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Electron-hydrogen scattering in the Faddeev-Merkuriev integral-equation approach
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The electron-hydrogen scattering problem is studied in the Faddeev-Merkuriev integral equation approach.
These integral equations possess compact kernels for all energies, therefore they are especially well suited to
study this problem. The equations are solved by using the Coulomb-Sturmian separable expansion technique.
We presentS and P-wave scattering and reactions cross sections up to tine=K{ threshold.
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[. INTRODUCTION much simpler. Therefore an integral equation approach to the
three-body Coulomb problem would be very useful, it could
The scattering of electrons on hydrogen atom is a fundaprovide an unified description of the scattering and reaction
mental three-body problem in atomic physics. The long-processes for all energies.
range Coulomb interaction presents the major difficulty. On In the past few years we have developed a new approach
the other hand, it is a special kind of Coulomb three-bodyt0 the three-body Coulomb problem. Faddeev-type integral
problem as it contains two identical particles. Most of the€quations were solved by using the Coulomb-Sturmian sepa-
studies have been carried out aiming at solving the Schroable expansion method. The approach was developed first
dinger equation using perturbative, close-coupling, variafor solving the nuclear three-body scattering problem with
tional, or direct numerical methods. Here, by solvingrepulsive Coulomb interactiori8], which has been adapted
Faddeev-type integral equations, we present a general niecently for atomic systems with attractive Coulomb interac-
merical method suitable for the treatment of elastic and intions [4]. The basic concept in this method is a “three-
elastic processes in three-body Coulombic systems with tw@otential” picture, where th& matrix is given in three terms.
identical particles and apply the formalism to the electronIn this approach we solve the Faddeev-Merkuriev integral
hydrogen system. equations such that the associated three-body Coulomb
For quantum-mechanical three-body systems the Faddedsreen’s operator is calculated by an independent Lippmann-
integral equations are the fundamental equations. They po$chwinger-type integral equation. This Lippmann-Schwinger
sess connected kernels and therefore they are Fredholm-typigegral equation contains the channel-distorted Coulomb
integra| equations of second kind. The Faddeev equation@reen’S operator, which can be calculated as a contour inte-
were derived for short-range interactions and if we simplygral of two-body Coulomb-Green’s operators. The method as
plug-in a Coulomb-like potential they become singular. Thetested in positron-hydrogen scattering for energies up to the
necessary modification were proposed by Merkufigi In ~ H(n=2)—Ps(n=2) gap[4], and good agreements with the
Merkuriev’s approach the Coulomb interactions were splitconfiguration-space solution of the Faddeev-Merkuriev equa-
into short-range and long-range parts. The long-range part§#ns were found.
were included into the “free” Green’s operators and the Fad- In this paper we apply this formalism to the electron-
deev procedure were performed only with the short-rangdlydrogen scattering problem. In Sec. Il we briefly describe
potentials. the Faddeev-Merkuriev integral equations, the details are
However, the associated three-body Coulomb Green's opgiven in Ref.[4]. However, the fact that in the electron-
erator is not known explicitly. To circumvent the problem the hydrogen system, we have to deal with identical particles,
integral equations were cast into differential form and therequires some additional considerations: the symmetry with
appropriate boundary conditions were derived from the'espect to exchange of the two electrons simplifies the nu-
asymptotic ana|ysis of the three-body Coulomb Green’s opmerical procedure. In Sec. Il the integral equations are
erator. These modified Faddeev differential equations wergolved by the Coulomb-Sturmian separable expansion
successfully solved for various atomic three-body problemsinethod. In Sec. IV we show some test calculations up to the
including electron-hydrogen scattering up to tH¢n=3)  H(n=4) threshold with total angular momenita=0 andL
threshold[2]. =1. Finally, we draw some conclusions.
A characteristic property of the atomic three-body sys-
tems is that, due to attractive Coulomb interactions, they |. FADDEEV-MERKURIEV INTEGRAL EQUATIONS
have infinitely many two-body channels. If the total energy FOR THE e~ +H SYSTEM
of the system increases more and more channels open up. . )
The differential equation approach needs boundary condi- !N thee” +H system the two electrons are identical. Let
tions for each channels, and becomes intractable if the ertS denote them by 1 and 2, and the proton by 3. The Hamil-
ergy increases beyond a limit. Integral equations do not neef@nian is given by
boundary conditions, this information is incorporated in the 0. Cc. c. ¢
Green’s operators. They need initial conditions, which are H=H"+vi+tvy+vg, 1
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whereH? is the three—bc_>dy kingtic-t_anergy operator arfgd H=HO+u®+0u. (8)
denotes the Coulomb interaction in the subsystema o
=1,2,3. We use the usual configuration-space Jacobi coordBo, the Hamiltonian(8) appears formally as a three-body
natesx, andy,, wherex, is the coordinate between the pair Hamiltonian with two short-range potentials. The three-body
(B,7) andy, is the coordinate between the particleand ~ Green’s operato6 satisfies the resolvent relation
the center of mass of the paiB(y). Thus the potentialzf_f, _~0 0 (S) L (9
the interaction of the pairg,y), appears as<(x,). The G(2)=G"(2) +GH(2)(v1”+v37)G(2), ©)
Hamiltonian (1) is define_d in the three-body Hilbert space. whereG(2) =(z—H) ! andG"(2) = (z— HM) L.
So, the two-body pqtentlal operators are formally embedded e scattering-state wave function is defined by
in the three-body Hilbert space,

| )= IlimieG(E+ig)| D), (10

USZUS(XQ) 1ya1 (2) e—0

where 1, is a unit operator in the two-body Hilbert space where|®) is the wave function of a freely moving electron

associatéd with thg,, coordinate. and a hydrogen atom in its ground or excited state. By sub-
The role of a Coulomb potential in a three-body system isStituting Eq.(9) into Eq. (10)(|)and taking into account that

twofold. In one hand, it acts like a long-range potential sinc |®) is not an eigenstate d' and thus the first term van-

it modifies the asymptotic motion. On the other hand, how-Shes in thes—0 limit, we obtain

ever, it acts like a short-range potential, since it correlates — (9 ..(s)

strongly the particles and may support bound states. Merku- W) =GUoP?| W)+ GOvZ| W), (1)

riev introduced a separation of the three-body configurationyhich induce, in the spirit of the Faddeev procedure, the

space into different asymptotic regiof$]. The two-body splitting of the wave function into two components
asymptotic regior(}, is defined as a part of the three-body

configuration space where the conditions (WY =)+ ), (12
X <Xag(1F[Yal/Yar) ", (3)  where the components are defined by
with X, Y4, >0 andv>2, are satisfied. Merkuriev proposed [y =GP W), (13

tp split the _Coulomb interaction in the three-body conflgura—With @=1,2. The Faddeev components satisfy the set of two-
tion space into short-range and long-range terms,

component Faddeev-Merkuriev integral equations
C_, 64,0 4

VaTva U @ () =10 + G0 ), (149

where the superscriptsand| indicate the short- and long- 0..(s)

range attributes, respectively. The splitting is carried out with |2)=G3'v3” | ¥), (14b

the help of a splitting functiod,,, whereG{ is the resolvent operator of the channel Coulomb-

vﬁf)(xa 1ya):vg(xa)§a(xa Vo), (5a) Hamiltonian

HO=HO 4,6 15
00Xy ¥a) =0 S X)L~ LulXeY)]. (5D a Ve 13
The function, vanishes asymptotically within the three-
body sector, where,~y,—0, and approaches one in the
two-body asymptotic regiof ,, wherex ,<y,— . Conse-
quently incthe three-body sectot® vanishes and" ap- HO=HO + 5 = HO+ S+ o0+ 5. (16)
proaches ;. In practice usually the functional form

and the inhomogeneous tefih{") is an eigenstate dfi{’ .
Before going further let us examine the spectral properties
of the Hamiltonian

It obviously supports infinitely many two-body channels as-
La(Xa1Ya) = 2K1+exd (Xo/Xa)"1(1+YalYa)]t (6)  sociated with the bound states of the attractive Coulomb po-
tential v§ . The potentiab§ is repulsive and does not have
bound states. The three-body potentidl is attractive and

. . _ : constructed such that})(x,,y,)—0 if y,—o. Therefore,
interaction between the two electrons, is repulsive, and doeg .. are no two-body channels associated with fragmenta-
not support bound states. Consequently, there are no tw(?i

i i iapl (D R -
body channels associated with this fragmentation. Therefor ons 2 and 3, the Hamiltoniakl;” has only 1-type wo

) . )
the entirevg can be considered as long-range potential. ody channels. Consequently, - the correspondﬁ@

3, H S) .
Then, the long-range Hamiltonian is defined as G_reens operator, acting on the?|y) term n Eq.§14a),
will generate only 1-type two-body channelsif). Similar

is used.
In the Hamiltonian(1) the Coulomb potentiab$, the

HO=HO+p(V+oP+0§, (7)  analysis is valid also fof,). Thus, the Faddeev-Merkuriev
procedure results in a separation of the three-body wave
and the three-body Hamiltonian takes the form function into components such a way that each component
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has only one type of two-body channels. This is the mainvhere(xy|nsTx)=(xy|nvI\)/(xy).
advantage of the Faddeev equations and, as this analysis We make the following approximation on the integral
shows, this property remains valid also for attractive Cou-equation(19),
lomb potentials if the Merkuriev splitting is adopted.

In thee~ e~ p system the particles 1 and 2, the two elec- |y =Dy +GP 1Yo & pP1Y| 4, (23)
trons, are identical and indistinguishable. Therefore, the Fad-
deev components);) and|,), in their own natural Jacobi .., the operatov{®pP is approximated in the three-body

coordinates, should have the same functional forms Hilbert space by a separable form, viz,
(Xayalvha) = (XaYal 2) = (xyl¥). 17 vPpP= lim Liv{PpPLy~1)v{IpPLy
N— o
On the other hand, by interchanging the two electrons we N
have ~ 2 |ﬁv\lx>lv(ls)1<n’v’|’)\’|, (24)
Plyn)=pl ), (18) mnm o

(s) — (s) TN i _
whereP is the operator for the permutation of indexes 1 andWh.ereK1 (v pPIn v 1A ), Ut|||z_|ng the prop
2, andp= +1 is the eigenvalue oP. Building this informa- erties of the exchange operatBrthese matrix elements can

' g (s) _
tion into the formalism results in the integral equation be . writien n the form b1 = px
(=) «(nvIn[pP|n"»'1'\"),, and can be evaluated nu-
|y =Dy +GPu P pP ), (19  merically by using the transformation of the Jacobi coordi-

nates[7]. The completeness of the CS basis guarantees the
which is alone sufficient to determirig;). We notice that so  convergence of the method with increasiNgand angular
far no approximation has been made, and although this intanomentum channels.
gral equation has only one component, yet it giyes a full Now, by applying the bra(ﬁW’| on Eq.(23) from
account on the asymptotic and symmetry properties of thesft the solution of the inhomogeneous Faddeev-Merkuriev
system. equation turns into the solution of a matrix equation for the

component vectoy= (NI | ),
IIl. COULOMB-STURMIAN SEPARABLE EXPANSION —

APPROACH p=dP+ GNPy, (25)

We solve this integral equation by applying the Coulomb-
Sturmian separable expansion approach. This approach h4&ere
been established in a series of papers for t##d-and three-

MW= Aok b
body [3,4,6] problems with Coulomb-like potentials. The ?1 ELULNE S (26)
Coulomb-SturmianC9) functions are defined by and
1 1/2
(rinl)= CEES (2br)' *texp(—br)L2Y(2br), Eg'>:1<ﬁm|eg'>|m>l. 27)

20 The formal solution of Eq(25) is given by

with n andl being the radial and orbital angular momentum =1 (91—1rm(—Lae()
quantum numbers, respectively, ands the size parameter p=[(Gy") ~—vy’] (GY’) "Py’. (28)
of the basis. The CS functior{$nl)} form a biorthonormal - - o
discrete basis in the radial two-body Hilbert space; the bior- Unfortunately neitheG{’ nor ®{ are known. They are
thogonal partner defined by [nT)=(r|nl)/r. related to the Hamiltoniahl{" , which is still a complicated
Since the three-body Hilbert space is a direct product othree-body Coulomb Hamiltonian. As we showed before it
two-body Hilbert spaces an appropriate basis is the bipolahas only 1-type two-body channels. For such systems a
basis, which can be defined as the angular momenturgingle Lippmann-Schwinger equation provides a unique so-
coupled direct product of the two-body bases, lution [8]. The approximation scheme f@!{ and ®{" is
presented in Ref4]. It is based on the Lippmann-Schwinger
[nvIN) =[Nl ®[vN),, (np=012...), (1)  equation forG{", proposed by Merkuriefd],
where|nl), and |v7\.>a are associated with the coordinates G{)(2)=G2%(2) + G2(2)VaG{)(2), (29)
X, andy,, respectively. With this basis the completeness
_relat_io_n ta_\kes the fornfwith angular momentum summation where G2® and V2 are the asymptotic channel Green's op-
implicitly included erator and potential, respectively. A similar equation is valid

N for |®{),
1= lim NNy (nvin|= lim 1V, 22
A g MR )aclvN|= fim 1. (22 @O)=[0P+CTDVITOY). (30
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Merkuriev constructe@$® in the different asymptotic re-
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Also ®3%, in Q,, equates tab,, the eigenstate ofl,,

gions of the three-body configuration space and proved thaind Eq.(33) becomes

the kernel of Eqs(29) and (30) are completely continuous
(compact [1]. Therefore V® can also be approximated by

separable form

Vvas= lim 1Yvas~1)'vesy)!

N— o0

N

-3

[T VES (AT,
n,v,n",v'=0 -

31

where V§®= (nvIN|V§Sn"v'1"\");. Then the solutions of
Egs. (29 and(30) can be expressed formally as

(GP) 1= (GI) - Vi® (32)

and
OP=[(GI) VNG e, (33

respectively, where

G= (NwIN[GIn v I\ ")y, (34)
VaS= (nuIN VAN v 1"\ ")y, (35)

and
D= (T[T, (36)

The matrix element$34)—(36) should be calculated be-

PP =[(Gy)'-U'"H(Gy 1Py, (43
Where(ni)1=1<m|a>1>.

The three-particle free Hamiltonian can be written as a
sum of the two-particle free Hamiltonians

0_p0 L ho
HO=hg +hy . (44)
Consequently, the Hamiltonidd; of Eq. (38) appears as a

sum of two two-body Hamiltonians acting on different coor-
dinates

H;=h,+h

1 Y1’

(49

with h, =h +v{(x;) andhy =h{ , which, of course, com-

mute. Thereforéd,), the eigenstate dfl;, in CS represen-
tation, is given by

{NIIX[D 1) = (] 1) X 1(VX]| x1),

where|¢,) and|y,) are bound and scattering eigenstates of
hX1 and hyl’ respectively. The CS-matrix elements of the
two-body bound and scattering stat@s|$) and (vX|x),
respectively, are known analytically from the two-body case
[5].

The most crucial point in this procedure is the calculation

(46)

tween finite number of square-integrable CS states, whiclf the matrix elements;. The Green's operatoB; is a

confine the domain of integration f@,. In this region, how-
ever,G$° takes a simpler form
(37)

Gi‘s(xl,yl,xi,yi,Z)zél(xl,yl,xi,yi,z),

if {x1,y1},{x},yi} € Q,, whereG, is the resolvent of the
Hamiltonian
Hi=H%+0f. (39

Therefore, in calculating the matrix elemer4) G3° can be

replaced byG,. Similarly, in calculating Eq(35) V3° can
also be replaced by
U1=vg)+vg, (39
and consequently E¢32) becomes
(G *=(Gy*-Uy, (40)
where
Gy= (NN |Gy VTN, (41)
and
U= 1(nvIN|UqIn" 2" 1'N");. (42

resolvent of the sum of two commuting Hamiltonians. Thus,
according to the convolution theorem, the three-body

Green’s operatoiG; equates to a convolution integral of
two-body Green's operators, i.e.,

~ 1

Gi(z)=5— fﬁcdz’gxl(z—z’)gyl(z’), (47)
where g, (2)=(z—hy)"* and g, (2)=(z—hy)"*. The
contourC should be taken counterclockwise around the sin-
gularities ofgyl such a way thagxl is analytic on the do-

main encircled byC.
In the time-independent scattering theory the Green'’s op-
erator has a branch-cut singularity at scattering energies. In

our formalism G,(E) should be understood a&;(E)
=lim__ Gy(E+is), with £>0, and E<O, since in this
work we are considering scattering below the three-body
breakup threshold. To examine the analytic structure of the
integrand in Eq.47) let us takee finite. By doing so, the
singularities ofgxl and 9y, become well separated. In fact,

9y, is a free Green’s operator with branch-cut on [Bec)
interval, whilegxl(EJr ie—2") is a Coulomb Green’s opera-

tor, which, as function ofz’, has a branch-cut on the
(—,E+ie] interval and infinitely many poles accumulated

These latter matrix elements can again be evaluated nume@t E+ie. Now, the branch-cut of, can easily be encircled

cally.

such that the singularities qjxl lie outside the encircled
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TABLE I. Singlet (:S%,p=-+1) and triplet £S®,p=—1) phase
shifts of elasticSwavee™ +H scattering.

9. (E+ie-z')

€ < i k Ref.[9] Ref.[10] Ref.[11] Ref.[12] Ref.[2] This work

c g, (z') 1S, p=+1
! 0.1 2553 2.550 2.553 2.555 2.553 2.552
FIG. 1. Analytic structure o, (E+ie—2')g, (z') as a func- 02 20673 2062 2066  2.066  2.065  2.064
tion of ', £>0. The Green’s operat@, (z') has a branch-cut on 0.3 1.6964  1.691 1.695 1.695 1.694 1.693
the [0:=) interval, while g, (E+ie—2') has a branch-cut on the 0-4 14146 1410 1414 1415 1415 = 1412
(—,E+iz] interval and infinitely many poles accumulatedeat  0-> 1.202 1.196 1.202 1.200  1.200 1.197
+ie (denoted by dots The contourC encircles the branch-cut of 0.6 1.041 ~ 1.035 ~ 1.040  1.041  1.040  1.037
gy,- In the e—0 limit the singularities ofg, (E+ie—z') would ~ 0.7 0.930  0.925 0.930 0.930  0.930 0.927
penetrate into the area covered ®y 0.8 0.886 , 0.887 0.887  0.885 0.884

S, p=-1
domain(Fig. 1). However, this would not be the case in the 0.1 2.9388  2.939 2.938 2939  2.939 2.938
e—0 limit. Therefore the contouC is deformed analytically 0.2 2.7171  2.717 2.717 2717 2717 2.717
such that the upper part descends into the unphysical Rié-3 2.4996 2.500 2.500 2500  2.499 2.499
mann sheet ogyl, while the lower part ofC is detoured 0.4 2.2938 2.294 2.294 2294  2.294 2.294
away from the cutFig. 2). The contour in Fig. 2 is achieved 0.5 2.1046  2.105 2.104 2.104 2105 2.104
by deforming analytically the one in Fig. 1, but now, even in0.6 1.9329  1.933 1.933 1933 1933 1.932
the e—0 limit, the contour in Fig. 2 avoids the singularities 0.7 1.7797  1.780 1.780 1.780  1.779 1.779
of Ox,- Thus, with the contour in Fig. 2 the mathematical 0.8 1.643 1.645 1.644 1641 1.643

conditions for the contour integral representationGof in

Eq. (47) is met also for scattering-state energies. The matrl)flvherei andf refer to the initial and the final states, respec-

elementsG, can be cast into the form tively, u is the channel reduced mass anés the channel
. wave number. Having the solutiogsand® (" and the ma-
BL(E)= 5 f dz'g, (E-2")g, (2)), (48)  trix elementsU; andv{®, the T-matrix elements can easily
— ml Jc g} =1

be evaluated. The spin-weighted cross section of the transi-
tion i—f is given by
where the corresponding CS matrix elements of the two-
body Green’s operators in the integrand are known analyti- TagLE II. L=0 partial cross sectionén 7a2) in the H(®
cally for all complex energiefb,4]. =2)—H(n=3) gap at channel enerds; =0.81 Ry. Channel num-

In the three-potential formalisii8,4] the S matrix can be  pers 1, 2, and 3 refer to the channels+ H(1s), e~ + H(2s), and
decomposed into three terms. The first one describes @ +H(2p), respectively. For comparison the result of a
single-channel Coulomb scattering, the second one is a mutonfiguration-space Faddeev calculation is presented.
tichannel two-body-type scattering due to the potential
and the third one is a genuine three-body scattering. In our Ch. No. 1 2 3
e~ +H case the target is neutral, and therefore the first term

is absent. For the on-shell matrix we have 'Shp=+1
This work
' 1 0.564 0.061 0.024
Tu= V@ U0 H @Ol o 2 0817 8313 2588
ek 3 0.107 0.863 1.722
(49 Method of Ref.[13]
1 0.568 0.061 0.024
g, (E+ige-z’) o 2 0.814 8.720 2.471
U e o o 3 0.105 0.824 1.697
€y z7 38t p=—1
7 This work
Ch. In (z’) 1 3694 0001  0.0006
- — o) 2 0.016 10.04 1.641
3 0.003 0.547 11.85
FIG. 2. The contour of Fig. 1 is deformed analytically such that Method of Ref.[13]
a part of it goes on the unphysical Riemann shee;y(l)f(drawn by 1 3.696 0.001 0.0006
the broken ling and the other part detoured away from the cut. ij 2 0.016 10.20 1.678
Now, the contour avoids the singularitiesg;}‘l(E+ ie—2') evenin 3 0.003 0.560 11.77

the e —0 limit.
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TABLE Ill. S-wave K matrices and cross sectioffis wa% units) in the HN=3)—H(n=4) gap at
channel energ¥,=0.93 Ry. The channel numbers 1, 2, 3, 4, 5, and 6 refer to the cha@n@ls=0)
+H(1s), e (A=0)+H(2s), e (A\=0)+H(3s), e (A\=1)+H(1p), e (\=1)+H(2p), ande” (A=2)
+H(1d), respectively.

Ch. No. 1 2 3 4 5 6
K matrix for E;=0.93 Ry, 1S°,p=+1
1 1.076 —0.647 —0.160 0.229 0.180 0.074
2 —0.652 1.541 —0.028 0.129 0.531 0.265
3 —0.160 —0.029 0.766 0.314 —-0.757 —0.385
4 0.230 0.130 0.314 —0.566 —0.525 —0.284
5 0.180 0.534 —-0.757 —0.526 0.237 0.760
6 0.074 0.266 —0.385 —0.285 0.760 1.342
Cross sections foE;=0.93 Ry, 'S°,p=+1
1 0.44 0.48¢1) 0.67(-2) 0.28(-1) 0.86(-2) 0.20(- 2)
2 0.25 3.02 0.19¢1) 0.10 0.12 0.40¢1)
3 0.15 0.83¢1) 4.68 0.71 241 0.86
4 0.49(- 1) 0.34(- 1) 0.55(-1) 0.49 0.59¢ 1) 0.24(-1)
5 0.65(-1) 0.18 0.80 0.26 1.48 0.44
6 0.89(-2) 0.35(- 1) 0.17 0.61¢1) 0.27 2.0
K matrix for E;=0.93 Ry, 3%, p=—1
1 9.054 0.507 0.019 0.666 0.099 0.028
2 0.543 —1.700 —-0.111 —1.530 —-0.113 —-0.120
3 0.025 —-0.112 0.155 —0.050 —0.926 —0.070
4 0.702 —1.532 —0.050 —0.851 —0.253 —0.048
5 0.104 —-0.114 —0.926 —0.253 0.927 0.449
6 0.030 —-0.120 —0.070 —0.049 0.449 —-0.111
Cross section&;=0.93 Ry, 3S%,p=—1
1 3.18 0.22¢2) 0.43(—4) 0.21(-2) 0.26(— 4) 0.14(-5)
2 0.12(-1) 5.92 0.93¢2) 3.77 0.44¢ 1) 0.61(-1)
3 0.97(-3) 0.40(-1) 7.56 0.35 11.6 3.34
4 0.39(-2) 1.26 0.26¢1) 0.87 0.11¢1) 0.19(- 2)
5 0.23(-3) 0.63(-1) 3.87 0.48(1) 9.14 1.07
6 0.79(-5) 0.53(-1) 0.67 0.49¢ 2) 0.64 0.34
waé (2S,+1)(2L+1) , on _the Icholice ob, within a rather broad interval around the
o= % 2+ D) [Tl%, (500  optimal value.

Having theT matrix we can also calculate thé matrix,
whose symmetry, which is equivalent to the unitarity of $e
wherea, is the Bohr radius|. is the total angular momen- matrix, provides a delicate and independent test of the
tum, S,, is the total spin of the two electrons ahdis the = method. We observed that if either the parameters of the
angular momentum of the target hydrogen atom. splitting function are too far from the optimum or the con-
vergence with the basis is not achieved Kenatrix fails to
be symmetric. In the separable expansion we take up to nine
bipolar angular momentum channels with CS functions up to

In numerical calculations we use atomic unitse mass N=36. This requires solution of complex general matrix
of the electronsn;=m,=1 and the mass of the protan;  equations with maximal size of 1238112321, a problem
=1836.151527). In this paper we are concerned with totawhich can even be handled on a workstation. We need rela-
angular momenta =0 andL=1. Formula(49) gives some tively small basis because in this approach we approximate
hint for the choice of the parameters in the splitting functiononly short-range type potentials and the correct asymptotic is
{. We can expect good convergence if the “size” @?f) guaranteed by the Green’s operators. Our nearly perfectly
corresponds to the size @f{)(") . Therefore we may need to symmetricK matrices prove that, in this energy range, our
adjust the parameters of the splitting function if we considettruncated basis with up to nine angular momentum channels
more and more open channels. Consequently, we also neadd CS states up td=36 is sufficiently complete.
to adjust theb parameter of the CS basis. We found that the We present first ou wave results for energies below the
final results and the rate of the convergence does not depet{n=2) threshold. In this energy region we use parameters

IV. RESULTS
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TABLE IV. P-waveK matrices and cross sectiofia wag units) in the H(h=3)—H(n=4) gap at channel enerdy; =0.93 Ry. The
channel numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9 refer to the chaeng¢ls=1)+H(1s), e (A\=1)+H(2s), e (A\=1)+H(3s), e (A
=0)+H(2p), e (A=0)+H(3p), e (A=2)+H(2p), e (A\=2)+H(3p), e (A\=1)+H(3d), ande™ (A=3)+H(3d), respectively.

Ch. No. 1 2 3 4 5 6 7 8 9
K matrix for E;=0.93 Ry, 1S%,p=+1

1 —1.888 —7.518 13.24 9.699 8.320 7.148 1.992 4.684 30.96
2 —7.525 —29.70 51.80 38.14 32.73 28.88 7.839 18.28 121.5
3 13.30 51.99 —89.98 —67.93 —56.77 —50.01 —13.90 —29.57 —216.6
4 9.665 37.98 —67.40 —48.21 —42.35 —36.39 —9.947 —24.07 —156.7
5 8.346 32.81 —56.70 —42.64 —36.30 —31.16 —9.349 —19.40 —136.0
6 7.151 28.87 —49.82 —36.54 —31.08 —28.11 —7.718 —17.41 —-117.3
7 2.006 7.885 —13.94 —10.05 —9.381 —7.765 —2.651 —4.874 —34.08
8 4.755 18.64 —29.92 —24.51 —19.64 —-17.67 —-4.915 —8.953 —-73.21
9 31.01 121.6 —215.9 —-157.5 —135.7 —-117.3 —33.89 —72.15 —510.6

Cross sections foE;=0.93 Ry, 1S°,p=+1
1 0.380C2) 0.104-1) 0.1382) 0.394C1) 0.677C2) 0.125C1) 0.543C2) 0.664(2) 0.180(?2)
2 0.530(-1) 0.2081) 0.760(-2) 0.1521) 0.139 0.1381) 0.284(—1) 0.450 0.103
3 0.319(-1) 0.321(1) 0.3112) 0.1171) 0.34Q1) 0.170 0.4591) 0.19111) 0.2821)
4 0.6791) 0506  0.903¢1)  0.1571) 0.104 0.151 0.213 0169  0.796()
5 0.5081)  0.201 0.11Q) 0.450 0.416)  0.1031)  0.1691)  0.1131) 0.871(1)
6 0219-1) 0448  0.131¢1)  0.150 0.235 0.164) 0.647(-1) 0.3991) 0.183(2)
7 0412-1) 0415-1) 0.1531) 0.928 0.1601) 0.282 0.3361) 0.105 0.233
8 0.296(-1) 0.391 0.383 0.440 0.679 0.105 0.62() 0.80Q1) 0.283
9 0.8072) 0.8901)  0.562 0208  0523(1) 0468-2)  0.139 0.283 0.118)

K matrix for E;=0.93 Ry, 3S°,p=—1

1 0.454 —0.303 —0.051 —0.020 0.080 0.043 —0.017 0.149 0.128
2 —0.301 —2.453 —0.669 0.383 0.552 1.112 0.017 1.145 1.060
3 —0.051 —-0.672 0.398 —0.465 1.140 -0.371 0.0001 0.578 0.486
4 —0.020 0.382 —0.464 0.354 —-1.133 —0.236 0.883 —0.528 —-0.110
5 0.079 0.553 1.137 —1.136 3.936 —0.699 —-3.202 1.075 —0.989
6 0.041 1.113 —-0.372 —0.236 —0.701 0.289 0.520 —0.769 —0.456
7 —0.016 0.018 0.002 0.884 —3.203 0.518 1.673 —1.484 —0.226
8 0.148 1.147 0.576 —0.530 1.075 —0.769 —1.483 —0.055 —0.278
9 0.127 1.062 0.486 —-0.111 —0.988 —0.457 —0.226 —-0.277 0.090

Cross sections foE;=0.93 Ry, 3S° p=—1
1 0.1781) 0.484(1) 0.853C2) 0.1581) 0.6032) 0.167C1) 0.457(2) 0.1912) 0.625(3)
2 0.247 0.23R) 0.390 0.1091) 0.435 0.2941) 0.1631) 0.1711) 0.1821)
3 0.193 0.17QL) 0.5142) 0.8921) 0.2081) 0.1052) 0.1672) 0.596 0.3811)
4 0277¢1)  0.362 0.683 0.846 0.576 0.801  0.344() 0.924(2) 0.920(1)
5 0.453(1) 0.633 0.695 0.251) 0.3732) 0.525 0.3481) 0.2951) 0.367121)
6 0.291(1) 0.981 0.810 0.804 0.121 0.416 0.887(-1) 0.121 0.803¢1)
7 0.333(+1) 0.2341) 0.5561) 0.151 0.3481) 0.388 0.2762) 0.2901) 0.1861)
8 0.831(-2) 0.1491) 0.119 0.240¢ 1) 0.1771) 0.315 0.1741) 0.4481) 0.28Q1)
9 0.259(-2) 0.1581) 0.760 0.241 0.220) 0.208 0.1111) 0.28Q1) 0.935%1)

v=2.1, Xo=3, yg=20, andb=0.6. Table | shows elastic agreements with all the previous calculations.

phase shifts at several values of electron momé&ntaOur In Table Il we presenB-wave partial cross sections be-
results, which was achieved by using finite proton masstween the HO=2)—H(n=3) thresholds at channel energy
agree very well with variational calculations of R¢8], E;=0.81 Ry and foL.=0, where we have three open chan-
R-matrix calculations of Refl10], finite-element method of nels. We used parameters=2.1, xo=3.5, y,=20, andb

Ref. [11], as well as with the results of direct numerical =0.3. For comparison we also show the results of a
solution of the Schidinger equation of Ref.12], where in-  configuration-space Faddeev calculatiad]. We can report
finite mass for proton were adopted. We also compare ouperfect agreements. Our cross sections are also in good
calculation with the differential equation solution of the agreements with the results of Rgt2)].

modified Faddeev equatiori2]. We can observe perfect In Table Il we show theSwave K matrices and partial
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cross sections between thert# 3)— H(n=4) thresholds at proper integral representation of the three-body channel dis-
channel energ¥,=0.93 Ry, where we have six open chan-torted Coulomb Green’s operator in terms of two-body
nels. We used parameteis=2.1, xo=4, y,=20, andb  Green’s operators. The use of Coulomb-Sturmian basis is
=0.2. We can see that the matrix is nearly perfectly sym- essential, as it allows an exact analytical representation of the
metric. In Tables IV we present the correspondiigaveK  two-body Green'’s operator, which ensures that all thresholds
matrices and cross sections. In this case we have nine op@te at the right location.

channels. Th& matrix is again nearly perfectly symmetric. ~ We calculateds andP-wave scattering and reaction cross
sections for energies up to the € 4) threshold. Our nearly
perfectly symmetridk matrices shows that, in this approach,

. . all the fine details of the scattering processes are properly
In this work we have studied the electron-hydrogen scattaken into account.

tering problem by solving the Faddeev-Merkuriev integral
equations. For this system, where the two electrons are iden-
tical, the Faddeev scheme results in an one-component equa-
tion, which, however, gives full account on the asymptotic
and symmetry properties of the scattering process. We solved This work was supported by the NSF, Grant No. Phy-
the integral equation by applying the Coulomb-Sturmian0088936, and by the OTKA, Grants No. T026233 and No.
separable expansion method. In this approach the short-rang®29003. We are thankful to the Aerospace Engineering De-
terms are expanded on the Coulomb-Sturmian basis, whilpartment of CSULB and to the San Diego Supercomputing
the long-range terms are treated in an exact manner vi@€enter for the generous allocation of computer resources.

V. SUMMARY
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