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Having the quantum correlations in a general mixed or pure bipartite state in mind, the part of information
accessible by simultaneous measurement on both subsystems is rsénsvrio exceethe part accessible by
measurement on one subsystem, which, in turn is pro¢do exceedhe von Neumann mutual information.

A particular pair of (opposite-subsystenobservables is shown to be responsible both for the amount of
quasiclassical correlations and for that of the purely quantum entanglementpnrthstatecase: the former

via simultaneous subsystem measurements, and the latter thitwightropy of coherence or of incompatibil-
ity, which is defined for the general case. The observables at issue are sotwall@dbservablesA general
definition of the latter is given in terms of their detailed properties.
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As it is well known, quantum information theory is I(ml—2)=sugl(ml1—2),}, (2b)
closely connected with the correlations inherent inaali-
trary bipartite statgmathematically: statistical operajqs;,  the supremumtaken over all completé\,, as the largest
of a composite system+12. The correlations have surpris- amount of informatior(contained in the correlatiopscces-
ingly many facets and the relations among them are the sulsible by measurement of an observable on the first sub-
ject of intense current investigation. This article is intendedsystem. Symmetrically, one defines the symmetric quantity

to make a contribution to the issue. [(l—m2)=sudl(1<m2)g} over all second-subsystem
Let us define some guantitative elements of correlationscomplete measurements.

The subsystem statdseduced statistical operatgrare pg If one performs simultaneous measurement Af&1)

=Tryp1p, S, S’ =1, 2:s#s' (“Trg”is a partial tracg, and and of (1®B,) on py, [denoted by A;/\B,)], then one

we have the threeon Neumann entropie$S(n)=S(p,)= deals with a classical discrete joint probability distribution

—Tra(pn In p), N=1,2,12. One of the basic correlation or p;;=Tr[p1(]i)1(i[1®]j)2(j[2)]. It implies, in its turn, the
entanglement entities is theon-Neumann mutual informa- mutual information (m1:m2),ng Via the Gibbs-

tion, Boltzmann-Shannon  entropiesH(A,B)=—Z;;p;; In p;,
H(A)=—-Zip; Inp;, H(B)=—X;p; In p;, wherep;==;p;;
1(1:2)=5(1)+35(2) - $(12). (1) and p;=3;p; are the marginal probability distributions.

It is conjectured that it is the amount wital correlationg 1]. Then

For the purpose of notation, let us write down an arbitrary I(m1:m2)arg=H(A)+H(B)—H(A,B). (33
first subsystem and an arbitrary second-subsystem complete
observablgHermitian operatgrwith purely discrete spectra: Finally,
A1=Eiai|i)1<i|l, BZZEJb]|J>2<J |2. The measuremenbf
A1®1 gives rise to the distarias opposed to “direct/ state I(m1:m2)=sugdl(m1l:m2)ans} (3b)

decompositiorp,=X=;p;p,, wherep;=Tr p;(|i)(i[1®1)]

is the probability of the resulta, and p)

=p; 2 Tri[pia]i)1(i];®1)] is the opposite-subsystem state

corresponding to this result ff;>0. _
Entropy is concavé?] (Sec. I B therg, i.e., 2;p;S(p5)

<93(2), and

over all choices of complete observablkesandB,. This is
the largest amount of information on a subsystem observable
(contained in the quantum correlatioraccessible by mea-
surement of an observable on the opposite subsystem.

The claimed chains of information inequalities, valid for
every bipartite stateq,, go as follows:

|(m1_)2)AES(2)_Z piS(Piz) (23 O0<I(ml:m2)<I(ml—2)=min{l(1:2),S(2)}, (4a

O0<l(ml:m2)<I(l—m2)<=min{l(1:2),5(1)}. (4b)
is theinformation gainabout subsystem 2 on account of the
direct measuremenodf the observableA; on subsystem 1. Both in inequalitieg4a) and(4b) one has equality in the first
Symmetrically, one defines the symmetric quantlifl inequality if and only if the statep,, is uncorrelated i.e.,
—m2)g. P12~ P1® P2
One further definegl,3] The role ofS(2) in the last inequality in the expression
(4a) is obvious from Eq(2a), and symmetrically foK4b).
In the classical discrete case both chafda) and (4b)
*Electronic adddress: fedorh@infosky.net contain only equalities, and one hg4d:2)<S5(1),5(2). As
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to the corresponding inequality in the quantum case, one In order to recognize the meaning thie first relative en-

cannot do better thalh(1:2)<2S5(1),25(2) [4]. tropy in inequality (8), we make use of the auxiliary claim
The inequalityl(m1:m2)<I(1:2) implied by expression that for complete or incomplete subsystem observablgs

(4a), together with the stated necessary and sufficient condi=X;a;P; andB,=2b;Q} (unique spectral formsand for

tion for equality in the first inequality in expressiofa), was  any bipartite statg,,, one has

proved in 1973 by Lindbla@5] (Theorem 2 thene The third

inequality in expressiofb) with 1(1:2) wasclaimed and a Tap1=Tro(TaTep12),  Tep2o=Tri(TaTep1d), (9
proof was presented in Rdf3]. (It is perhaps useful to have i
an independent verification like the one in this article. whereps, s=1,2, are the subsystem statesgj. Relations

The second inequality in expressiéfa) is being proved (9 aré proved in Appendix A. -
in this article. For the sake of completeness, let me prove the Further, one can argue with Lindblg®] (Theorem 2

entire chain. there as follows. Making use of Eqgl), (7), and(9), one
The inequalities in expressidsa) are, essentiallya con-  0btains — S(TaTep1o TaTe(p1®p2))=S(Tap1) +S(Tep2)
sequencef a result of Lindbladof classical valug6] (see ~ —S(TaTep12). Taking T, and Tg in explicit form [cf. (5)

Corollary therg, and expressioféb) follows symmetrically, ~Mutatis mutandik we see that we have a mixtureathogo-
To explain this claim, let me introduce the so-caltetative ~ Nal pure states. The so-calledixing propertyof entropy
entropyof a quantum statéstatistical operatoro with rela- ~ @llows us to write it as the sum of the so-calletking en-

tion to another statéstatistical operatorp tropy (that of the statistical weight&nd the average entropy
[2] (see Secs. IIF and 11 B, thereSince pure states have

S(alp)=Trolno—TroInp. zero entropy, one obtains

One has 8 S(c|p) with equality if and only ifo=p. LHS=H(A)+H(B)—H(A,B)=1(m1:m2)ang-

Lindblad’s result involves thedeal measurementf an
arbitrary complete or incomplete observalt¢éermitian op- S . ) o N
erato) A with a purely discrete spectrum. Let its unique gi)d Ef;“é'gg gggir:]éelatmnﬂ) (this time withB=1), (7),
spectral form, i.e., the one without repetition in the charac- '

S S Dl . .
terllst|c values, bé\=X;a;P'. Denoting byTAg the state into S(Tap1d Ta(P1® p2))=S(Tap1) +S(p2) — S(Tap1y).
which o changes due to the nonselective ideal measurement (10)
of A'in it, one has

Next, we turn tothe second relative entropy inequality

SinceA;=3;a;|i)(i|, for pj=Tr(]i)1(i|1p12)>0, one has

— i pi o o N i
Tao Z PP © 1) 1(i2p12l 1)1 (i]1=pili)a(i|1® p3, (119
[7], and Lindblad’s result states that pb=p; 1 Tr1(]i)1(i]1p12li Y 1(i]0)- (11b)
S(Tac|Tap)<S(clp). (6)  (The tensor factor &1” is repeatedly omitted because no

confusion can arisgeThe validity of Eq.(119 is straightfor-
One should note that also the right-hand s{@S) of  ward to check in any pair of orthonormal and complete sub-
Eq. (5) is a statistical operator. Hence, for any other observsystem bases.
able B=2;b;Q’, Eq. (6) implies, what may be callethe On account of Eq(119 and the fact that botfi,p, and
Lindblad chain $TgTao|TgTap)<S(Tao|Tap)<S(c|p).  Tapi, are orthogonal mixtures of statpsf. Eq. (5)] with the
One may even extend the measurements to operdi8ns  same statistical weights, we can apply the mixing property of
The von Neumann mutual information any bipartite  entropy both toS(Tap1) and toS(Tap12). Then, the left-
statep, can be expressdd terms of relative entropy hand side(LHS) of Eq. (10) becomes equal to

1(1:2)=S(p1dp1®p2). @)

[This known claim is easily checked utilizing mp,)
=(In p)®1+1®(In p), which, in turn, is easily seen in spec- [cf. Eq. (2a)].

H(A)+S(py)— H<A>+Z PiS(pL) | =1(M1—2),

tral forms] The chain(8) can now be rewritten as
| am going to demonstrate that the claimed chain of in-

equalities(4a) is a consequence of the Lindblad chain, O<I(ml:m2)prg<I(Ml—2),<I(1:2). (12
0<S(TaTgp1d TaTa(P1®p2))<S(Tap1d Ta(p1®p2)) (The symmetric chain is derived symmetrically.

The inequality
<S(p12p1®p2) (8
I (ml:mZ)A/\BS | (m14>2)A
with subsystem observablés andB, that arecompletein
some subspace$; and S, containing the ranges of the op- has the obviouphysical interpretatiorthat, in general, only
eratorsp; andp,, respectively. part of the quantum information gain about subsystem 2 due
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to the measurement &; can be realized as an information
about a concrete complete observaBle

The same inequality implies that tiyggantum information
gain I(m1—2), is an upper bound to any concrete informa-
tion I(m1:m2),ng @bout someB,.

Taking the supremain inequality (12), and having Eg.
(2a) in mind, one obtains the expressi¢ta).

In Ref.[1] I(m1—2) is interpreted as the quasiclassical
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[becausé(1:2)=2S(1)=2S(2)]. Thesame quantity, called
entropy of entanglement and denoted Bf®),,) was ob-
tained in Ref[12].

Returning to the above quasiclassical informations in
|®),,, one can say that the pairA(,B,) of opposite-
subsystem observablé¢$5a and (15b) actually realize, in
simultaneous measurement, the entire part of the total corre-
lations that is available for subsystem measureméihiis

part of the amount of quantum correlations in any bipartitepair of observables has noteworthy properties. Next, we re-
statep,,. The authors define the so-called relative entropy ofsort to a sketchy presentation of them in the general case.

entanglementErg(p10) =inf{S(p14 012}, where the infi-
mum is taken over all separable states, as a measure of
(purely quantum entanglement(cf. also Ref.[9]). Since
1(1:2)=S(p12lp1®p2), obviously,Ege(p1r)=<I(1:2).

Essentially the same view 6fm2—1) as in Ref[1] is,
independently, taken in Ref3]. The latter authors call the
difference

S(m2—1)=1(1:2)—1(m2—1) (13
“quantum discord and they interpret it as the truly quan-
tum part of the total amount of correlatiom§l:2). (It is
inaccessible to subsystem measurement.

Next we apply the derived chain of quasiclassical infor-
mations to pure states. They represent a simple enough ¢
to gain detailed insight.

Quasiclassical informations in bipartite pure statesle
turn now to a generapure statep,,=|P),XP|;,. Let us
write |®),, as a Schmidt decompositidi0,11 into bior-
thogonal state vectors,

|(D>12=§i: rH#iyli),. (14
Taking
A= ali)y(il;, O#a#a;,#0 for i#i’,
I
(159
B,=2, bili)y(il,, 0#b#b,#0 for i#i’,
I
(15b)

one obtains for the induced classical discrete probability dis-

tribution [cf. Eq. (3], pjj= djjri. Then
[(ml:m2)png=H(A)=H(B)=H(A,B)=S(1)=5(2)
=l(ml—2)=1(1<—m2) (16

[cf. inequalities(4a) and (4b) without 1(1:2)]. It is seen
from Eq. (3b) that I(m1:m2),sg is @ lower bound to all
quantities in the chain@a) and(4b), and it reaches its high-
est possible valug(1)=S(2) in |®)4, [cf. Eq.(16)]. Hence,
it equals not onlyl(m1:m2), but alsol(m1—2) andl(1
—ma2).

Besides, also

S(Ml—2)=58(1—m2)=5(1)=S(2) 17

05232

Twin observables with respect to a general bipartite state
Let us now turn to a concise but sufficiently detailed defini-
tion of twin observableswhich is wider than the one given
in previous work{11,13. All necessary proofs are provided
in Appendix B.

Let p1, be an arbitrary given bipartite state, andAgtand
B, be opposite-subsystem observalildsrmitian operatos
having the following three properties with respectotg.

(i) The operatorscommutewith the corresponding re-
duced statistical operatorsd;,p1]=0, [B,,p,]=0.

On account of the commutations, thepological closures
R(p;) of the] rangesR(p;), i=1,2, areinvariant subspaces
for A; and B,, respectively, and the operators hgwarely
discrete spectran them. These are precisely tletectable

aﬁgrts of the respective spectraff andB,, i.e., they consist

of those characteristic values that have positive probability in

Pi12-
(ii) The detectable parts of the spectrafgfandB, con-

sist ofan equal numbeof characteristic values, i.e., they are
of the same power.

(iii) One can establish a one-to-one map between the two
detectable parts of the spectach thatthe corresponding
characteristic values, denoted by the same indsatisfy for
all values of ione of the following four conditions.

(a) The information-theoretic condition

Pi =Trp1PiPY =8 i:pi,

where Pil is the characteristic projector &f; corresponding
to the detectable characteristic valagand symmetrically

for PiZ' andb;, of B,; and piETrplPi1 is the probability of

P in pi,.
(b) The measurement-theoretic condition

PilplZPilz Pi2P12F’i2-
(c) The condition in terms of quantum logic
Tripa(PYP2]=1,

wherep,(P})=p; 'Tr;p1,P} is the conditional statef sub-
system 2 when the evefR; occurs.
(d) The algebraic condition

F’|11312: P'2P12-

The four conditions in propertyiii ) are equivalent
If A; andB, do have the mentioned three properties, then
we call them twin observables fgr;,. If all characteristic

1-3
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values ofA; andB, in R(p,) andR(p,), respectively, are
nondegeneratei.e., if V i:TrP{Qs=1, where Qg is the
range projector opg, s=1,2, we say tha#A; and B, are
completetwin observables with respect jg,.

Following are the comments on the four conditions in

property iii ).
(a) The probability distributionp;;:=6; ;-p; is the best
possible classical information channel: a so-called lossle

and noiseless one. It is obvious that the correspondence b

tween the detectable parts of the spectrarnigue

(b) The detectable characteristic valugof A; andb; of
B, areequally probablen p,,. Besides, the ideal measure-
ment of A; and that ofB, [actually of A;®1,) and of (1
®B,)] convertp;, into the same statéf. the general for-
mula of Liders for ideal measuremejit]). This makes pos-
sible the so-calledlistant measuremeiil]: One can mea-
sure B, in pq, without any dynamical influence on the
second subsystem by just measuriAg on the first sub-
system(or vice versain the statep;, of the bipartite system.

(c) For an arbitrary evenfprojectoy E, for subsystem 2
one can write

Tr[paPiEs]=piTr[pa( PY)E,],

PHYSICAL REVIEW A66, 052321 (2002

The ideal nonselective measurementsAgf that of B,
and that ofA,/\B, each convert®),, into one and the same
mixed state

PizEEi rili)o(il1®li)a(il2 (18

Jdef. Eq. (14)]

_As itis easily seen, the same pair of observaklés) and
Fle) arecomplete twin observable®t only with respect to
|®),,, but also regarding;,. Also Eq.(16) holds true for
the latter. Again, the same pair of twin observables “carry”
the entire subsystem-measurement-accessible part of infor-
mation. But instead of Eq17), we have zero quantum dis-
cord. There is no subsystem-measurement-inaccessible part
of information.[No wonder, we are dealing with a biorthogo-
nal separable mixed state in E3d.8).]

In view of the fact that twin observables have a variety of
particular properties, one may wonder if the pair given by
Egs.(159 and(15b) is, perhaps, of some relevance also for
the quantum discord ind),, [cf. Eqg. (14)]. To reach an
answer in the affirmative, we must first introduce entropy of
coherence.

Entropy of coherence or of incompatibilityo begin with,
we should notice that the difference between Edd) and

i.e., one can factorize coincidence probability into probabil-(18) lies in coherencewhich is present in the former and

ity of the conditionP; and conditional probability of the
eventE, (in analogy with classical physitsThe conditional
statep,(P'), when giving probability oneextendshe abso-
lute implication in quantum logidwhich is E<F<EF
=E, E and F projectors by state-dependent implication
[14]. This makesP; and P, to imply each othep,, depen-
dently.

(d) Since the detectable characteristic values of twin ob-
servablesA; and B, are arbitrary, one can choose them

equal:V i:a;=b;. Then the algebraic conditicstrengthens
into

A1p12=Bop1s.

This case was studied in detail in previous wéik,13.

absent in the latter. One may wonder if coherence can be
given a precise and general definition.

| suggest to consider the following quantity thae amount
of coherence or of incompatibilithetween a given observ-
able A=3,;a;P' (in the unique spectral formand a given
quantum state, and call itthe entropy of coherence or of
incompatibility,
Ec(A,p)=S(Tap)—S(p) (19
[cf. Eq.(5)], i.e., the increase of entropy in ideal nonselective
measurement oA in p.

That the RHS of Eq(19) is always nonnegative and zero
if and only if A andp commute(compatibility) was proved
in Ref.[15] (pp. 380—38Yfor completeA. That for any state
p and for any incomplete observalbiethere always exists a

It was shown that the stronger algebraic condition implies alcomplete ond3 such that the former is a function of the latter

three above properties, i.e., it by itself makkesandB, twin
observablegas defined in this articewith the additional
property(iv): V i:a;=b; . It was also shown that in the pure
state case the multiplicities ef andb; necessarily coincide,
but they need not be equal in the mixed-state case.

Without property (iv) twin observables have a wider
scope of potential application.

and such that ,p=Tgp was proved in Ref.16] (Theorem 2
there. Hence, the RHS of Eq19) is always nonnegative
also for incomplete observables, and it is zero if and only if
[A,p]=0. [Namely, the commutation is sufficient fdr,p
=p, and hence for zero LHS of E¢L9). On the other hand,
the mentioned zero implies, as stated, commutation ®jth
and hence also witi. ]

Let us return to the above discussion of quasiclassical Utilizing the mixing property of entropy, we can rewrite

informations inherent in a given pure state vedtd),,. In
view of the information-theoretic condition in propertii)

of twin observables, it clearly follows from the above discus-

sion of Eqgs.(158 and (15b) that one is dealing with twin
observables.

One can say that it is the paiA(,B,) of twin observ-
ables given by Eqg15a and(15b) that realizes, in simulta-

neous measurement, the entire quasiclassical information.

Eq. (19 as

Ec(A,p)=H(A)— S<p>—2i wiS(p))|, (20

where V i:w,=TrP'p, p;=P;pP;/w; (for w;>0) and
H(A)=H(w;) is the mixing entropy, which is, simulta-
neously, also thentropy of the observable i p.
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It was proved in Ref[17] (Theorem 2 thenethat, when- APPENDIX B
everS(p)<«, the second term on the RHS of EGO) is, in

its turn, always nonnegative, and zero if and only if blesA I Kk tatistical ¢ . icul
V i:S(p)=S(p). (This condition is satisfied, e.g., when servablesAs well known, statistical operators, in particular,

and allp; are pure states, like in the case of measurement irtpe reduced ones, haYe purely discrgtg spectra and their spec-
a pure stat¢.On the other hand, the above discussion showd'@ forngs (with distinct characteristic valugsread: ps

. . — S _ . .
that the mentioned second term never exceeds the first; arid>k' Qs S=1,2. As a consequence of the commutations in

Proofs for the initial claims in the definition of twin ob-

they are equal if and only ffA,p]=0. property (i), one hasV k:[A;,Q¥]=0[B,,Q5]=0. Since
If Ais completeandp mixed or pure, then the statpsare  the range projector®; of pg are Qs=2kQ';, s=1,2(all ry
pure and are positivg, one has also[A;,Q;]=0, [B,,Q,]=0.

Hence, the (topological closures of theranges R(ps)
Ec(A,p)=H(A)=S(p). (21 e\ _ I
(R(ps) =R(Qs)), s=1,2 are invariant subspaces &y and
again pure, and spacesR(Q'{) of p, are invariant forA;, and they are nec-
Ec(A,p)=H(A). (29  essarily finite dimensional(because S dirg=Trp,=1,
i Whered& is the multiplicity ofrﬁ), only discrete character-
If both A is completd.e.,V i:P'=[i)(i|, andp is pure i.e.,  istic values ofA; appear inR(p;), and symmetrically for
p=14)(¢], then B,. | | |
Let 2,4, P; be the discrete part of the spectral fo(mith
Ec(A,p)=H([f{]?), (239 distinct characteristic valugsf A;. This operator ané;Q-
where act equally inR(p,). Further, as already proved, all spectral
projectors ofA; belonging to its(possible continuous spec-
|¢)=2 fili) (23h  trum are subprojectors of the null-space projec@®t .
: Hence,A1Q1=2,a|(P'lQ1). Omitting all terms in which
P'1Q1=0, and changing the index frotto i in the remain-

Now we may face the question if the twin observablesing surin, one _obtains the ~spectral formA;Q,
given by Egs.(158 and (15b have anything to do with =2;a;(P1Qy). ObV|0u_st,A1 has those and only those char-

quantum discord i®) .. acteristic valuesy in R(p;) for which P{Q,#0.

Purely quantum information and coherence in bipartite On the other hand, the detectable discrete characteristic
pure statesThe entropy of coherence ofA(®1) given by  values a, of A; in pj, are those for which €&p,
Eqg. (159 or of its twin observable (& B,) [cf. Eg.(15b)] in =Tr(p,P}). One can always writgp;=p,Q;. Therefore,
|D) 1, [cf. Eq. (14)] is H(A)=H(B)=S(1)=S(2), which  p,=Tr[p1(P}Q,)]. If P1Q,=0, thenp,=0. If P]Q;#0,
equals the relative entropy of entanglemé&iz(|®)1,) or  and we substitute the spectral form=3,riQ%, thenp,
the quantum discord(m2—1) in this state. Ipj, given by =3, rlTr(P]QY). (We omitQ, becaus®;Q%=Q¥.) Since
Eq. (18) the analogous coherence entropies are @aeoause zkng‘;:pfl‘Ql, which is nonzero by assumption, not all
[(A1®1),p1,]=[(1®B5),p1,]=0). P'QX can be zero. The nonzero term§Tr(PIQXPY) are

Thus, inevery pure bipartite statgb)y, it is not only true  opviously positive. Thusp,>0, anda, is detectable. This
that a pair of twin observables, andB, “carries” the qua-  pears out the claim that precisely the detectable valués of

siclassical part of correlations, i.e., the one accessible by suli)ﬁ p1,appear as its characteristic valueﬁ(lpl) (Thus, we
system measurement, but it is also true tthet same twin can writei instead ofn like in the preceding passage.

observables *carry” also the subsystem-measurement- Proof of equivalence of the four conditiomsll be given

inacces_sible part of correlations.e., the quantum erjtangle- via the following closed chain of implication&) = (d) =
ment, via the amount of coherence of any of the twin observ(b) - (© = (a

ables in the bipartite state. LINK (a) = (d).
Let

is the relevant expansion.

APPENDIX A

Proof of relations(9) is based onEJ-(sz)2=l, and on
Tro[ (p1Q5) Q1= Tra [Qh(p1,Qb ], p12= 2 W )i D}, (B1)
k

TAplEEi PI1(Tr2P12)P|1:2 Ph[“z(Z Q12P12Q12”P'1

: be a(convex linear decomposition op,, into ray projectors.
(For instance, thed )X, can be the characteristic state vectors
of py,.) If a projectorE is probability-one inp4,, then so
is it in each |<I>)'{2 [as seen from Z£Tr(piE)
The second relation in Eq9) is proved symmetrically. =3 W, Tr(| @)D |%,E) and 2w, = 1]. Further,

= Trin Pll( ; szplejz) Pil: Try TaTgp12-
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1=(D|* E|D) =0=(D| EL|D) =||E- D) |2
= (D[ 1,E[@)1,=0=(P|},E" | D)1= ||[E"|D)1]]
=0=E"|®)],=0=E|D)1,=|D),.

The sum=; P} (2;P}) of all detectable values &%, (B,) is
a probability-one projector ip,,. Therefore,

v ki) S plo- | 3 el
and
2| 3 PL[S Pl pie e,

(B2)

Assuming the validity of conditioria), and utilizing Eq.
(B1), we have
|7&|, = O:pii/ETrplzpilPizr

:; Wk<CD||$2Pi1Pi2|(D>§2-

PHYSICAL REVIEW A66, 052321 (2002

LINK (b) = (c)
The LHS of condition(c) can be rewritten as

Y ip; MTrPL(Php1oPh) Ph.

If one utilizes conditiorn(b), this expression becomqaglpi ,
i.e., condition(c) follows.

LINK (c) = (a)

Let us return to the argument given in the proof of the link
[(@ = (d)], and to Eq(B1). It was shown that a probability-
one projectolE in p, is such an event also in eat@)'{z,
andV k:E|®)%,=|®)%,. Then, Eq.(B1) implies

Ep1o=p12- (B5)

Assuming the validity ofc), P, is a probability-one pro-
jector in p,(P}), hence, on account of the adjoint of Eq.
(B5), one has

pa(P1)=pa( PPy, (B6)

The LHS of condition(a), due to Eq.(B6), implies

pi = Tr(p1P Py ) =p T po( PPy ]

SinceV k:w, >0, the second factor in each term in this
sum, generally nonnegative, must be zero. This implies, by —bTH PYPLYP 1= 8 1D
making use of the definiteness of the norm as above, that for P (p2(PL)P2IP2 =41 P

distincti andi’
V k:PLPL @) =0. (B3)
Relations(B2) and (B3) imply
V Ki:Pi®)1,=PiPy®)1,=P5|®),.  (B4)

Relation(B4) in conjunction with Eq(B1) finally gives con-
dition (d).

LINK (d) = (b)

Making use of conditiorid) and its adjoint in the LHS of
condition (b), this condition is immediately derived.

Thus,(a) is derived.

Proof of the stronger algebraic relationSince p;,
=(Z;P})p12, One hasA;p,=(Z;a;P})p1o. Assuming then
property (iv), i.e., V i:a;=b;; and utilizing condition(d),
one further obtains

AlPlZZ(Z bipiz)Plzz Bopiz.

The last equality is due to the fact that for the second sub-
system one has the symmetric argument. Thus, the stronger
algebraic relation is derived.
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