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Computer-simulation calculations of the electronic stopping of slow, heavy charges by a classical
harmonic oscillator
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The interaction between slow, heavy pointlike charges and a classical electron harmonically bound to a
heavy nucleus was studied by means of computer simulations. It is found that the equation of motion governing
the interaction between a charge and classical harmonic oscillator can be conveniently scaled up so that the
number of independent parameters is significantly reduced. Therefore, the stopping crossSssgpiears to
be a universal function of Bohr'é parameter, the sign of the ion charge, and, with less significance, the scaled
initial amplitude of the harmonic oscillator. Strikingly however, the stopping cross section of positive charges
appears to be larger than that of negative ions at the gaimereover,Sis found to be a linear function of the
ion velocity for positive ions, whereas it is a nearly quadratic function for negative charges. It turns out that the
mechanism responsible for the energy loss of positive ions is completely different from that of negative charges
and, in both cases, different from those assumed in previous models of stopping of low-energy ions.
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[. INTRODUCTION both theory and experiment have found significant difficul-
ties.

In order to calculate the electronic stopping of fast, heavy It was not until recently, however, that Sigmuil man-
charges by solid matter, Bofit] replaced atoms by the ubig- aged to extend Bohr’s stopping theory down to low veloci-
uitous classical harmonic oscillat6EHO). Since then, the ties. But the results in Refd] are based on aad hocpro-
CHO model has become widely used in dealing with thecedure devised to interpolate between the close and distant
interaction of fast ions with solids, and this remains so evergollision approximations, rather than on physical arguments.
though more accurate quantum calculations have been puB’_herefore, one cannot regard them as a rigor(_)us exte_nsion of
lished (see Refs[2] and[3] and references therginit is Bohr's CHO model to low bombarding energies. Motivated

needless to say that the success of the CHO model is attril?y this, we decided to carry QUt numerical simulatior_ls of the
uted to the fact that it is simple and yet fairly rich in terms of Interaction between a pointlike charge and a classical elec-

the number of processes it accounts [fé=6]. In addition, tron harmonically bound to a heavy, positively charged

Bohr’s CHO calculations were proven to be fairly accurate a ucleus. The resuilts show that the CHO responds to a slowly
high i lociti P y oving charge in quite an interesting manner. Furthermore,
'gh 10n Velocities. . the scaling law in Refd.1,4] appears to be a feature of the

The motion of a classical electron bound to a harmonic.; \hined Coulomb-harmonic potential itself and is not

force and su_bjected to_the Coulomb attraction of a MOViNGinked to any of the approximations introduced by Bohr in
charge constitutes a fairly complex problem. Actually, sincenjs calculations. A neat asymmetry appears between positive
it does not have exact analytical solutions, Bohr had to reand negative charged ions. This low-velocity extension of the
course to several approximations. The most important amongp-called Barkas effedsee Ref[7] and references thersin
these is the concept aflose and distant collisions. These suggests that the underlying mechanisms of the stopping
approximations allowed Bohr to calculate the mean energgtrongly depend on the sign of the ion charge. A more de-
loss as a function of the impact parameter in a simpletailed study, aimed at clarifying the origin of this asymmetry,
straightforward manner. However, while titistant colli-  shows that positive ions may literally trap the electron within
sions approximation poses no difficulties, in solving thethe Coulomb potential for some time during the passage of
close collisions Bohr neglected the harmonic forces and aghe ion, a result that may have important implications for the
sumed that the ion-electron interaction is described by th@assumption, commonly employed in stopping theories, that
Rutherford scattering law. By doing this, however, the stopthe electron absorbs energy in a single-scattering event.
ping cross section so obtained is limited to cases of high ion It must be mentioned that no comparisons of our results
velocities. At the time Bohr published his paper, this was notwith experimental data are produced in this paper. This stems
a serious drawback because most experiments were, thefnipm the fact that, to do so, it would imply deviating from
performed using high-velocity ions from radioactive decay.our objective of studying the CHO model in the low-energy
Later on, however, interest shifted to lower energies, whereegime just “as is,” i.e., with no additional assumptions and

no approximations of any sort. In the following section the

main assumptions utilized in these calculations are pre-

*Permanent address: Departamento dgch) Facultad de Cien- sented. The results of our simulations are shown in Sec. Ill
cias Exactas, Naturales y Agrimensura, Universidad Nacional delogether with a discussion of the most important conse-
Nordeste, Avenida Libertad 5400, 3400-Corrientes, Argentina. quences of our findings in this paper. Finally, a brief sum-
TCorresponding author. Email address: mmateo@ull.es mary is offered in Sec. IV.
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where Ae denotes the mean energy loss value, in reduced
units, averaged over a distribution of initial conditions.

In order to obtaimMe a computer program was developed
which simulates the motion of the electron during the pas-
sage of the ion. Our approach is similar to that used in Ref.
[8] to study the ionization of hydrogen by fast ions. Here,
Eq. (3) is solved by means of a standard four-point Runge-
Kutta scheme with an adaptive time step as described in Ref.
[9]. As initial conditions, we place the projectile to the left at
a distance from the nucleus so that the potential energy of the
electron in the field of the ion is negligible. Similarly, the
position and velocity of the electron are assumed to be iso-

FIG. 1. Classical electron harmonically bound to a nucleus an&ropically distributed, with the condition that the spatial am-

exposed to the Coulomb attraction of a heavy ion.

Il. CALCULATIONS

plitude of the oscillations is fixed and equaldoFinally, the
integration is stopped when the projectile is far away to the
right of the nucleus and the ion-electron potential has
dropped below the same value as that used before the colli-

In this paper we assume that a heavy, pointlike chargedjon. Finally, the energy loss for a particular ion trajectory is
particle approaches from= —< along a straight trajectory obtained by subtracting the final and the initial energy of the

with impact parametep and constant velocity,. At the

electron for such a trajectory, i.e.,

origin of the frame of reference a heavy nucleus holds a

classical electron through a harmonic for(see Fig. L

Asj=s}f)—8}i), (6)

Therefore, the equation governing the motion of the electron

can be written as

d’r 272 r-RrR L
Mm@z =~ meT T—RP (1)

whereR=k, p+kyvot and

r(t)=A(n; coswt+n,sinwt) for t— —o, (2
whereZ is the number charge of the projectikeijs the unit
chargew is the frequency of the harmonic potentialjs the
electron mass and,, andk, denote unit vectors alongand
z directions, respectively. Similarhj is the amplitude of the

oscillation, andn; and n, are three-dimensional vectors

which are subject to the equatiof+n3=1.

It can be readily verified that if one replaceandt by the
dimensionless variablep and r, where p=rw/vy, and
=tw, then Eq.(1) can be rewritten as

Pp__ —(3)—5”_'3 3
a7~ P E)[p-PP

P=kb+ky7, and
p(t)=a(n,cost+n,sint) for 7— —oo, (4)

whereé=mv3/Zew, b=pwlvy, anda=Aw/v,.

wherez{!(")) stands for the total initiaifinal) energy of the
electron in the th trajectory. In connection with this, it must
be mentioned that the numerical program verifies that the
difference between the final and initial potential energy of
the electron in the field of the ion is negligible and that it has
no significant effects on the energy-loss calculations.

After simulating N statistically independent trajectories
we can calculate the mean energy loss for a given impact
parameter as in

AEJ' y (7)

where N is determined by the statistical significance re-
quested forAe. In this regard, it must be mentioned that
most results in this paper have a relative error of 10%, or
less. Therefore, depending on the cddenay run from few
hundreds up to several thousands trajectories. Similarly, the
whole process can be repeated for a set of impact parameters
and so, the stopping cross section is obtained as indicated in

Eq. (5).
ll. RESULTS AND DISCUSSION

In this section we present the results of calculating the
stopping cross sectio§ according to the numerical proce-

It must be noticed that by using the scaling above ongjyre described in the preceding section. In Fig. 2 we §lot
reduces the number of independent parameters from fiveys a function of for positive and negative charged ions, and

namely,Z, o, vy, A, andp, to three:a, & andb. As a con-

the electron in the harmonic oscillator with no initial energy,

sequence, the energy transferred to the electron previousj\e, a=0. It must be noted though that in this sectiwill

divided by the unit of energy, namelmvg, must be a func-

be assumed to be a positive number, with the sign of the ion

tion of a, £ andb and, similarly, the scaled stopping cross charge[sgn@)] as an independent parameter.

sectionS must be asolefunction ofa and ¢, i.e.,

2wf Aeb db=3(a,é), (5

In the first place, the results in Fig. 2 show that the sign of
the ion charge appears to be an important parameter here. In
fact, one can readily see that, depending on the sigf tife
stopping cross sections can be grouped into two different
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FIG. 2. Stopping cross section as a function|&f Results of
simulations appear as symbo@®: for positive andO for negative FIG. 3. Stopping cross section as a functiorjéfor positively
ions, respectively. In both cases, the amplitude of the harmoniésolid symbol$ and negatively(open symbols charged ions, and
oscillator isa= 0. Theoretical results in Refld] appear as a dashed initial amplitude of the harmonic oscillat@=0 (squaresand 10

curve. To compare the slope of simulations, functign$ (dotted, (down triangles
£73/4 (dot-dashe)] and &~ (double-dot-dash@dare plotted in the
same figure. exist between the mechanism responsible for the energy loss

of positive and negative charges.

curves. Notably enough, that of positive ions appears to be tm %rderfto und(?trséand :_he rtesultfst;]n Fig. 2 we shalll car:cy
proportional to&é~ ! whereas that of the negative ions lies out order-cl-magnitude estimates of the mean energy 10Ss for

below the former and exhibits a smaller slope, i&x¢~ " positive and negatively.charged pgrticles and.for the limiting
with » betweeré andZ. It must be stressed, however, that the ©aS€S of low bombardlng velocmgs. .TO beglr_1 with, let us
fact that for positive chargeS is proportional to¢ ! implies pon5|der a negatively charge_d prOJ_eCnIe. In this case, as the
that the stopping cross secti@in normal units, is a linear ion approaches the harmonic oscillator, the electron is re-

function of the ion velocity, i.e. Sxv,, whereas for negative pelied and pushed away_from the ion padee Fig. 4 .
ions one haSSocvéJE“z. In both cases. however and this Therefore, one can conceivably assume that the electron is

never exposed to the strong core of the Coulomb potential as

must be remarked, the present simulations do not agree wit| " . )
the predictions in Ref4]. H'H the case of a positive charge. This suggests that Bohr’s

Figure 3 shows that giving the electron an initial ampli-
tudea= 10 leads to smaller stopping cross sections. Further-
more, the reduction seems to be larger, the greateg;tand -
observe that positive charges seem to be more sensitive to
such an increase than negative ions. Actually, in the case of
negative charges one has to go té as large as 10° to see
a significant difference between the resultsasf 10 and
those ofa=0, whereas for positive ions the two curves are
already separated §&= 10 °. The fact that the stopping be-
comes less sensitive towith a decrease of can be readily ,
explained using the scaled equation of motion derived in the |
preceding section. In fact, E¢B) shows that a decrease &f
leads to a stronger “reduced” Coulomb potential, and there-
fore, by reducing while keepinga fixed, one is reducing the 5
electron’s initial energy compared to the interaction energy.
One can conceivably expect, therefore, that with a decrease
of &, the electron motion, and so the stopping, becomes less
dependent om. With regard to the different degrees of sen- B
sitivity exhibited by positive and negative ions against
changes of, we can offer no explanation other than saying  FIG. 4. Trajectory of the electron during the passage of a nega-
that it seems to be linked to the difference that appears ttvely charged ion with impact parameter=0.5 and|&|=10"3.

D
=
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FIG. 6. The zero-force positiopy,=r w/v,, for the electron as

FIG. 5. Equilibrium or zero-force position of the electron in the a function of the distance of the negatively charged iBn

harmonic oscillatorr, under the repulsive force of a negatively
charged ion located &.

concept of distant collision might hold though; in order to

=Rw/vy measured with respect to the center of the harmonic po-
use the same procedure as that of Bohr’'s, some additional _
assumptions must be made. S2=~

tential [see Eqs(8)—(12)].
LT
_ _ 27 Natlg) | - (12
In the first place, one may assume that the electron is, all

the time, oscillating around the point where the net force is Using the expressions above one can easily verify that
zero, i.e.,py. This “zero-force” position can be readily cal- 3 = —1 for P=0, and thafp,x — P2 with P>1 as shown

culated using Eq(3), i.e., in Fig. 6.
According to our previous arguments, we can use the di-
Po=— (1 ”O__P (8) polar approximation introduced by Bohr to obtain the mean
0 &/lpo—PI*’ energy loss in the distant collisions, i.EL1],
where, as was previously definek=k,b+k, 7. - )
Furthermore, one can reasonably assume tpgt AE(p)= z|&(w,p)[%, (13

=rowl/vy Will be parallel toP=Rw/v,, though with oppo-
site direction(see Fig. 5 Therefore, we can disregard the provided that the Fourier transform of the electric field due
vector nature ofpy and P, and work with them as if they (g the jon, i.e.£(w,p), is not evaluated right at the center of

were scalar variables, i.ezo andP. In consequence, assum- the harmonic oscillator as Bohr did, but at the instantaneous
ing thatP is positive,p, can be obtained as the real root of oscillation center,=vopy/w (see the Appendix That is,
the cubic equation,

1 E(w,p) ze Fwdt o7 R it
w,p)= e ",

polpo—P)*+ =0, (9) P 2w ) T roRP

which can be conveniently scaled up usibg—= po&Y and

P=P¢£Y¥ thus the dependence withis removed and we
obtain the equation

(14

which, using the previously introduced dimensionless vari-
ables, reduces to

E(w,p)= =2 .f+wd BoP e (15)
- w, i Tﬁe T,
Po(Po—P)2+1=0, (10) V2mv2 )= """ [po—P|
which be readily solved, the result beift0] and according to the frame of reference shown in Fig. 5 and
the parity of the integrands, we thus have
Po=S1+5,+35, (12)
N Elw.b) Zew » f+wd k,cos¢ cosT—k,iTsingsint
where w,0)=— T ,
\/27Tv(2) — (PO_P)2
S 3 2 4 \3 ’ where co®=7/P and sind=b/P.
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For small¢ values, however, not only, is a fairly slowly
varying function of r, but alsopy>P for a considerably
large range ofr around==0. In that case, 4,— P)? can be
taken out of the integration and replaced by {3+b)?,
thus Eq.(16) can be written as

Z _ Zew b) 17
(w,p)w\/zvg(g_lla"rb)zg( ’
where
g(b)= fmd 7(ky cosf cosT—KyiTsingsinT)
=2b[k,K4(b)—kiKy(b)], (18

whereK, andK; are the modified Bessel function of first

and second order, respectiveO].

Since bothKy(b) and Ky(b) drop to zero faster than

(¢ Y3+b) 2, we can write

Ewb= 22 ) 19
w,D)~——
\/27705 g
and
226454/30)2 mvé
AE(IO)WTUg|9|2(pw/vo)= g/’zdglz(pw/vo)-
(20)
Finally, the stopping cross section becomes
mo?
S~"’J47TW-, (21
or
S=Sw?(mvg)=4me 2B (22)

a result that agrees fairly well with simulatiofsee Fig. 9.
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FIG. 7. Potential energy of the electron as a function of the
position, in reduced units, at the critical distance of the ion for
capturing the electronRj).

only one potential at a time, that is, either by the harmonic or
by the ion’s Coulomb potential, but not the two of them
simultaneously. This should not be confused with what hap-
pens in Bohr’s close collisions where the Coulomb and the
harmonic potentials can be thought of as acting separately
because of the huge difference that exists between the time
scaling of these two interactions.

To begin with, we shall calculate the distance at which the
electron can be captured by the ion. To this end, one may
conceivably assume that the ion is in a position of capturing
the electron if no point exists along the straight line which
connects the ion and the center of the harmonic potential,
where the force is directed towards the latter. This obviously
occurs when, along that line, the potential energy has an
extreme which is also an inflexion point, i.@, in Fig. 7.

Using the previously introduced dimensionless variables,
the distance of the ion at which capture may occur—
measured from the center of the harmonic potential—
becomes

Po=3/(4&)13, (23

Second, we assume that the ion captures the electron as

We now turn our attention to the case of positively soon as it is situated at the previously calculated distance

charged ions. The fact that the Coulomb potential is nowfrom the origin, i.e.,Py. From that moment, the electron is
attractive makes the situation completely different. Duringsubjected to the strong, attractive field of the ion and starts
the approaching stage, when the ion is far away from therbitting around it. This remains so until the ion is found
harmonic oscillator, the harmonic potential prevents the elecagain at a distanci, during the second half of the collision.
tron from getting close to the ion. At some point, when theThen the electron may escape from the Coulomb attraction
ion gets close enough to the center of the harmonic potentiagif the ion and starts oscillating around the origin again. This
the electron can be captured by the ion and, from that molast process however may take some additional time, since
ment the electron remains orbiting around the ion until thethe electron may accompany the ion beyond the critical dis-
process just described occurs in a reverse order: The ioanceP,. Obviously, such additional distance is determined
releases the electron and it comes back to the harmonic pdy the time the electron may need to actually escape from the
tential. Coulomb attraction, namelyT, whereT is the period of the
Since the binding energy in the harmonic potential is in-electron in the Coulombic trajectory, ahés a non-negative,
finite, the electron cannot be captured by the ion. Therefordess than unity number, indicating that it may take a fraction
the word “capture” is used here in the sense of identifying of the periodT.
the potential which dominates and, consequently, determin- According to the previous, approximate description of the
ing the electron’s motion. In connection with this, it is worth interaction between the positive charge and the harmonic os-
adding that our simulations show that, in the case of positiveillator, the energy is transferred to the electron as a result of
ions, the electron’s trajectories appear to be dominated bthe difference between distances up to which the electron is
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FIG. 8. CapturgA) and releas¢B) of the electron by the posi- ¢ i L Tl o \. ]
tively charged ion during the first and second halves of the colli- 102:_ Sigmund Y i
sion, respectively. This trajectory is the result of simulating the d\b*\\-
passage of a positive ion with impact parameer1 and || [ ]
=10°%, 10'F o
taken at the time of release from the Coulomb field and cap- 10° 10° 10* 10° 102 10" 10°
ture into the Coulomb field, respectively. This is illustrated in . _ 2
Fig. 8 from where one can readily verify that E=mv/Zew
AE(p)w%mvg[(yo+fTw)2—y(2)], (29 FIG. 9. Same as Fig. 2. Lines, however, stand for theoretical

results in Eqs(21) (dashed and (29) (dotted.

wherey0=\/Poz—(pw/vo)2 and fTw accounts for the dis- ) ) _ _ _
tance the ion moved during tinf&, in reduced units. alternatively, using our previously mentioned scaling, one

In the first place, observe that within the approximationhas
above, a maximum impact parameter does exist for which
AE(p) #0, namely,ppa=voPo/w. Furthermore, since at low S=Sw?(mul)=44f/¢, (29)
ion velocitiesy, is generally much more larger thdf w,

we may therefore write , i . )
y a result that can be readily brought into coincidence with

AE(p)~muly fTw. (25)  simulations if one choosefs~1/4; thus, S~ 11/¢.
We have plotted our “order-of-magnitude” estimates in
In order to proceed with our calculation we need an estif19- 9 and one can readily see that our results, i.e., &3.

mate forT. However, as is well known, for a Coulomb po- and (29), compare remarkably well with simulations. This
tential [12] T=27m'2Ze?/(2|E|)®2 whereE is the total tells us that the two approximate models above are even
energy of the electron. The latter can be readily calculated bj0ré accurate than one could have possibly imagined and,
taking into account that for low ion velocities, the total en- consequently, that the energy loss of slow ions stems from
ergy is given by the potential energy the electron has right a@echanlsms that substantially differ from those of swifter
the time of being captured by the ion, thatisZ€?w/(vop;)  'ONS:
(see Fig. 7. Since p;=2/(4¢)*® we thus obtainE=
—(4mZ%e*»?)Y¥2 and T=m/w. By combining these re- IV. SUMMARY AND CONCLUDING REMARKS

sults, we find
With the purpose of extending Bohr’'s stopping theory

AE(p)~ w”fmvg /—Pg—(pwlvo)z, (26) down to low-velocity io_ns, we have simulated the interaction
between a slowly moving, heavy charge and a classical har-
monic oscillator. The results in the present simulations can
be summarized as follows.
2 (1) The stopping cross sectid@previously multiplied by
3mimog 173 2 2/(mo’ b iversal function of
AE(p)~ W\/l_[(%) pwl/(3vy)]%. (27 ) (rr31v0) seems tq e auniversa ur_10t|on of ¢
=mv¢/(]Z|e’*w), the sign of the ion charge, i.e., sgi(and,
. , L to a lesser degree, the initial amplitude of the electron motion
From this equation, and taking into account thdE(p)=0 in the harmonic oscillator.

for p>pnax, One can readily obtain the stopping cross sec- (2) In the case of negatively charged ions, one can apply

which can be also written as

tion. The result becomes Bohr's concept ofdistant collisions all the way down to
) 4 4 small impact parameters. The difference, however, being that
Szgi WJ%MJ%, (29) when using the dipolar approximation, the electric field of
2 ¢ w’E’ the ion should not be calculated right at the center of the
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harmonic oscillator, as Bohr did, but along the “zero-force” d’p 1\ p—P
position (see text d2= Pt ( Zp—Pr (A1)

(3) For positive ions things are totally different. Contrary
to what is assumed in Reff4], the electron appears to un-
dergo not just one but a series of scatterings with the incomhereP=kzb+ky. ,
ing ion. Strikingly however, the energy loss does not seem to We can expand the equation above around the zero-force
be caused by these multiple interactions, but mainly by th&0Sition, i..,po; thus taking into account E¢8) one has
fact that the electron is literally captured by the ion and re-

leased in a high-energy state during the second half of the d*(po+ o) (41— 1/¢ P 3 pPo- O _p)
ion-CHO interaction. d? |po—PJ® &) 1po— P|5 '
Although the results in this paper are based on a classical (A2)

harmonic oscillator and one cannot guarantee that they can

be observed in a quantum oscillator or apply to other, more=or an order-of-magnitude estimate, E#2) can be ap-
realistic potentials, the important role that multiple interac-proximated as

tions appear to have, particularly in the case of positive ions,

is remarkable. This warns us that single-scattering-based d2é d2p
models may not accurately describe the stopping of low- a2 —d—29_ (A3)
T T

velocity ions. Actually, a model such as that described in
Ref.[13] appears to be more closely connected to our obser-

vations in this paper than those in earlier theoretical works'he solution of Eq.(A3) can be readily obtained, since it
on the stopping of low-energy iorid4]. describes a unit mass and frequency harmonic oscillator with

—d?p,/d7? as the external force. Therefore, assumjag

ACKNOWLEDGMENTS =0 as the initial condition, one has

This work was supported in part by the C}ons’ee;'edle +=  d2p,
Educacim, Cultura y Deportes of Gobierno Automo de f dr——e
Canarias(Spain. One of us(E.R.C) wishes to thank the - d
Secretaa de Ciencia y Tenica of the Universidad Nacional
del NordestgArgenting for the financial support that made
possible his visit to the Universidad de La Lagui@pain.  which can be alternatively written as
We are indebted to T. A. Paporo for his valuable help during

f dT

the preparation of this manuscript.
thus proving that the solution of EgA1l) can be obtained
Let us begin with the equation of motidB) for the elec- using the dipolar approximation at the zero-force point in
tron in the field of the harmonic oscillator and a negativeplace of the center of the harmonic oscillator as utilized by
projectile, Bohr in Ref.[1].
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Approximate solution for negative ions
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