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Inverted potential by the phase-integral method: He-Na elastic scattering
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The phase-integral approximation is used in the frame of the inverse scattering theory to reconstruct a
potential of the typ@ =v,+v, in which one component; is assumed to be knowapriori. It is shown that
from the knowledge of this term and the phase shift, an analytic expression of the unknows, team be
derived. A number of suggestions in order to enlarge the range of applications of this method are also
presented. The case of He-Na elastic scattering is given as an example.
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[. INTRODUCTION lated in Sec. V. The numerical results and conclusion are
made in Sec. VI.

Inverse problems are actively studied in the areas of pat-
tern recognition, identification, and optimization theory. II. PHASE SHIFT
Some inverse problems can be also formulated in the frame-
work of the scattering theory. This approach is beginning to
play an ever increasing role in forming numerical algorithms,u
especially when dealing with complicated problems of phys-
ics in which it is difficult to estimate priori the effects of
various factors on the solution of the problem. The deduction
of the interaction from structural data obtained from scatter-
ing experiments has been the object of much attention. Im- Ki(f)ZZM[Eo—W +1)Ir2—p,(N)], @)
portant results in this direction have been carried[dut7]

in the physics of liquids and collisions. We try to identify the i, which E, and u represent, respectively, the incident en-
potential with a known structure in terms of information pro- ergy and the reduced mass, dntias been set equal to unity.
vided by some elements of the ddtanctional$ regarding  The phase-integral solution may be written as
the process, and analyze and control the process.

) c*(r)exp[i

The phase-integrdld,9] phase shift may be obtained by
sing the radial part of the Schtimger equation,

AW +K2(NW=2uv,(r)V, (1)

here

The main objective of this work is to show in a first part A
how we rebuild the potentiai,(r) in the case where the full W(r)=
potentialv(r) is described by 1(r)+v,(r), in which the VK (r
first term represents the van der Waals attractive interaction -
and the second one is repulsive and describes the exchange xexp[ —i(Sl(r)Jr 7
effect of the atomic electrons. This, is formulated by intro-
ducing the phase-integral method. This work shows also hO\%h
the unreachable part of the potentigl(r) may be avoided
by including an auxiliary term in the potentialr)=uv4(r)
+uv,(r). The partial phase shift corresponding to the arbi-
trary potential is known, but the total partial phase sh(it) N
for v(r) remains unchanged and can be also calculated ana- de(r) exp{i
lytically in terms ofv4(r), and the auxiliary potential. dr

For the sake of clarity, the paper is organized as follows. de(r) -
Section Il is devoted to a summary of the aspects of the - EX[{—i<Sl(I')+ _)
semiclassical method that are directly pertinent to the ana- dr 4
lytical expression of the phase shift. We shall first briefly
recall some essential results which will be needed later on i the unknown functions=(r) and using the specific con-
the discussion pertaining to the inverse problem. In Sec. llditions of validity of the phase-integral treatmé#f, it can
an application for the case of He-Na elastic scattering is prePe shown that these functions must satisfy a system of
sented. Section IV will describe the mathematical frame incoupled first-order differential equations which, in matrix no-
troduced to solve this inverse problem with the use of dation, is
phase-integral approach combined with the technique of the
Abelian transformation leading to the derivation of a formal d—C—i va(r) sc 5
relation between,(r), the first termv4(r), and the phase dr ’uKl(r) '
shift 8(1). The possibility of extension of the present method
by introducing an arbitrary potential in the theory is formu- in which the matriceC andS are

—c (r)

S+ =
1 () 2

} ) ()

ereAis a constantSl(r)=f{01K1(rl)drl, andr g, is the

classical turning point, defined byf(roﬁ:O. Imposing the
condition

w

4

Si(r)+

=0 4
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TABLE |. Values of the quantitiesy;, &(1), and s)(1) in 3.00
terms of the orbital quantum numblker

[ ro1 (a.u) 81 8(1) 1

0 —31.01

5 —23.88 3 200

10 —-17.93 8

15 —13.03 =

20 -9.08 = i

25 —6.00 i

30 —-3.79 € 100

35 7.8 +1.40 —2.09

40 9.4 +0.623 —1.06

45 10.7 +0.332 —0.47 T

50 11.9 +0.193 —-0.17

55 +0.019 0.0 e ——

60 +0.041

6.00 7.00 8.00 9.00 10.00
ra.u)
[ct(r) FIG. 1. Representation of potentiaJ(r), wherer is in a.u. Full
C= ¢ (n)]’ curve, original formula; short broken curgsquare, standard ap-
- proach.
1 exr{i(sl(FH T that it would take the formuv,(r)=drfe ", where d
S— 4 =0.015, #=0.94, andB=2.20. These values can be found
T in Ref. [11] and the present calculations are performed ac-
ex;{ —i ( SN+7| 1 cording to these data.

In Table I, we display, in terms of the orbital quantlina

To solve Eq.(5), we may note that generallg;(r) is a  number of values of the quantitieg,, 5(1), ands™(l) with
rapidly increasing function of leading to a strong oscilla- the following remarks.

tory character of the exponential term €xjiS,(r)] so that (i) Toy iszdefined as the largest \galue of the roots of the
we may use the approximation equation Ki(rop=2u[Eo—I(I+1)/r§;—v1(ro)]=0, and
which merely is the turning point corresponding to the po-
rua(ry) . ™ rua(ry) tential v 4(r).
frmKl(rl) exp{il(sl(rl)JrZ }drl« frmKl(rl)drl’ (i) The positive and negative signs of the phase shift

(6) 5V(1) merely reflect, as expected, the attractive and repul-
sive characters of the two components and it can be noticed

which decouples Eq(5). Therefore,c™(r)=c*(rog)exp that the behavior of the phase shif(l) corresponding to
[Finfr,pa(r1)/Ki(r1)dri], where c=(roy) are the con-  y(r) is in fact dominated by the influence of the exchange
stants to be determined from initial conditions. Furthermorefeérm. Note that, according to our calculations, the phase shift
if 5(1) represents the phase-integral phase shift corred(l) can be considered as negligible only frém 100 and
sponding to the influence of the first term(r) when the that it begins to change sign kbt 55.
second one is switched off, then from the us@ahatrix

theory, we can extract the following relation: IV. DETERMINATION OF POTENTIAL v ,(r):
A STANDARD APPROACH
_ 1) r vZ(rl) . . . .
s(H=8M()—p Ky dry. () In this section we derive an analytical form of the poten-
01

tial v,(r) by the inversion process, in which the use of the
Abel transformation[12—14 is necessary. The potential
lll. APPLICATION TO THE CASE OF He-Na v,(r) will be expressed by an integral that may be numeri-
ELASTIC SCATTERING cally calculated in the frame of the elastic scattering.

_ ) ) We now define the following practical quantities:
The case of elastic scattering between He and alkaline

atoms Na may be numerically tested by using the above 2

results. For those scattering types, the potentigt) is as- P(Eg.l)=— \ﬁ[ 8(1)— 8111, ®
sumed to be knowa priori, and equal to- cgr ~°, in which H

Cg represents the van der Waals constant and has been com- dr2

puted by Mahan10], for different molecular states, whereas D(Eq,Y)=v,(r)——, (9)

the potentialv,(r) is controvertible and it is then proposed
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TABLE II. Representation of the classical turning poimig,
defined byK,(roa) =0 and the integrab ,(Ep,Y) in terms of the
orbital quantum numbel;, for the casea=0.86x 10 2.

| 20 25 30 35 40
loa (Q.U) 4.000 6.180 7.333 8.581 9.780
Da(Eg,Y) —0.807 0.523 0.415 0.192 0.085
where
Y2(r)=Y?=rEg—v4(r)],
Y2(ro)=Yg=rgf Eo—va(ro)]. (10
The relation(2) may be transformed as
1 2 2 71/2
Ka(r)=v2u -[Y?= Y5 (19
From Eq.(7), relation(8) becomes
P(E |)—F gy 2(Eo Y)Y (12)
0 You (Yz_Y(z)l)l/z'

We may now multiply both members of Eq12) by the
guantity 2Y01/\/Y021— b2 and integrate oY, from b to o,
whereb is an arbitrary parameter. We have then

dY01:7Tf D(Eo,Y)YdY,
b

2Yo,
J, o 22
01

(13
in which we have used the following relation
Jel2Y01/V(Y5,— b)) (Y2=Y3)1dYe=m. Differentiating

both members of Eq13) in terms ofb and after some partial
integration, we obtain

D(Ey,Y)= sz Yo APEol) 1y 14
( 0> )__; v m dY01 01 ( )

andb has been replaced by
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TABLE IV. Same as Table II, bua= —0.5x10 3.
| 10 15 20 25 30 35 40
roa (@u) 2451 3.682 4.001 6.112 7.310 8520 9.731

Da(Ep,Y) —288.2 —18.64 —1.143 0.542 0.446 0.219 0.098

r dvy(r)

vo(r)=D(Eq,Y)|Eg—va(r)— 2 ar

(15

In other words, provided that;(r) and (1) are known, it is
always possible to reaah,(r) and thereforey(r). In order

to evaluateD (E,,Y) we use the phase shifts given in Table
| to obtainP(Eg,l) in a first step, and then, by interpolation,
reach the quantityl P(Eg,l)/dl in a second step. From the
computational point of view, in order to avoid the singularity
when Y=Y,,, we use the Buck transformatiofi5]: 12
—2uY?=2% which will transform the integra(14) in a
more convenient form:

D(E,, Y)__J' exd — 03&\/ZZ+ZILLY2 35)]

JZZ+2uY?
combined with the van der Waals potential for(r), we
have finally

(16)

Cs
va(r)=D(Eg,Y) E0_2r_6 . (17)

In Fig. 1, we report the results obtained from relati&)
compared to the original curve,(r)=drfe”*". Note that
the discrepancy between the curves is not surprising but

12.00

8.00 —

1AL (10%a.u.)

T|

This result is interesting in the sense that the question oz
existence and uniqueness of the solution in the inverse prolo
lem is implicitly guaranteed here. In fact, it can be shown
that the integral in Eq(14) is always convergent on one hand
and, on the other, the unicity of this type of Abel transfor-
mation is well known. From Eq$9), (10), and(14), the final
analytic expression to reconstruct the terp{r) is

4.00 —

TABLE lll. Same as Table Il, bua=—0.1. 2.00

6.00
r(a.u)

8.00 10.00

| 36 37 38 40 45 . . L

FIG. 2. Representation of potentials(r), wherer is in a.u.
loa (@.U) 2.760  3.450 4.041 5.052 7.100 8.841 Full curve, original formula; short broken curysquarg, standard
D.(Eq,Y) —126 -—24.72 —6.373 1.745 1.707 1.073 approach; long broken curiarcle), result with auxiliary potential

for the casea=0.86x 10" 2.
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12.00 12.00
3 8.00 — ~ 8.00 —
@ 3
(?O f‘)m
S g |
= 2
[o] =
& 400 - S 400+

0.00 0.00

2.00 4.00 6.00 8.00 10.00 2.00 4.00 6.00 8.00 10.00
r@a.u.) ra.u.)
FIG. 3. Same as Fig. 2, bat=—0.1. FIG. 4. Same as Fig. 2, bat=—0.5x10"3

may be expected from the approximati@, which has been e write P,(E,,|) as function of the phase shifts by us-

introduced previously to decouple the differential equationsing the specific conditions of validity of the phase-integral
On the other hand, the inner region where7.80 cannot be  approach

reached by the present development because in the frame of
a conventional phase-integral approach, it does correspond to >
the forbidden one. In the following section, the use of a third P.(Eg,1)=— \/:[ 8(1)y— @17, (22)
appropriately chosen auxiliary term in the analytical expres- e

sion of the potentiab(r) may, in some cases, make acces-
sible a non-negligible part of this region.

D.(Eqy.Y) 2f°° 2Y o1 dPa(EO,I)dY
al-0- = - 01-
V. THE AUXILIARY POTENTIAL ™Iy \/(Yozl— Y?)  d¥p 3

We have calculated the potentiab(r) by the phase-
integral inverse scattering theory and have shown that whilgow the potential V,(r) is extracted fromD,(Ey,Y)

the inner region (<7.80) is nonaccessible, it does corre- —v/,(r)dr2/dY2, andv,(r) is deduced from Eq(19); then
spond to the forbidden one. In order to solve these difficulyye gbtain

ties, it is always possible to impose an auxiliary potential

v,(r) that respects the conditions of validity of the phase- r dog(r)
integral approximation for a fixed energy. The simplest ideay,(r)=D,(Ey,Y)| Eg—va(r)— = a7 —v4(r)+vu(r).
is to modify the potentiab (r) in such a way that it preserves 2 dr
the same form. (24)
We can rewrite the potential(r) by introducing an arbi-
trary v,(r) leading to a new form of (r) as Application to He-Na
v(r)=v,(r)+Vy(r), (18) The arbitrary potentiab ,(r) is chosen ag ,(r)=ar 2,
wherea is a positive or negative constant. Note that we have
where taken this choice into account, since we have at our disposal
an analytical expression of the phase shif®)(l) corre-
Va(r)=v1(r) +va(r) —uvg(r). (19 sponding to this potentidlL6] given by

A transformation is now possible if we replaeg(r) by -
va(r) andv,(r) by V,(r). The Schrdinger equation then 5(a)(l)=Z[(2I+1)2—{(2I+1)2+ 8ua}t?. (25
takes the form

AW +K2 (1T =2uV,(r)V, (200  The calculations of the integr&,(Eq,Y) allow us to sug-
gest immediately two important criteria on the choice of the
where parametem in the potential 4(r): (i) The forbidden region
) 5 must be sufficiently reducedij) the condition of validity of
K1a(r)=2u[Eo—I(I+1)/r*—v4(r)]. (21)  the phase-integral approximation must always be verified.
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VI. DISCUSSION the standard approach in the goal to compare the approach
distances with those investigated in the case where the aux-
iliary potential is introduced. According to the previous re-
ult, the valuer =7.8 is the small approach distance. From
hese results, it appears now clearly that the approach dis-
tances found by introducing the auxiliary potentigl(r)

The discrete data of(l) allow us to use the interpolation
algorithm, specified on some values of orbital quantym
based on Newton interpolation polynomials. The results o
the integralD ,(Eg,Y) and the turning pointsy, are listed in
Tables II—IV._The '”teigfa' IS _|mplemen_ted numerlqally with may be considered as a reference on the choice of the pa-
a standard Simpson integration, by usingaRTRAN library Yametera
routine. The results in Figs. 2—4 indicate that the numerical We have therefore shown that for each paramagehe

the analytcal soutions, Note also that all cnves are plotteforeSPoNding approach distance obtained reduces the inac-
by exponential interpolétion by using the best-fit method for essible part |mposed by the phase-lntegral method. We may
determining trends in data conclude that it has been_pos&ble by using the_lnverse scat-
As we have already meﬁtioned our particular interest is t(;[enng theory and_ introducing an arblltrary poter_mal o recon-

' ; ?truct the potentiad ,(r) and to restrict the forbidden inter-
Fal. In a later paper, we apply our approach to very accurate

e W e oo e Dol s .2 SE Xpriments on 17 and h extracted ot
ginary. . P is compared with the Lennard-Jones potential with the usual
ues of the parameter suitably chosen. For example, we see

in Fig. 2 that both potentials are similar and the small ap parametrization for K{18], the Aziz-Slaman potenti4lL9)],

proach distance is=4.91. However in Figs. 3 and 4 the and for the Rosen-Morse potentigio].

curves are similar within a certain range. From a general

point of view, this is justified, since we have supposed that

from a certain distance the terms give a negligible contribu- The authors would like to acknowledge Professor R. D.

tion. The values =2.76 andr = 2.45 are the small approach Smith for valuable conversations and useful suggestions.

distances in Figs. 3 and 4, respectively. This work was partially sponsored by the Academy of Sci-
We have also presented the potentia(r) described in ences under Contract No. D0701/01/99.
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