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Electron-hydrogen scattering in the Faddeev-Merkuriev integral-equation approach
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The electron-hydrogen scattering problem is studied in the Faddeev-Merkuriev integral equation approach.
These integral equations possess compact kernels for all energies, therefore they are especially well suited to
study this problem. The equations are solved by using the Coulomb-Sturmian separable expansion technique.
We presentS- andP-wave scattering and reactions cross sections up to the H(n54) threshold.
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I. INTRODUCTION

The scattering of electrons on hydrogen atom is a fun
mental three-body problem in atomic physics. The lon
range Coulomb interaction presents the major difficulty.
the other hand, it is a special kind of Coulomb three-bo
problem as it contains two identical particles. Most of t
studies have been carried out aiming at solving the Sc¨-
dinger equation using perturbative, close-coupling, va
tional, or direct numerical methods. Here, by solvi
Faddeev-type integral equations, we present a general
merical method suitable for the treatment of elastic and
elastic processes in three-body Coulombic systems with
identical particles and apply the formalism to the electro
hydrogen system.

For quantum-mechanical three-body systems the Fadd
integral equations are the fundamental equations. They
sess connected kernels and therefore they are Fredholm
integral equations of second kind. The Faddeev equat
were derived for short-range interactions and if we sim
plug-in a Coulomb-like potential they become singular. T
necessary modification were proposed by Merkuriev@1#. In
Merkuriev’s approach the Coulomb interactions were s
into short-range and long-range parts. The long-range p
were included into the ‘‘free’’ Green’s operators and the Fa
deev procedure were performed only with the short-ra
potentials.

However, the associated three-body Coulomb Green’s
erator is not known explicitly. To circumvent the problem t
integral equations were cast into differential form and
appropriate boundary conditions were derived from
asymptotic analysis of the three-body Coulomb Green’s
erator. These modified Faddeev differential equations w
successfully solved for various atomic three-body proble
including electron-hydrogen scattering up to theH(n53)
threshold@2#.

A characteristic property of the atomic three-body s
tems is that, due to attractive Coulomb interactions, th
have infinitely many two-body channels. If the total ener
of the system increases more and more channels open
The differential equation approach needs boundary co
tions for each channels, and becomes intractable if the
ergy increases beyond a limit. Integral equations do not n
boundary conditions, this information is incorporated in t
Green’s operators. They need initial conditions, which
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much simpler. Therefore an integral equation approach to
three-body Coulomb problem would be very useful, it cou
provide an unified description of the scattering and react
processes for all energies.

In the past few years we have developed a new appro
to the three-body Coulomb problem. Faddeev-type integ
equations were solved by using the Coulomb-Sturmian se
rable expansion method. The approach was developed
for solving the nuclear three-body scattering problem w
repulsive Coulomb interactions@3#, which has been adapte
recently for atomic systems with attractive Coulomb intera
tions @4#. The basic concept in this method is a ‘‘thre
potential’’ picture, where theSmatrix is given in three terms
In this approach we solve the Faddeev-Merkuriev integ
equations such that the associated three-body Coul
Green’s operator is calculated by an independent Lippma
Schwinger-type integral equation. This Lippmann-Schwing
integral equation contains the channel-distorted Coulo
Green’s operator, which can be calculated as a contour i
gral of two-body Coulomb-Green’s operators. The method
tested in positron-hydrogen scattering for energies up to
H(n52)2Ps(n52) gap@4#, and good agreements with th
configuration-space solution of the Faddeev-Merkuriev eq
tions were found.

In this paper we apply this formalism to the electro
hydrogen scattering problem. In Sec. II we briefly descr
the Faddeev-Merkuriev integral equations, the details
given in Ref. @4#. However, the fact that in the electron
hydrogen system, we have to deal with identical particl
requires some additional considerations: the symmetry w
respect to exchange of the two electrons simplifies the
merical procedure. In Sec. III the integral equations
solved by the Coulomb-Sturmian separable expans
method. In Sec. IV we show some test calculations up to
H(n54) threshold with total angular momentaL50 andL
51. Finally, we draw some conclusions.

II. FADDEEV-MERKURIEV INTEGRAL EQUATIONS
FOR THE eÀ¿H SYSTEM

In the e21H system the two electrons are identical. L
us denote them by 1 and 2, and the proton by 3. The Ha
tonian is given by

H5H01v1
C1v2

C1v3
C , ~1!
©2002 The American Physical Society14-1
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whereH0 is the three-body kinetic-energy operator andva
C

denotes the Coulomb interaction in the subsystema, a
51,2,3. We use the usual configuration-space Jacobi coo
natesxa andya , wherexa is the coordinate between the pa
(b,g) and ya is the coordinate between the particlea and
the center of mass of the pair (b,g). Thus the potentialva

C ,
the interaction of the pair (b,g), appears asva

C(xa). The
Hamiltonian ~1! is defined in the three-body Hilbert spac
So, the two-body potential operators are formally embed
in the three-body Hilbert space,

va
C5va

C~xa!1ya
, ~2!

where1ya
is a unit operator in the two-body Hilbert spac

associated with theya coordinate.
The role of a Coulomb potential in a three-body system

twofold. In one hand, it acts like a long-range potential sin
it modifies the asymptotic motion. On the other hand, ho
ever, it acts like a short-range potential, since it correla
strongly the particles and may support bound states. Me
riev introduced a separation of the three-body configura
space into different asymptotic regions@1#. The two-body
asymptotic regionVa is defined as a part of the three-bod
configuration space where the conditions

uxau,xa0
~11uyau/ya0

!1/n, ~3!

with xa0
,ya0

.0 andn.2, are satisfied. Merkuriev propose
to split the Coulomb interaction in the three-body configu
tion space into short-range and long-range terms,

va
C5va

(s)1va
( l ) , ~4!

where the superscriptss and l indicate the short- and long
range attributes, respectively. The splitting is carried out w
the help of a splitting functionza ,

va
(s)~xa ,ya!5va

C~xa!za~xa ,ya!, ~5a!

va
( l )~xa ,ya!5va

C~xa!@12za~xa ,ya!#. ~5b!

The functionza vanishes asymptotically within the three
body sector, wherexa;ya→`, and approaches one in th
two-body asymptotic regionVa , wherexa!ya→`. Conse-
quently in the three-body sectorva

(s) vanishes andva
( l ) ap-

proachesva
C . In practice usually the functional form

za~xa ,ya!52/$11exp@~xa /xa0
!n/~11ya /ya0

!#% ~6!

is used.
In the Hamiltonian~1! the Coulomb potentialv3

C , the
interaction between the two electrons, is repulsive, and d
not support bound states. Consequently, there are no
body channels associated with this fragmentation. Theref
the entire v3

C can be considered as long-range potent
Then, the long-range Hamiltonian is defined as

H ( l )5H01v1
( l )1v2

( l )1v3
C , ~7!

and the three-body Hamiltonian takes the form
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H5H ( l )1v1
(s)1v2

(s) . ~8!

So, the Hamiltonian~8! appears formally as a three-bod
Hamiltonian with two short-range potentials. The three-bo
Green’s operatorG satisfies the resolvent relation

G~z!5G( l )~z!1G( l )~z!~v1
(s)1v2

(s)!G~z!, ~9!

whereG(z)5(z2H)21 andG( l )(z)5(z2H ( l ))21.
The scattering-state wave function is defined by

uC&5 lim
«→0

i«G~E1 i«!uF&, ~10!

whereuF& is the wave function of a freely moving electro
and a hydrogen atom in its ground or excited state. By s
stituting Eq. ~9! into Eq. ~10! and taking into account tha
uF& is not an eigenstate ofH ( l ) and thus the first term van
ishes in the«→0 limit, we obtain

uC&5G( l )v1
(s)uC&1G( l )v2

(s)uC&, ~11!

which induce, in the spirit of the Faddeev procedure,
splitting of the wave function into two components

uC&5uc1&1uc2&, ~12!

where the components are defined by

uca&5G( l )va
(s)uC&, ~13!

with a51,2. The Faddeev components satisfy the set of tw
component Faddeev-Merkuriev integral equations

uc1&5uF1
( l )&1G1

( l )v1
(s)uc2&, ~14a!

uc2&5G2
( l )v2

(s)uc1&, ~14b!

whereGa
( l ) is the resolvent operator of the channel Coulom

Hamiltonian

Ha
( l )5H ( l )1va

(s) ~15!

and the inhomogeneous termuF1
( l )& is an eigenstate ofH1

( l ) .
Before going further let us examine the spectral proper

of the Hamiltonian

H1
( l )5H ( l )1v1

(s)5H01v1
C1v2

( l )1v3
C . ~16!

It obviously supports infinitely many two-body channels a
sociated with the bound states of the attractive Coulomb
tential v1

C . The potentialv3
C is repulsive and does not hav

bound states. The three-body potentialv2
( l ) is attractive and

constructed such thatv2
( l )(x2 ,y2)→0 if y2→`. Therefore,

there are no two-body channels associated with fragme
tions 2 and 3, the HamiltonianH1

( l ) has only 1-type two-
body channels. Consequently, the correspondingG1

( l )

Green’s operator, acting on thev1
(s)uc2& term in Eq.~14a!,

will generate only 1-type two-body channels inuc1&. Similar
analysis is valid also foruc2&. Thus, the Faddeev-Merkurie
procedure results in a separation of the three-body w
function into components such a way that each compon
4-2
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has only one type of two-body channels. This is the m
advantage of the Faddeev equations and, as this ana
shows, this property remains valid also for attractive Co
lomb potentials if the Merkuriev splitting is adopted.

In the e2e2p system the particles 1 and 2, the two ele
trons, are identical and indistinguishable. Therefore, the F
deev componentsuc1& and uc2&, in their own natural Jacob
coordinates, should have the same functional forms

^x1y1uc1&5^x2y2uc2&5^xyuc&. ~17!

On the other hand, by interchanging the two electrons
have

Puc1&5puc2&, ~18!

whereP is the operator for the permutation of indexes 1 a
2, andp561 is the eigenvalue ofP. Building this informa-
tion into the formalism results in the integral equation

uc&5uF1
( l )&1G1

( l )v1
(s)pPuc&, ~19!

which is alone sufficient to determineuc&. We notice that so
far no approximation has been made, and although this i
gral equation has only one component, yet it gives a
account on the asymptotic and symmetry properties of
system.

III. COULOMB-STURMIAN SEPARABLE EXPANSION
APPROACH

We solve this integral equation by applying the Coulom
Sturmian separable expansion approach. This approach
been established in a series of papers for two-@5# and three-
body @3,4,6# problems with Coulomb-like potentials. Th
Coulomb-Sturmian~CS! functions are defined by

^r unl&5F n!

~n12l 11!! G
1/2

~2br ! l 11exp~2br !Ln
2l 11~2br !,

~20!

with n and l being the radial and orbital angular momentu
quantum numbers, respectively, andb is the size paramete
of the basis. The CS functions$unl&% form a biorthonormal
discrete basis in the radial two-body Hilbert space; the b
thogonal partner defined bŷr unl̃&5^r unl&/r .

Since the three-body Hilbert space is a direct produc
two-body Hilbert spaces an appropriate basis is the bip
basis, which can be defined as the angular momen
coupled direct product of the two-body bases,

unn ll&a5unl&a ^ unl&a , ~n,n50,1,2, . . . !, ~21!

where unl&a and unl&a are associated with the coordinat
xa and ya , respectively. With this basis the completene
relation takes the form~with angular momentum summatio
implicitly included!

15 lim
N→`

(
n,n50

N

unn l l̃&a a^nn llu5 lim
N→`

1a
N , ~22!
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We make the following approximation on the integr

equation~19!,

uc&5uF1
( l )&1G1

( l )11
Nv1

(s)pP11
Nuc&, ~23!

i.e., the operatorv1
(s)pP is approximated in the three-bod

Hilbert space by a separable form, viz,

v1
(s)pP5 lim

N→`

11
Nv1

(s)pP11
N'11

Nv1
(s)pP11

N

' (
n,n,n8,n850

N

unn l l̃&1v1
(s)

1^n8n8l 8l 8̃u, ~24!

wherev1
(s)51^nn lluv1

(s)pPun8n8l 8l8&1. Utilizing the prop-
erties of the exchange operatorP these matrix elements ca
be written in the form v1

(s)5p3

(2) l 8
1^nn lluv1

(s)un8n8l 8l8&2, and can be evaluated nu
merically by using the transformation of the Jacobi coor
nates@7#. The completeness of the CS basis guarantees
convergence of the method with increasingN and angular
momentum channels.

Now, by applying the brân9n9l 9l 9̃u on Eq. ~23! from
left, the solution of the inhomogeneous Faddeev-Merkur
equation turns into the solution of a matrix equation for t
component vectorc51^nn l l̃uc&,

c5F1
( l )1G1

( l )v1
(s)c, ~25!

where

F1
( l )51^nn l l̃uF1

( l )& ~26!

and

G1
( l )51^nn l l̃uG1

( l )un8n8l 8l 8̃&1 . ~27!

The formal solution of Eq.~25! is given by

c5@~G1
( l )!212v1

(s)#21~G1
( l )!21F1

( l ) . ~28!

Unfortunately neitherG1
( l ) nor F1

( l ) are known. They are
related to the HamiltonianH1

( l ) , which is still a complicated
three-body Coulomb Hamiltonian. As we showed before
has only 1-type two-body channels. For such system
single Lippmann-Schwinger equation provides a unique
lution @8#. The approximation scheme forG1

( l ) and F1
( l ) is

presented in Ref.@4#. It is based on the Lippmann-Schwinge
equation forG1

( l ) , proposed by Merkuriev@1#,

G1
( l )~z!5G1

as~z!1G1
as~z!V1

asG1
( l )~z!, ~29!

whereG1
as and V1

as are the asymptotic channel Green’s o
erator and potential, respectively. A similar equation is va
for uF1

( l )&,

uF1
( l )&5uF1

as&1G1
as~z!V1

asuF1
( l )&. ~30!
4-3
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Merkuriev constructedG1
as in the different asymptotic re

gions of the three-body configuration space and proved
the kernel of Eqs.~29! and ~30! are completely continuou
~compact! @1#. Therefore,V1

as can also be approximated b
separable form

V1
as5 lim

N→`

11
NV1

as11
N'11

NV1
as11

N

' (
n,n,n8,n850

N

unn l l̃&1V1
as

1^n8n8l 8l 8̃u, ~31!

where V1
as51^nn lluV1

asun8n8l 8l8&1. Then the solutions of
Eqs.~29! and ~30! can be expressed formally as

~G1
( l )!215~G1

as!212V1
as ~32!

and

F1
( l )5@~G1

as!212V1
as#21~G1

as!21F1
as, ~33!

respectively, where

G1
as51^nn lluG1

asun8n8l 8l8&1 , ~34!

V1
as51^nn lluV1

asun8n8l 8l8&1 , ~35!

and

F1
as51^nn l l̃uF1

as&. ~36!

The matrix elements~34!–~36! should be calculated be
tween finite number of square-integrable CS states, wh
confine the domain of integration toV1. In this region, how-
ever,G1

as takes a simpler form

G1
as~x1 ,y1 ,x18 ,y18 ,z!5G̃1~x1 ,y1 ,x18 ,y18 ,z!, ~37!

if $x1 ,y1%,$x18 ,y18%PV1, where G̃1 is the resolvent of the
Hamiltonian

H̃15H01v1
C . ~38!

Therefore, in calculating the matrix elements~34! G1
as can be

replaced byG̃1. Similarly, in calculating Eq.~35! V1
as can

also be replaced by

U15v2
( l )1v3

C , ~39!

and consequently Eq.~32! becomes

~G1
( l )!215~G̃1!212U1 , ~40!

where

G̃151^nn l l̃uG̃1un8n8l 8l 8̃&1 ~41!

and

U151^nn lluU1un8n8l 8l8&1 . ~42!

These latter matrix elements can again be evaluated num
cally.
05271
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Also F1
as , in V1, equates toF̃1, the eigenstate ofH̃1,

and Eq.~33! becomes

F1
( l )5@~G̃1!212U1#21~G̃1!21F̃1 , ~43!

whereF̃151^nn l l̃uF̃1&.
The three-particle free Hamiltonian can be written as

sum of the two-particle free Hamiltonians

H05hx1

0 1hy1

0 . ~44!

Consequently, the HamiltonianH̃1 of Eq. ~38! appears as a
sum of two two-body Hamiltonians acting on different coo
dinates

H̃15hx1
1hy1

, ~45!

with hx1
5hx1

0 1v1
C(x1) andhy1

5hy1

0 , which, of course, com-

mute. ThereforeuF̃1&, the eigenstate ofH̃1, in CS represen-
tation, is given by

1^nn l l̃uF̃1&51^nl̃uf1&31^nl̃ux1&, ~46!

whereuf1& and ux1& are bound and scattering eigenstates
hx1

and hy1
, respectively. The CS-matrix elements of th

two-body bound and scattering states^nl̃uf& and ^nl̃ux&,
respectively, are known analytically from the two-body ca
@5#.

The most crucial point in this procedure is the calculati
of the matrix elementsG̃1. The Green’s operatorG̃1 is a
resolvent of the sum of two commuting Hamiltonians. Thu
according to the convolution theorem, the three-bo
Green’s operatorG̃1 equates to a convolution integral o
two-body Green’s operators, i.e.,

G̃1~z!5
1

2p i RC
dz8gx1

~z2z8!gy1
~z8!, ~47!

where gx1
(z)5(z2hx1

)21 and gy1
(z)5(z2hy1

)21. The
contourC should be taken counterclockwise around the s
gularities ofgy1

such a way thatgx1
is analytic on the do-

main encircled byC.
In the time-independent scattering theory the Green’s

erator has a branch-cut singularity at scattering energies
our formalism G̃1(E) should be understood asG̃1(E)
5 lim

«→0
G̃1(E1 i«), with «.0, and E,0, since in this

work we are considering scattering below the three-bo
breakup threshold. To examine the analytic structure of
integrand in Eq.~47! let us take« finite. By doing so, the
singularities ofgx1

and gy1
become well separated. In fac

gy1
is a free Green’s operator with branch-cut on the@0,̀ )

interval, whilegx1
(E1 i«2z8) is a Coulomb Green’s opera

tor, which, as function ofz8, has a branch-cut on the
(2`,E1 i«# interval and infinitely many poles accumulate
at E1 i«. Now, the branch-cut ofgy1

can easily be encircled

such that the singularities ofgx1
lie outside the encircled
4-4
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domain~Fig. 1!. However, this would not be the case in th
«→0 limit. Therefore the contourC is deformed analytically
such that the upper part descends into the unphysical
mann sheet ofgy1

, while the lower part ofC is detoured
away from the cut~Fig. 2!. The contour in Fig. 2 is achieve
by deforming analytically the one in Fig. 1, but now, even
the «→0 limit, the contour in Fig. 2 avoids the singularitie
of gx1

. Thus, with the contour in Fig. 2 the mathematic

conditions for the contour integral representation ofG̃1 in
Eq. ~47! is met also for scattering-state energies. The ma
elementsG̃1 can be cast into the form

G̃1~E!5
1

2p i RC
dz8gx1

~E2z8!gy1
~z8!, ~48!

where the corresponding CS matrix elements of the tw
body Green’s operators in the integrand are known ana
cally for all complex energies@5,4#.

In the three-potential formalism@3,4# the S matrix can be
decomposed into three terms. The first one describe
single-channel Coulomb scattering, the second one is a m
tichannel two-body-type scattering due to the potentialU,
and the third one is a genuine three-body scattering. In
e21H case the target is neutral, and therefore the first te
is absent. For the on-shellT matrix we have

Tf i5Am fm i

kfki
~^F̃1 f

(2)uU1uF1i
( l )(1)&1^F1 f

( l )(2)uv1
(s)uc2i

(1)&!,

~49!

FIG. 1. Analytic structure ofgx1
(E1 i«2z8)gy1

(z8) as a func-
tion of z8, «.0. The Green’s operatorgy1

(z8) has a branch-cut on
the @0,̀ ) interval, while gx1

(E1 i«2z8) has a branch-cut on th
(2`,E1 i«# interval and infinitely many poles accumulated atE
1 i« ~denoted by dots!. The contourC encircles the branch-cut o
gy1

. In the «→0 limit the singularities ofgx1
(E1 i«2z8) would

penetrate into the area covered byC.

FIG. 2. The contour of Fig. 1 is deformed analytically such th
a part of it goes on the unphysical Riemann sheet ofgy1

~drawn by
the broken line! and the other part detoured away from the c
Now, the contour avoids the singularities ofgx1

(E1 i«2z8) even in
the «→0 limit.
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wherei and f refer to the initial and the final states, respe
tively, m is the channel reduced mass andk is the channel
wave number. Having the solutionsc andF ( l ) and the ma-
trix elementsU1 andv1

(s) , the T-matrix elements can easil
be evaluated. The spin-weighted cross section of the tra
tion i→ f is given by

TABLE I. Singlet (1Se,p511) and triplet (3Se,p521) phase
shifts of elasticS-wavee21H scattering.

k Ref. @9# Ref. @10# Ref. @11# Ref. @12# Ref. @2# This work

1Se, p511
0.1 2.553 2.550 2.553 2.555 2.553 2.552
0.2 2.0673 2.062 2.066 2.066 2.065 2.064
0.3 1.6964 1.691 1.695 1.695 1.694 1.693
0.4 1.4146 1.410 1.414 1.415 1.415 1.412
0.5 1.202 1.196 1.202 1.200 1.200 1.197
0.6 1.041 1.035 1.040 1.041 1.040 1.037
0.7 0.930 0.925 0.930 0.930 0.930 0.927
0.8 0.886 0.887 0.887 0.885 0.884

3Se, p521
0.1 2.9388 2.939 2.938 2.939 2.939 2.938
0.2 2.7171 2.717 2.717 2.717 2.717 2.717
0.3 2.4996 2.500 2.500 2.500 2.499 2.499
0.4 2.2938 2.294 2.294 2.294 2.294 2.294
0.5 2.1046 2.105 2.104 2.104 2.105 2.104
0.6 1.9329 1.933 1.933 1.933 1.933 1.932
0.7 1.7797 1.780 1.780 1.780 1.779 1.779
0.8 1.643 1.645 1.644 1.641 1.643

TABLE II. L50 partial cross sections~in pa0
2) in the H(n

52)2H(n53) gap at channel energyE150.81 Ry. Channel num-
bers 1, 2, and 3 refer to the channelse21H(1s), e21H(2s), and
e21H(2p), respectively. For comparison the result of
configuration-space Faddeev calculation is presented.

Ch. No. 1 2 3

1Se,p511
This work

1 0.564 0.061 0.024
s i j 2 0.817 8.373 2.588

3 0.107 0.863 1.722
Method of Ref.@13#

1 0.568 0.061 0.024
s i j 2 0.814 8.720 2.471

3 0.105 0.824 1.697
3Se,p521
This work

1 3.694 0.001 0.0006
s i j 2 0.016 10.04 1.641

3 0.003 0.547 11.85
Method of Ref.@13#

1 3.696 0.001 0.0006
s i j 2 0.016 10.20 1.678

3 0.003 0.560 11.77

t

.
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TABLE III. S-wave K matrices and cross sections~in pa0
2 units! in the H(n53)2H(n54) gap at

channel energyE150.93 Ry. The channel numbers 1, 2, 3, 4, 5, and 6 refer to the channelse2(l50)
1H(1s), e2(l50)1H(2s), e2(l50)1H(3s), e2(l51)1H(1p), e2(l51)1H(2p), and e2(l52)
1H(1d), respectively.

Ch. No. 1 2 3 4 5 6

K matrix for E150.93 Ry, 1Se,p511
1 1.076 20.647 20.160 0.229 0.180 0.074
2 20.652 1.541 20.028 0.129 0.531 0.265
3 20.160 20.029 0.766 0.314 20.757 20.385
4 0.230 0.130 0.314 20.566 20.525 20.284
5 0.180 0.534 20.757 20.526 0.237 0.760
6 0.074 0.266 20.385 20.285 0.760 1.342

Cross sections forE150.93 Ry, 1Se,p511
1 0.44 0.48(21) 0.67(22) 0.28(21) 0.86(22) 0.20(22)
2 0.25 3.02 0.19(21) 0.10 0.12 0.40(21)
3 0.15 0.83(21) 4.68 0.71 2.41 0.86
4 0.49(21) 0.34(21) 0.55(21) 0.49 0.59(21) 0.24(21)
5 0.65(21) 0.18 0.80 0.26 1.48 0.44
6 0.89(22) 0.35(21) 0.17 0.61(21) 0.27 2.0

K matrix for E150.93 Ry, 3Se,p521
1 9.054 0.507 0.019 0.666 0.099 0.028
2 0.543 21.700 20.111 21.530 20.113 20.120
3 0.025 20.112 0.155 20.050 20.926 20.070
4 0.702 21.532 20.050 20.851 20.253 20.048
5 0.104 20.114 20.926 20.253 0.927 0.449
6 0.030 20.120 20.070 20.049 0.449 20.111

Cross sectionsE150.93 Ry, 3Se,p521
1 3.18 0.22(22) 0.43(24) 0.21(22) 0.26(24) 0.14(25)
2 0.12(21) 5.92 0.93(22) 3.77 0.44(21) 0.61(21)
3 0.97(23) 0.40(21) 7.56 0.35 11.6 3.34
4 0.39(22) 1.26 0.26(21) 0.87 0.11(21) 0.19(22)
5 0.23(23) 0.63(21) 3.87 0.48(21) 9.14 1.07
6 0.79(25) 0.53(21) 0.67 0.49(22) 0.64 0.34
-
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~2S1211!~2L11!

~2l i11!
uTf i u2, ~50!

wherea0 is the Bohr radius,L is the total angular momen
tum, S12 is the total spin of the two electrons andl i is the
angular momentum of the target hydrogen atom.

IV. RESULTS

In numerical calculations we use atomic units~the mass
of the electronsm15m251 and the mass of the protonm3
51836.151 527). In this paper we are concerned with to
angular momentaL50 andL51. Formula~49! gives some
hint for the choice of the parameters in the splitting functi
z. We can expect good convergence if the ‘‘size’’ ofv1

(s)

corresponds to the size ofF1 f
( l )(2) . Therefore we may need t

adjust the parameters of the splitting function if we consi
more and more open channels. Consequently, we also
to adjust theb parameter of the CS basis. We found that t
final results and the rate of the convergence does not de
05271
l

r
ed

e
nd

on the choice ofb, within a rather broad interval around th
optimal value.

Having theT matrix we can also calculate theK matrix,
whose symmetry, which is equivalent to the unitarity of theS
matrix, provides a delicate and independent test of
method. We observed that if either the parameters of
splitting function are too far from the optimum or the co
vergence with the basis is not achieved theK matrix fails to
be symmetric. In the separable expansion we take up to
bipolar angular momentum channels with CS functions up
N536. This requires solution of complex general mat
equations with maximal size of 12 321312 321, a problem
which can even be handled on a workstation. We need r
tively small basis because in this approach we approxim
only short-range type potentials and the correct asymptot
guaranteed by the Green’s operators. Our nearly perfe
symmetricK matrices prove that, in this energy range, o
truncated basis with up to nine angular momentum chan
and CS states up toN536 is sufficiently complete.

We present first ourSwave results for energies below th
H(n52) threshold. In this energy region we use paramet
4-6
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TABLE IV. P-waveK matrices and cross sections~in pa0
2 units! in the H(n53)2H(n54) gap at channel energyE150.93 Ry. The

channel numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9 refer to the channelse2(l51)1H(1s), e2(l51)1H(2s), e2(l51)1H(3s), e2(l
50)1H(2p), e2(l50)1H(3p), e2(l52)1H(2p), e2(l52)1H(3p), e2(l51)1H(3d), ande2(l53)1H(3d), respectively.

Ch. No. 1 2 3 4 5 6 7 8 9

K matrix for E150.93 Ry, 1Se,p511
1 21.888 27.518 13.24 9.699 8.320 7.148 1.992 4.684 30.96
2 27.525 229.70 51.80 38.14 32.73 28.88 7.839 18.28 121.5
3 13.30 51.99 289.98 267.93 256.77 250.01 213.90 229.57 2216.6
4 9.665 37.98 267.40 248.21 242.35 236.39 29.947 224.07 2156.7
5 8.346 32.81 256.70 242.64 236.30 231.16 29.349 219.40 2136.0
6 7.151 28.87 249.82 236.54 231.08 228.11 27.718 217.41 2117.3
7 2.006 7.885 213.94 210.05 29.381 27.765 22.651 24.874 234.08
8 4.755 18.64 229.92 224.51 219.64 217.67 24.915 28.953 273.21
9 31.01 121.6 2215.9 2157.5 2135.7 2117.3 233.89 272.15 2510.6

Cross sections forE150.93 Ry, 1Se,p511
1 0.380(22) 0.104(21) 0.138(22) 0.394(21) 0.677(22) 0.125(21) 0.543(22) 0.664(22) 0.180(22)
2 0.530(21) 0.208~1! 0.760(22) 0.152~1! 0.139 0.135~1! 0.284(21) 0.450 0.103
3 0.319(21) 0.321(21) 0.311~2! 0.117~1! 0.340~1! 0.170 0.459~1! 0.191~1! 0.282~1!

4 0.679(21) 0.506 0.903(21) 0.157~1! 0.104 0.151 0.213 0.169 0.796(21)
5 0.508(21) 0.201 0.113~1! 0.450 0.415~1! 0.103~1! 0.169~1! 0.113~1! 0.871(21)
6 0.219(21) 0.448 0.131(21) 0.150 0.235 0.164~1! 0.647(21) 0.399(21) 0.183(22)
7 0.412(21) 0.415(21) 0.153~1! 0.928 0.169~1! 0.282 0.335~1! 0.105 0.233
8 0.296(21) 0.391 0.383 0.440 0.679 0.105 0.620(21) 0.800~1! 0.283
9 0.807(22) 0.890(21) 0.562 0.208 0.523(21) 0.468(22) 0.139 0.283 0.116~2!

K matrix for E150.93 Ry, 3Se,p521
1 0.454 20.303 20.051 20.020 0.080 0.043 20.017 0.149 0.128
2 20.301 22.453 20.669 0.383 0.552 1.112 0.017 1.145 1.060
3 20.051 20.672 0.398 20.465 1.140 20.371 0.0001 0.578 0.486
4 20.020 0.382 20.464 0.354 21.133 20.236 0.883 20.528 20.110
5 0.079 0.553 1.137 21.136 3.936 20.699 23.202 1.075 20.989
6 0.041 1.113 20.372 20.236 20.701 0.289 0.520 20.769 20.456
7 20.016 0.018 0.002 0.884 23.203 0.518 1.673 21.484 20.226
8 0.148 1.147 0.576 20.530 1.075 20.769 21.483 20.055 20.278
9 0.127 1.062 0.486 20.111 20.988 20.457 20.226 20.277 0.090

Cross sections forE150.93 Ry, 3Se,p521
1 0.178~1! 0.484(21) 0.853(22) 0.158(21) 0.603(22) 0.167(21) 0.457(22) 0.191(22) 0.625(23)
2 0.247 0.235~2! 0.390 0.109~1! 0.435 0.294~1! 0.163~1! 0.171~1! 0.182~1!

3 0.193 0.170~1! 0.514~2! 0.892~1! 0.208~1! 0.105~2! 0.167~2! 0.596 0.381~1!

4 0.277(21) 0.362 0.683 0.846 0.576 0.801 0.344(21) 0.924(22) 0.920(21)
5 0.453(21) 0.633 0.695 0.251~1! 0.373~2! 0.525 0.348~1! 0.295~1! 0.367~1!

6 0.291(21) 0.981 0.810 0.804 0.121 0.416~1! 0.887(21) 0.121 0.803(21)
7 0.333(21) 0.236~1! 0.556~1! 0.151 0.348~1! 0.388 0.276~2! 0.290~1! 0.186~1!

8 0.831(22) 0.149~1! 0.119 0.240(21) 0.177~1! 0.315 0.174~1! 0.448~1! 0.280~1!

9 0.259(22) 0.158~1! 0.760 0.241 0.220~1! 0.208 0.111~1! 0.280~1! 0.935~1!
s
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n52.1, x053, y0520, andb50.6. Table I shows elastic
phase shifts at several values of electron momentak1. Our
results, which was achieved by using finite proton ma
agree very well with variational calculations of Ref.@9#,
R-matrix calculations of Ref.@10#, finite-element method o
Ref. @11#, as well as with the results of direct numeric
solution of the Schro¨dinger equation of Ref.@12#, where in-
finite mass for proton were adopted. We also compare
calculation with the differential equation solution of th
modified Faddeev equations@2#. We can observe perfec
05271
s,

ur

agreements with all the previous calculations.
In Table II we presentS-wave partial cross sections be

tween the H(n52)2H(n53) thresholds at channel energ
E150.81 Ry and forL50, where we have three open cha
nels. We used parametersn52.1, x053.5, y0520, andb
50.3. For comparison we also show the results of
configuration-space Faddeev calculation@13#. We can report
perfect agreements. Our cross sections are also in g
agreements with the results of Ref.@12#.

In Table III we show theS-wave K matrices and partia
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cross sections between the H(n53)2H(n54) thresholds at
channel energyE150.93 Ry, where we have six open cha
nels. We used parametersn52.1, x054, y0520, and b
50.2. We can see that theK matrix is nearly perfectly sym-
metric. In Tables IV we present the correspondingP-waveK
matrices and cross sections. In this case we have nine
channels. TheK matrix is again nearly perfectly symmetric

V. SUMMARY

In this work we have studied the electron-hydrogen sc
tering problem by solving the Faddeev-Merkuriev integ
equations. For this system, where the two electrons are i
tical, the Faddeev scheme results in an one-component e
tion, which, however, gives full account on the asympto
and symmetry properties of the scattering process. We so
the integral equation by applying the Coulomb-Sturm
separable expansion method. In this approach the short-r
terms are expanded on the Coulomb-Sturmian basis, w
the long-range terms are treated in an exact manner
v-

05271
en

t-
l
n-
ua-

ed

ge
ile
ia

proper integral representation of the three-body channel
torted Coulomb Green’s operator in terms of two-bo
Green’s operators. The use of Coulomb-Sturmian basi
essential, as it allows an exact analytical representation o
two-body Green’s operator, which ensures that all thresho
are at the right location.

We calculatedS- andP-wave scattering and reaction cro
sections for energies up to the H(n54) threshold. Our nearly
perfectly symmetricK matrices shows that, in this approac
all the fine details of the scattering processes are prop
taken into account.
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