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Quantumlike bits and logic gates based on classical oscillators

Yuri F. Orlov
Cornell University, Ithaca, New York 14853

~Received 15 April 2002; published 27 November 2002!

It is shown how a classical system can possess such quantum properties as indeterminism, interference of
probabilities, unitary transformations, wave functions, and noncommuting operators, and be used in quantum-
like computations.
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The theoretical advantage of quantum over digital com
tation @1# lies mostly in the use of quantum interference. T
idea is to eliminate a large number of incorrect outcom
through destructive interference while at the same time
ating a high probability of correct outcomes through co
structive interference. Both cases involve a relatively sm
set of operations. While the probabilistic nature of quant
mechanics may be a disadvantage, its combination with
terference may accelerate some computations. Here we s
that this combination can be reproduced in classical syst
of linear oscillators and used for quantumlike computatio

The central idea is the following. Subjecting some iden
cal numberedlinear oscillators to a set of sequential pertu
bations gives us an interference effect, but not of a quan
type. This problem can be solved by introducing a dev
programmed to decide what number~we can also say, wha
oscillator! must be chosen at the end of the set of pertur
tions, when the number chosen before those perturbatio
known. The resulting decision can then be described i
formalism mathematically indistinguishable from that
quantum computing. This decision-making device plays
role of a quantum measurement apparatus. Although
probabilities of measurement results are regulated by na
in the quantum case, whereas in our system it is by a p
gram, this difference is irrelevant to results of computatio
since both measurements and choices are made only a
ends of deterministic parts of computations. Moreover, if
probability distribution itself must be an outcome of th
computations, then our classical system has an advan
over a quantum one: being free from quantum collapse
to measurement, it does not need multiple repetitions of
same computations; the probabilities are directly measur
relative energies of oscillations. Another advantage of t
system is that it is easier to realize. Finally, we might a
that if macroscopic natural intelligence possesses some q
tumlike properties, as some physicists suspect@2#, then our
quantumlike classical system may be a more realistic mo
for this phenomenon than a purely quantum system.

The correspondence between this system and quan
systems is in fact deeper than it might seem. As will
shown in the course of our discussion, the system posse
not only thealgorithmic indeterminism typical of quantum
systems@3#, but also unitary transformations, wave fun
tions, and noncommuting operators, as well as the inter
ence of probabilities already noted. But it does not poss
the property of quantum nonlocality, which means that it c
be used for quantumlike computations but not for quantu
like communication.
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We demonstrate first how the major building blocks
quantum computing—qubits and quantum logic gates—
be constructed and implemented in our system as quan
like bits ~which we callQbits! and quantumlike logic gates
Then we show how combinations of these building bloc
operate in our system by working through several init
steps of a Shor quantum algorithm@4#,

The main elements of our system are the following:
~a! Numbered linear oscillators.
~b! Perturbation devices to change and exchange osc

tor amplitudes and phases.
~c! Devices to ‘‘multiply’’ oscillators, imitating the multi-

plication of quantum states.
~d! A decision-making device producing random numbe

~choices! in accordance with the relative energies of the o
cillations of different oscillators.

~e! A device to establish either maximal or zero amp
tudes of the oscillators.

~f! Devices to measure amplitudes, phases, and ene
of oscillators. There can also be digital computing devic
etc.

The simplest element of our quantumlike system is
Qbit. A single Qbit is formed by two identical linear oscilla
tors numbered 0 and 1. Oscillatork, k50,1, oscillates asqk

5A@ck exp(ivt)1ck* exp(2ivt)#, whereck is the dimension-
less complex amplitude,ucku<1, and 2A is the maximal am-
plitude of theq oscillations. The energy of the noninteractin
oscillators

H5( Hk52mv2A2( ucku2. ~1!

By design,uc0u21uc1u251, soucku2 is the relative energy
of the kth oscillator. Consider all possible unitary transfo
mations of the complex amplitudes made with the help
perturbationsbetween timest andt8 such that the full energy
H is conserved,H(t)5H(t8). For a given transformationU,
ck(t)→ck8(t8),

ck85uklcl , ukl5ulk* , ( ucku25( ucl* u251. ~2!

Unitary transformations of complex amplitudes provi
the possibility of using interference in the computations. B
doing so inevitably requires a probabilistic approach, as
quantum mechanics. To understand this, let us try to so
the following problem. Imagine for a moment that som
©2002 The American Physical Society24-1
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computation involves only a single Qbit. At timet, one of the
two oscillators’ numbers, 0 or 1—let it be 0—is chosen
the initial condition for this computation. Since our numbe
are identified with the corresponding oscillators, this cho
means by definition thatc0(t)51, whilec1(t)50. These ini-
tial amplitudes can be established with the help of device~e!.
Then, in the course of the computation, the correspond
perturbations between timest and t8 change the amplitude
and phases of both oscillators, as in Eq.~2! where theU is
defined by these perturbations. In accordance with the v
concept of computation we want to know thecertainresult at
the end, at timet8, namely, a new number, 0 or 1. This
possible in some cases. For example, if at the endc0(t8)
50 andc1(t8)51, then obviously the result equals 1. In th
more complicated general case, the final amplitudes e
neither 0 nor 1, so we want a program that assigns som
all the possible parameters of matrixU to the number 0, and
the rest to the number 1; these assignments can be diffe
for two different initial conditions, 0 and 1. However,the
problem of finding an assignment consistent with the prop
ties of unitary transformations is algorithmically unsolvabl.
For there exists aninfinite set of transformation paramete
that cannot be divided into two subsets assigned to 0 an
respectively, without logical contradiction.@Within the group
of transformations~2! there is a subgroup isomorphic to th
spin 1/2 rotations on a plane, when this spin is placed on
same plane. The algorithmic unsolvability for such a ca
was proved in Ref.@3#.#

Our system is thus algorithmically indeterministic wi
respect to getting final certain numbers. So we need to in
duce a probability distribution and use a probabilistic p
gram according to which decision-making device~d! can
choose random numbers as the results of computatio
~which themselves can be parts of larger computatio!;
these results are similar to randommeasurementresults of
quantum computations. The only consistent way to introd
probabilities of choiceswk , k50,1, in the frame of our sys
tem is to combine Eqs.~1! and ~2!. This giveswk5ucku2.

Under certain conventions, transformationU can be con-
sidered a rotation in a vector Hilbert space who
eigenvectors—we will call them ‘‘number eigenstates’’—a
ux&, wherex is integer, and state vectors~‘‘number states’’!
are

uc~x!&5(
x

cxux&. ~3!

ux& corresponds to oscillatorx having maximal amplitude and
a phase defined as the zero phase.cxux& corresponds to the
same oscillator having complex amplitudecx . As for super-
position ~3!, it does not correspond to any physical sum
oscillators having different numbersx and amplitudescx .
Nevertheless,c(x), which can be written also as a colum
of the cx values, as in quantum mechanics, plays the role
the wave function becausecx are now probability ampli-
tudes. There exists, of course, a fundamental difference
tween our system and quantum systems. In quantum com
ers, all but one possible numerical outcomes of
measurement of thex value are destroyed by that measu
05232
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ment. In our system,nothing is destroyed by any measur
ment or choiceas long as device~e! is not used.

Quantumlike logic gates, which are reversible, are ma
ematically unitary operators~mostly not commuting with one
another! and as such can always be represented by uni
transformations of the sets of our oscillators. The matriceU
of unitary transformations of complex amplitudes determ
the twice bigger matricesM of canonical transformations o
coordinates and momenta. Letm5v5A51. For the two
oscillators of a single Qbit, in the case of an instant pert
bation,

S q08

q̇08

q18

q̇18

D 5S m11 m12 m13 m14

2m12 m11 2m14 m13

m31 m32 m33 m34

2m32 m31 2m34 m33

D S q0

q̇0

q1

q̇1

D ,

2m115u001u00* , 2m315u101u10*

2m1252 i ~u002u00* !, 2m3252 i ~u102u10* !,

2m135u011u01* , 2m335u111u11*

2m1452 i ~u012u01* !, 2m3452 i ~u112u11* !. ~4!

If the perturbation is not instantaneous but continues fr
t to t8, then the phase shift,ukl→ukl exp@iv(t82t)#, must be
included in formula~4! for M, while in Eq. ~2! U is un-
changed. We haveqk8(t8)5A@ck8(t8)e

ivt81c8k* (t8)e2 ivt8# if
qk(t)5A@ck(t)e

ivt1ck* (t)e2 ivt#. The implementation of
logic gates in our system does not require~though it does not
exclude! the use of auxiliary oscillators, because to ar
trarily transform a single Qbit whose two complex amp
tudes have three independent parameters, we need onl
following three operations.

R(kL)(f), a phase rotation of a single oscillatorkL of Qbit
L ~if the Qbit is placed inside some numbered set of Qbi!.
There are two possible rotations,kL50 or 1. A parametric
adiabatic perturbationdv2(t), where t1,t,t2 , dv2(t1)
5dv2(t2)50, andd(dv2)/dt!v3/p, produces such a ro
tation ~we omit subindexL!,

q̈k1@v21dv2~ t !#qk50, ukk5eif,

ui j 5d i j otherwise,

f5E
t1

t2
dv2~ t !dt/2v. ~5!

C(kl i L)(w), connection of the two different oscillators,kL
and l L of the Qbit L with the help of perturbationdv2(t)
analogous todv2, with ukk5ull 5cosw, ukl5ulk5 i sinw,

q̈k1v2qk1dv2~ t !ql50, q̈l1v2ql1dv2~ t !qk50,

w5E
t1

t2
dv2dt/2v. ~6!

For example, the Pauli operators and the frequently u
HadamardH gates~L omitted!:
4-2
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QUANTUMLIKE BITS AND LOGIC GATES BASED ON . . . PHYSICAL REVIEW A66, 052324 ~2002!
sx5R~ l !~2p/2!R~k!~2p/2!C~kl !~p/2!,

sy5szC
~kl !~p/2!, sz5R~ l !~p!R~k!~0!,

H[
1

&
S 1 1

1 21D 5R~ l !~p/2!szC
~kl !~p/4!szR

~ l !~p/2!,

k50, l 51. ~7!

In concluding this description of single Qbits we shou
note that the identical oscillators represent only the simp
and most convenient way to construct an analog of a qu
tum bit and to demonstrate our main idea. In a more gen
conception of Qbits, oscillators may have different freque
cies but the samemv2A2, and resonance perturbations a
auxiliary oscillators~with the samemv2A2) can be used.

Looking at two Qbits, now, the combination ofJ andK,
J.K, is not trivial only when the entangled states of the
two Qbits are involved. If the Qbits have not interacted at
earlier stages of a given computation, then by definition th
common state is the tensor product of the two correspond
states~3!, uc(x(J))& ^ uc(x(K))&. To implement a two-Qbit
gate in the case of these two Qbits means to connect all
of their constituent oscillators, thus creating an entang
state. Mathematically, we first algebraically multiply our tw
one-Qbit states. Then we apply the needed 434 unitary ma-
trix to the four initial complex amplitudes of the four eige
states ux(J)& ^ ux(K)& produced by this multiplication,x(J)

50 or 1, x(K)50 or 1. Physically in our system, we ‘‘mul
tiply’’ the oscillators within each of the four pairs of oscilla
tors by using device~c!. ~The necessity of such multiplica
tion is a disadvantage of our system compared with quan
systems.! The multiplication is as follows. Suppose there a
two oscillators,x(J) at the left andx(K) at the right,J.K,
with the corresponding complex amplitudescx(J) and cx(K).
Then the product is the single oscillator having amplitu
cx(J)x(K)5cx(J)cx(K) and the ordinal numberx(J)x(K), in which
all integers are written in the binary system. When the t
original oscillators represent number eigenstates, say,uk& at
the left and ul& at the right,k, l 50 or 1, whose complex
amplitudes therefore equal 1, the oscillator product also r
resents the number eigenstate, namely,ukl&. So as a result of
the ‘‘multiplication’’ we get foursingleoscillators now num-
bered as 0(J)0(K), 0(J)1(K), 1(J)0(K), and 1(J)1(K). ~Upper
indices are retained when it is important to remember wh
our two Qbits,J andK, are placed inside some bigger set
Qbits.! Now the number state

uc~x!&5( cxux&, x500, 01, 10, 11, ~8!

is represented by the ordered set of the four numbered o
lators to which we can apply the needed perturbation. I
sufficient to use four single phase rotations and six conn
tions between any two single oscillators in Eq.~8!. Consider,
for example, the controlled-NOT ~CNOT! gate, whose matrix
elements areu00,005u01,015u10,115u11,1051, with other ele-
ments equal to zero. In our classical system, we can
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change oscillations of the two oscillators 10 and 11~in bi-
nary notation! by applying a one-Qbit operation, as if thes
oscillators belong to the same single Qbit.~This is impos-
sible in quantum systems because the mere selection of s
inside a superposition may destroy the superposition.! By
using perturbation~6!, with k510, l 511, andw5p/2, and
then individual rotations, we get in fact thesx operation,

XCNOT5R~10!~2p/2!R~11!~2p/2!C~10,11!~p/2!. ~9!

which produces an entangled state because it exchange
cillations of oscillators taken from different Qbits.

Next we will show how to implement one and two Qb
logical gates in the case of an entangled number-s
uc(x)&5(cxux& corresponding to some big numberN of or-
dered Qbits, numbered as 0, 1,..., (N21) in decimal nota-
tion. Every number eigenstateux& here is the tensor produc
of N number eigenstatesuxI&, xI50 or 1, each taken fromN
different Qbits, and is represented by a single oscillatorx, the
result of multiplying theN corresponding oscillators:

ux&5uxN21 , xN22 ,...xJ ,..., xK ,... x2 , x1 , x0&.
~10!

Numberx5xN21 ,...,x0 , expressed in the binary system, is
set of 0’s and 1’s. Their indices are the Qbits’ own decim
numbers. Suppose, for example, that we have to rotate
phase of oscillator 1K , that is, of oscillator 1 of Qbit numbe
K. Exactly half of all 2N possiblex values in Eq.~10! have 1
at theK place in the binary notation, so half of the possib
states in the superposition havexK51. In our system, we can
easily select 2N21 oscillators containingxK51 in their num-
bers and perform the one-Qbit rotations of their phases
multaneously while keeping other oscillators untouch
Consider now the two-Qbit gateB(KJ), for Qbits J and K,
whose matrix elements areu0J0K,0J0K

5u0 j1K,0j1K
5u1 j0k,1J0K

51; u1J1K,1J1K
5exp(ip/2J2K). This gate equally rotates

phases of all those 2N22 oscillators which correspond to th
number-eigenstates of numbersx possessing l’s at bothJ and
K places in Eq.~10!. We can implement this gate as on
Qbit rotations of all relevant 2N22 oscillators simultaneously
while keeping other oscillators untouched.

To show how different elements of our system work t
gether, let us go through several implementation steps
Shor’s factorization algorithm@4#. We use a simple textbook
example of factorizing the number 4, without any comme
on the algorithm itself. In this case there are two register
registerX, RX, and registerY, RY—with four Qbits in theRX
and two Qbits in theRY, with the prepared initial stateu0000,
00&, that means, initially,x50, y50. In this case it is better
not to multiply the original oscillators, which have ampl
tudes equal to 1,x0

(3) , x0
(2) , x0

(1) , x0
(0) in the RX and y0

(1) ,
y0

(0) in the RY.
Step 1. Apply four independentH gates@see Eq.~7!# to

the RX. As a result, the amplitudes of every oscillator insi
every RX Qbit becomec51/&. Every single Qbit state in
this register becomes a superposition,u0&→(u0&1u1&)/&,
with the full X state as the tensor product of four such sup
positions.
4-3
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YURI F. ORLOV PHYSICAL REVIEW A66, 052324 ~2002!
Step 2. Apply the controlled-NOT two-Qbit gate@see Eq.
~9!# to Qbits 0 at theRXand 1 at theRY. As explained above
to do so we must first use device~c! to multiply the number
states of these Qbits, that is, the oscillators representing t
number states. This produces two oscillator-produ
(1/&)u0(0),0(1)& and (1/&)u1(0),0(1)&. ~The commas sepa
rate theX andY registers.! The two-Qbit controlled-NOT gate
applied to the four oscillators, 0(0),0(1); 0(0),1(1); 1(0),0(1);
1(0),1(1)—two of which have zero amplitudes—exchang
the amplitudes of the oscillators 1(0),0(1) and 1(0),1(1). Since
1(0),1(1) has zero initial amplitude, we now getc1(0)0(1)50,
c1(0)1(1)51/&.

Step 3. Apply the sx operator@see Eqs.~6! and ~7!# to
Qbit 0 of the RY, to exchange the amplitudes of its tw
oscillators, 0 and 1. At this stage the change of the state

u0000,00&→ 1
4 ~ u0&1u1&) ~3!~ u0&1u1&) ~2!~ u0&1u1&) ~1!

3~ u00,01&11011&)u10&. ~11!

Step 4. Apply H (3) @see Eq.~7!#, to the two oscillators of
the RX Qbit 3. This leads to (1/&)(u0&1u1&)(3)→&u03&.

Step 5. Apply the B(23) gate to transformed Qbit 3 an
Qbit 2 of the RX. For this we must first ‘‘multiply’’ their
s

05232
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oscillators, producing&(u0(3)0(2)&1u0(3)1(2)&). The B(23)

gate does not change this product becauseu1(3)1(2)& is absent
~has zero amplitude! in this superposition.

After several more similar operations, we get the fin
state

uc~x,y!&5 1
2 ~ u0000,01&1u0001,01&1u0000,11&

2u0001,11&). ~12!

Only these four states survive the destructive interfere
caused by the perturbations following one after another.
this stage, Shor’s algorithm requiresrepeatedmeasurements
of x by repeatedly preparing and then perturbing the sa
state. As we have already noted, our classical system d
not require repeated reconstructions of the same initial sta
since neither choices nor measurements destroy our num
states. In Eq.~12!, there are four oscillator products whos
relative intensities~probabilities! equal 1/4, and two possible
x values each with the probability 1/411/451/2. The use of
this result to work through Schor’s algorithm further is b
yond the scope of this paper.

The author thanks the Open Society Institute for supp
ing this work, and Sidney Oriov for useful discussions.
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