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Quantumlike bits and logic gates based on classical oscillators
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It is shown how a classical system can possess such quantum properties as indeterminism, interference of
probabilities, unitary transformations, wave functions, and noncommuting operators, and be used in quantum-
like computations.
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The theoretical advantage of quantum over digital compu- We demonstrate first how the major building blocks of
tation[1] lies mostly in the use of quantum interference. Thequantum computing—qubits and quantum logic gates—can
idea is to eliminate a large number of incorrect outcomese constructed and implemented in our system as quantum-
through destructive interference while at the same time crefike bits (which we callQbits) and quantumlike logic gates.
ating a high probability of correct outcomes through con-Then we show how combinations of these building blocks

structive interference. Both cases involve a relatively smalpperate in our system by working through several initial
set of operations. While the probabilistic nature of quantumsieps of a Shor quantum algoritHa,

mechanics may be a disadvantage, its co_mbination with in- The main elements of our system are the following:
terfere.nce may ac_celerate some computations. Here we show (a) Numbered linear oscillators.
that this combination can be reproduced in classical systems
! The central idea & the fallowing, Subjecting some ident. " AMPiudes and phases.
cal numberedinear oscillators to a set of sequential pertur- .(c).DeV|ces fo *multiply” oscillators, imitaiing the multi-
bations gives us an interference effect, but not of a quanturﬂ“cat'on of quantum states. .
type. This problem can be solved by introducing a device (d_)Adgusmn-makmg dpwce prodL_Jcmg random numbers
programmed to decide what numbere can also say, what ((_:hOI_Ce$ in ac_:cordance v_wth the relative energies of the os-
oscillaton must be chosen at the end of the set of perturbatillations of different oscillators. _ _
tions, when the number chosen before those perturbations is (€) A device to establish either maximal or zero ampli-
known. The resulting decision can then be described in &des of the oscillators. . .
formalism mathematically indistinguishable from that of (f) Devices to measure amplitudes, phases, and energies
quantum computing. This decision-making device plays theof oscillators. There can also be digital computing devices,
role of a quantum measurement apparatus. Although thtC.
probabilities of measurement results are regulated by nature The simplest element of our quantumlike system is the
in the quantum case, whereas in our System it is by a proQb|t ASingIe Qb|t is formed by two identical linear oscilla-
gram, this difference is irrelevant to results of computationgors numbered 0 and 1. Oscillatkrk=0,1, oscillates asjy
since both measurements and choices are made only at tFeAlCx explwt)+c; exp(—iwt)], wherec, is the dimension-
ends of deterministic parts of computations. Moreover, if thdess complex amplitudec,| <1, and 2\ is the maximal am-
probability distribution itself must be an outcome of the plitude of theq oscillations. The energy of the noninteracting
computations, then our classical system has an advantagscillators
over a quantum one: being free from quantum collapse due
to measurement, it does not need multiple repetitions of the _ _ 2A2 2
same computations; the probabilities are directly measurable H= E Hi=2mo®A E el
relative energies of oscillations. Another advantage of this
system is that it is easier to realize. Finally, we might add BY design,|co|?+|c4|?=1, so|c,|? is the relative energy
that if macroscopic natural intelligence possesses some qua@f the kth oscillator. Consider all possible unitary transfor-
tumlike properties, as some physicists susp@gtthen our ~ mations of the complex amplitudes made with the help of
quantumlike classical system may be a more realistic modd¥erturbationsbetween times andt’ such that the full energy
for this phenomenon than a purely quantum system. H is conservedH (t) =H(t"). For a given transformatiou,

The correspondence between this system and quantuag(t)—cy(t’),
systems is in fact deeper than it might seem. As will be
shown in the course of our discussion, the system possesses ,
not only thealgorithmic indeterminism typica?/of qugntum Ck=ugcr, ug=uf, X [ed?=2X |of =1 @
systems[3], but also unitary transformations, wave func-
tions, and noncommuting operators, as well as the interfer- Unitary transformations of complex amplitudes provide
ence of probabilities already noted. But it does not posseshe possibility of using interference in the computations. But
the property of quantum nonlocality, which means that it cardoing so inevitably requires a probabilistic approach, as in
be used for quantumlike computations but not for guantumguantum mechanics. To understand this, let us try to solve
like communication. the following problem. Imagine for a moment that some

(b) Perturbation devices to change and exchange oscilla-

@
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computation involves only a single Qbit. At tinheone of the  ment. In our systemnothing is destroyed by any measure-
two oscillators’ numbers, 0 or 1—let it be 0—is chosen asment or choiceas long as devicée) is not used.

the initial condition for this computation. Since our numbers  Quantumlike logic gates, which are reversible, are math-
are identified with the corresponding oscillators, this choiceematically unitary operatorgnostly not commuting with one
means by definition thaty(t) =1, whilec,(t)=0. These ini- anothef and as such can always be represented by unitary
tial amplitudes can be established with the help of detége transformations of the sets of our oscillators. The matrides
Then, in the course of the computation, the correspondingf unitary transformations of complex amplitudes determine
perturbations between timésandt’ change the amplitudes the twice bigger matrice® of canonical transformations of
and phases of both oscillators, as in E2). where theU is  coordinates and momenta. Let=w=A=1. For the two
defined by these perturbations. In accordance with the vergscillators of a single Qbit, in the case of an instant pertur-
concept of computation we want to know tbertainresult at  bation,

the end, at time’, namely, a new number, 0 or 1. This is

possible in some cases. For example, if at the eg(d’) a5 M1 Mz Mg Mg /g

=0 andcy(t') =1, then obviously the result equals 1. In the a6 —Myp My —mMy Mgl | g,
more complicated general case, the final amplitudes equal I ,
neither O nor 1, so we want a program that assigns some of q} Me Mz Mgg  Ma| | %
all the possible parameters of mattikto the number 0, and 1 Mg My —my mg 0
the rest to the number 1; these assignments can be different

for two different initial conditions, 0 and 1. Howevehe 2my;=Ugo+ Ugo, 2mg;= U3t U7,

problem of finding an assignment consistent with the proper-
ties of unitary transformations is algorithmically unsolvable . .
For there exists ainfinite set of transformation parameters 2mMy3=Ugy+Ugy, 2M33= Uy + U7,y
that cannot be divided into two subsets assigned to 0 and 1, 2My= —i(Upi—UY), 2Mge=—i(u—u¥). (4
respectively, without logical contradictiop\ithin the group
of transformationg?2) there is a subgroup isomorphic to the  |If the perturbation is not instantaneous but continues from
spin 1/2 rotations on a plane, when this spin is placed on theto t’, then the phase shifty— u,, exdiw(t’—t)], must be
same plane. The algorithmic unsolvability for such a caséncluded in formula(4) for M, while in Eq. (2) U is un-
was proved in Refl3].] . _ _changed. We havey(t') =A[c(t")e'“! +c'} (t")e "] if

Our system is thus algorithmically indeterministic with Qu(t) = Al ()€ “t+cf (t)e '“t]. The implementation of

respect to 96‘“?‘9 ﬁ”?" qertain numbers. So we nefa_d to intrcTogic gates in our system does not requiteough it does not
duce a probability distribution and use a probabilistic pro'exclude) the use of auxiliary oscillators, because to arbi-

gram according to which decision-making devi® can trarily transform a single Qbit whose two complex ampli-

cho_ose random numbers as the results of computations jes have three independent parameters, we need only the
(which themselves can be parts of larger computagjons following three operations

these results are similar to randameasurementesults of R()( ), a phase rotation of a single oscillatqr of Qbit
guantum computations. The only consistent way to introduc?_ (if the QBit is placed inside some numbered set of Qbits
probabilities of choicesy,, k=0,1, in the frame of our sys- There are two possible rotations,=0 or 1. A parametric
tem is to combine Eqd1) and (2). This givesw=|c,|* adiabatic perturbatiorsw?(t) where t,<t<t Sw?(ty)
Under certain conventions, transformationcan be con- 755 3 00 4d05,2) dt< 0%/ plroducezs, such a ro-
sidered a rotation in a vector Hilbert space Whosetation (er orﬁit subindes.) '
eigenvectors—we will call them “number eigenstates”—are '

2m12= _i(UOO_ Ugo), 2m32= _i(ulo_ U’lco),

[x), wherex is integer, and state vectofumber states Gt [ 02+ 8w (1)]9=0, Ug=€'"?,
are
ujj=9;; otherwise,
|900) =20 &%) (3 ,
" $=| Swi(t)dt2w. ()

t
|x) corresponds to oscillaterhaving maximal amplitude and !

a phase defined as the zero phasgx) corresponds to the c%il(¢), connection of the two different oscillators,
same oscillator having complex amplitudg. As for super- and |, of the QbitL with the help of perturbatiorsv?(t)
position (3), it does not correspond to any physical sum ofanalogous toSw?, with U= U, =cose, Uy =u,=i Sine,
oscillators having different numbers and amplitude<, .

Neverthelessy/(x), which can be written also as a column  dx+ @?gg+ ov?(1)q=0, §+ w’q+ sv?(t)gx=0,

of thec, values, as in quantum mechanics, plays the role of

the wave function becausg, are now probability ampli- _f
tudes. There exists, of course, a fundamental difference be- ¢= t
tween our system and quantum systems. In qguantum comput-

ers, all but one possible numerical outcomes of a For example, the Pauli operators and the frequently used
measurement of the value are destroyed by that measure-HadamardH gates(L omitted:

_,
ovdtRw. (6)

1
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=R (=72 RV (= 7/2)CK)(7/2), change oscillations of the two oscillators 10 and (it bi-
nary notation by applying a one-Qbit operation, as if these
oy=0,CM(712), o,=RV(m)RM(0), oscillators belong to the same single QWithis is impos-

sible in quantum systems because the mere selection of states
1/1 1 inside a superposition may destroy the superposjti@y.
H= _( ) =RO(7/2) 0, (7/4) o RV (712), using perturbatior{6), with k=10, =11, ande=m/2, and
-1 then individual rotations, we get in fact thwg, operation,

k=0, I=1. 7 Xenor= R (— 7/2) RV (— 7/2)C100(7/2).  (9)

In concluding this description of single Qbits we should Which produces an entangled state because it exchanges os-
note that the identical oscillators represent only the simplestillations of oscillators taken from different Qbits.
and most convenient way to construct an analog of a quan- Next we will show how to implement one and two Qbit
tum bit and to demonstrate our main idea. In a more generapgical gates in the case of an entangled number-state
conception of Qbits, oscillators may have different frequend #(x))=2c,|x) corresponding to some big numkgrof or-
cies but the samew?A?, and resonance perturbations anddered Qbits, numbered as 0, 1,.N<1) in decimal nota-
auxiliary oscillators(with the samemw?A?) can be used.  tion. Every number eigenstafe) here is the tensor product

Looking at two Qbits, now, the combination dfandK,  of N number eigenstatgs,), x,=0 or 1, each taken fror
J>K, is not trivial only when the entangled states of thesedifferent Qbits, and is represented by a single oscillatdne
two Qbits are involved. If the Qbits have not interacted at the'esult of multiplying theN corresponding oscillators:
earlier stages of a given computation, then by definition their
common state is the tensor product of the two corresponding [X)=[XN=1, XN—20ee Xgheees Xoeee X240 Xq, Xo).
states(3), |#(x))@ |y (xK))). To implement a two-Qbit
gate in the case of these two Qbits means to connect all fOLN‘l
of their constituent oscillators, thus creating an entanglecé
state. Mathematically, we first algebraically multiply our two
one-Qbit states. Then we apply the needed44unitary ma-
trix to the four initial complex amplitudes of the four eigen-
states |xV)®|x™)) produced by this multiplicationx®)
=0 or 1,xX®=0 or 1. Physically in our system, we “mul-
tiply” the oscillators within each of the four pairs of oscilla-

tors .by us_ing devicc). (The necessity of such ”?“'“p”ca' bers and perform the one-Qbit rotations of their phases si-
tion is a disadvantage of our system compared with quamurﬂwultaneously while keeping other oscillators untouched.

systems. The multiplication is as follows. Suppose there are ~ i ; (KJ) ;
. . onsider now the two-Qbit gatB'™/, for Qbits J and K,
two oscillators,x? at the left andx®) at the right,J>K, : Qbit g _ Q -

; . . whose matrix elements at®, g go.=Ug 1. 01.=U1.0 1.0
with the corresponding complex amplitudegs and c,«). L - 11K 30k Jh_K i1 Otk i j PPk
Then the product is the single oscillator having amplitude™ 17 U1,1,,1,1,,=€XP{m/27"7). This gate equally rotates
C(Ix(K) = Cx2)Cx(k) and the ordinal numbed?x®), in which ~ phases of_ all those™2 2 oscillators Which correspond to the
all integers are written in the binary system. When the twohumber-eigenstates of numberpossessing I's at bothand
original oscillators represent number eigenstates, [kaat K places in Eq.(10). We can implement this gate as one-
the left and|l) at the right,k, |=0 or 1, whose complex Qbit rotations of all relevant"? 2 oscillators simultaneously,
amplitudes therefore equal 1, the oscillator product also repwhile keeping other oscillators untouched.
resents the number eigenstate, namjély, So as a result of ~ To show how different elements of our system work to-
the “multiplication” we get foursingleoscillators now num- ~ gether, let us go through several implementation steps of
bered as 670, 01K 1K) and 191K, (Upper  Shor’s factorization algorithrid]. We use a simple textbook
indices are retained when it is important to remember wher&xample of factorizing the number 4, without any comments

our two Qb|tS,J and K’ are p|aced inside some b|gger set of on the algorithm itself. In this case there are two I’egiStel’S—
Qb|ts) Now the number state I’egiSterX, RX and regiSteiY, RY—with four QbItS in theRX

and two Qbits in thdRY, with the prepared initial staj{@000,
00), that means, initiallyx=0, y=0. In this case it is better
[$p(x))=2 ¢,lx), x=00, 01, 10, 11,  (8) notto multiply the original oscillators, which have ampli-
tudes equal to 1x{®, x{@, x{", x{* in the RX and y§",
is represented by the ordered set of the four numbered osciy-go) in the RY.
lators to which we can apply the needed perturbation. It is Step 1 Apply four independenH gates[see Eq.7)] to
sufficient to use four single phase rotations and six connedhe RX As a result, the amplitudes of every oscillator inside
tions between any two single oscillators in E8).. Consider, every RX Qbit becomec=1/2. Every single Qbit state in
for example, the controlledoT (CNOT) gate, whose matrix this register becomes a superpositighy— (|0) +|1))/v2,
elements areigg o= Uogy 0= U10,11= U11,16= 1, with other ele-  with the full X state as the tensor product of four such super-
ments equal to zero. In our classical system, we can expositions.

(10

umberx=xy_1,...,Xg, €xpressed in the binary system, is a
et of 0’'s and 1's. Their indices are the Qbits’ own decimal
numbers. Suppose, for example, that we have to rotate the
phase of oscillator &, that is, of oscillator 1 of Qbit number

K. Exactly half of all 2" possiblex values in Eq(10) have 1

at theK place in the binary notation, so half of the possible
states in the superposition haxg=1. In our system, we can
easily select P71 oscillators containing =1 in their num-
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Step 2 Apply the controllednoT two-Qbit gate[see Eq.  oscillators, producing/2(]020)+]0®)13))). The B(3)
(9)] to Qbits 0 at theRXand 1 at theRY. As explained above, gate does not change this product becqusg1(?)) is absent
to do so we must first use devi¢e) to multiply the number (has zero amplituden this superposition.
states of these Qbits, that is, the oscillators representing these After several more similar operations, we get the final
number states. This produces two oscillator-productsstate
(1v2)[0©,00) and (1#2)[1,0). (The commas sepa-

1
rate theX andY registers). The two-Qbit controlledvoT gate |#(x,y))=13(]0000,03+|0001,03 +|0000,1

applied to the four oscillators,®,0); 0(® 1(1); 1(0) o(L). —10001,1%). (12)

1 1M_two of which have zero amplitudes—exchanges _ o

the amplitudes of the oscillator$®,0") and 19,11, Since Only these four states survive the destructive interference
1,11 has zero initial amplitude, we now geto)gm =0, caused by the perturbations following one after another. At
Ci0m)=1A2. this stage, Shor’s algorithm requirespeatedmeasurements

of x by repeatedly preparing and then perturbing the same
state. As we have already noted, our classical system does
not require repeated reconstructions of the same initial states,
since neither choices nor measurements destroy our number

Step 3 Apply the o, operator[see Eqs(6) and (7)] to
Qbit 0 of the RY, to exchange the amplitudes of its two
oscillators, 0 and 1. At this stage the change of the state is

|0000,00— 5(]0)+]1))®(|0)y+|1)) 2|0y + 1))V states. In Eq(12), there are four oscillator products whose
o 01 1r 10 relative intensitiegprobabilities equal 1/4, and two possible
X(|0°%0% +1°1%))[1%). (1) xvalues each with the probability H41/4=1/2. The use of

this result to work through Schor’s algorithm further is be-

Step 4 Apply H®) [see Eq/(7)], to the two oscillators of yond the scope of this paper.

the RX Qbit 3. This leads to (#2)(]0)+|1))®—v2|0%).
Step 5 Apply the B(?® gate to transformed Qbit 3 and The author thanks the Open Society Institute for support-
Qbit 2 of the RX. For this we must first “multiply” their ing this work, and Sidney Oriov for useful discussions.
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