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Near-threshold photodetachment of heavy alkali-metal anions
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We calculate near-threshold photodetachment cross sections for Rb2, Cs2, and Fr2 using the Pauli equation
method with a model potential describing the effective electron-atom interaction. Parameters of the model
potential are fitted to reproduceab initio scattering phase shifts obtained from DiracR-matrix calculations.
Special care is taken to formulate the boundary conditions near the atomic nucleus for solving the Pauli
equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We find a3P1

o

resonance contribution to the photodetachment cross section of Rb2, Cs2, and Fr2 ions. Our calculated total
photodetachment cross sections for Cs agree with experiments after tuning the resonance position by 2.4 meV.
For Rb2 and Fr2 the resonance contribution is much smaller than for Cs. We therefore also provide angle-
differential cross sections and asymmetry parameters which are much more sensitive to the resonant contribu-
tion than total cross sections.
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I. INTRODUCTION

Recent renewed interest in the processes of photodet
ment ~PD! of alkali-metal anions@1–3# was caused by the
highly increased energy resolution in experimental stud
allowing the detection of narrow resonances, Wigner cus
and other threshold structures in photodetachment proce
Alkali-metal ions are relatively simple systems which can
described at low energies in terms of a two-electron mo
Therefore, they are excellent candidates for quantita
comparisons between theory and measurements. Earlier
oretical @4–6# and experimental@7,8# studies were concen
trating on the region near the first excitation threshold
neutral atoms where pronounced Wigner cusps were
tected.

A recently developed experimental technique combin
infrared laser and storage ring experiments allowed obse
tion @9# of the near-threshold behavior of the PD of Cs2.
This was direct experimental confirmation of earlier theor
ical predictions @10,11# of the Cs2(6s6p 3P1

o) resonance
state that lies a few meV above the Cs(6s) threshold. The
existence of this state was a controversial subject for so
time. Several theoretical calculations@6,12# predicted first
that the Cs2(6s6p 3PJ

o), J50,1,2, triplet is slightly bound
whereas semiempirical calculations@10,13# based on the
analysis of the collisional broadening of Rydberg states
Cs indicated that this triplet should be a resonance state.
controversy was resolved by two independent theoret
works. First, DiracR-matrix calculations of Thumm and
Norcross@11# showed that the dielectronic polarization in th
Cs2 system pushes the Cs2(6s6p 3PJ

o) states into the con
tinuum. This result was confirmed by independent Bre
PauliR-matrix calculations by Bartschat@14#. Second, Boro-
1050-2947/2002/66~5!/052712~10!/$20.00 66 0527
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din, Fabrikant, and Kazansky@15# found that this resonanc
explains the experimentally observed oscillatory depende
of the cross section for collisional broadening of Rydbe
states as a function of the principal quantum number.

This low-energy3Po shape resonance exists in all alka
metal atoms@16# including Fr, as was shown in recent Dira
R-matrix calculations@17,18#. However, its experimental ob
servation is very difficult. Although the3Po resonance state
of Rb2 was detected below 50 meV in an electron transm
sion experiment@19#, no direct experimental observation
were possible until the recent PD experiment by Scheeret al.
@9#. Due to the dipole selection rules, only theJ51 compo-
nent of the 3Po state can be populated in PD experimen
with a single photon. Moreover, since the1Se→3Po transi-
tion is forbidden in theLS coupling scheme, the proces
indicative of the 3Po resonance becomes very sensitive
the spin-orbit interaction, and the role of the theory for t
interpretation of experimental data becomes especially
portant.

Most of the previous calculations related to the low-lyin
spectrum of heavy alkali-metal negative ions are based
scattering models. A comprehensive review of scattering
PD calculations on Rb2 and Cs2 ions was done by Buckman
and Clark@20#. Our recent papers@17,18# attempt to com-
plete this list: see Table II in Ref.@17# and Tables II and III
in Ref. @18#. A calculation of resonance states for the Fr2 ion
was recently done in Refs.@17,18#. To the best of our knowl-
edge, in addition to our recent PD results for Cs2 @21#, there
are no other theoretical PD results available for energies
above the first detachment threshold for Rb2, Cs2, and Fr2

ions. This lack of information was recently pointed out b
Scheeret al. @9# in connection with their PD experiments o
Cs2. This situation is in part due to the difficulties in pro
©2002 The American Physical Society12-1
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viding an accurate treatment of relativistic interactions
quantum calculations for heavy atoms. We are going to
dress this issue in the present paper, and we will propos
accurate model to treat the spin-orbit interaction in PD
Rb2, Cs2, and Fr2 ions.

Even in a heavy atom, such as Fr, the spin-orbit inter
tion for valence electrons is relatively weak compared to
Coulomb interaction between them. Therefore the3P1

o reso-
nance should appear in near-threshold PD cross sections
small ‘‘bump’’ on a smooth background. The background
mainly due to the1P contribution which, according to the
Wigner threshold law, behaves asE3/2, whereE is the elec-
tron energy in the final state with respect to the PD thresh
This suggests that the spin-orbit interaction can be inclu
in a physically transparent way by using the Pauli equat
for the electron in the final state, that is, by adding the te

Vso5
1

2c2

1

r

dV

dr
s• l ~1!

to the nonrelativistic Coulomb potentialV, and solving the
Schrödinger equation with a modified potential for a tw
component wave function~the Pauli equation!. In Eq.~1! and
throughout the paper we use atomic units, unless spec
otherwise. However, for a Coulomb potentialV52Z/r , Eq.
~1! leads to a nonphysical 1/r 3 singularity near the origin.
This singularity does not cause problems if the spin-o
interaction is treated perturbatively. In this case, the exp
tation value of the interaction~1! is not divergent forl .0
because the radial wave function behaves asr l near the ori-
gin, and forl 50 it can be shown that the spin-orbit intera
tion term is identically equal to zero. A more rigorous tre
ment @22,23#, based on the Dirac equation, suggests that
interaction~1! can be regularized by using either the fac
(12V/2c2)21 @4,22# or (12V/2c2)22 @6,23#. This ambigu-
ity is related to the ambiguity in defining a Hermitian energ
independent Hamiltonian for the Pauli equation when go
from two first-order Dirac equations for the large and sm
components of the relativistic wave function to one seco
order Schro¨dinger-Pauli equation. Such a regularization c
be done only in the approximationV!c2. However, this
condition breaks down at distancesr ,Z/c2. This difficulty
was addressed in several atomic structure calculations@24#
where regular Pauli Hamiltonians were derived and used
self-consistent and many-body calculations of bound sta
This problem also should be addressed in calculations
Pauli wave functions for continuum states. In our recent
per@21# we proposed to solve this problem by starting with
Dirac wave function for the detached electron near the or
and introducing a generalization of a well-known transf
mation@25,26# from the Dirac to the Schro¨dinger wave func-
tion. This allowed us to calculate the3P1

o contribution to PD
of Cs2, which is in good agreement with experimental da
@9#.

In the present paper we give more details about
method and extend our calculations to two other heavy ne
tive alkali-metal ions, Rb2 and Fr2. Our results show tha
Cs2 is the anion most favorable for observation of the3P1

o
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resonance in PD. Although the spin-orbit interaction in F2

is stronger, the resonance there is broader. Our calculat
indicate that it would be difficult to detect experimentally th
3Po resonance in Rb2 and Fr2 by measuringtotal PD cross
sections. However, angle-differential cross sections and
asymmetry parameter are much more sensitive to the s
orbit interaction and are calculated in this work in order
provide guidance for future experiments.

This paper is organized as follows. In the next section
explain our method of calculating PD cross sections from
Pauli wave function. In Sec. III, we construct a model pote
tial for the electronic interaction with the neutral atom bas
on results of DiracR-matrix scattering calculations. In Se
IV, we discuss details of our treatment of the spin-orbit ter
Numerical results and their discussion will follow in Sec.
and we conclude with a brief summary in Sec. VI.

II. CROSS SECTIONS AND BOUNDARY CONDITIONS

We will calculate PD cross sections by integration of t
Pauli equation for one effective electron. The spin-depend
interaction of the active electron with the spin-1/2 alka
metal atom is represented by a spin-dependent effective
tential ~see Sec. III below!. Parameters in this potential wil
be adjusted to reproduce the scattering phases provide
previous two-electron DiracR-matrix calculations@17,18#.

The angle-differential photodetachment cross section
given by

ds

dV
5

4p2kv

c
u ê•Df i u2, ~2!

wherek is the electron momentum of the detached electr
v the photon frequency,ê the photon polarization vector
andDf i the matrix element of the dipole operator. We use
length form of the dipole matrix element which is approp
ate for calculations involving model potentials@27#.

For linearly polarized light along thez axis we have

ê•Df i5E ck
(2)* zc idr , ~3!

where the complex conjugate of the ‘‘minus’’ solution~inci-
dent plane wavefk plus ingoing wave! can be expressed
through the ‘‘plus’’ solution as

ck
(2)* 5c2k

(1) .

The plus solution consists of the incident plane wavefk and
an outgoing wave. We write the plus solution as a line
combination of eigenstates of the total angular moment
quantum numbersJ andMJ ,

ckSMS

(1) 5 (
LMLS8JMJ

ALMLSMS

JMJ ~k!YLS8JMJ
~ r̂ 1 ,s1 ,s2!

3RLS8S
J

~r 1!. ~4!
2-2
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The argumentss1 ands2 represent the spin variables for th
detached and atomic electrons, respectively, whiler̂ 1 repre-
sents the angular variables for the detached electron.
atomic electron is in ans state~e.g., 6s for Cs! and its wave
function does not depend on angular variables. The coup
of the total spin and orbital angular momentum is included
the function

YLS8JMJ
~ r̂ 1 ,s1 ,s2!5 (

MLMS

C
LMLS8MS

JMJ YLML
~ r̂ 1!xS8MS

~s1 ,s2!,

~5!

wherexS8MS
(s1 ,s2) is the total spin function of the system

andC
LMLS8MS

JMJ is a Clebsch-Gordan coefficient.S in Eq. ~4! is

the final total spin. Generally, we should also consider tr
sitions between states with different values of total orb
angular momentumL, but in our case the spin-orbit interac
tion mixes only 1P and 3P states since the atomic valenc
electron is in ans state and the detached electron’s angu
momentum isl 51.

The coefficientsALMLSMS

JMJ (k) in Eq. ~4! are determined

from the boundary condition atr 1→`. Let us look first at
the asymptotic behavior of the radial wave function

RLS8S
J

~r !;
1

r
sin~kr2Lp/2!dS8S1

1

r
exp@ i ~kr2Lp/2!# f S8S

J ,

~6!

where f S8S
J is the scattering amplitude. Substituting this e

pression into Eq.~4!, we obtain for the incident plane wav

fkSMS
; (

LMLJMJ

ALMLSMS

JMJ ~k!YLSJMJ
~ r̂ 1 ,s1 ,s2!

1

r

3sin~kr2Lp/2!. ~7!

We want this equation to correspond to the partial-wave
pansion of a plane wave normalized to thed function of
momentumk,

fkSMS
5~2p!23/2eik•rxSMS

~s1 ,s2!. ~8!

SinceL and S are uncoupled in Eq.~8!, we write A in the
form

ALMLSMS

JMJ ~k!5CLMLSMS

JMJ BLML
~k!. ~9!

Using the explicit expression forYLS8JMJ
, Eq. ~5!, and the

orthogonality property for the Clebsch-Gordan coefficien
we obtain

fkSMS
; (

LML

BLML
YLML

~ r̂ 1!xSMS
~s1 ,s2!

1

r 1
sin~kr12Lp/2!.

~10!

Comparing this expression with the partial-wave expans
of the plane wave, Eq.~8!, we obtain
05271
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BLML
~k!5S 2

p D 1/2 i L

k
YLML

* ~ k̂!. ~11!

Finally we have for the partial-wave expansion ofc (1),

ckSMS

(1) 5S 2

p D 1/21

k (
LML

i LYLML
* ~ k̂! (

S8JMJ

CLMLSMS

JMJ

3YLS8JMJ
~ r̂ 1 ,s1 ,s2!RLS8S

J
~r 1!. ~12!

c2kSMS

(1) can be obtained from here by replacingi L by i 2L.

To find the explicit expression for the PD matrix eleme
we write the initial 1S state as

c i5
1

A4p

ub~r !

r
x00~s1 ,s2! ~13!

and the final-state radial function as

RLS8S
J

5
1

r
uLS8S

J . ~14!

Then for the matrix element, Eq.~3!, we obtain

ê•Df i5
1

ik S 2

3p D 1/2

(
ML

C1MLSMS

10 Y1ML
* ~ k̂!MS, ~15!

whereMS is the radial matrix element

MS5E u10S
1 ~r !rub~r !dr. ~16!

For the differential PD cross section into the state with
total spinS we have

dsS

dV
5

8pv

3ck
uMSu2 (

MSML

uC1MLSMS

10 Y1ML
~ k̂!u2. ~17!

Because of the relative weakness of the spin-orbit inter
tion, the final channelS50 can be calleddominant, and the
S51 channel can be calledweak. As we can see from Eq
~17!, the angular distribution in the dominant channel
given by cos2u, where u is the angle between the photo
polarization vector and the momentum vectork, whereas the
angular distribution in the weak channel is given by sin2u.
Therefore a nonzero value of the differential cross section
the regionu5p/2 is a signature of the spin-orbit interactio
Moreover, this effect should become more pronounced in
vicinity of the 3P shape resonance.

For the total cross section we get after integration overk̂,

sS5
8pv

3ck
uMSu2, ~18!

and the observed cross section is obtained by summing
S.

The matrix u of radial functionsuS8S(r ) ~for J51 and
L51) in Eq. ~14! is obtained by numerical integration o
2-3
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coupled equations. Using the asymptotic boundary con
tions Eq.~6!, we can write down the matrixu in the follow-
ing form:

u5
i

2
@u(2)2u(1)S#, ~19!

whereS is the scattering matrix, andu6 has the following
asymptotic form:

uS8S
6

~r !;exp@6 i ~kr2p/2!#dS8S . ~20!

Together with the regular behavior at the origin, this gives
the boundary conditions foru, and uniquely determinesu as
a solution of coupled radial equations@cf. Eq. ~36! below#.

III. THE POTENTIAL MATRIX

Since we are interested in near-threshold PD for ener
much lower than thens-np1/2 excitation energy of the neu
tral atom@n55 ~Rb!, 6~Cs!, and 7~Fr!#, we have chosen to
describe the effective interaction of the electron with
alkali-metal atom by anLS-dependent model potential@6#
which is adjusted to reproduce the low-energy scatter
eigenphases forJ<2 and odd parity obtained from the Dira
R-matrix calculations@17,18#.

According to Ref.@28# two methods for the description o
the effective interaction between an electron and a ma
electron atom can be distinguished. In the model-poten
approach the effective interaction is attractive, and lead
atomic core states and scattering states. In this case, the
tering wave function contains the correct number of nod
and the phase shifts satisfy the generalized Levinson theo
@29#. In the alternative pseudopotential description,
atomic core states are excluded by introducing a strong
pulsive core@30#. For a treatment which should incorpora
the spin-orbit interaction, the second method is not acc
able, because the spin-orbit interaction effects are most
portant at short distances where the electron accelerate
high velocity due to the large nuclear charge. Therefore
the present paper we use the model-potential method.

To describe the effective electron-atom interaction we
troduce a separate local potential for each scattering s
defined by the quantum numbersL andS,

V̂5(
LS

uLS&VLS^LSu. ~21!

For theP state of the alkali-metal negative ions, the intera
tion potential is given by

VL51,S~r !52
Z

r
e2lr2Ae2gr2

a

2r 4
@12e2(r /r c)6

#1Vso ,

~22!

while the potential for theS state is

VL50,S~r !52
ZS

r
e2gr2

a

2r 4
@12e2(r /r c)6

#, ~23!
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since the spin-orbit interaction term vanishes. FurthermorZ
is the nuclear charge,a the atomic polarizability for the
ground state of the neutral atom@319.2~Rb!, 402.2~Cs!, and
317.8~Fr!#, andl the nuclear screening parameter.ZS andA
are two more adjustable parameters. The first two term
Eq. ~22! describe the short-range Coulomb interaction:
first term is a screened Coulomb potential, the second ter
an additional screening term due to the atomic electro
while the third term describes the long-range dipole inter
tion multiplied by a cutoff function to eliminate the diver
gence at the origin. TheP state is less penetrating. Therefor
near the nucleus, we use the unscreened Coulomb attra
potential @the first term in Eq.~22!#. For the S state, the
nuclear charge is screened more strongly by inner electr
and we include the adjustable screened chargeZS in Eq. ~23!.
Except forl, all other fit parameters in Eqs.~22! and ~23!
depend onL andS, and are given in Table I. Since the spi
orbit interaction term vanishes for the1Se state, the first term
in Eq. ~23! has a weak influence on low-energy electro
atom scattering. In contrast, for the3Po state, the position
and width of theJ fine-structure components are very sen
tive to the near-nuclear region@especially for the Cs2(3PJ

o)
resonance#, where the interaction~1! is important.

The spin-orbit interaction operator is calculated accord
to Eq. ~1! with the orbital angular momentum and spin o
erators for the detached electronl5 l15L ands5s1. We do
not include the spin-orbit term for the atomic electron sin
its orbital angular momentum remains 0.

We calculate the matrix elements of the operatorl1•s1 in
the basisLSJMJ ,

DSS8
J

5^LSJMJu l1•s1uL8S8JMJ&. ~24!

Using the Wigner-Eckart theorem in standard (J,MJ) repre-
sentation, we can write the matrix elements

DSS8
J

5~21!J1S1L8H L8 S8 J

S L 1J ^Luu l1uuL8&^Suus1uuS8&

~25!

TABLE I. The fit parametersZS , l, A, g, andr c for the model
potentialsVL50,S(r ) in Eq. ~23! andVL51,S(r ) in Eq. ~22! used to
reproduce the scattering phase shifts provided by DiracR-matrix
calculations@17# together with the nuclear chargeZ and the radius
r 0 for the transition to a pure Coulomb potentialZ/r at r ,r 0.

Atom
(Z)

r 0 l State ZS A g r c

Rb~37! 0.01 7.4975 1Se 4.5642 1.3438 1.8883
1Po 24.2625 1.0055 1.8869
3Po 21.4523 4.8733 1.8160

Cs~55! 0.014 7.2443 1Se 4.5396 1.3304 1.6848
1Po 23.6681 1.3195 1.8031
3Po 4.1271 2.2329 2.1314

Fr~87! 0.025 7.1607 1Se 5.2003 6.6603 1.1508
1Po 25.2272 0.60953 1.4891
3Po 0.5904 1.9179 1.8919
2-4
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as products of reduced matrix elements and 6-j symbols. The
reduced matrix elements are

^Luu l1uuL8&5dLL8AL~L11!~2L11! ~26!

and

^Suus1uuS8&

5~21!S8A3~2S11!~2S811!

2 H S 1 S8

1/2 1/2 1/2J .

~27!

In the case of interestJ5L51, and S and S8 have two
possible values, 0 and 1. Calculation of the reduced ma
elements and 6-j symbols in this case givesD00

1 50, D11
1 5

21/2, andD01
1 51/A2.

There are two additional electron scattering chann
which do not contribute directly to PD due to the dipo
selection rules, but which were nevertheless considered t
the parameters of our model potential to the scattering eig
phases provided by our separate DiracR-matrix calculation.
These channels are characterized by the quantum num
L51, J50 and L51, J52. The corresponding values o
DSS8

J areD11
0 521 andD11

2 51/2. These different values o
D11

J are responsible for the splitting of the low-energy3P
resonance, similar to the fine-structure splitting of the3P
states of Ba. Therefore the fit potential parameters in thS
51 channel were taken the same in all scattering symme
and were fitted to reproduce the splitting between theJ50
andJ52 resonances.

IV. TREATMENT OF THE SPIN-ORBIT TERM

Equation~1! contains an unphysical 1/r 3 singularity near
the origin. It appears due to the approximate treatment of
spin-orbit interaction. The second-order differential equat
for the large component of the Dirac wave function conta
the term

1

r

dV

dr

1

E2V1c2
, ~28!

whereE5c21ENR includes the electron rest mass and t
nonrelativistic energyENR . Since uENRu!c2 and, at r
@Z/c2, uVu!2c2, the denominatorE2V1c2 becomes
equal to 2c2, and Eq.~28! becomes identical with Eq.~1!.
Thus, Eq.~1! becomes invalid at short distances of the ord
of Z/c2. Although this distance is small~it is still large com-
pared to the size of the nucleus, however!, it is important to
remove the 1/r 3 singularity because it affects the bounda
condition at the origin and, therefore, the overall behavior
the wave function.

Our method starts with separating the entire space
two regions: in the inner region, limited by a sphere of rad
r 0, the only important nonrelativistic interaction is the u
screened Coulomb interaction between the detached ele
and the nucleus@31#. In this region relativistic interactions
~i.e., the spin-orbit interaction for electrons with low angu
05271
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momentum and the relativistic mass correction! are impor-
tant, and the total angular momentum quantum numbe
the detached electron,j, is conserved, making thej j repre-
sentation a natural choice. Forr .r 0, we neglect terms of
order Z/(c2r ), i.e., the Coulomb potential energy2Z/r
compared to the electron rest energyc2. In this region, the
effective potential is not diagonal in thej j representation
because of the exchange effects, and theLS representation is
more appropriate, where, as in the previous section,L is the
total orbital angular momentum andS is the total spin of the
atom1 detached electron system. The effective potentia
not diagonal in theLS representation due to spin-orbit inte
action effects; however, the off-diagonal elements are sm
The parameterr 0 should satisfy simultaneously the follow
ing requirements:r 0@Z/c2, and r 0!1/l, where l is the
screening parameter in Eq.~22!. An order of magnitude es
timate for the radiusr 0 is 0.01. However, this value does no
satisfy these requirements with high accuracy. Indeed, for
at r 50.01 the CoulombZ/r term is still 29% of the rest
energy term c2 whereas the screening exponential e
(2lr) is already 0.93, a noticeable deviation from the pu
Coulomb potential. To resolve this difficulty we use the fo
lowing approach. We postulate that our model potentia
equal to the pure Coulomb potentialZ/r at r ,r 0 and that
only at r .r 0 does it take the form of Eq.~22!. This creates
a slight discontinuity inVL51,S(r ), but does not cause prob
lems in fitting the potential parameters. If a continuous p
tential is desirable, one can introduce an additional cons
factor exp(lr0) at r .r 0. For r .r 0, where the Coulomb term
is still not negligible compared to the rest energy term,
use the Bethe and Salpeter regularization factor
2V/2c2)21 @22#. The PD cross section is quite insensitive
the exact form of the regularization factor atr .r 0. In par-
ticular, the 3P contribution to the PD of Cs2 decreases only
by 1% when we switch from the Bethe-Salpeter to the C
don and Shortly regularization factor (12V/2c2)22 @23# at
r .r 0.

To start the integration of the coupled equations with
model potentials~22! and ~23!, we use first the well-known
solution of the Dirac equation for an electron in the Coulom
potential@26#. The large componentGk(r ) with a very good
accuracy is given by the solution for zero nonrelativis
energy

Gk~r !5~k2s!J2s~y!1
y

2
J2s11~y!, ~29!

wheres5(k22Z2/c2)1/2, y5(8Zr)1/2, Js(y) is the Bessel
function, andk is the relativistic quantum number of th
Dirac theory. For PD from anS state, j 51/2 or 3/2. We
match the Dirac wave function forr ,r 0 at r 5r 0 to the
solutionc of the Pauli equation

S 2
1

2
¹21V̂1

1

2c2

1

r

dV̂

dr
s• l2ED C50, ~30!

whereV̂ is the operator~21! whose diagonal matrix element
are given by Eqs.~22! and ~23!.
2-5
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The standard transformation for this purpose is@25,26#

c5~11p2/8c2!cA, ~31!

wherecA is the large component of the Dirac wave functi
and p is the momentum operator. This transformation n
glects V compared toc2. The transformation~31! gives a
Pauli wave functionc which is only approximately normal
ized @25#. In contrast, if we do not neglectV/c2 ~but disre-
gard the nonrelativistic partENR of the total electron energy!,
Eq. ~31! becomes

c5@11s•pf ~r !s•p#cA, ~32!

where f (r )5@8c2(12V/2c2)2#21. By using standard prop
erties of the Pauli matricess, Eq. ~32! can be rewritten as

c5S 12
d f

dr

d

dr
2 f ¹21

1

r

d f

dr
s• lDcA . ~33!

By separating spin and angular variables, we obtain
corresponding relation between thep-wave Pauli radial func-
tion u(r ) and the large component of the Dirac radial fun
tion G(r ),

uj~r !5H 12r
d f

dr

d

dr

1

r
2 f F d2

dr2
2

2

r 2G
1

1

r

d f

dr F j ~ j 11!2
11

4 G J Gk~r !. ~34!

After calculatinguj (r ) in the j j representation, we recoupl
to theLS representation according to

uLSJ5~21!11J2LA2S11 (
j 5L21/2

L11/2

ujA2 j 11H L J S

1

2

1

2
j J
~35!

and integrate the system

S d2

dr2
2

2

r 2
1k222VL51,S~r !22DSS

1 v~r !D uS~r !

52D01
1 v~r !uS8~r ! ~36!

of coupled radial Pauli equations numerically forr .r 0. The
radial functionuS(r ) was defined in Eq.~20!. The diagonal
and off-diagonal parts of the spin-orbit interaction appear
the left- and right-hand sides, respectively, of Eq.~36!. The
indicesSandS8 take values of 0 and 1, respectively, for th
first equation, and 1 and 0, respectively, for the second eq
tion. Furthermore, we writeVso as @v(r )s• l# by defining

v~r !5
1

2c2r

dVL51,S

dr
.

DSS8
1 is the coupling matrix@cf. Eq. ~24!#. The local poten-

tials VL51,S describe the electron-atom interaction in cha
05271
-

e

-

n

a-

-

nels 1P (VL51,S50) and 3P (VL51,S51). To assure Hermi-
city of the spin-orbit interaction, we assume th
dVL51,S50 /dr5dVL51,S51 /dr near the origin, where the
spin-orbit interaction is important. Since the nuclear scre
ing parameterl is the same forVL51,S50 andVL51,S51, this
requirement is satisfied with a high accuracy.

V. NUMERICAL RESULTS AND DISCUSSION

Figure 1 gives the total PD cross sections5s01s1
@where s0 and s1 are given by Eq.~18! for S50 and S
51, respectively#, for energies of the photoelectron ju
above the detachment threshold ofA2 (A stands for Rb, Cs,
and Fr!. Our calculations for Cs, based on the DiracR-matrix
results for eigenphases@17,18#, exhibit a local peak whose
position, 5.6 meV above the threshold, is somewhat low
than the observed peak at 8 meV@9#, and the theoretica
width of 2.7 meV is smaller than the experimental value o
meV. Therefore, we have tuned the position of theJ51 reso-
nance by changing the parameterr c in Eq. ~22! for the 3Po

symmetry from 2.1294 to 2.1314. This modification h
shifted the position of theJ51 resonance to 8 meV. Th
resulting curve, shown in the inset of Fig. 1, agrees with
experimental data from Fig. 2 of Ref.@9#, with respect to
both the resonance position and width. On the other ha
the 3P resonance contribution to PD of Rb2 and Fr2 is
unnoticeable in Fig. 1, due to the dominating1P back-
ground.

The 3P resonance appears due to a combination of
centrifugal barrier and the polarization potential. Therefo
its position can be efficiently controlled by the cutoff param
eterr c entering the polarization potential. A slight increase

FIG. 1. Near-threshold PD cross section for Rb2 ~dotted line!,
Cs2 ~solid line!, and Fr2 ~dashed line!. The inset shows our calcu
lations based on the DiracR-matrix data from Ref.@17# ~dash-
dotted line!, and after fine-tuning the peak of the3P1

o resonance to
8 meV @21# ~solid line!. In the inset, our results for Cs2 are com-
pared with the experimental data from Fig. 2 of Ref.@9# ~normal-
ized to our absolute PD cross section at 8 meV! for two slightly
different values of the cutoff radiusr c .
2-6
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the parameterr c in Eq. ~22! produces a slightly less attrac
tive electron-atom interaction and shifts the resonance p
tion toward larger energies. For the Cs2 ion, an increase of
the parameterr c from 2.1294 to 2.1314~by only 0.094%!
produces a shift of about 2.4 meV in the position of the3P
resonance. The high sensitivity of the resonance positio
r c is due to the very low resonance energy close to the bo
part of the negative ion spectrum. Indeed, as follows fr
Fig. 2, the resonance position and width are much more
sitive to r c in the case of Cs2, where the resonance occurs
a lower energy than for Rb2 and Fr2.

In Fig. 3 we plot the3P contributions to the total PD
cross section for all three ions. The inset of Fig. 3 shows
agreement between our cross sections near the3P1

o reso-
nance of Cs2 and the experimental data from Fig. 3 of Re
@9#. For Rb, the 3P contribution is about 2.7 times lowe
than that for Cs, which is not surprising because of

FIG. 2. Energy dependence of the eigenphase sums for thJp

512 symmetry~wherep is the parity! of Rb2, Cs2, and Fr2 ions,
for several values ofr c ~indicated in the legend!. In each graph, the
solid line corresponds to ther c value that gives the best fit of ou
Pauli eigenphase sums to the DiracR-matrix results from Refs.
@17,18# for Rb2 ~1.8160!, Cs2 ~2.1294!, and Fr2 ~1.8919!.
05271
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weaker spin-orbit interaction. However, for Fr the3P contri-
bution is lower than for Cs too, in spite of the higher nucle
charge. For a qualitative discussion and tentative explana
of this surprising effect, we note that the resonance contri
tion to the final-state wave function can be obtained by s
ting S50, S851, and by integrating Eq.~36!,

u0~r !5E G~r ,r 8!
1

A2c2r 8

dVL51,S51

dr8
u1~r 8!dr8. ~37!

In Eq. ~37!, G(r ,r 8) is the Green’s function of the radia
Hamiltonian on the left-hand side of Eq.~36!. In lowest or-
der of perturbation theory, we drop the spin-orbit interacti
term inG(r ,r 8). SincedVL51,S51 /dr8 in Eq. ~37! is propor-
tional to the nuclear chargeZ, we expect the matrix elemen
~16! for the triplet scattering state to be approximately p
portional toZū1, whereū1 is a typical value for the resonan
part of the radial wave function. In consequence, accord
to Eq. ~17!, the detachment cross section is expected to
have asZ2ū1

2.

To estimateū1, we use the following result for the reso
nance part of the scattering wave function@32# c5af,
where the functionf is normalized to 1, and the absolu
value ofa is given by~we assume thatc is normalized to the
d function of momentum!

uau25
kG

2p@~E2Eres!
21G2/4#

. ~38!

At the resonance, E5Eres and uau252(2Eres)
1/2

/@pG(Eres)#. For theP resonanceG}E3/2 and therefore the
peak value ofuau2 scales as 1/Eres . In Fig. 4, we present
numerically calculated radial wave functions forJ50 at en-
ergies corresponding to resonance positions~19.2, 4.0, and
13.2 meV for Rb, Cs, and Fr, respectively!. Since there is
only one open channel forJ50, we discuss theJ50 instead
of theJ51 term. This will not affect our conclusions below

FIG. 3. 3P1
o contribution to PD~shown in Fig. 1! for Rb2 ~dot-

ted line!, Cs2 ~solid line!, and Fr2 ~dashed line! ions. The inset
shows the same comparison as Fig. 1, for the3P1

o contribution.
2-7
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The wave functions in Fig. 4 have their maximum at d
tances of about 12 a.u., and then decay into the classic
forbidden region due to the potential barrier formed by
centrifugal potential. As shown in Table II, the peak val
scales asEres

21/2 in accordance with our result foruau. Conse-
quently, the triplet contribution to the cross section scales
Z2/Eres within a factor of 2. For Fr, the larger value ofZ is
offset by a larger value ofEres . Therefore scaling for the
peak value atJ50 works better than scaling for the PD cro
section. In addition, the1P background contribution for Fr is
larger atE5Eres because of the larger value ofEres . Strictly
speaking, this scaling works only for very narrow res
nances; therefore deviations from this simple law are s
stantial, especially for the cross section. However, it allo
us to understand our results qualitatively.

The accuracy of our present PD results is mainly in
cated by the precision of the Dirac eigenphases compute
@17,18# and used in this model. The accuracy of the Dir
scattering eigenphases was discussed in Ref.@17#, and, for
Fr, is limited by the electron affinities~EAs! we have used in
our DiracR-matrix calculations. For Rb and Cs atoms, acc
rate experimental EAs are available. For Fr atoms, no exp
mental EA is available, and we have estimated its value
492 meV within a 2% error@17#. A detailed discussion re
garding the consequences of this uncertainty for the cha
teristics of the 3Po resonance was given in@17#, and the
results are shown in Fig. 3 of Ref.@17#. The uncertainty in
the position of theJ51 component of the Fr2(3Po) reso-
nance~at 24 meV! was estimated to be 23%~about 6 meV!.

FIG. 4. Numerically calculated radial wave functions forJ50
at energies corresponding to resonance positions~19.2, 4.0, and
13.2 meV for Rb, Cs, and Fr, respectively!.
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This uncertainty is not significantly changed by the fittin
procedure we use in order to get the Pauli eigenphases
the Dirac eigenphases. It remains indicative for the accur
of our PD results for Fr.

We conclude that the3P contributions to the total PD
cross sections for Rb and Fr are too small to be noticea
However, the differential cross sections and the asymm
parameterb @33# are more sensitive to the3P contribution.
In the angular distribution of photoelectrons@Eq. ~17!#, the
S51 contribution adds a sin2u term to the pure cos2u depen-
dence of theS50 contribution. Therefore, the asymmet
parameter in the angular distribution@34#,

ds

dV
5

s@11bP2~cosu!#

4p
, ~39!

differs from its maximum value 2. In Eq.~39!, both the
angle-integrated,s, and the angle-differential,ds/dV, PD
cross sections include the summation over the final spiS
50 and 1 states.P2(cosu) is the Legendre polynomial fo
l 52, andu is the polar angle of the unit vectork̂ in Eq. ~17!.
Figure 5 shows the energy dependence of theb parameter
for Rb2, Cs2, and Fr2 ions, while Fig. 6 presents our angle
differential cross section~DCS! results for PD of Rb2. In
comparison with the similar result for Cs2 ~see Fig. 2 in Ref.
@21#!, the 3P contribution for Rb2 nearu of 90° is much less
pronounced. This is mainly due to a much broader3P reso-
nance for Rb2 than for Cs2. We also note that our DCS fo
Rb2 at u590° ~of 0.0016 Å2/rad) is only 2% of the DCS a

FIG. 5. Asymmetry parameters as functions of the energy of
photodetached electron for PD of Rb2 ~dotted line!, Cs2 ~solid
line!, and Fr2 ~dashed line!.
TABLE II. Parameters derived from the numerical study of the wave function forJ50 at the resonance
position Eres . To help the reader to understand Fig. 4, we also show the turning pointsr 1 and r 2 for the
classical motion of the electron in the superposition of the centrifugal and polarization potentials.

Atom Eres (meV) umax (a.u.) umaxAEres @104s(Å2)#Eres /Z2 r 1 (a.u.) r 2 (a.u.)

Rb 19.2 1.3930 6.10 1.55 13.54 35.13
Cs 4.0 2.9960 5.99 0.83 14.41 81.21
Fr 13.2 1.8839 6.84 0.61 13.17 43.45
2-8
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u5180°. This percentage is very small compared with t
for Cs2 of about 24%. For Cs2, the DCS at 90° is
0.005 Å2/rad. For Fr2, the DCS results are similar to thos
for Rb2. These results are not surprising, since the minim
of the b parameter is 1.89~1.87! for Rb2 (Fr2), which is a
weak deviation frombmax52. For Cs2, the deviation is
more important, sincebmin51.

The present results can be used as a guideline for fu
experimental attempts to detect the3Po resonance in heavy
alkali-metal anions. Measurements of theb parameter have

FIG. 6. The angle-differential PD cross section near the deta
ment threshold for Rb2. The 3P contribution has a maximum a
about 23 meV, indicated by the thick line.
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already been done by Freyet al. @8# in single-photon PD of
Rb2, in the region of the Rb(5p 2P1/2.3/2) thresholds. Frey
et al. carefully tested the accuracy of this technique in ord
to identify resonances. We hope that our results will stim
late further experiments in the still unexplored spectral
gion near the Rb2 and Fr2 detachment thresholds.

VI. SUMMARY

In conclusion, we have formulated boundary conditio
for solving the Pauli equation, which are important for t
description of the spin-orbit interaction effects in electr
scattering and PD processes. The application of this met
to the near-threshold PD of Cs2 allows us to calculate the
contribution of the3P1

o resonance in very good agreeme
with the experimental results in@9#.

For Rb2 and Fr2 we predict this contribution to be ver
small and therefore not easily observable in total PD cr
section measurements. However, the3P1

o resonance contri-
bution leaves a clear signature in theb parameters, and
therefore will be better accessible in measurements of an
differential PD cross sections for Rb2 and Fr2.
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