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Near-threshold photodetachment of heavy alkali-metal anions
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We calculate near-threshold photodetachment cross sections fTor@®b, and Fr using the Pauli equation
method with a model potential describing the effective electron-atom interaction. Parameters of the model
potential are fitted to reprodua initio scattering phase shifts obtained from Dif&enatrix calculations.

Special care is taken to formulate the boundary conditions near the atomic nucleus for solving the Pauli
equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We fiR§ a
resonance contribution to the photodetachment cross section of &, and Fr ions. Our calculated total
photodetachment cross sections for Cs agree with experiments after tuning the resonance position by 2.4 meV.
For Rb™ and Fr the resonance contribution is much smaller than for Cs. We therefore also provide angle-
differential cross sections and asymmetry parameters which are much more sensitive to the resonant contribu-
tion than total cross sections.

DOI: 10.1103/PhysRevA.66.052712 PACS nuntber32.80.Gc, 31.30.Jv

[. INTRODUCTION din, Fabrikant, and KazansKyL5] found that this resonance
explains the experimentally observed oscillatory dependence
Recent renewed interest in the processes of photodetacbf the cross section for collisional broadening of Rydberg
ment (PD) of alkali-metal aniong1-3] was caused by the states as a function of the principal quantum number.
highly increased energy resolution in experimental studies This low-energy®P° shape resonance exists in all alkali-
allowing the detection of narrow resonances, Wigner cuspsnetal atomg16] including Fr, as was shown in recent Dirac
and other threshold structures in photodetachment process¢&matrix calculationg17,18. However, its experimental ob-
Alkali-metal ions are relatively simple systems which can beservation is very difficult. Although théP° resonance state
described at low energies in terms of a two-electron modelof Rb™ was detected below 50 meV in an electron transmis-
Therefore, they are excellent candidates for quantitativeion experimen{19], no direct experimental observations
comparisons between theory and measurements. Earlier th@ere possible until the recent PD experiment by Sckéat.
oretical [4—6] and experimental7,8] studies were concen- [9]. Due to the dipole selection rules, only the1 compo-
trating on the region near the first excitation threshold ofnent of the ®P° state can be populated in PD experiments
neutral atoms where pronounced Wigner cusps were dewith a single photon. Moreover, since tH&°—3P° transi-
tected. tion is forbidden in theLS coupling scheme, the process
A recently developed experimental technique combiningndicative of the 3P° resonance becomes very sensitive to
infrared laser and storage ring experiments allowed observahe spin-orbit interaction, and the role of the theory for the
tion [9] of the near-threshold behavior of the PD of Cs interpretation of experimental data becomes especially im-
This was direct experimental confirmation of earlier theoretportant.
ical predictions[10,1] of the Cs (6s6p3P%) resonance Most of the previous calculations related to the low-lying
state that lies a few meV above the Cs)@hreshold. The spectrum of heavy alkali-metal negative ions are based on
existence of this state was a controversial subject for somscattering models. A comprehensive review of scattering and
time. Several theoretical calculatiofi,12] predicted first PD calculations on Rband CsS ions was done by Buckman
that the CS(6s6p 3P9), J=0,1,2, triplet is slightly bound and Clark[20]. Our recent paperfl7,1§ attempt to com-
whereas semiempirical calculatioi40,13 based on the plete this list: see Table Il in Ref17] and Tables Il and 1lI
analysis of the collisional broadening of Rydberg states byn Ref.[18]. A calculation of resonance states for the kon
Cs indicated that this triplet should be a resonance state. Thigas recently done in Refgl7,18. To the best of our knowl-
controversy was resolved by two independent theoreticatdge, in addition to our recent PD results for ¢g1], there
works. First, DiracR-matrix calculations of Thumm and are no other theoretical PD results available for energies just
Norcrosq 11] showed that the dielectronic polarization in the above the first detachment threshold for RICs™, and Fr
Cs system pushes the C&s6p 3P3) states into the con- ions. This lack of information was recently pointed out by
tinuum. This result was confirmed by independent Breit-Scheeret al.[9] in connection with their PD experiments on
Pauli R-matrix calculations by Bartschht4]. Second, Boro- Cs . This situation is in part due to the difficulties in pro-
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viding an accurate treatment of relativistic interactions inresonance in PD. Although the spin-orbit interaction in Fr
quantum calculations for heavy atoms. We are going to adis stronger, the resonance there is broader. Our calculations
dress this issue in the present paper, and we will propose dndicate that it would be difficult to detect experimentally the
accurate model to treat the spin-orbit interaction in PD of3p° resonance in Rband Fr by measuringotal PD cross
Rb™, Cs’, and Fr ions. sections. However, angle-differential cross sections and the
Even in a heavy atom, such as Fr, the spin-orbit interacasymmetry parameter are much more sensitive to the spin-
tion for valence electrons is relatively weak compared to theyrbit interaction and are calculated in this work in order to
Coulomb interaction between them. Therefore ¥R reso-  provide guidance for future experiments.
nance should appear in near-threshold PD cross sections as aThis paper is organized as follows. In the next section we
small “bump” on a smooth background. The background isexplain our method of calculating PD cross sections from the
mainly due to the!P contribution which, according to the Pauli wave function. In Sec. Ill, we construct a model poten-
Wigner threshold law, behaves BE”?, whereE is the elec- tial for the electronic interaction with the neutral atom based
tron energy in the final state with respect to the PD thresholdon results of Dirad?-matrix scattering calculations. In Sec.
This suggests that the spin-orbit interaction can be includetV, we discuss details of our treatment of the spin-orbit term.
in a physically transparent way by using the Pauli equatiorNumerical results and their discussion will follow in Sec. V,
for the electron in the final state, that is, by adding the termand we conclude with a brief summary in Sec. VI.

1 1dv Il. CROSS SECTIONS AND BOUNDARY CONDITIONS
Veo=— — =—5| (1)
2¢c2r dr
We will calculate PD cross sections by integration of the

Pauli equation for one effective electron. The spin-dependent
interaction of the active electron with the spin-1/2 alkali-
metal atom is represented by a spin-dependent effective po-
et&ntial (see Sec. Il beloyw Parameters in this potential will

be adjusted to reproduce the scattering phases provided by

to the nonrelativistic Coulomb potenti&l, and solving the
Schralinger equation with a modified potential for a two-
component wave functiotithe Pauli equationIn Eg.(1) and
throughout the paper we use atomic units, unless specifi

otherwise. However, for a Coulomb potenti&= —Z/r, Eq. ) . . .
(1) leads to a nonphysical ¥/ singularity near the origin. previous two-electron DiraR-matrix calculationg17,18|.

This singularity does not cause problems if the spin-orbit . The angle-differential photodetachment cross section is

interaction is treated perturbatively. In this case, the expecg'ven by
tation value of the interactiofil) is not divergent fol >0

because the radial wave function behaves'asear the ori- =
gin, and forl =0 it can be shown that the spin-orbit interac- dQ c
tion term is identically equal to zero. A more rigorous treat-

ment[22,23, based on the Dirac equation, suggests that th&herek is the electron momentum of the detached electron,
interaction(1) can be regularized by using either the factorw the photon frequencye the photon polarization vector,
(1—V/2c?) "1 [4,22) or (1—-V/2c¢?) "2 [6,23]. This ambigu-  andDy; the matrix element of the dipole operator. We use the
ity is related to the ambiguity in defining a Hermitian energy-length form of the dipole matrix element which is appropri-
independent Hamiltonian for the Pauli equation when goingate for calculations involving model potentid7].

from two first-order Dirac equations for the large and small  For linearly polarized light along the axis we have
components of the relativistic wave function to one second-

order Schrdinger-Pauli equation. Such a regularization can N B

be done only in the approximatio<c?. However, this e'Dfi:f Y zydr, ()
condition breaks down at distances:Z/c?. This difficulty

was addressed in several atomic structure calculafi2dk  \yhere the complex conjugate of the “minus” solutiginci-

where regular Pauli Hamiltonians were derived and used igjgnt plane wavep, plus ingoing wave can be expressed
self-consistent and many-body calculations of bound stateghrough the “plus” solution as

This problem also should be addressed in calculations of
Pauli wave functions for continuum states. In our recent pa- lﬂ(_)* _ ¢(+)
per[21] we proposed to solve this problem by starting with a K ke
Dirac wave function for the detached electron near the origin]_he | luti ists of the incident olane cand
and introducing a generalization of a well-known transfor- plus solution consists of the incident plane waeant
an outgoing wave. We write the plus solution as a linear

mation[25,26 from the Dirac to the Schainger wave func- I .
tion. This allowed us to calculate th#$ contribution to PD combination of eigenstates of the total angular momentum
: 1 quantum numberd and M,

of Cs™, which is in good agreement with experimental data

do 47%ko . )
|e-Dril?, (]

[9].
In the present paper we give more details about oug{l) = > AmJSM (k)yLS’JMJ(Flel!SZ)
method and extend our calculations to two other heavy nega- > Lwm,s'm, Los
tive alkali-metal ions, Rb and Fr. Our results show that ;
Cs is the anion most favorable for observation of tHe XRigs(r). 4
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The arguments; ands, represent the spin variables for the 2\ u2jL . e
detached and atomic electrons, respectively, whileepre- Buw, (k)= P EYLML(k)' 1D
sents the angular variables for the detached electron. The
atomic electron is in as state(e.g., & for Cs) and its wave  Finally we have for the partial-wave expansionysf™),
function does not depend on angular variables. The coupling "
i i isi i 2\7°1 N
of the totgl spin and orbital angular momentum is included in wi =12 D ityx,, (k) D cIM;
the function s |7 k&t L A LM S
J

- IM - B J

Vistam,(1,81,82) = M% CLMJLSrMSYLML(rl)XS’MS(Sl152)1 XNsamy(11,51,52) R g/5(M11)- (12
LV'S

(5) %y, can be obtained from here by replacitgby i ~.

. : . To find the explicit expression for the PD matrix element,
whereXS,MS(sl,sz) is the total spin function of the system, we write the initial 1S state as

andCi',\v',lJ sm is a Clebsch-Gordan coefficiel@in Eq. (4) is
L S

the final total spin. Generally, we should also consider tran- :L M o(51,55) (13)
sitions between states with different values of total orbital RNV Xo0t>1,52
angular momentunh, but in our case the spin-orbit interac-
tion mixes only'P and 3P states since the atomic valence and the final-state radial function as
electron is in ars state and the detached electron’s angular
momentum id=1. R — 1,

The coefficientsAi'\,\flJLSMS(k) in Eq. (4) are determined Ls's™ y Uis's:
from the boundary condition at;—c. Let us look first at
the asymptotic behavior of the radial wave function

(14)

Then for the matrix element, E¢3), we obtain

~ 1
€ Dri=rp

2
37

1/2
1 1 10 * i
Rl gs(r)~ —sin(kr — L m/2) 8 s+ ~exifi (kr —Lm/2)]fd MEL Civ smYam (KMs, (19

©) whereMg is the radial matrix element

WherefJS,S is the scattering amplitude. Substituting this ex-
pression into Eq(4), we obtain for the incident plane wave Mszf u}os(r)rub(r)dr. (16)

M,

- 1 ; ; P .
besu~ > AN ()Y sam(T1,81,80)~ For the differential PD cross section into the state with the
S LM M, L>Ms J r

total spinSwe have

Xsin(kr—L/2). (7) dos 87w R

. _ . 90~ 3ck | Msl’ > [Ci sm Y (2 (17
We want this equation to correspond to the partial-wave ex- MsML
pansion of a plane wave normalized to thefunction of

Because of the relative weakness of the spin-orbit interac-
momentumk,

tion, the final channe$=0 can be calledlominant and the
®) S=1 channel can be calledeak As we can see from Eq.
(17), the angular distribution in the dominant channel is
given by coé6, where ¢ is the angle between the photon
polarization vector and the momentum vedtomwhereas the
angular distribution in the weak channel is given by?8in
Therefore a nonzero value of the differential cross section in
the regiond= /2 is a signature of the spin-orbit interaction.
Moreover, this effect should become more pronounced in the
Using the explicit expression fQ¥ s ;u,, Eg. (5), and the  vicinity of the 3P shape resonance.
orthogor_wality property for the Clebsch-Gordan coefficients, For the total cross section we get after integration dyer
we obtain

Prsmg= (Zﬂ)fglzeik'rXSMS(Sl 1S2).

SincelL and S are uncoupled in Eq8), we write A in the
form

JM JM
ALMJLSMS(k):CLMJLSMSBLML(k)' (9)

87w )
~ 1 . 5= 3ck |MS| ' (18)
Pusmy™ Bu, Yuu, (T Xsw(S1,8)sinkry — Lf2).
- (10) and the observed cross section is obtained by summing over
S

Comparing this expression with the partial-wave expansion The matrixu of radial functionsug g(r) (for J=1 and
of the plane wave, E(q8), we obtain L=1) in Eq. (14) is obtained by numerical integration of

052712-3



BAHRIM et al. PHYSICAL REVIEW A 66, 052712 (2002

coupled equations. Using the asymptotic boundary condi- TABLE I. The fit parameter&s, A, A, v, andr for the model
tions Eq.(6), we can write down the matrim in the follow-  potentialsV _qs(r) in Eq. (23) andV, _; 5(r) in Eq. (22) used to
ing form: reproduce the scattering phase shifts provided by DiRanatrix

calculationg 17] together with the nuclear chargeand the radius
ro for the transition to a pure Coulomb potent@lr atr<ry,.

i
u=§[u(*)—u(+)8], (19
Atom 1 A State Zg A Y le
whereS is the scattering matrix, and” has the following (%)
asymptotic form: Rb(37) 0.01 7.4975 'S° 4.5642 1.3438 1.8883
+ . tpo —4.2625 1.0055 1.8869
+ _ . B
Ug/s(r) ~ex xi(kr=m/2)]dgs. (20 3po — 14523 4.8733 1.8160
1
Together with the regular behavior at the origin, this gives ufs59) 0.014 7.2443 182 4.5396 1.3304 1.6848
the boundary conditions far, and uniquely determinasas 3P0 —3.6681 1.3195 1.8031
a solution of coupled radial equatiopsf. Eq. (36) below]. P 4.1271 2.2329 21314
Fr(87) 0.025 7.1607 'S* 5.2003 6.6603 1.1508
1po _
lll. THE POTENTIAL MATRIX P 52272 0.60953 1.4891
3pe 0.5904 1.9179 1.8919

Since we are interested in near-threshold PD for energie
much lower than thes-np,,, excitation energy of the neu-
tral atom[n=5 (Rb), 6(Cs), and 7Fr)], we have chosen to since the spin-orbit interaction term vanishes. Furtherniore,
describe the effective interaction of the electron with anis the nuclear chargey the atomic polarizability for the
alkali-metal atom by arl. S-dependent model potentigh]  ground state of the neutral atd®19.2(Rb), 402.2(Cs), and
which is adjusted to reproduce the low-energy scatterin@17.8(Fr)], and\ the nuclear screening paramet@g.andA
eigenphases far<2 and odd parity obtained from the Dirac are two more adjustable parameters. The first two terms in
R-matrix calculationg17,18. Eq. (22) describe the short-range Coulomb interaction: the

According to Ref[28] two methods for the description of first term is a screened Coulomb potential, the second term is
the effective interaction between an electron and a manyan additional screening term due to the atomic electrons,
electron atom can be distinguished. In the model-potentialvhile the third term describes the long-range dipole interac-
approach the effective interaction is attractive, and leads ttion multiplied by a cutoff function to eliminate the diver-
atomic core states and scattering states. In this case, the scgence at the origin. The state is less penetrating. Therefore,
tering wave function contains the correct number of nodespear the nucleus, we use the unscreened Coulomb attractive
and the phase shifts satisfy the generalized Levinson theorepotential [the first term in Eq.(22)]. For the S state, the
[29]. In the alternative pseudopotential description, thenuclear charge is screened more strongly by inner electrons,
atomic core states are excluded by introducing a strong reand we include the adjustable screened chZige Eq. (23).
pulsive core[30]. For a treatment which should incorporate Except for, all other fit parameters in Eq§22) and (23)
the spin-orbit interaction, the second method is not accep#lepend orl andS, and are given in Table I. Since the spin-
able, because the spin-orbit interaction effects are most inorbit interaction term vanishes for tH&® state, the first term
portant at short distances where the electron accelerates ito Eq. (23) has a weak influence on low-energy electron-
high velocity due to the large nuclear charge. Therefore iratom scattering. In contrast, for th#P° state, the position
the present paper we use the model-potential method. and width of thelJ fine-structure components are very sensi-

To describe the effective electron-atom interaction we in<ive to the near-nuclear regidespecially for the Cs(3P§)
troduce a separate local potential for each scattering stateesonanck where the interactioil) is important.

defined by the quantum numbdrsand S The spin-orbit interaction operator is calculated according
to Eqg. (1) with the orbital angular momentum and spin op-

9 erators for the detached electrbal,=L ands=s;. We do

V= LSV, LS. 21 ) : . 1 ; .
._25 ILSViLS] @D not include the spin-orbit term for the atomic electron since

its orbital angular momentum remains 0.
For theP state of the alkali-metal negative ions, the interac- We calculate the matrix elements of the operaios, in
tion potential is given by the basid. SJIM;,

z

@ ) o= .s|L'S
V|_:1,s(f)=—?e_“_Ae_”—F[l—e_(”’c)ﬁ]wLVSO, DSS <LSJMJ||1 81|L SJMJ>. (24

(22 Using the Wigner-Eckart theorem in standaddN] ;) repre-

sentation, we can write the matrix elements
while the potential for thes state is

! U

L J
Dég=<—1>”S+L[S ) 1}<L|||1||L'><S||sl||:~:'>

(29

z a
VL:o,s(r):—Tsefyr—ﬁ[l—ef(”rc)e], (23
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as products of reduced matrix elements andsymbols. The momentum and the relativistic mass correctiane impor-

reduced matrix elements are tant, and the total angular momentum quantum number of
the detached electrof, is conserved, making thg repre-
(LI[Il[L"y =6 VL(L+1)(2L+1) (26)  sentation a natural choice. Forr,, we neglect terms of

order Z/(c?r), i.e., the Coulomb potential energy Z/r
compared to the electron rest enewfy In this region, the
(Sl|s]|S") effective potential is not diagonal in thg representation
because of the exchange effects, andliBeepresentation is
s  [3(25+ 1)(28’+1)j s 1 ¢ more appropriate, where, as in the previous sectiois, the
(-1 2 [1/2 12 13" total orbital angular momentum ar®lis the total spin of the
atom + detached electron system. The effective potential is
27 not diagonal in the_S representation due to spin-orbit inter-
action effects; however, the off-diagonal elements are small.

In the case of interesf=L=1, andS and S’ have two The parameter, should satisfy simultaneously the follow-
possible values, 0 and 1. Calculation of the reduced matrix para 0 y

i T L1 T ing requirementsr,>Z/c?, andry<1/\, where\ is the
elements anijfj S)\//r_nbols in this case giveSo,=0, D1,= screening parameter in ER2). An order of magnitude es-
—1/2, andDg,=1/y2. timate for the radius, is 0.01. However, this value does not

There are two additional electron scattering channelsgaiisy these requirements with high accuracy. Indeed, for Cs

which do not contribute directly to PD due to the dipole at r=0.01 the CoulomtZ/r term is still 29% of the rest
selection rules, but which were nevertheless considered to fgnergy termc? whereas the screening exponential exp
the parameters of our model potentigl to th? scattering eigert—_)\r) is already 0.93, a noticeable deviation from the pure
phases provided by our separate DiRnatrix calculation.  cq10mp potential. To resolve this difficulty we use the fol-
These channels are characterized by the quantum numb%?/ving approach. We postulate that our model potential is
L=1, J=Ooand L=1, ‘]:22' The corresponding values of o ,51"to the pure Coulomb potenti@lr atr<r, and that
Dsg areDy,=—1 andD3,=1/2. These different values of ony atr>r, does it take the form of Eq22). This creates
D1, are responsible for the splitting of the low-enerd®  a slight discontinuity iV, _; (r), but does not cause prob-
resonance, similar to the fine-structure splitting of 2 |ems in fitting the potential parameters. If a continuous po-
states of Ba. Therefore the fit potential parameters inShe tential is desirable, one can introduce an additional constant
=1 channel were taken the same in all scattering symmetrie@ictor expiry) atr>r,. Forr>r,, where the Coulomb term
and were fitted to reproduce the splitting betweendke&d s still not negligible compared to the rest energy term, we

and

andJ=2 resonances. use the Bethe and Salpeter regularization factor (1
—V/2c?)~1[22]. The PD cross section is quite insensitive to
IV. TREATMENT OF THE SPIN-ORBIT TERM the exact form of the regularization factorratry. In par-

ticular, the 3P contribution to the PD of Cs decreases only
by 1% when we switch from the Bethe-Salpeter to the Con-
flon and Shortly regularization factor {v/2c?)~2 [23] at

Equation(1) contains an unphysical r/ singularity near
the origin. It appears due to the approximate treatment of th
spin-orbit interaction. The second-order differential equatio
for the large component of the Dirac wave function contains

O.
To start the integration of the coupled equations with the
the term

model potentialg22) and (23), we use first the well-known
solution of the Dirac equation for an electron in the Coulomb
E d_\/ ; (28) potential[26]. The large componer,(r) with a very good
rdr e—-v+c? accuracy is given by the solution for zero nonrelativistic

energy
where E=c?+ Eyg includes the electron rest mass and the

nonrelativistic energyEng. Since |Eygl<c? and, atr y

>7/c?, |V|<2c?, the denominatorE—V+c? becomes G(r)=(k=8)Jas(y) + 5 Jas+1(¥), (29)
equal to 22, and Eq.(28) becomes identical with Eq1).

Thus, Eq.(1) becomes invalid at short distances of the orderyhere s= (x2—72/c2)12 y=(82r)¥2 J((y) is the Bessel

of Z/c?. Although this distance is smalit is still large com-  fynction, andx is the relativistic quantum number of the
pared to the size of the nucleus, howeyéris important to  pjrac theory. For PD from arS state,j=1/2 or 3/2. We
remove the ¥P singularity because it affects the boundary match the Dirac wave function for<r, atr=ro to the
condition at the origin and, therefore, the overall behavior ofgg| tion ¢ of the Pauli equation
the wave function.

Our method starts with separating the entire space into 1 1 1dV
two regions: in the inner region, limited by a sphere of radius —ZV24V+—>—s|-E|¥=0, (30)
ro, the only important nonrelativistic interaction is the un- 2 2¢2 1 dr
screened Coulomb interaction between the detached electron A
and the nucleu$31]. In this region relativistic interactions whereV is the operato(21) whose diagonal matrix elements
(i.e., the spin-orbit interaction for electrons with low angularare given by Eqs(22) and (23).

052712-5



BAHRIM et al. PHYSICAL REVIEW A 66, 052712 (2002

The standard transformation for this purposé2s,26| 25 ————F——a——T—
= (1+p?8c?) n, (31) 1 T, > 1
2.0- r,=21314 / ]
where, is the large component of the Dirac wave function o) ————D |
and p is the momentum operator. This transformation ne- 1 1
glects V compared toc?. The transformatior(31) gives a 1.5-
Pauli wave functiony which is only approximately normal- Q
ized [25]. In contrast, if we do not negleat/c? (but disre- ~
gard the nonrelativistic paBEyg of the total electron energy © 1.0-
Eq. (31) becomes
$p=[1+o-pf(r)o-plya, (32) 0.5
wheref(r)=[8c?(1—V/2c?)?]~1. By using standard prop-
erties of the Pauli matrices, Eq.(32) can be rewritten as o4 o O O
0.00 0.02 0.04 0.06
(4 df d fy2 1 df | 33 E (eV)
= drar o ar A (33

FIG. 1. Near-threshold PD cross section for Rfulotted ling,
By separating spin and angular variables, we obtain th&€s™ (solid line), and Fi (dashed ling The inset shows our calcu-
corresponding relation between thavave Pauli radial func- lations based on the DiraB-matrix data from Ref[17] (dash-
tion u(r) and the large component of the Dirac radial func-dotted ling, and after fine-tuning the peak of tH@9 resonance to
tion G(r), 8 meV [21] (solid ling). In the inset, our results for Csare com-
pared with the experimental data from Fig. 2 of Ré&f] (normal-

df d 1 dz 2 ized to our absolute PD cross section at 8 méy two slightly
uj(r)= 1-r drarr —f ﬁ — r_2 different values of the cutoff radius. .
f 11 nels *P (V _15-¢) and *P (V| _15-1). To assure Hermi-
+=—1j(j+1)— — | G.(r). (34 city of the spin-orbit interaction, we assume that
rdr 4 dV_15-0/dr=dV,_;s,/dr near the origin, where the

spin-orbit interaction is important. Since the nuclear screen-
ing parameteh is the same foW| _;s-g andV, _; g—;, this
requirement is satisfied with a high accuracy.

After calculatingu;(r) in the jj representation, we recouple
to theLS representation according to

L+1/2 S

U sy=(—1)19"L/25+1 2/ ujV2j+1
j=L—1/2

V. NUMERICAL RESULTS AND DISCUSSION

NI+~ ™
Nl G

Figure 1 gives the total PD cross sectiot= oy+ o
(35) [where oy and o4 are given by Eq(18) for S=0 and S
=1, respectively, for energies of the photoelectron just
above the detachment thresholdfof (A stands for Rb, Cs,
@ 2 and Fy. Our g:alculations for Cs, bgsgd on the DiRenatrix
— = 5 +k?=2V _14(r)—2Dgg(r) |ug(r) results for eigenphasd47,18, exhibit a local peak whose
dr? r? ’ position, 5.6 meV above the threshold, is somewhat lower
N than the observed peak at 8 m¢¥], and the theoretical
=2Dgw(r)us () (36)  width of 2.7 meV is smaller than the experimental value of 5
meV. Therefore, we have tuned the position of dxel reso-
nance by changing the parameterin Eq. (22) for the 3P°
symmetry from 2.1294 to 2.1314. This modification has
Lhifted the position of thed=1 resonance to 8 meV. The
resulting curve, shown in the inset of Fig. 1, agrees with the
experimental data from Fig. 2 of Rdf9], with respect to
%oth the resonance position and width. On the other hand,
the 3P resonance contribution to PD of Rband Fr is
unnoticeable in Fig. 1, due to the dominatirg® back-
v(r)= — _ ground.
2c?r dr The 3P resonance appears due to a combination of the
N centrifugal barrier and the polarization potential. Therefore
Dgg is the coupling matricf. Eq. (24)]. The local poten- its position can be efficiently controlled by the cutoff param-
tials V| _, s describe the electron-atom interaction in chan-eterr entering the polarization potential. A slight increase of

and integrate the system

of coupled radial Pauli equations numerically fosr,. The
radial functionug(r) was defined in Eq(20). The diagonal
and off-diagonal parts of the spin-orbit interaction appear o
the left- and right-hand sides, respectively, of E8f). The
indicesSandS’ take values of 0 and 1, respectively, for the
first equation, and 1 and 0O, respectively, for the second equ
tion. Furthermore, we writ®, as[v(r)s-1] by defining

1 dVioss
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g A AP A [P FIG. 3. 3P contribution to PD(shown in Fig. 1 for Rb~ (dot-
§'1- i -===21314 ted line, Cs (solid line), and Fr (dashed lingions. The inset
ﬁ c shows the same comparison as Fig. 1, for 1R§ contribution.

JS o
- Cs(JS =1}
weaker spin-orbit interaction. However, for Fr tRB contri-

0.001 0.005 0.010 0.015  0.020 bution is lower than for Cs too, in spite of the higher nuclear
charge. For a qualitative discussion and tentative explanation

g o e 1.6670 of this surprising effect, we note that the resonance contribu-
- [ 1.8895 - tion to the final-state wave function can be obtained by set-
@ — 18919 e ting S=0, S'=1, and by integrating E(.36),
24| 1.894s T e 3 9 y integrating Eq(36)
® ----18970 | T T
| e u (r)—J'G(r 0 ! Vs (rydr’. (37)
Ve _."' — y — .
21- s - : B ar
= ’-'-,' Ohd
i i - . . )
< In Eq. (37), G(r,r") is the Green’s function of the radial
0 r Hamiltonian on the left-hand side of E(86). In lowest or-
9.001 0.02 0.06 der of perturbation theory, we drop the spin-orbit interaction

E (V) 0.04
e
term inG(r,r"). SincedV__;s-,/dr’" in Eq.(37) is propor-

FIG. 2. Energy dependence of the eigenphase sums faithe tional to the nuclear chargg we expect the matrix element
=1~ symmetry(wherer is the parity of Rb™, Cs ", and Fr ions,  (16) for the triplet scattering state to be approximately pro-
for several values af. (indicated in the legendIn each graph, the  portional toZu,, whereu, is a typical value for the resonant
solid line corresponds to the, value that gives the best fit of our part of the radial wave function. In consequence, according

Pauli eigenphase sums to the DirRematrix results from Refs. {4 Eq. (17), the detachment cross section is expected to be-
[17,18 for Rb™ (1.8160Q, Cs™ (2.1294, and Fr (1.8919. have asz202
1

the parameter. in Eq. (22) produces a slightly less attrac- To estimateu,, we use the following result for the reso-

tive electron-atom interaction and shifts the resonance posP@nce part of the scattering wave functif®2] y=ag,
tion toward larger energies. For the Cion, an increase of Where the functions is normalized to 1, and the absolute

the parameter, from 2.1294 to 2.1314by only 0.094% value ofais given by(we assume thaf is normalized to the

produces a shift of about 2.4 meV in the position of fiie ¢ function of momenturn

resonance. The high sensitivity of the resonance position to

r. is due to the very low resonance energy close to the bound |a|?= kI (39)

part of the negative ion spectrum. Indeed, as follows from 277[(E_Eres)2+F2/4].

Fig. 2, the resonance position and width are much more sen-

sitive tor ¢ in the case of Cs, where the resonance occurs at At the resonance, E=E,s and |a|?=2(2E.9?

a lower energy than for Rband Fr . /[ 7T (E,es)]. For theP resonancd «E®?2 and therefore the
In Fig. 3 we plot the®P contributions to the total PD peak value oflal? scales as H,.s. In Fig. 4, we present

cross section for all three ions. The inset of Fig. 3 shows theiumerically calculated radial wave functions fb# 0 at en-

agreement between our cross sections near#g reso-  ergies corresponding to resonance posititt&2, 4.0, and

nance of Cs and the experimental data from Fig. 3 of Ref. 13.2 meV for Rb, Cs, and Fr, respectivel\since there is

[9]. For Rb, the3P contribution is about 2.7 times lower only one open channel fdr=0, we discuss thd=0 instead

than that for Cs, which is not surprising because of theof theJ=1 term. This will not affect our conclusions below.
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FIG. 4. Numerically calculated radial wave functions o0 FIG. 5. Asymmetry parameters as functions of the energy of the
at energies corresponding to resonance positidss2, 4.0, and photodetached electron for PD of Ridotted ling, Cs (solid
13.2 meV for Rb, Cs, and Fr, respectively line), and Fr (dashed ling

The wave functions in Fig. 4 have their maximum at dis-This uncertainty is not significantly changed by the fitting
tances of about 12 a.u., and then decay into the classicallgrocedure we use in order to get the Pauli eigenphases from
forbidden region due to the potential barrier formed by thethe Dirac eigenphases. It remains indicative for the accuracy
centrifugal potential. As shown in Table II, the peak valueof our PD results for Fr.
scales a&,,-? in accordance with our result foa|. Conse- We conclude that thé’P contributions to the total PD
quently, the triplet contribution to the cross section scales agross sections for Rb and Fr are too small to be noticeable.
Z?/E,s Within a factor of 2. For Fr, the larger value @fis  However, the differential cross sections and the asymmetry
offset by a larger value OF,.. Therefore scaling for the Pparameters [33] are more sensitive to th&P contribution.
peak value al=0 works better than scaling for the PD cross In the angular distribution of photoelectrof&g. (17)], the
section. In addition, théP background contribution for Fris S=1 contribution adds a sfd term to the pure cd¢ depen-
larger atE = E, . because of the larger value Bf,s. Strictly ~ dence of theS=0 contribution. Therefore, the asymmetry
speaking, this scaling works only for very narrow reso-parameter in the angular distributi¢d4],
nances; therefore deviations from this simple law are sub-
stantial, especially for the cross section. However, it allows d_U: o[ 1+ BPa(cost)]
us to understand our results qualitatively. dQ 4 '
The accuracy of our present PD results is mainly indi- . _ _
cated by the precision of the Dirac eigenphases computed fiffers_from its maximum value 2. In Eq39), both the
[17,18 and used in this model. The accuracy of the Dirac@ndle-integratedy, and the angle-differentiatio/d(), PD
scattering eigenphases was discussed in Ré&f, and, for cross sections include the_ summation over the flngl §pin
Fr, is limited by the electron affinitie€As) we have used in =0 and 1 statesP;(cos¢) is the Legendre polynomial for
our DiracR-matrix calculations. For Rb and Cs atoms, accu-l =2, and@ is the polar angle of the unit vectarin Eq. (17).
rate experimental EAs are available. For Fr atoms, no experfFigure 5 shows the energy dependence of ghparameter
mental EA is available, and we have estimated its value afor Rb™, Cs™, and Fr ions, while Fig. 6 presents our angle-
492 meV within a 2% errof17]. A detailed discussion re- differential cross sectioflDCS) results for PD of Rb. In
garding the consequences of this uncertainty for the characomparison with the similar result for C§see Fig. 2 in Ref.
teristics of the 3P° resonance was given ifL7], and the [21]), the 3P contribution for Rb nearé of 90° is much less
results are shown in Fig. 3 of RfL7]. The uncertainty in  pronounced. This is mainly due to a much broaderreso-
the position of theJ=1 component of the Fi(°P°) reso- nance for Rb than for CS. We also note that our DCS for
nance(at 24 me\f was estimated to be 23%bout 6 meV. Rb~ at #=90° (of 0.0016 &/rad) is only 2% of the DCS at

(39

TABLE Il. Parameters derived from the numerical study of the wave functiod fod at the resonance
position E,.s. To help the reader to understand Fig. 4, we also show the turning pqirstsdr, for the
classical motion of the electron in the superposition of the centrifugal and polarization potentials.

Atom  Es(MeV)  Upax(aU)  UpaxwEres  [1000(A%)]Ees/Z2 1y (au) 1, (au)

Rb 19.2 1.3930 6.10 1.55 13.54 35.13
Cs 4.0 2.9960 5.99 0.83 14.41 81.21
Fr 13.2 1.8839 6.84 0.61 13.17 43.45
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Y r 025 5 already been done by Frey al.[8] in single-photon PD of

o Loz © Rb™, in the region of the Rb(B%Py,, 3, thresholds. Frey
] A s et al. carefully tested the accuracy of this technique in order
i 015 < to identify resonances. We hope that our results will stimu-
- 0.10 %’ late further experiments in the still unexplored spectral re-

\ : " Loos g gion near the Rb and Fr detachment thresholds.
;A4S VI. SUMMARY
@é\ In conclusion, we have formulated boundary conditions
e e e 0 < for solving the Pauli equation, which are important for the
0 30 sg d9° 120 150 180 description of the spin-orbit interaction effects in electron
(deg) scattering and PD processes. The application of this method

FIG. 6. The angle-differential PD cross section near the detacht©® the ngar-thresh%ldoPD of Csallows us to calculate the
ment threshold for Rb. The 3P contribution has a maximum at contribution of the°P7 resonance in very good agreement

about 23 meV, indicated by the thick line. with the experimental results i®].
For Rb™ and Fr we predict this contribution to be very
small and therefore not easily observable in total PD cross

0=180°. This percentage is very small compared with thatsection measurements. However, tHe? resonance contri-
for Cs™ of about 24%. For Cs, the DCS at 90° is ’ ot

0005 Airad. For Fr, the DCS resuts are simiar o those , (08 OIS & P08t SOOR G b (B FRRTERS B
for Rb™. These results are not surprising, since the minimumdifferential PD cross sections for Rband Er- 9
of the B parameter is 1.891.87) for Rb™ (Fr™), which is a '
weak 'deviation frpmﬂmax=2. For Cs, the deviation is ACKNOWLEDGMENT
more important, sinc@,i,=1.
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