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Inverted potential by the phase-integral method: He-Na elastic scattering
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The phase-integral approximation is used in the frame of the inverse scattering theory to reconstruct a
potential of the typev5v11v2 in which one componentv1 is assumed to be knowna priori. It is shown that
from the knowledge of this term and the phase shift, an analytic expression of the unknown termv2 can be
derived. A number of suggestions in order to enlarge the range of applications of this method are also
presented. The case of He-Na elastic scattering is given as an example.
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I. INTRODUCTION

Inverse problems are actively studied in the areas of
tern recognition, identification, and optimization theo
Some inverse problems can be also formulated in the fra
work of the scattering theory. This approach is beginning
play an ever increasing role in forming numerical algorithm
especially when dealing with complicated problems of ph
ics in which it is difficult to estimatea priori the effects of
various factors on the solution of the problem. The deduct
of the interaction from structural data obtained from scat
ing experiments has been the object of much attention.
portant results in this direction have been carried out@1–7#
in the physics of liquids and collisions. We try to identify th
potential with a known structure in terms of information pr
vided by some elements of the data~functionals! regarding
the process, and analyze and control the process.

The main objective of this work is to show in a first pa
how we rebuild the potentialv2(r ) in the case where the ful
potential v(r ) is described byv1(r )1v2(r ), in which the
first term represents the van der Waals attractive interac
and the second one is repulsive and describes the exch
effect of the atomic electrons. This, is formulated by intr
ducing the phase-integral method. This work shows also h
the unreachable part of the potentialv2(r ) may be avoided
by including an auxiliary term in the potentialv(r )5v1(r )
1v2(r ). The partial phase shift corresponding to the ar
trary potential is known, but the total partial phase shiftd( l )
for v(r ) remains unchanged and can be also calculated
lytically in terms ofv1(r ), and the auxiliary potential.

For the sake of clarity, the paper is organized as follo
Section II is devoted to a summary of the aspects of
semiclassical method that are directly pertinent to the a
lytical expression of the phase shift. We shall first brie
recall some essential results which will be needed later o
the discussion pertaining to the inverse problem. In Sec.
an application for the case of He-Na elastic scattering is p
sented. Section IV will describe the mathematical frame
troduced to solve this inverse problem with the use o
phase-integral approach combined with the technique of
Abelian transformation leading to the derivation of a form
relation betweenv2(r ), the first termv1(r ), and the phase
shift d( l ). The possibility of extension of the present meth
by introducing an arbitrary potential in the theory is form
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lated in Sec. V. The numerical results and conclusion
made in Sec. VI.

II. PHASE SHIFT

The phase-integral@8,9# phase shift may be obtained b
using the radial part of the Schro¨dinger equation,

DC1K1
2~r !C52mv2~r !C, ~1!

where

K1
2~r !52m@E02 l ~ l 11!/r 22v1~r !#, ~2!

in which E0 and m represent, respectively, the incident e
ergy and the reduced mass, and\ has been set equal to unity
The phase-integral solution may be written as

C~r !5
A

AK1~r !
Fc1~r !expH i S S1~r !1

p

4 D J 2c2~r !

3expH 2 i S S1~r !1
p

4 D J G , ~3!

whereA is a constant,S1(r )5* r 01

r K1(r 1)dr1, andr 01 is the

classical turning point, defined byK1
2(r 01)50. Imposing the

condition

dc1~r !

dr
expF i S S1~r !1

p

4 D G
2

dc2~r !

dr
expF2 i S S1~r !1

p

4 D G50 ~4!

to the unknown functionsc6(r ) and using the specific con
ditions of validity of the phase-integral treatment@9#, it can
be shown that these functions must satisfy a system
coupled first-order differential equations which, in matrix n
tation, is

dC

dr
5 im

v2~r !

K1~r !
SC, ~5!

in which the matricesC andS are
©2002 The American Physical Society17-1
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C5Fc1~r !

c2~r !
G ,

S5F 1 expF i S S1~r !1
p

4 D G
expF2 i S S1~r !1

p

4 D G 21
G .

To solve Eq.~5!, we may note that generallyS1(r ) is a
rapidly increasing function ofr leading to a strong oscilla
tory character of the exponential term exp@6iS1(r)# so that
we may use the approximation

E
r 01

r v2~r 1!

K1~r 1!
expF6 i S S1~r 1!1

p

4 D Gdr1!E
r 01

r v2~r 1!

K1~r 1!
dr1 ,

~6!

which decouples Eq.~5!. Therefore, c6(r )5c6(r 01)exp
@7im*r01

r v2(r 1)/K1(r 1)dr1#, where c6(r 01) are the con-

stants to be determined from initial conditions. Furthermo
if d (1)( l ) represents the phase-integral phase shift co
sponding to the influence of the first termv1(r ) when the
second one is switched off, then from the usualS-matrix
theory, we can extract the following relation:

d~ l !5d (1)~ l !2mE
r 01

r v2~r 1!

K1~r 1!
dr1 . ~7!

III. APPLICATION TO THE CASE OF He-Na
ELASTIC SCATTERING

The case of elastic scattering between He and alka
atoms Na may be numerically tested by using the ab
results. For those scattering types, the potentialv1(r ) is as-
sumed to be knowna priori, and equal to2c6r 26, in which
c6 represents the van der Waals constant and has been
puted by Mahan@10#, for different molecular states, wherea
the potentialv2(r ) is controvertible and it is then propose

TABLE I. Values of the quantitiesr 01, d( l ), and d (1)( l ) in
terms of the orbital quantum numberl.

l r 01 ~a.u.! d (1)( l ) d( l )

0 231.01
5 223.88
10 217.93
15 213.03
20 29.08
25 26.00
30 23.79
35 7.8 11.40 22.09
40 9.4 10.623 21.06
45 10.7 10.332 20.47
50 11.9 10.193 20.17
55 10.019
60 10.041
05271
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that it would take the formv2(r )5drbe2ar , where d
50.015,a50.94, andb52.20. These values can be foun
in Ref. @11# and the present calculations are performed
cording to these data.

In Table I, we display, in terms of the orbital quantuml, a
number of values of the quantitiesr 01, d( l ), andd (1)( l ) with
the following remarks.

~i! r 01 is defined as the largest value of the roots of t
equation K1

2(r 01)52m@E02 l ( l 11)/r 01
2 2v1(r 01)#50, and

which merely is the turning point corresponding to the p
tential v1(r ).

~ii ! The positive and negative signs of the phase s
d (1)( l ) merely reflect, as expected, the attractive and rep
sive characters of the two components and it can be not
that the behavior of the phase shiftd( l ) corresponding to
v(r ) is in fact dominated by the influence of the exchan
term. Note that, according to our calculations, the phase s
d( l ) can be considered as negligible only froml .100 and
that it begins to change sign atl 555.

IV. DETERMINATION OF POTENTIAL v 2„r …:
A STANDARD APPROACH

In this section we derive an analytical form of the pote
tial v2(r ) by the inversion process, in which the use of t
Abel transformation@12–14# is necessary. The potentia
v2(r ) will be expressed by an integral that may be nume
cally calculated in the frame of the elastic scattering.

We now define the following practical quantities:

P~E0 ,l !52A2

m
@d~ l !2d (1)~ l !#, ~8!

D~E0 ,Y!5v2~r !
dr2

dY2
, ~9!

FIG. 1. Representation of potentialv2(r ), wherer is in a.u. Full
curve, original formula; short broken curve~square!, standard ap-
proach.
7-2
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where

Y2~r !5Y25r 2@E02v1~r !#,

Y2~r 01!5Y01
2 5r 01

2 @E02v1~r 01!#. ~10!

The relation~2! may be transformed as

K1~r !5A2m
1

r
@Y22Y01

2 #1/2. ~11!

From Eq.~7!, relation~8! becomes

P~E0 ,l !5E
Y01

`

dY
D~E0 ,Y!Y

~Y22Y01
2 !1/2

. ~12!

We may now multiply both members of Eq.~12! by the
quantity 2Y01/AY01

2 2b2 and integrate onY01 from b to `,
whereb is an arbitrary parameter. We have then

E
b

`

P~E0 ,l !
2Y01

AY01
2 2b2

dY015pE
b

`

D~E0 ,Y!YdY,

~13!

in which we have used the following relatio
*b

Y@2Y01/A(Y01
2 2b2)(Y22Y01

2 )#dY015p. Differentiating
both members of Eq.~13! in terms ofb and after some partia
integration, we obtain

D~E0 ,Y!52
2

pEY

` 2Y01

A~Y01
2 2Y2!

dP~E0 ,l !

dY01
dY01, ~14!

andb has been replaced byY.
This result is interesting in the sense that the question

existence and uniqueness of the solution in the inverse p
lem is implicitly guaranteed here. In fact, it can be sho
that the integral in Eq.~14! is always convergent on one han
and, on the other, the unicity of this type of Abel transfo
mation is well known. From Eqs.~9!, ~10!, and~14!, the final
analytic expression to reconstruct the termv2(r ) is

TABLE II. Representation of the classical turning pointsr 0a

defined byK1a(r 0a)50 and the integralDa(E0 ,Y) in terms of the
orbital quantum numberl, for the casea50.8631023.

l 20 25 30 35 40

r 0a ~a.u.! 4.000 6.180 7.333 8.581 9.780
Da(E0 ,Y) 20.807 0.523 0.415 0.192 0.085

TABLE III. Same as Table II, buta520.1.

l 36 37 38 40 45 50

r 0a ~a.u.! 2.760 3.450 4.041 5.052 7.100 8.84
Da(E0 ,Y) 2126 224.72 26.373 1.745 1.707 1.073
05271
of
b-

v2~r !5D~E0 ,Y!FE02v1~r !2
r

2

dv1~r !

dr G . ~15!

In other words, provided thatv1(r ) andd( l ) are known, it is
always possible to reachv2(r ) and thereforev(r ). In order
to evaluateD(E0 ,Y) we use the phase shifts given in Tab
I to obtainP(E0 ,l ) in a first step, and then, by interpolation
reach the quantitydP(E0 ,l )/dl in a second step. From th
computational point of view, in order to avoid the singulari
when Y5Y01, we use the Buck transformation@15#: l 2

22mY25z2, which will transform the integral~14! in a
more convenient form:

D~E0 ,Y!5
2

pE0

` exp@20.36~Az212mY2235!#

Az212mY2
dz;

~16!

combined with the van der Waals potential forv1(r ), we
have finally

v2~r !5D~E0 ,Y!FE022
c6

r 6G . ~17!

In Fig. 1, we report the results obtained from relation~17!
compared to the original curvev2(r )5drbe2ar . Note that
the discrepancy between the curves is not surprising

FIG. 2. Representation of potentialsv2(r ), where r is in a.u.
Full curve, original formula; short broken curve~square!, standard
approach; long broken curve~circle!, result with auxiliary potential
for the casea50.8631023.

TABLE IV. Same as Table II, buta520.531023.

l 10 15 20 25 30 35 40

r 0a ~a.u.! 2.451 3.682 4.001 6.112 7.310 8.520 9.7
Da(E0 ,Y) 2288.2 218.64 21.143 0.542 0.446 0.219 0.09
7-3
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may be expected from the approximation~6!, which has been
introduced previously to decouple the differential equatio
On the other hand, the inner region wherer ,7.80 cannot be
reached by the present development because in the fram
a conventional phase-integral approach, it does correspon
the forbidden one. In the following section, the use of a th
appropriately chosen auxiliary term in the analytical expr
sion of the potentialv(r ) may, in some cases, make acce
sible a non-negligible part of this region.

V. THE AUXILIARY POTENTIAL

We have calculated the potentialv2(r ) by the phase-
integral inverse scattering theory and have shown that w
the inner region (r ,7.80) is nonaccessible, it does corr
spond to the forbidden one. In order to solve these diffic
ties, it is always possible to impose an auxiliary poten
va(r ) that respects the conditions of validity of the phas
integral approximation for a fixed energy. The simplest id
is to modify the potentialv(r ) in such a way that it preserve
the same form.

We can rewrite the potentialv(r ) by introducing an arbi-
trary va(r ) leading to a new form ofv(r ) as

v~r !5va~r !1V2~r !, ~18!

where

V2~r !5v1~r !1v2~r !2va~r !. ~19!

A transformation is now possible if we replacev1(r ) by
va(r ) and v2(r ) by V2(r ). The Schro¨dinger equation then
takes the form

DC1K1a
2 ~r !C52mV2~r !C, ~20!

where

K1a
2 ~r !52m@E02 l ~ l 11!/r 22va~r !#. ~21!

FIG. 3. Same as Fig. 2, buta520.1.
05271
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We write Pa(E0 ,l ) as function of the phase shifts by u
ing the specific conditions of validity of the phase-integ
approach

Pa~E0 ,l !52A2

m
@d~ l !2d (a)~ l !#, ~22!

Da~E0 ,Y!52
2

pEY

` 2Y01

A~Y01
2 2Y2!

dPa~E0 ,l !

dY01
dY01.

~23!

Now the potential V2(r ) is extracted from Da(E0 ,Y)
5V2(r )dr2/dY2, andv2(r ) is deduced from Eq.~19!; then
we obtain

v2~r !5Da~E0 ,Y!FE02va~r !2
r

2

dva~r !

dr G2v1~r !1va~r !.

~24!

Application to He-Na

The arbitrary potentialva(r ) is chosen asva(r )5ar22,
wherea is a positive or negative constant. Note that we ha
taken this choice into account, since we have at our disp
an analytical expression of the phase shiftd (a)( l ) corre-
sponding to this potential@16# given by

d (a)~ l !5
p

4
@~2l 11!22$~2l 11!218ma%1/2#. ~25!

The calculations of the integralDa(E0 ,Y) allow us to sug-
gest immediately two important criteria on the choice of t
parametera in the potentialva(r ): ~i! The forbidden region
must be sufficiently reduced;~ii ! the condition of validity of
the phase-integral approximation must always be verified

FIG. 4. Same as Fig. 2, buta520.531023
7-4
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VI. DISCUSSION

The discrete data ofd( l ) allow us to use the interpolatio
algorithm, specified on some values of orbital quantuml,
based on Newton interpolation polynomials. The results
the integralDa(E0 ,Y) and the turning pointsr 0a are listed in
Tables II–IV. The integral is implemented numerically wi
a standard Simpson integration, by using aFORTRAN library
routine. The results in Figs. 2–4 indicate that the numer
solutions of the potentialv2(r ) are in good agreement wit
the analytical solutions. Note also that all curves are plot
by exponential interpolation by using the best-fit method
determining trends in data.

As we have already mentioned, our particular interest i
reduce the forbidden region by using the phase-inte
method. This is mainly due to the fact thatK1a(r ) becomes
imaginary. We have reconstructed the potential with the v
ues of the parametera suitably chosen. For example, we s
in Fig. 2 that both potentials are similar and the small a
proach distance isr 54.91. However in Figs. 3 and 4 th
curves are similar within a certain range. From a gene
point of view, this is justified, since we have supposed t
from a certain distance the terms give a negligible contri
tion. The valuesr 52.76 andr 52.45 are the small approac
distances in Figs. 3 and 4, respectively.

We have also presented the potentialv2(r ) described in
et

eis
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the standard approach in the goal to compare the appro
distances with those investigated in the case where the
iliary potential is introduced. According to the previous r
sult, the valuer 57.8 is the small approach distance. Fro
these results, it appears now clearly that the approach
tances found by introducing the auxiliary potentialva(r )
may be considered as a reference on the choice of the
rametera.

We have therefore shown that for each parametera, the
corresponding approach distance obtained reduces the
cessible part imposed by the phase-integral method. We
conclude that it has been possible by using the inverse s
tering theory and introducing an arbitrary potential to reco
struct the potentialv2(r ) and to restrict the forbidden inter
val. In a later paper, we apply our approach to very accu
scattering experiments on Kr@17#, and the extracted potentia
is compared with the Lennard-Jones potential with the us
parametrization for Kr@18#, the Aziz-Slaman potential@19#,
and for the Rosen-Morse potentials@20#.
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