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Preparing encoded states in an oscillator
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Centre for Quantum Computer Technology, University of Queensland, St. Lucia, Queensland, Australia

~Received 17 May 2002; published 22 November 2002!

Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-
dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum
variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these
states can be generated by coupling a continuous quantum variable to asingle qubit. An ion trap quantum
computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states
may be generated in an ion trap.
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I. INTRODUCTION

It appears, in principle, that the laws of quantum mech
ics allow certain mathematical problems to be solved m
rapidly than can be done using a classical computer@1,2#.
However, in order to accomplish this task, the state o
quantum system must maintain coherence, despite unwa
interactions with the environment. There have been a num
of proposed mechanisms for protecting quantum informa
during a computation@3–9#. Recently, it has been show
@10# that a d-dimensional quantum system~here we only
considerd52) can be embedded in an infinite-dimension
Hilbert space, such that a universal set of fault-tolerant qu
tum gates can be implemented using linear optical op
tions, squeezing, homodyne detection, and photon coun
The qubits are embedded in the continuous system in a m
ner which protects the quantum information against sm
shifts in the canonical~dimensionless! quantum variables,q
~position! andp ~momentum!. Ideally, the encoded states a
an infinite sum ofd functions in bothq and p. Of course,
such states are non-normalizable and unphysical. Hence
must be approximated. It has been proposed@10# that these
approximate encoded states could be generated by a p
dure involving a nonlinear interaction Hamiltonian of th
form

H8}qb†b, ~1!

whereq is the position operator of one variable, andb (b†) is
the annihilation~creation! operator of a second variable. Un
fortunately, interactions of the form given in Eq.~1! have
proven very difficult to implement. They generally requi
the radiation pressure of photons to move a macroscopic
ject ~a mirror! @11#.

Here we show that approximate encoded states can
generated by coupling the continuous variable to asingle
qubit, and performing a sequence of operations similar t
quantum random walk algorithm@12#.

In Sec. II, we briefly review the continuous variable e
coding scheme proposed by Gottesmanet al. @10#. In Sec. III
we show how approximate encoded states can be nond
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ministically generated by coupling the continuous variable
a qubit. We then discuss the fidelity of the approximate
coded states in Sec. IV. This is followed in Sec. V by
discussion of how error recovery can be performing by
terministically preparing ancilla variables. Finally, in Sec. V
we discuss how an ion trap quantum computer could be u
to generate approximate encoded states, and therefore
vide an important proof of the principle.

II. ENCODING A QUBIT IN AN OSCILLATOR

Quantum computation is generally formulated in terms
interacting two-level quantum systems, or qubits. The cho
of two-level quantum systems is partially because it is e
to draw analogies with the classical bit, but also becaus
two-level system is the simplest nontrivial system; and
creasing the number of levels only increases the computa
efficiency by a constant of proportionality.

However, with the goal of building a quantum comput
in mind, two-level quantum systems are by no means
most natural choice. Most physical systems, even in th
most elemental form, are represented by many more t
two levels. Indeed, many quantum systems are naturally
scribed by a continuous variable~infinite-dimensional Hil-
bert space!. Such continuous quantum systems have b
well studied, and proposals have been made for perform
analog quantum computation using such systems@13–15#.

A. Ideal encoded states

Gottesmanet al. @10# discuss how to embed a qubit in
continuous quantum system, so that the extra degrees of
dom within the system can be used to correct errors that a
from unwanted interactions with the environment. Setti
\51, the state of the continuous quantum system is co
pletely described by a wave function inq or p, which satis-
fies the commutation relation

@q,p#5 i . ~2!

We transform between position and momentum wave fu
tions according to the equations

^quc&5E
2`

`

dp
eipq

A2p
^puc&, ~3!
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^puc&5E
2`

`

dq
e2 ipq

A2p
^quc&. ~4!

Ideally, an encoded zero stateu0̄& will be represented in po
sition space by the wave function

^qu0̄&5 (
s52`

`

d~q22as!5
1

2a (
s52`

`

eipsq/a, ~5!

and thus in momentum space, it has the wave function

^pu0̄&5
A2p

2a (
s52`

`

dS p2
ps

a D5
1

A2p
(

s52`

`

e2 i2spa.

~6!

While the encoded one stateu1̄& is represented in position
and momentum space by the wave functions,

^qu1̄&5 (
s52`

`

dFq22aS s2
1

2D G5
1

2a (
s52`

`

~21!seipsq/a,

~7!

^pu1̄&5
A2p

2a (
s52`

`

~21!sdS p2
ps

a D
5

1

A2p
(

s52`

`

e2 i (2s21)pa. ~8!

The wave functions for the encoded zero state are depicte
Fig. 1~a!, while Fig. 1~b! depicts the wave functions for th
encoded one state. Clearly the zero and one encoded s
are orthogonal,

^0̄u1̄&50. ~9!

FIG. 1. ~a! Ideal wave function, in both position and mome

tum, of the encoded zero stateu0̄&. In position space, the wav
function is an infinite sum ofd functions, separated by 2a; in
momentum space, the wave function is an infinite sum ofd func-
tions separated byp/a. ~b! Ideal wave functions of the encode

one stateu1̄&.
05232
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B. Error recovery

For the details of how quantum computation is perform
with these encoded states we direct the reader to Gottes
et al. @10#. Error recovery is based upon the general pro
dure proposed by Steane@16#. Here we review the error re
covery procedure, which protects these encoded st
against shifts in position,q, and momentump of size

uDqu,
a

2
and uDpu,

p

2a
. ~10!

Suppose we have an encoded qubit in some arbitrary su
position of zero and one,

uc&e5c0u0̄&1c1u1̄&. ~11!

Suppose also, that we have access to an ancilla variable
pared in the state

uf~b!&a5E dq (
s52`

`

eiusd~q2sb!uq&a , ~12!

where the phase termsus are arbitrary real numbers. Assum
that an error occurs to the stateuc&e , such that the wave
function is shifted in the position variable by some amou
e,a/2. We wish to correct this error without destroying th
state. This can be accomplished by using an ancilla varia
prepared in the state

uf~a!&a . ~13!

An example of such an ancilla variable state is the eq
superposition of both the zero and one encoded states,u0̄&
1u1̄&)/A2. Error correction is performed by interacting th
encoded qubit with the ancilla via a Hamiltonian of the for

H15qepa , ~14!

where the subscripte denotes the encoded qubit variable, a
the subscripta denotes the ancilla variable. After the tw
systems have interacted, we can measure theq variable of
the ancilla system, which will allow us to determine th
value ofe. However, no information is obtained abouta or
b, so the quantum information encoded in the coherent
perposition ofu0̄& andu1̄& is retained. Thee error can then be
corrected by applying an appropriate displacement opera
to the encoded qubit system. Likewise, a shift ofe,p/2a in
the momentum variable can be corrected using an an
system prepared in the state,

uf~p/a!&a , ~15!

evolving according to the interaction Hamiltonian

H25pepa , ~16!

and then once again measuring theq variable of the ancilla
system. This again yieldse, which can be corrected, thi
time by performing an appropriate displacement in mom
tum.
2-2



b

ry
o

c
ve
a
ta
c

pa
x
ob
r

ta

th
e

th
r
a

e-

te
-

ly
s

rded
ded

e

wave

h

he

the
ing
text.

PREPARING ENCODED STATES IN AN OSCILLATOR PHYSICAL REVIEW A66, 052322 ~2002!
It should be noted that shifts in the canonical variables
amounts exceeding the limits stated in Eq.~10! constitute a
‘‘logical error,’’ and are not corrected by this error recove
procedure. Error correction would need to be performed
ten enough to make such shifts negligible.

III. PREPARING ENCODED STATES USING A QUBIT

Once prepared, it is hoped that the error recovery pro
dure will be able to maintain the encoded states. Howe
preparation of the encoded states is not trivial. As has alre
been stated, we can only prepare approximate encoded s
In this section, we show how approximate encoded states
be prepared with the aid of a single ancilla qubit. Our pre
ration scheme is nondeterministic, in that a valid appro
mate encoded state will only be prepared with some pr
ability less than 1, however, we will know when ou
preparation procedure has worked.

We shall denote approximate encoded zero and one s
with the symbolsu0̃& and u1̃&. As in Ref.@10#, we begin the
preparation procedure with the quantum system in
ground state of the oscillator,u0&, and apply squeezing in th
q quadrature. This creates the state

^qus&5g~q,D!, ~17!

where

g~q,D!5
e2q2/2D2

AD~p!1/2
, ~18!

and D is the width of the Gaussian and a measure of
degree of squeezing.D51 corresponds to the oscillato
ground state, andD,1 indicates a squeezed state. Using
ancilla qubit, initially in the zero stateu0&, the approximate
encoded one stateu1̃1& is then created by applying the s
quence of operators,

Ĥe2 iapeszĤ, ~19!

wheresz is the Pauliz matrix,

sz5S 1 0

0 21D , ~20!

applied to the qubit, andĤ is the Hadamard gate,

Ĥ5
1

A2
S 1 1

1 21D , ~21!

applied to the qubit. Measuring the qubit in the zero sta
which will occur with probability 1/2, results in the continu
ous variable being left in the state,

^qu1̃1&5
N

A2
@g~q2a,D!1g~q1a,D!#, ~22!

where N is a normalization factor, which is approximate
equal to 1, ifD/a is small compared to 1. If the qubit i
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measured in the one state, the encoded variable is disca
and we try again. To create improved approximate enco
states, we iterate the following procedure:

Given u1̃n21&, and a qubit in the stateu0&.
~1! Apply the operators:

Ĥe2 i2n21apeszĤ. ~23!

~2! Measure the qubit.
~3! If the qubit is found in the stateu0&, then we have

createdu1̃n&.
~4! Otherwise discard and start again.
Thus, with probability 1/2n, we create the approximat

encoded state

^qu1̃n&5
N

A2n (
s51

2n

g„q1a~112n22s!,D…. ~24!

In momentum space the approximate encoded state has
function

^pu1̃n&5S D

2nAp
D 1/2

Ne2(pD)2/2
sina2np

sinap
. ~25!

Figure 2 depicts the approximate encoded stateu1̃3&, with
D50.15 anda5Ap/2. This state will be generated wit
probability 1/8. The approximate encoded zero stateu0̃n& is
created by displacing the stateu1̃n& by an amounta in the
position variable. Thus

^qu0̃n&5
N

A2n (
s51

2n

g„q1a~2n22s!,D…, ~26!

and

^pu0̃n&5e2 iap^pu1̃n&. ~27!

FIG. 2. Wave function, in both position and momentum, of t

approximate encoded zero stateu1̃3&. This approximate encoded
state will be generated with probability 1/8, by first squeezing
continuous variable in momentum quadrature, and then apply
the sequence of operations and measurements described in the
2-3
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Because of the 2n term in Eq.~23!, the average energy of th
approximate encoded states will increase exponentially w
n, however, as we see in the following section, the proba
ity of error decreases exponentially withn.

It is perhaps also worth noting that alternative appro
mate encoded states, where the sign changes occur in
tion space rather than momentum space can be create
discarding the states when au0& is measured instead of au1&.

IV. FIDELITY OF APPROXIMATE ENCODED STATES

As in Ref. @10#, the approximate encoded statesu0̃& and
u1̃& will have negligible overlap ifD is small compared toa.
In position space, the probability of mistaking an appro
mate encoded zerou0̃& for an approximate encoded oneu1̃&
is simply the probability of measuring the zero state neare
an odd multiple ofa than an even multiple. The probabilit
of error in position,Pq , will be bounded by the sum of eac
of the Gaussians’ tails,

Pq,2n2E
a/2

`

dqUg~q,D!

A2n U2

. ~28!

Thus the error probability is independent ofn, and using the
asymptotic expansion of the error function,

E
x

`

dte2t25S 1

2xDe2x2
@12O~1/x2!#, ~29!

it is not hard to show that error probability will be bounde
by

Pq,
4D

Apa
e2(1/8)(a/D)2

. ~30!

Therefore, the likelihood of error becomes exponentia
small for smallD/a. We would expectPq to be independen
of n; the probability of error in position is simply determine
by the amount of initial squeezing and the spacing of
Gaussians, irrespective of the number of iterations of
preparation procedure.

In momentum space, we wish to determine the probab
of finding (u0̃&2u1̃&)/A2 closer to an even multiple ofp/a
than an odd multiple. AssumingN'1, using Eqs.~25! and
~27!, we calculate the area under periodic part of the pr
ability function,

u^pu0̃n&2^pu1̃n&u2

2
~31!

about each even multiple ofp/a, divide this by the width
2p/a, and multiple by the area of the Gaussian envelop

E dpe2(pD)2
. ~32!

This gives a bound on the error probability in momentum
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Pp,
1

p2n11
, ~33!

which becomes exponentially small withn. The dependence
of Pp on n is also expected; asn increases, the
sin(2nap)/sin(ap) term in Eqs.~25! and~27! becomes a more
accurate approximation of a series of Diracd functions.

V. DETERMINISTIC ERROR RECOVERY

For robust quantum computation, it is necessary that
encoded states are comblike in both the position and mom
tum quadratures, so that small shifts in both position a
momentum can be corrected. However, this is not neces
for the ancilla systems used in error recovery. The relat
phases between the different ‘‘prongs’’ in the comblike st
of Eq. ~12! are irrelevant. The reason for this is that w
measure the ancilla variable directly after it has interac
with the encoded variable. Thus, after measurement, the r
tive phase becomes an unimportant global phase.

The invariance of the ancilla variables to relative pha
allows us to deterministically prepare ancilla systems for
ror recovery. The ancilla system states can be prepared u
the procedure described in Sec. III, except that we conti
with the preparation procedure forn iterations, irrespective
of whether the qubit is measured in theu0& or u1& state. Thus,
after three iterations, if the sequence of qubit measurem
were say,u1&, u0&, and u1&, then we would be left with the
stateua&, depicted in Fig. 3. This state is no longer combli
in momentum space, but it is still comblike in position spa
Thus, it could be used to perform position error recovery

VI. IMPLEMENTING IN AN ION TRAP

There are several physical systems which enable a c
pling between a continuous quantum system and a disc
quantum system, such as a cavity QED system or an ion t
Here we discuss the possibility of creating approximate
coded states in an ion trap.

Though scalable continuous variable quantum compu
tion using ion traps seems unlikely, the ion trap provide
good test bed for such first steps as creating approxim
encoded states, as the processes of decoherence withi
ion trap are well understood.

Consider a single9Be1 ion, confined in a coaxial-
resonator radio-frequency-ion trap, as described in Ref.@17#,
and references therein. The continuous quantum syste
the vibrational mode of the ion, and the two-level discre

FIG. 3. Position wave function of an ancilla variable,ua&, which
can be used in position quadrature error recovery.
2-4



o

th
e

na
er
ib

an
a

at
a

T
he
ite
io
s-
tio
a
t
o
n

ry to

ting
ful-
-
vi-
t in
ural
ow
rete

on-
ro-
s it
ari-

a,

PREPARING ENCODED STATES IN AN OSCILLATOR PHYSICAL REVIEW A66, 052322 ~2002!
system is the ground and first excited electronic levels
the ion.

First it would be necessary to laser cool the ion to
motional and electronic ground state, as described in R
@18#. Ideally, we would then need to squeeze the vibratio
mode of the ion. This could prove a difficult task. Howev
it is possible to create the sequence of operations descr
in Eq. ~19!. The Hadamard operation is accomplished by
p/2 pulse, creating an equal superposition of the ground
excited electronic states. A displacement beam is then
plied which excites the motion correlated to the excited st
A p pulse is then applied to exchange the internal states,
the displacement beam is applied again. Finally, anotherp/2
pulse is applied, executing the second Hadamard gate.
electronic level of the ion is then measured using anot
laser pulse, tuned to a transition between the first exc
level and a higher level. If fluorescence is observed, the
has been measured in theu1& state. The absence of fluore
cence indicates that the ion is in the ground state. In addi
to the operations which we wish to implement, the ion tr
system will undergo free evolution, so it will be necessary
couple the qubit and measure only once every period of
cillation. In order to verify that the desired approximate e
-

A
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coded state had been created it would then be necessa
carry out state tomography on the system.

VII. CONCLUSIONS

For a quantum computer to become a reality, the daun
task of providing adequate error correction needs to be
filled. At this point in time, it is unclear which, if any, imple
mentation scheme for quantum computation will become
able. As the quantum mechanical oscillator is so prevalen
the study of quantum mechanics, it appears to be a nat
test bed for quantum computation. Here we have shown h
a continuous quantum system can be coupled to a disc
two-level quantum system in a manner which allows the c
tinuous quantum system to encode qubit. The ion trap p
vides a convenient setting for this encoding scheme a
contains the required discrete and continuous quantum v
ables.
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