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For a system with three identical atoms, the dependence of-Weese virtual state energy on the weakly
bound dimer and trimer binding energies is calculated in the form of a universal scaling function. The scaling
function is obtained from a renormalizable three-body model with a pairwise Diiateraction. The thresh-
old condition for the appearance of the trimer virtual state was also discussed.
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[. INTRODUCTION for the sensibility of the three-body binding energy to the
interaction properties comes from the collapse of the system
Weakly bound three-body zero-angular-momentum statem the limit of a zero-range force, which is known as the
appear in a three-boson system, with the number of statéEhomas effecf17].
growing to infinity, condensing at zero energy as the pair In the present work, we analyze the possibility that an
interactions are just about to bind two particles inslveave.  excited trimer state becomes a virtual state, when the physi-
These three-body states are known as the Efimov th#s  cal scales of the system are changed. This is expected to
Their wave functions, loosely bound, extend far beyondoccur, for example, near the limit when the two-body scat-
those of normal states and dominate the low-energy scattetering length goes from large positive to large negative value;
ing phenomena in these systems. The Efimov states havke corresponding two-body energy is close to zero and goes
been studied in a number of model calculatidBs-5], in  from a bound to a virtual state, with the appearance of many
atomic and nuclear systems, without yet a clear experimentddound and virtual three-body states. The three-body virtual
signature of their occurrend®,6—10. state energy is a pole of tif&matrix in the second sheet of
Actually, the search of Efimov states in atomic systems ighe complex energy plane. In a general case, as the strength
becoming more appealing, due to the experimental realizasf the two-body potential diminishes, the pole moves to-
tion of Bose-Einstein condensatiphl], and due to the pos- wards the first energy sheet to become a bound $te
sibility of altering the effective scattering length of the low- More recently, this behavior of the Efimov state going to a
energy atom-atom interaction in the trap, from large negativevirtual state with the increase of the strength of the interac-
to large positive values crossing the dimer zero-bindingtion has been confirmed in realistic calculation of the helium
energy value, by using an external magnetic f{dld]. This  trimer[18]. Here, we study another aspect of the emergence
possibility of changing the two-body scattering length toof the swave virtual state from an Efimov statié:appears
large values, as recently shown in REf3], can alter in an  when the ratio between the dimer and trimer binding ener-
essential way the balance between the nonlinear first fewies grows This approach goes beyond a previous analysis
terms of the mean-field description presented in the equasf excited three-body bound states with short-range interac-
tions that model Bose-Einstein condensed g44d$ This  tions, that was performed in RP]. In Ref.[9], a scaling
can certainly open new perspectives for theoretical and exunction was introduced to analyze the behavior of bound
perimental investigations related to the many-body behavioEfimov states when modifying the triatomic physical scales.
of condensate systems. Even in systems where the occugssentially, we are extending to the second sheet of the com-
rence of an excited bound Efimov state has shown to belex energy planéto include virtual trimer states previous
doubtful or even not possible, as for example, in the case ohvestigation on a universal scaling mechanism that was ap-
halo nuclei like?°C or '8C (seen as a core with a halo of two plied to two- and three-body bound stafésl0]. The exten-
neutron$ [8], one can verify the occurrence of three-body sion of the scaling function to the second energy sheet is
virtual states. The physics of these three-body systems igserformed by following the Efimov states as they move from
related to the unusually large size of the wave function combound to virtual, according to the variation of the ratio of the
pared to the range of the potential. Thus, the detailed form oflimer to trimer bound-state energies. On the other hand, as
the short-ranged potential is not important for the three-bodyve present the discussion through a universal scaling mecha-
observable$15], which gives to the system universal prop- nism with the results in dimensionless units, all the conclu-
erties, defined by few physical scalgd. Strictly speaking, sions apply equally to any low-energy three-boson system.
in the limit of a zero-range interaction, the three-body systentor the regularization and renormalization of the zero-range
is parametrized by the physical two- and three-body scalesnodel, we compare two different approaches: by using a
which are identified with the two-body scattering lengths andmomentum cutoff paramet¢®] and via kernel subtraction
one three-body binding enerd®,16]. The physical reason [16,19,2Q. As the two-body energy goes to zdar equiva-
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lently the regularization parameter goes to infipitye con-  that p=AX, q=Ay, E,=AZe,, and Es;=A?€;. In this di-
clude that the_ results _of both methods do not differ. mensionless variables, after redefining as X(f)

The paper is organized as follows. In Sec. II, we general—_A3,2 - btain the i | 8174
ize the scaling function defined in Ré8] to include virtual —A "~ ¢(P), we obtain the integral equatidal,7.§;
trimer states. In this section, we also revise the connection

between the Thomas and Efimov effects, while introducing ~ _ — 72 6(1—|x|) .
our notation and the homogeneous integral equation for the x(y)= f dB*x———x
Faddeev component of the vertex of the wave function for + \/6_2— Veg+ 2y? e3Ty*+XP+y-x
zero-range potential. In Sec. Il we present our main numeri- (1)

cal results. In the Sec. Ill A, we present the subtracted ho-

mogeneous Faddeev equation that we have used for detegpe nymper of three-body bound states, given by the values
mining the trimer bound and virtual states, and we brlefIyO]c e; that satisfies Eq(1), grows without limit whene
explain how the renormalization method of Réf9,20 im- decrseases o zero e — ) (N=01,2...) witﬁ

plies in the subtracted three-body equation first formulated in(N)/ (N+1) 50011 'I:hs 3 th Y f th Efi

Ref. [16]. In the Sec. Il B, we present our new numerical €3 7€3 - [1]. They are the energies of the Efimov

results for the virtual-state energies, including the previouétatet?’ n ulrjltsdof}il. But, tge I'.n;]'t 0;.62 3/0\'”9 tobze/{o
bound-state results and we compare, as well, the results 02" e realized either b, —0 (with a fixed A) or by
tained by using the sharp-cutoff and the subtraction schemes; o~ —* (With E; fixed). In this last case, the range of the

Comparison with other calculations are also discussed. Oljpte[)action is set to zero and the system collapsels)
conclusions are summarized in Sec. IV. = e A2 . This is known as the Thomas collapse of the

three-body ground state. Therefore, the Thomas and the Efi-
mov states are given by the same limjt—0 of Eq.(1), and
are related by a scale transformati@i].
Now, the concept of the scaling function is introduced
In this section, we introduce the generalization of the scalaccording to Ref{9]. For a nonvanishing,, the solutions of
ing function defined in Ref[9], to be used in the second EQ. (1) defines the dimensionless three-body energies as
energy sheet of the trimer energy. In order clarify this extenfunctions of + \e,; e{V=e{M(+ Je,). Using theNth en-
sion, and to define our notation, we begin by revising theergy to obtainA, thenA2=E{V/{V, and
main findings of Refs[9,21].

Il. THOMAS-EFIMOV EFFECT AND THE GENERALIZED
SCALING FUNCTION

The two-boson system in the limit of a zero-range inter- (N+1)
action has only one physical scale, which one can choose as EN+1)_ g(N) & (&) 2
the scattering length or the energy of the bound or virtual 3 R OR

state. The two-bodg-wave scattering amplitude in units of
A=m=1 is parametrized as a function of the momentkm
by f(k)=(k cots,—ik) "%, where theswave phase shif,
is given byk cotdy=—a +irk’>+---, andr, is the effec-

where é=+ \Je,= + (E,eV/EM) Y2 In Eq. (2), the two-
and three-body physical scales determiEf ™) the next

tive range. Fora>0, the two-body system is bound; other- e)fcited state abovEgN). In Ref. [9], E(3N) was identified
wise, fora<0, it is virtual. A short-range potential is char- With the three-body scale, as any sthtevorks equally well
acterized byrgla] '<1 and, in this casef(k)=(—a * to set the trimer scale. However, we will be interested in the

—ik)"! anda =+ JE, (+ for bound and— for virtual tW(_) most_ exci_ted t.hree—body states that, in practi(;e, we are

statZ;) VE: ( going to identify with the ground- and the first-excited-state
THe three-boson system f6r=0 in three dimensions col- in triatomic systems. This identification is unambiguous be-

lapses wherr,—0 with a fixed two-body scale, which is cause, withN and N+1 being two consecutive excited

known as the Thomas effeft7]. Thus, the three-body sys- states, the limit
tem has a characteristic physical scale independent of the

two-body oneq16]. In one and two space dimensions, the E(3N+1) 6(3N+1)(§) E,
collapse is abseifil5]. In the limit where the binding energy —mN - lim —n ATV 3
of the two-boson system goes to zero, the three-boson sys- E3 N €3 =

tem has an infinite number of bound Efimov stdtescon-

densing at zero energy. The Thomas and Efimov effects wergxists and defines the scaling functigi{8,9]. A qualitative
shown to be physically equivalefi21], since in both cases argument to explain the scaling limit has been provided in
the ratio between the interaction range and the two-bodRef. [9] based on the notion of the long-range potential
scattering length goes to zero. [1,2,22.

The integral equation for the Faddeev componegtsof In the following, we provide the generalization of the
the three-boson bound-state vertex, fer O, with the zero-  scaling function(3), which is obtained by extending the for-
range interaction, needs a momentum cutbfbf the order  malism to the second sheet of the three-body complex energy
of ry !, due to the Thomas collapse. According to Refl],  plane. In the present approach, we only consider the two-
using units ofA =1, we rescale the momentum variables andbody subsystem as bound. For this purpose, we define the
the two- and three-body binding energies, respectively, sucheneral scaling functio/, given by
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sJIme tion between the excited- or virtual-state energies of the tri-
mer and its ground-state energy, which can be understood as
particular cases of Ed5).

Q III. NUMERICAL RESULTS FOR VIRTUAL AND BOUND

i} _ Re ¢ TRIMERS
38 E3vE

-€

In this section, we present our main results for the trimer
bound and virtual states. With the sake to be complete, we
first briefly sketch a new derivation of the subtracted equa-
tions that were numerically solved.

FIG. 1. Schematical representation of the complex energy plane,
in our dimensionless unitE;z and e3y are, respectively, pictorial
representations of the positions of the three-body bound- and The homogeneous form of the subtracted Faddeev equa-
virtual-state energies in the first and second three-body energyion [16] for the bound three-boson system with a zero-range
sheet. The three-body cut is shown for Ret0. The elastic cut nteraction is given by
(the narrow ongis shown with the origin at Rej) = — €,, wheree,

A. Renormalization and subtracted equations

is the energy of the two-body bound state. ) g 5 1
x(y)= Jd X\ ————=—=—=
N 2,32
E, \/E(3N+1)_E2 \/EgN+l)_62 i\/e—z— Vet 2y? €3ty +X°+y-X
’C( v EgM)Ei g N 1 e
(4 T, oo x(X), (6)
1+y“+x°+y-X

This defined functiorC has its values on the imaginary axis \ich is written in units such that the three-body subtraction
of a three-body momentum space; a space that is defineg, o, isu’)=1. It has a similar form as that of Eq1)
with origin at the point in which the energies of the three'with a different regulator, which expresses the physical con-
body system and the bound two-body subsystem are equahion at the subtraction point

(Es=E;). In this respect, relative to the bound subsystem, = \ye priefiy explain below the main physical steps to derive

we can define bound and .virtual states for the three-_bod e three-body renormalized equatifd6] used in our nu-
system.K assumes a negative value for a three-body virtual . ica| calculation of the scaling functions through E8).

statg and a positive valqe fqr a three-body' bound state. Sch or the bound state and its analytic continuation to the second
matically, we represent in Fig. 1 the energies of the two- an

nergy sheet for the virtual state. We begin from the general

three-body system in the complex energy plane. The two ; _Schwi ti di btracted f
body subsystem is bound and the three-body system can tfég?man chwinger equiation expressed In & sublracted torm

bound or virtual, with the energies given, respectively, b ’

e3g and ez, . Through the elastic cutorresponding to the TR(E):TR(_M2)+TR(_M2)[G(()+)(E)
atom-dimer elastic scatteripgone defines two sheets; in the
first sheet, we have the three-body bound-state energy at —Go(—u?)1TR(E), (7)

Re(e) = — ez ; in the second sheet, we have the three-body o ) _

virtual-state energy at Re{= — €3y, as illustrated in Fig. 1. whezre Tr(~ %) is the T matrix at a given energy scale
We would like to add one more comment to this section.~ #° (negative energy, for convenienceG{"(E)=[E

The existence of a three-body scale implies in the low-—Ho+i6]™%, andHj is the free Hamiltonian. Equatiof)

energy universality found in three-body systems, or correladefines the renormalize@ matrix in which Tr(— u?) is

tions between three-body observali28,16. In the scaling known and replace the original ill-defined potental

limit, one has Tr(—pd) =[1=VGy(— u)]" V. )

O(E,E3,E,)=(E3) "A(VE/E3,VEL /E3), (5 The renormalized matrix does not depend on the arbitrary
subtraction point- u? (oncedV/du?=0), which implies in
whereO is a general observable of the three-body system a& Callan-Symanzik-typg19,20 equation forT(— x?):
energy E, with dimension of energy to the powej. The

scattering amplitude of the elastic processbc—a+bc, i N 2 v 2
f3=\E; ‘F(JE/E3, VE,/E;) for E=E,, implies that the dMZTR( FI=TR(=pICo(= I Tr(= 7). (9

scattering length is given by a functionas

=\E; 'F(JE,/E3). In the three-nucleon system this origi- This expresses the renormalization-group invariance of the
nates the “Phillips plot,” the correlation between the doubletsubtracted equation.

neutron-deuteron scattering length and the triton enftdly To solve Eq.(7) for the three-bodyl matrix T§§"(E), a

The scaling functions, Eq$3) and (4), express the correla- dynamical assumption has to be made at a particular subtrac-
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tion point —,LL(23), where we assume that the three-bddy G(y,x;€3)=(e3—1)

matrix is equal to the driving term, which is given by the

sum of the pairwise two-body matrices. Thus, at the energy > J'l dz 1 _
— u(s), itis assumed that the three-body multiple-scattering —1 (e3+ Y2+ X2+ yx2) (1+y?+x2+yx2
series vanishes beyond the driving term. Observe that this is (13)
not true for a regular finite-range potential, only in the limit
of w(z)—9°. However, in the scaling limit, in fact, the actual For the¢th angular-momentum three-body state, the Thomas
value ofus) tends to infinity such tha, /.3 goes to zero, collapse is forbidden i >0;: consequently, no regulariza-

as it be will be clear in our numerical calculations.  tjon is required and the integration over momentum can be
With our assumption, th& matrix at the subtraction point extended to infinity even in the limj 3)—. For€¢>0, the
M3 is given by original Skornyakov and Ter-Martirosian equatip®5] is

well defined, and the three-body observables are completely
) determined by the two-body physical scale corresponding to
2 Ak E,. One finds examples of the disappearance of the depen-
THE)T 2mk(ij)) . (10 dence on the three-body scalepwavevirtual states, for the
trineutron system when-n is artificially bound[26,27), and
in three-body halo nuclgirepresented as a core with a halo
where §,j,k)=(1,2,3), (2,3,, (3,1,2. The summation is ©Of two neutrons[28].

performed over all pairs and the renormalized two-body The analytic continuation to the second energy sheet, of
T-matrix elements for the pair if) are given by the scattering equations for separable potentials, is discussed

3117(2) S\ _ 2 : in detail by Glakle, in Ref.[26]. The particular case of the
Er']: e |-trv605bE 3(|jp>.|. rigfr:( (|si Ezelrﬁ)r_]éf:rr;];srgg?ege?f zero-range three-body modél5] is also given in Ref[29].
whereq, is tr%e Jacobi relative momentum cangnically Cg?’/l' On the second energy sheet, the integral equations are ob-
k - . . . . _
jugated to the relative coordinate of the partidleo the tained by the analytical continuation through the two-body

center of mass of the paiij), andmy, is the reduced elastic scattering cut corresponding to the atom-dimer scat-
mass painjv, k(i) tering. The elastic scattering cut comes through the pole of

Usig Egs.(7) ana (10 and aer some stightonara ' 20T Sl st ampite I 62, e
manipulations, the equations for the Faddeev components L :
the Tpmatrix at the bgund-state pole give E) Whicrr)l has "% sheet. By substituting the spectator funciicfy) by

; - 3.2 .

a natural momentum scale given jpys,. In principle, ufs) Xs(Y)=(€3,~ €21 3y") xs(Y), Whereeg, is the modulus of
can be varied without changing the content of the theory a@e wrtual-sta’Fe energy, the resulting equation in the second
long as the three-body matrix at the new subtraction energy EN€rdy sheet s given by
,u(23) is found from the solution of E(9) with the boundary o 4y o
condition Eq.(10); and consequently, E¢6) should be con- Xs(Y)=7(Y; €3, i K2) 3 “G(y,— kg, ;€3,)xs( —iKzy)
veniently rewritten. In the scaling limit, Eq$l) and (6)
produce the same resultas we are going to illustrate nu-

3 2 _ 2
T uls) = % ™)

G(y!X; E3v);s(x)

merically), since they are solved fat, going to zero, and the +?(y; €3, ;KZ)J dx @ , (14)
detailed form of the regularization implied in both equations 0 € — €0t §Xz
is not important anymore. However, E@) has conceptual o %279

and practical advantages over Ef), namely, it is explicitly ) )
renormalization-group invariant and also regularized. where the on-energy-shell momentum at the virtual state is

To simplify the notation of Eq(6), we introduce another «3,=/3(€3,—€,), and
definition related to the two-body energy;= + Je,, where
3
V €3t ZY2+ K2
The cut of the elastic amplitude given by the exchange of

+ refers to bound ané- to virtual two-body-state energies. - 2

After partial-wave projection of E¢6), the swave integral 7(Y; €31 K2) =~ p
one atom between the different possibilities of the bound
dimer subsystems is near the physical region due to the small

equation for the three-boson system is

Xs(y)=7(Y; €3;x2) fo dxX*G(y.x; €a)xs(x), (1D yajye of e,. This cut is given by the values of imaginaxy
between the extreme poles of the free three-body Green’s
function G(y,X;e3,), given by Eq.(13), which appears in
the right-hand side of Eq14),

. (15

where
€3curt Y2+ X2+ xyz=0, (16)
A/ 3 o with —1<z<1, y=x=-—i and —3,2 4
R __ = + Zy2- _ Y Keuts €3cut™ 3 Keyt™ €2-
T(Yi€sina) m 3 4y 2| (12) With the above, the cut satisfies
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FIG. 3. Ratio of the trimer excited or virtualN(+ 1)th state

FIG. 2. Trimer energieg; as functions of the dimer bound-state energy as a function of the ratio of the dimer energy and triNtar
energye,. The trimer ground-state energg{’) is shown by the  bound-state energy. The results for the trimer excited bound-state
curve with crosses; the first excited bound statg¢’] is shown by  energies are shown by the solid curve, and the virtual-state energies
the curve with squares; and the second excited bound i§f¢ )Y, are shown by the dotted curves. Our calculations show that the
the curve with diamonds. The behavior of two trimer virtual-stateresults forN=0 andN=1 practically coincide. The symbols rep-
energies,el?) (small circles and €2 (small triangle are also  resent results from other calculations: empty squasesgve) and
shown as functions of the two-body energy, varying from theempty circles §+d waves are from Ref[30] (for N=0); crossed
thresholde;= €, (solid line) to the threshold for the one-particle- squares are from Reff31]; the crossed circle is from R€f32]; the
exchange cuk;= 3¢, (dotted ling. All the energies are given in triangle is from Ref[33]; and the lozenge is from Reff34].

arbitrary units. . .
y virtual state to appear from the one-particle-exchange cut.

Further decrease im, favors the appearance of the excited
state, which emerges from the second energy sheet to the first
one at the threshold valug;= €, (solid line), indicated by
the up arrow (). The critical value ofe, is given by the
ratio (e,/€SV)Y?=0.38 where the excited state is labeled by
N+1, and in the figure is indicated by the up arrow. This
_ figure also strongly suggests that the Thomas-Efimov states
B. Scaling plots cannot be completely understood only through the absolute
It is usual to analyze how the Efimov states arise by varyvalue of E; itself, because the critical value for the appear-
ing the strength of the interaction to change the value of th@nce of the K+ 1) excited state depends only on the ratio
two-body binding energy. In our case, instead of this proceE2/ES" = €,/€5", which is independent of the absolute
dure, we change directly the value of the energies in units oscale. Therefore, to show that this argument is universal, we
w=1, and by doing this we calculate tsevave three-body study the functionES' " V/E,=€{"*")/e, as a function of
energy evolution in the complex energy plane, corresponding,/E{V=e,/{Y, where the N+ 1) state can be virtual or
to the bound and virtual triatomic states from E¢@kl) and  bound. This study is presented in Fig. 3.
(14), respectively. Ase, goes to zero, a crescent number of  The plot of Fig. 3 is constructed with the results for the
weakly bound(in units of u=1) Efimov states appear. The first and second Thomas-Efimov states. This plot practically
Thomas-Efimov limit fore, going to zero is clearly seen in coincides with the corresponding one obtained from the sec-
Fig. 2, where we plot{¥) as a function ofe,. In this figure  ond and third stategot shown. Figure 3 shows a universal
we display only the energies of the first three states. Th&oute for the energy of theN+1) trimer state in the com-
main purpose of Fig. 2 is to show the real nature of theplex energy plane, from the second energy sheet to the first
energies of the Thomas-Efimov states. The small circles andne, as the ratic€,/E{"=¢,/{") decreases. The three-
triangles correspond, respectively, to the first and second exody virtual-state energy reache&A3 at E,/ EgN)=O.71.
cited virtual-state energies, which begin at the cut from theAlso realistic calculations for the helium trimer are available
one-particle exchange mechanism that givgs=(4/3)e, and are displayed in this figure. The agreement between our
(shown in the figure by the dotted linerhe threshold, from calculations and the realistic ones, shows the significance of
which the virtual three-body states arise, are exhibited byur scaling picture. Unfortunately, there is not yet, to our
down arrows (). When the two-body energy is enough for a knowledge, realistic calculations of the virtual state in he-
trimer bound state to exist, then a decreasesimllows the lium trimer or even in any other weakly bound three-boson

Aey> €30, 5 €3. (17)

The virtual-state energy,, in the second energy sheet is
found between the scattering threshold and the et €3,
<%Ez.
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0.08 T " T " T j T IV. CONCLUSIONS

: ) Natural scales determine the physics of quantum few-

= 0.00 - S ° . body systems with short-range interactions. The physical
o I 1 scales of three interacting particles, in the state of zero total

~ -0.08 | T angular momentum, are identified with the bound or virtual
Thy 0 16; _ subsystem energy and the ground-state three-body binding
| cutoff | energy. The scaling limit is found when the ratio between the
ZT.u I VY subtracted equation N scattering length and the interaction range tends to infinity,
- N while the ratio between the physical scales are kept fixed.
e 032} i This defines a scaling function for a given observable. From

I | the formal point of view, we showed the relation of the scal-

-0.40 N T W ing limit and the renormalization aspects of a few-body
-0.1 0.1 0.3 0.5 0.7 model with a zero-range interaction, through the derivation

v E,/ E3(N’ of subtracted three-bodyT-matrix equations that are
renormalization-group invariant.
FIG. 4. Results for the trimer bound and virtual excited ( In the present work, we investigate the behavior of an

+1)th state energies, scaled by fieh bound-state energy. A com- excited Tho_mas-Eflmov_ state as the binding energy of the
parison between calculations performed with cutoff and subtractioPUbsystem increases with respect to the energy of the next
methods for the regularizations is given f§r=0. We also present lower bound three-body state. As shown, by allowing the
results from other calculations, as described in Fig. 3. two-body binding energy to increase in respect to the three-
particle ground-state energy, the excited three-body state dis-

system, in which our route should also apply. We emphasiz8PPears, and a corresponding three-body virtual state
that although we have presented results only for the secorfg"€rges. The threshold for the three-body virtual state was
and third Thomas-Efimov states, the scaling limit is practi-0Und to be at the energy of the weakly bound trimer equal to

2 2 . B
cally approached as we see in Fig. 3. We expect that goinf:9:/(ma) for large positive scattering lengtias The de-
further in diminishing the absolute value &, the new pendence of thes-wave virtual-state three-body energy on
the two- and three-atom ground-state binding energies is cal-

excited states will also follow the same route. The claim is, . L S
of course, that the route is universal for all states in theculated in the limit of a zero-range potential in a form of an
scaling limit universal scaling function. The scaling plots are an useful

The results for the energy of the excited Efimov state in00! t0 classify observables and provide first guess to guide
“He, molecule given byk(2) (z=[E,/E{V]Y?), obtained rgallstlc cglculatlons', as well as for plannmg.expenments,
by solving Egs.(1), (11), and (14) in fhe sscaling limit, are with the aim of looking for weakly bound excited state of

compared to the realistic model calculations also presente%'a;%rg'fe?jizcghﬁe resent studv can also be particularl
in Fig. 4. The homogeneous integral equation with the sharp P y P y

cutoff momentu regulator, which generalizes Byfor the RS P, BHEAS 0 ST B
virtual trimer state, is not written explicitly in the text as it ' gleng

can be easily derived. We observe the raEiEgN“) caln be aItere.d from negative to posmvt_a, in a wide Irange of
—E,)/ENV1Y2 depends orz for realistic models as well. In values crossing zero-energy bound dinjee]. For large

G P i X positive scattering lengths, our estimate gives the threshold
tius plot we only s_hoyv results f_or a bounq dimer aNd {5 e zero-binding trimer state, which allows to settle the
__O' The extreme I|m|_t ofz gllowmg the excited stgte are experimental conditions for an investigation of the Efimov
given by K(z)=0, which givesz=0.38. The solution of

. ; e S effect, and search for their influence on the observables of
Egs.(1) and(11) in the scaling limit qualitatively reproduces .,,densed systems. On the other hand, large negative two-

the results for sevgral .interatomic pote_ntials. A deviat!on isbody scattering lengths have been recently investigated in
seen forz~0.4, which is due to corrections from the finite pef [13) There is the possibility that the observed discrep-

range of the potential. -[L‘)e excitetli{-1) three-body state  gncy related with previous theoretical predictions can have
becomes virtual foE,/E3™>0.145(as seen in Fig.)3im-  yej explanations in three-body effects as well, because large
plying that E{")<6.94%/(ma’) in this case. This threshold wo-hody scattering lengths give the conditions where three-

value agrees with the value previously found in R¢&9],  hody (bound or virtual Efimov states are likely to occur.
recently confirmed in Ref.35], for the condition of the dis-

appearance of the excited trimer state in the limit of a zero-

range interaction. Let us stress that the regularization ACKNOWLEDGMENTS

schemes used in Eqdl) and(11) are consistent not only for

the calculation of the bound excited trimer energies but also We would like to thank Fund@o de Amparo &Pesquisa
for the virtual trimer energies, as shown in Fig. 4. The smalldo Estado de ®aPaulo(FAPESP and Conselho Nacional
difference between the two regularization schemes tends tde Desenvolvimento Cieffico e Tecnolgico (CNPq for
vanish fast for higher values d\. partial support.
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