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Preparing encoded states in an oscillator

B. C. Travaglion& and G. J. Milburn
Centre for Quantum Computer Technology, University of Queensland, St. Lucia, Queensland, Australia
(Received 17 May 2002; published 22 November 2002

Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-
dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum
variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these
states can be generated by coupling a continuous quantum variablsirigl@qubit. An ion trap quantum
computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states
may be generated in an ion trap.
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I. INTRODUCTION ministically generated by coupling the continuous variable to
a qubit. We then discuss the fidelity of the approximate en-
It appears, in principle, that the laws of quantum mechan€oded states in Sec. IV. This is followed in Sec. V by a
ics allow certain mathematical problems to be solved morealiscussion of how error recovery can be performing by de-
rapidly than can be done using a classical compltez].  terministically preparing ancilla variables. Finally, in Sec. VI
However, in order to accomplish this task, the state of ave discuss how an ion trap quantum computer could be used
guantum system must maintain coherence, despite unwantéa generate approximate encoded states, and therefore pro-
interactions with the environment. There have been a numbefide an important proof of the principle.
of proposed mechanisms for protecting quantum information
during a computatiof3—9]. Recently, it has been shown Il. ENCODING A QUBIT IN AN OSCILLATOR

[10] that a d-dimensional quantum systelilere we only o )
considerd=2) can be embedded in an infinite-dimensional. Quantum computation is generally formulated in terms of

Hilbert space, such that a universal set of fault-tolerant quanintéracting two-level quantum systems, or qubits. The choice
tum gates can be implemented using linear optical operslf two-level quantum systems is partially because it is easy
tions, squeezing, homodyne detection, and photon countind® draw analogies with the classical bit, but also because a
The qubits are embedded in the continuous system in a mak¥o-level system is the simplest nontrivial system; and in-
ner which protects the quantum information against smalf"€@sing the number of levels only increases the computation
shifts in the canonicaldimensionlessquantum variablesy  efficiency by a constant of proportionality.

(position andp (momentury. Ideally, the encoded states are . However, with the goal of building a quantum computer
an infinite sum of8 functions in bothg and p. Of course, N Mind, two-level quantum systems are by no means the
such states are non-normalizable and unphysical. Hence th&jost natural choice. Most physical systems, even in their
must be approximated. It has been propofd] that these most elemental form, are represented by many more than

approximate encoded states could be generated by a prod¥lo levels. Indeed, many quantum systems are naturally de-
dure involving a nonlinear interaction Hamiltonian of the SCribed by a continuous variablenfinite-dimensional Hil-
bert space Such continuous quantum systems have been

form
well studied, and proposals have been made for performing
H'«qb'b (1) analog quantum computation using such systgh3s-15.
whereq is the position operator of one variable, an¢b") is A. ldeal encoded states

the annihilation(creatior) operator of a second variable. Un-  Gottesmaret al. [10] discuss how to embed a qubit in a
fortunately, interactions of the form given in E€L) have  continuous quantum system, so that the extra degrees of free-
proven very difficult to implement. They generally require dom within the system can be used to correct errors that arise
the radiation pressure of photons to move a macroscopic ofrom unwanted interactions with the environment. Setting
ject (a mirrop [11]. #=1, the state of the continuous quantum system is com-

Here we show that approximate encoded states can hletely described by a wave function énor p, which satis-
generated by coupling the continuous variable tsirggle  fies the commutation relation

qubit, and performing a sequence of operations similar to a

quantum random walk algorithiii2]. [g,p]=1i. (2
In Sec. II, we briefly review the continuous variable en- N
coding scheme proposed by Gottesreaal.[10]. In Sec. Il We transform between position and momentum wave func-

we show how approximate encoded states can be nondetdiens according to the equations
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B. Error recovery

- > For the details of how quantum computation is performed
o with these encoded states we direct the reader to Gottesman
|—| et al. [10]. Error recovery is based upon the general proce-
0 p dure proposed by Steap&6]. Here we review the error re-
covery procedure, which protects these encoded states
against shifts in positiorng, and momentunp of size
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(a) | | 0 | | i Suppose we have an encoded qubit in some arbitrary super-
(b) position of zero and one,
FIG. 1. (a) Ideal wave function, in both position and momen- |l/f>e= CO|6>+C1|T>_ (11)

tum, of the encoded zero staf@). In position space, the wave

function is an infinite sum of§ functions, separated bya2 in Suppose also, that we have access to an ancilla variable pre-
momentum space, the wave function is an infinite sund éfinc- pared in the state

tions separated byr/«. (b) Ideal wave functions of the encoded

one statg1).

|¢(B)>a:f quZE_m ei055(q_513)|q>a, (12

o efipq
(plyp)y= f dqg (ql). (4)  where the phase terngs are arbitrary real numbers. Assume
—eoN2w that an error occurs to the stafte)., such that the wave

_ function is shifted in the position variable by some amount
Ideally, an encoded zero stg@) will be represented in po- e<a/2. We wish to correct this error without destroying the
sition space by the wave function state. This can be accomplished by using an ancilla variable,
prepared in the state

& 1 &
(@l0)= X dla-2as)=5- > €79 (5 |$(a))a. (13
An example of such an ancilla variable state is the_equal
superposition of both the zero and one encoded sta@s, (

w +|T))/\/§. Error correction is performed by interacting the

<p|6>= V2w D 5( p— ”_S) - 1 > gizspa encoded qubit with the ancilla via a Hamiltonian of the form
2a o a 2 '

and thus in momentum space, it has the wave function

S=—®

(6) H1=0ePa, (14)

where the subscrip denotes the encoded qubit variable, and
the subscripta denotes the ancilla variable. After the two
systems have interacted, we can measureqtihariable of

. the ancilla system, which will allow us to determine the
1 S 1) Tsda value ofe. However, no information is obtained abaabr

T 2a <. (=1 ' b, so the quantum information encoded in the coherent su-

(7)  perposition 0f0) and|1) is retained. The: error can then be
corrected by applying an appropriate displacement operation

While the encoded one staﬁ) is represented in position
and momentum space by the wave functions,

<qlf>=§w 5[q—2a<s— %)

Y * to the encoded qubit system. Likewise, a shifesef 7/2« in
2 TS ! > )
<p|l>=2— 2 (=188 p— — the momentum variable can be corrected using an ancilla
@ 5= @ system prepared in the state,
_ S e ies-Dpa ) |p(7l@))a, (15)
27 s=—=

evolving according to the interaction Hamiltonian
The wave functions for the encoded zero state are depicted in H,=pep (16)
Fig. 1(a), while Fig. 1(b) depicts the wave functions for the 2 Pelar
encoded one state. Clearly the zero and one encoded statgsq then once again measuring theariable of the ancilla
are orthogonal, system. This again yields, which can be corrected, this

L time by performing an appropriate displacement in momen-
(0|]1)=0. (9  tum.
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It should be noted that shifts in the canonical variables by I ' ' ' '
amounts exceeding the limits stated in EH0) constitute a =05 f\ I\ }\ }\ }\ f\ f\ f\
“logical error,” and are not corrected by this error recovery o
procedure. Error correction would need to be performed of- -0.5
ten enough to make such shifts negligible. T 0 5 0 5 10

IIl. PREPARING ENCODED STATES USING A QUBIT

Once prepared, it is hoped that the error recovery proce-
dure will be able to maintain the encoded states. However,
preparation of the encoded states is not trivial. As has already
been stated, we can only prepare approximate encoded states. 170 5 0 5 10
In this section, we show how approximate encoded states can p
be prepared with the aid of a single ancilla qubit. Our prepa-
ration scheme is nondeterministic, in that a valid approxi- FIG. 2. Wave function, in both position and momentum, of the
mate encoded state will only be prepared with some probapproximate encoded zero stdfe;). This approximate encoded
ability less than 1, however, we will know when our state will be generated with probability 1/8, by first squeezing the
preparation procedure has worked. continuous variable in momentum quadrature, and then applying

We shall denote approximate encoded zero and one stat#lt¢ sequence of operations and measurements described in the text.

with the symbolg0) and|1). As in Ref.[10], we begin the
preparation procedure with the quantum system in th
ground state of the oscillatd)), and apply squeezing in the
g quadrature. This creates the state

dneasured in the one state, the encoded variable is discarded
and we try again. To create improved approximate encoded
states, we iterate the following procedure:

Given|1,_,), and a qubit in the stat®).

(als)=0(q,A), (17 (1) Apply the operators:
where Hei2" tapersyy 23
e—qzle2 _
g9(q,A)= —, (18) (2) Measure the qubit.
VA(m)T? (3) If the qubit is found in the statéd), then we have

and A is the width of the Gaussian and a measure of thecreated|1n>.

. a . (4) Otherwise discard and start again.
degree of squeezingA=1 corresponds to the oscillator . " .
- . Thus, with probability 1/2, we create the approximate
ground state, and <1 indicates a squeezed state. Using an
; L . : encoded state
ancilla qubit, initially in the zero statf), the approximate

encoded one stad&1> is then created by applying the se- N on
guence of Operators, <q|'1n>: o E g(q+a(1+ Zn_ZS),A). (24)
He™'*Pe?zH (19
i i . In momentum space the approximate encoded state has wave
whereo, is the Pauliz matrix, function
= Lo ) (20 A\ sina2"p
7“lo -1 <p|1n>=< Ne (P22~ T (25
2" m sinap

applied to the qubit, an#ll is the Hadamard gate, _
Figure 2 depicts the approximate encoded statg, with
Ao 1/1 1 (21) A=0.15 anda=+/7/2. This state will be generated with
B J2\1 —1)° probability 1/8. The approximate encoded zero sfﬁ;ﬁ is
] ) ) o created by displacing the stalfe,) by an amount in the
applied to the qubit. Measuring the qubit in the zero stateposition variable. Thus
which will occur with probability 1/2, results in the continu-
ous variable being left in the state, 2"

~ N
N (alo)=75 2 9@+ a(2'-29.4), (26
<q|~11>=E[g(q—a,AHg(qwm], (22)

and

where N is a normalization factor, which is approximately 5 _ 5
equal to 1, ifA/a is small compared to 1. If the qubit is (p|0,y=e""*P(p|1,). (27)
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Because of the 2term in Eq.(23), the average energy of the R 1 ' ' ' '
approximate encoded states will increase exponentially with 305
n, however, as we see in the following section, the probabil- o
ity of error decreases exponentially with 0.5

It is perhaps also worth noting that alternative approxi- 17 0 5 0 5 10
mate encoded states, where the sign changes occur in posi- g

tion space rather than momentum space can be created by
discarding the states when@) is measured instead off &). FIG. 3. Position wave function of an ancilla variadla}, which
can be used in position quadrature error recovery.

IV. FIDELITY OF APPROXIMATE ENCODED STATES

~ 1
As in Ref.[10], the approximate encoded staté$ and P,<

= p n+1’
|1) will have negligible overlap ifA is small compared ta. 72
In position space, the probability of mistaking an approxi-

mate encoded zer®) for an approximate encoded ofte)

is simply the probability of measuring the zero state nearer t
an odd multiple ofe than an even multiple. The probability

of error in position,P,, will be bounded by the sum of each

of the Gaussians’ tails,

(33

which becomes exponentially small with The dependence
(9f P, on n is also expected; asn increases, the
sin(2'ap)/sin(ap) term in Egs(25) and(27) becomes a more
accurate approximation of a series of Dir&dunctions.

) V. DETERMINISTIC ERROR RECOVERY

* A o
Py< 2”2J dg w (28) For robust quantum computation, it is necessary that our
al2 V2" encoded states are comblike in both the position and momen-

tum quadratures, so that small shifts in both position and
Thus the error probability is independentrofand using the  momentum can be corrected. However, this is not necessary
asymptotic expansion of the error function, for the ancilla systems used in error recovery. The relative
phases between the different “prongs” in the comblike state
fxdte*@: i) e*XZ[l—O(llxz)], (29) of Eq. (12) are irrelevar)t. The.reason for _this is'that we
x 2 measure the ancilla variable directly after it has interacted
with the encoded variable. Thus, after measurement, the rela-
it is not hard to show that error probability will be bounded tive phase becomes an unimportant global phase.
by The invariance of the ancilla variables to relative phases
allows us to deterministically prepare ancilla systems for er-
) ror recovery. The ancilla system states can be prepared using
Pg<——e (184", (300 the procedure described in Sec. Ill, except that we continue
Ta with the preparation procedure foriterations, irrespective
. ., of whether the qubit is measured in or|1) state. Thus,
Therefore, the likelihood of error becomes_ exponenUaIIyafter three iterzgtions, if the sequenclzj(;@of q|ul:2it measurements
small for smallA/a. We would expecP to be independent were say|1), |0), and|1), then we would be left with the
of n; the probability of error in position is simply determined state|a) ’de 'ictec’i in Ei 3 This state is no lonaer comblike
by the amount of initial squeezing and the spacing of the » G€p 9. 5. This > N0 fonger
Gaussians, irrespective of the number of iterations of th In momentum space, but itis still comb_h_ke In position space.
! Thus, it could be used to perform position error recovery.
preparation procedure. ’
In momentum space, we wish to determine the probability
of finding (|0)—|1))/2 closer to an even multiple af/« VI. IMPLEMENTING IN AN ION TRAP
than an odd multiple. Assuminy=~1, using Egs(25) and
(27), we calculate the area under periodic part of the prob
ability function,

There are several physical systems which enable a cou-
pling between a continuous quantum system and a discrete
quantum system, such as a cavity QED system or an ion trap.
~ =~ 12 Here we discuss the possibility of creating approximate en-

[{P|0) —(pI1n)| 31) coded states in an ion trap.
2 Though scalable continuous variable quantum computa-

tion using ion traps seems unlikely, the ion trap provides a

about each even multiple af/«, divide this by the width good test bed for such first steps as creating approximate

27/ a, and multiple by the area of the Gaussian envelope, encoded states, as the processes of decoherence within the
ion trap are well understood.

dpe (P2 (32) Consider a singlegBe+_ ion, confined in a coaxial-
pe : resonator radio-frequency-ion trap, as described in Ré&f,

and references therein. The continuous quantum system is

This gives a bound on the error probability in momentum ofthe vibrational mode of the ion, and the two-level discrete
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system is the ground and first excited electronic levels otoded state had been created it would then be necessary to
the ion. carry out state tomography on the system.

First it would be necessary to laser cool the ion to the
motional and electronic ground state, as described in Ref.
[18]. Ideally, we would then need to squeeze the vibrational
mode of the ion. This could prove a difficult task. However, For a quantum computer to become a reality, the daunting
it is possible to create the sequence of operations describadsk of providing adequate error correction needs to be ful-
in Eqg. (19). The Hadamard operation is accomplished by dfilled. At this point in time, it is unclear which, if any, imple-
/2 pulse, creating an equal superposition of the ground andhentation scheme for quantum computation will become vi-
excited electronic states. A displacement beam is then amble. As the quantum mechanical oscillator is so prevalent in
plied which excites the motion correlated to the excited statethe study of quantum mechanics, it appears to be a natural
A 7 pulse is then applied to exchange the internal states, artést bed for quantum computation. Here we have shown how
the displacement beam is applied again. Finally, anottigar a continuous quantum system can be coupled to a discrete
pulse is applied, executing the second Hadamard gate. TH&o-level quantum system in a manner which allows the con-
electronic level of the ion is then measured using anothetinuous quantum system to encode qubit. The ion trap pro-
laser pulse, tuned to a transition between the first exciteslides a convenient setting for this encoding scheme as it
level and a higher level. If fluorescence is observed, the ioiwontains the required discrete and continuous quantum vari-
has been measured in thk) state. The absence of fluores- ables.
cence indicates that the ion is in the ground state. In addition
to the op_erations which we Wis_h to implement, the ion trap ACKNOWLEDGMENTS
system will undergo free evolution, so it will be necessary to
couple the qubit and measure only once every period of os- B.C.T. would like to thank R. Polkinghorne, G. Kociuba,
cillation. In order to verify that the desired approximate en-and P. Cochrane for helpful discussions.

VII. CONCLUSIONS
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