closely connected to our ob
vations in this paper than those in earlier theoretical wo
on the stopping of low-energy ions@14#.
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APPENDIX

Approximate solution for negative ions

Let us begin with the equation of motion~3! for the elec-
tron in the field of the harmonic oscillator and a negat
projectile,
y

T.
ut-

05290
’

-
to
e
-
e

al
an
e
-
s,
ed
-

n
r-
s

g

d2r

dt2 52r1S 1

j D r2P

ur2Pu3
, ~A1!

whereP5kzb1kyt.
We can expand the equation above around the zero-f

position, i.e.,r0 ; thus taking into account Eq.~8! one has

d2~r01d!

dt2 52S 12
1/j

ur02Pu3Dd2S 3

j D r0•d

ur02Pu5 ~r02P!.

~A2!

For an order-of-magnitude estimate, Eq.~A2! can be ap-
proximated as

d2d

dt2 '2d2
d2r0

dt2 . ~A3!

The solution of Eq.~A3! can be readily obtained, since
describes a unit mass and frequency harmonic oscillator w
2d2r0 /dt2 as the external force. Therefore, assumingud u
50 as the initial condition, one has

lim
t→1`

ud u'U E
2`

1`

dt
d2r0

dt2 e2 i tU5U E
2`

1`

dt r0e2 i tU,
~A4!

which can be alternatively written as

lim
t→1`

ud u5U1j E2`

1`

dt
r02P

ur02Pu3 e2 i tU, ~A5!

thus proving that the solution of Eq.~A1! can be obtained
using the dipolar approximation at the zero-force point
place of the center of the harmonic oscillator as utilized
Bohr in Ref.@1#.
B

@1# N. Bohr, Philos. Mag.25, 10 ~1913!.
@2# U. Fano, Ann. Nucl. Sci.13, 1 ~1963!.
@3# P. M. Echenique, F. Flores, and R. H. Ritchie, Solid State Ph

43, 229 ~1990!.
@4# P. Sigmund, Phys. Rev. A54, 3113~1996!.
@5# P. Sigmund and A. Schinner, Eur. Phys. J. D12, 425 ~2000!.
@6# P. Sigmund, Eur. Phys. J. D12, 111 ~2000!.
@7# H. H. Mikkelsen and H. Flyvbjerg, Phys. Rev. A45, 3025

~1992!.
@8# R. E. Olson and A. Salop, Phys. Rev. A16, 531 ~1977!; see

also C. O. Reinhold and R. E. Olson,ibid. 39, 3861~1989!.
@9# W. H. Press, B. P. Flannery, S. A. Teukolsky, and William

Vetterling, inNumerical Recipes. The Art of Scientific Comp
s.

ing ~Cambridge University Press, Cambridge, 1986!.
@10# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1972!.
@11# J. D. Jackson,Classical Electrodynamics~Wiley, New York,

1999!, Chap. 13.
@12# D. Landau, L. P. Pitaevskii, and E. M. Lifshitz,Mechanics,

~Butterworth-Heinemann, Oxford 1976!, Vol. 1.
@13# M. Kato and R. Smith, Nucl. Instrum. Methods Phys. Res.

153, 36 ~1999!.
@14# E. Fermi and E. Teller, Phys. Rev.72, 399 ~1947!; O. B. Fir-

sov, Zh. Eksp. Teor. Fiz.36, 1517~1959! @Sov. Phys. JETP36,
1076~1959!#; J. Lindhard and M. Scharff, Phys. Rev.124, 128
~1961!.
2-7


