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Chains of quasiclassical information for bipartite correlations and the role of twin observables

Fedor Herbut*
Faculty of Physics, University of Belgrade, P.O. Box 368, Belgrade 11001, Serbia
and Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade

~Received 8 April 2002; published 22 November 2002!

Having the quantum correlations in a general mixed or pure bipartite state in mind, the part of information
accessible by simultaneous measurement on both subsystems is shownnever to exceedthe part accessible by
measurement on one subsystem, which, in turn is provednot to exceedthe von Neumann mutual information.
A particular pair of ~opposite-subsystem! observables is shown to be responsible both for the amount of
quasiclassical correlations and for that of the purely quantum entanglement in thepure-statecase: the former
via simultaneous subsystem measurements, and the latter throughthe entropy of coherence or of incompatibil-
ity, which is defined for the general case. The observables at issue are so-calledtwin observables. A general
definition of the latter is given in terms of their detailed properties.
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As it is well known, quantum information theory i
closely connected with the correlations inherent in anarbi-
trary bipartite state~mathematically: statistical operator! r12
of a composite system 112. The correlations have surpris
ingly many facets and the relations among them are the
ject of intense current investigation. This article is intend
to make a contribution to the issue.

Let us define some quantitative elements of correlatio
The subsystem states~reduced statistical operators! are rs
[Trs8r12, s, s851, 2: sÞs8 ~‘‘Tr s8’’ is a partial trace!, and
we have the threevon Neumann entropies, S(n)[S(rn)[
2Trn(rn ln rn), n51,2,12. One of the basic correlation o
entanglement entities is thevon-Neumann mutual informa
tion,

I ~1:2![S~1!1S~2!2S~12!. ~1!

It is conjectured that it is the amount oftotal correlations@1#.
For the purpose of notation, let us write down an arbitra

first subsystem and an arbitrary second-subsystem com
observable~Hermitian operator! with purely discrete spectra
A15( iai u i &1^ i u1 , B25( jbj u j &2^ j u2. The measurementof
A1^ 1 gives rise to the distant~as opposed to ‘‘direct’’! state
decompositionr25( i pir2

i , wherepi[Tr@r12(u i &1^ i u1^ 1)#
is the probability of the result ai , and r2

i

[pi
21 Tr1@r12(u i &1^ i u1^ 1)# is the opposite-subsystem sta

corresponding to this result ifpi.0.
Entropy is concave@2# ~Sec. II B there!, i.e., ( i piS(r2

i )
<S(2), and

I ~m1→2!A[S~2!2(
i

piS~r2
i ! ~2a!

is the information gainabout subsystem 2 on account of t
direct measurementof the observableA1 on subsystem 1.
Symmetrically, one defines the symmetric quantityI (1
←m2)B .

One further defines@1,3#
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I ~m1→2![sup$I ~m1→2!A%, ~2b!

the supremumtaken over all completeA1, as the largest
amount of information~contained in the correlations! acces-
sible by measurement of an observable on the first s
system. Symmetrically, one defines the symmetric quan
I (1←m2)[sup$I (1←m2)B% over all second-subsystem
complete measurements.

If one performs simultaneous measurement of (A1^ 1)
and of (1̂ B2) on r12 @denoted by (A1`B2)], then one
deals with a classical discrete joint probability distributio
pi j [Tr @r12(u i &1^ i u1^ u j &2^ j u2)#. It implies, in its turn, the
mutual information I(m1:m2)A`B via the Gibbs-
Boltzmann-Shannon entropiesH(A,B)[2( i j pi j ln pij ,
H(A)[2( i pi ln pi , H(B)[2( j pj ln pj , wherepi[( j pi j
and pj[( i pi j are the marginal probability distributions
Then

I ~m1:m2!A`B[H~A!1H~B!2H~A,B!. ~3a!

Finally,

I ~m1:m2![sup$I ~m1:m2!A`B% ~3b!

over all choices of complete observablesA1 andB2. This is
the largest amount of information on a subsystem observ
~contained in the quantum correlations! accessible by mea
surement of an observable on the opposite subsystem.

The claimed chains of information inequalities, valid f
every bipartite stater12, go as follows:

0<I ~m1:m2!<I ~m1→2!<min$I ~1:2!,S~2!%, ~4a!

0<I ~m1:m2!<I ~1←m2!<min$I ~1:2!,S~1!%. ~4b!

Both in inequalities~4a! and~4b! one has equality in the firs
inequality if and only if the stater12 is uncorrelated, i.e.,
r125r1^ r2.

The role ofS(2) in the last inequality in the expressio
~4a! is obvious from Eq.~2a!, and symmetrically for~4b!.

In the classical discrete case both chains~4a! and ~4b!
contain only equalities, and one hasI (1:2)<S(1),S(2). As
©2002 The American Physical Society21-1
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to the corresponding inequality in the quantum case,
cannot do better thanI (1:2)<2S(1),2S(2) @4#.

The inequalityI (m1:m2)<I (1:2) implied by expression
~4a!, together with the stated necessary and sufficient co
tion for equality in the first inequality in expression~4a!, was
proved in 1973 by Lindblad@5# ~Theorem 2 there!. The third
inequality in expression~4b! with I (1:2) wasclaimed and a
proof was presented in Ref.@3#. ~It is perhaps useful to hav
an independent verification like the one in this article.!

The second inequality in expression~4a! is being proved
in this article. For the sake of completeness, let me prove
entire chain.

The inequalities in expression~4a! are, essentially,a con-
sequenceof a result of Lindbladof classical value@6# ~see
Corollary there!, and expression~4b! follows symmetrically.
To explain this claim, let me introduce the so-calledrelative
entropyof a quantum state~statistical operator! s with rela-
tion to another state~statistical operator! r,

S~sur![Trs ln s2Trs ln r.

One has 0<S(sur) with equality if and only ifs5r.
Lindblad’s result involves theideal measurementof an

arbitrary complete or incomplete observable~Hermitian op-
erator! A with a purely discrete spectrum. Let its uniqu
spectral form, i.e., the one without repetition in the char
teristic values, beA5( iai P

i . Denoting byTAs the state into
which s changes due to the nonselective ideal measurem
of A in it, one has

TAs5(
i

PisPi ~5!

@7#, and Lindblad’s result states that

S~TAsuTAr!<S~sur!. ~6!

One should note that also the right-hand side~RHS! of
Eq. ~5! is a statistical operator. Hence, for any other obse
able B5( jbjQ

j , Eq. ~6! implies, what may be calledthe
Lindblad chain S(TBTAsuTBTAr)<S(TAsuTAr)<S(sur).
One may even extend the measurements to operations@8#.

The von Neumann mutual informationin any bipartite
stater12 can be expressedin terms of relative entropy,

I ~1:2!5S~r12ur1^ r2!. ~7!

@This known claim is easily checked utilizing ln(r1^r2)
5(ln r1)^111^(ln r2), which, in turn, is easily seen in spec
tral forms.#

I am going to demonstrate that the claimed chain of
equalities~4a! is a consequence of the Lindblad chain,

0<S„TATBr12uTATB~r1^ r2!…<S„TAr12uTA~r1^ r2!…

<S~r12ur1^ r2! ~8!

with subsystem observablesA1 andB2 that arecompletein
some subspacesS1 andS2 containing the ranges of the op
eratorsr1 andr2, respectively.
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In order to recognize the meaning ofthe first relative en-
tropy in inequality ~8!, we make use of the auxiliary claim
that for complete or incomplete subsystem observablesA1

5( iai P1
i andB25( jbjQ2

j ~unique spectral forms!, and for
any bipartite stater12, one has

TAr15Tr2~TATBr12!, TBr25Tr1~TATBr12!, ~9!

wherers , s51,2, are the subsystem states ofr12. Relations
~9! are proved in Appendix A.

Further, one can argue with Lindblad@5# ~Theorem 2
there! as follows. Making use of Eqs.~1!, ~7!, and ~9!, one
obtains S„TATBr12uTATB(r1^ r2)…5S(TAr1)1S(TBr2)
2S(TATBr12). Taking TA and TB in explicit form @cf. ~5!
mutatis mutandis#, we see that we have a mixture oforthogo-
nal pure states. The so-calledmixing propertyof entropy
allows us to write it as the sum of the so-calledmixing en-
tropy ~that of the statistical weights! and the average entrop
@2# ~see Secs. II F and II B, there!. Since pure states hav
zero entropy, one obtains

LHS5H~A!1H~B!2H~A,B!5I ~m1:m2!A`B .

Next, we turn tothe second relative entropyin inequality
~8!. Utilizing again relations~9! ~this time withB[1), ~7!,
and ~1!, one obtains

S„TAr12uTA~r1^ r2!…5S~TAr1!1S~r2!2S~TAr12!.
~10!

SinceA15( iai u i &1^ i u1, for pi[Tr(u i &1^ i u1r12).0, one has

u i &1^ i u1r12u i &1^ i u15pi u i &1^ i u1^ r2
i , ~11a!

r2
i [pi

21 Tr1~ u i &1^ i u1r12u i &1^ i u1!. ~11b!

~The tensor factor ‘‘̂ 1’’ is repeatedly omitted because n
confusion can arise.! The validity of Eq.~11a! is straightfor-
ward to check in any pair of orthonormal and complete s
system bases.

On account of Eq.~11a! and the fact that bothTAr1 and
TAr12 are orthogonal mixtures of states@cf. Eq. ~5!# with the
same statistical weights, we can apply the mixing property
entropy both toS(TAr1) and to S(TAr12). Then, the left-
hand side~LHS! of Eq. ~10! becomes equal to

H~A!1S~r2!2S H~A!1(
i

piS~r2
i ! D 5I ~m1→2!A

@cf. Eq. ~2a!#.
The chain~8! can now be rewritten as

0<I ~m1:m2!A`B<I ~m1→2!A<I ~1:2!. ~12!

~The symmetric chain is derived symmetrically.!
The inequality

I ~m1:m2!A`B<I ~m1→2!A

has the obviousphysical interpretationthat, in general, only
part of the quantum information gain about subsystem 2
1-2
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to the measurement ofA1 can be realized as an informatio
about a concrete complete observableB2.

The same inequality implies that thequantum information
gain I(m1→2)A is an upper bound to any concrete inform
tion I (m1:m2)A`B about someB2.

Taking thesupremain inequality ~12!, and having Eq.
~2a! in mind, one obtains the expression~4a!.

In Ref. @1# I (m1→2) is interpreted as the quasiclassic
part of the amount of quantum correlations in any bipar
stater12. The authors define the so-called relative entropy
entanglementERE(r12)[ inf$S(r12us12)%, where the infi-
mum is taken over all separable statess12, as a measure o
~purely quantum! entanglement~cf. also Ref. @9#!. Since
I (1:2)5S(r12ur1^ r2), obviously,ERE(r12)<I (1:2).

Essentially the same view ofI (m2→1) as in Ref.@1# is,
independently, taken in Ref.@3#. The latter authors call the
difference

d~m2→1![I ~1:2!2I ~m2→1! ~13!

‘‘ quantum discord,’’ and they interpret it as the truly quan
tum part of the total amount of correlationsI (1:2). ~It is
inaccessible to subsystem measurement.!

Next we apply the derived chain of quasiclassical inf
mations to pure states. They represent a simple enough
to gain detailed insight.

Quasiclassical informations in bipartite pure states. We
turn now to a generalpure stater12[uF&12̂ Fu12. Let us
write uF&12 as a Schmidt decomposition@10,11# into bior-
thogonal state vectors,

uF&125(
i

r i
1/2u i &1u i &2 . ~14!

Taking

A1[(
i

ai u i &1^ i u1 , 0ÞaiÞai 8Þ0 for iÞ i 8,

~15a!

B2[(
i

bi u i &2^ i u2 , 0ÞbiÞbi 8Þ0 for iÞ i 8,

~15b!

one obtains for the induced classical discrete probability
tribution @cf. Eq. ~3a!#, pi j 5d i j r i . Then

I ~m1:m2!A`B5H~A!5H~B!5H~A,B!5S~1!5S~2!

5I ~m1→2!5I ~1←m2! ~16!

@cf. inequalities~4a! and ~4b! without I (1:2)]. It is seen
from Eq. ~3b! that I (m1:m2)A`B is a lower bound to all
quantities in the chains~4a! and~4b!, and it reaches its high
est possible valueS(1)5S(2) in uF&12 @cf. Eq.~16!#. Hence,
it equals not onlyI (m1:m2), but alsoI (m1→2) and I (1
←m2).

Besides, also

d~m1→2!5d~1←m2!5S~1!5S~2! ~17!
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@becauseI (1:2)52S(1)52S(2)]. Thesame quantity, called
entropy of entanglement and denoted byE(uF&12) was ob-
tained in Ref.@12#.

Returning to the above quasiclassical informations
uF&12, one can say that the pair (A1 ,B2) of opposite-
subsystem observables~15a! and ~15b! actually realize, in
simultaneous measurement, the entire part of the total co
lations that is available for subsystem measurement. This
pair of observables has noteworthy properties. Next, we
sort to a sketchy presentation of them in the general cas

Twin observables with respect to a general bipartite sta.
Let us now turn to a concise but sufficiently detailed defi
tion of twin observables, which is wider than the one given
in previous work@11,13#. All necessary proofs are provide
in Appendix B.

Let r12 be an arbitrary given bipartite state, and letA1 and
B2 be opposite-subsystem observables~Hermitian operators!
having the following three properties with respect tor12.

~i! The operatorscommutewith the corresponding re
duced statistical operators,@A1 ,r1#50, @B2 ,r2#50.

On account of the commutations, the@topological closures
R̄(r i) of the# rangesR(r i), i 51,2, areinvariant subspaces
for A1 and B2, respectively, and the operators havepurely
discrete spectrain them. These are precisely thedetectable
parts of the respective spectra ofA1 andB2, i.e., they consist
of those characteristic values that have positive probability
r12.

~ii ! The detectable parts of the spectra ofA1 andB2 con-
sist ofan equal numberof characteristic values, i.e., they a
of the same power.

~iii ! One can establish a one-to-one map between the
detectable parts of the spectrasuch thatthe corresponding
characteristic values, denoted by the same indexi, satisfy for
all values of ione of the following four conditions.

~a! The information-theoretic condition,

pii 8[Tr r12P1
i P2

i 85d i ,i 8pi ,

whereP1
i is the characteristic projector ofA1 corresponding

to the detectable characteristic valueai and symmetrically

for P2
i 8 andbi 8 of B2; andpi[Tr r1P1

i is the probability of
P1

i in r12.
~b! The measurement-theoretic condition,

P1
i r12P1

i 5P2
i r12P2

i .

~c! The condition in terms of quantum logic,

Tr @r2~P1
i !P2

i #51,

wherer2(P1
i )[pi

21Tr1r12P1
i is the conditional stateof sub-

system 2 when the eventP1
i occurs.

~d! The algebraic condition,

P1
i r125P2

i r12.

The four conditions in property~iii ! areequivalent.
If A1 andB2 do have the mentioned three properties, th

we call them twin observables forr12. If all characteristic
1-3
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values ofA1 andB2 in R̄(r1) andR̄(r2), respectively, are
nondegenerate, i.e., if ; i :TrPs

i Qs51, where Qs is the
range projector ofrs , s51,2, we say thatA1 and B2 are
completetwin observables with respect tor12.

Following are the comments on the four conditions
property~iii !.

~a! The probability distributionpii 85d i ,i 8pi is the best
possible classical information channel: a so-called loss
and noiseless one. It is obvious that the correspondence
tween the detectable parts of the spectra isunique.

~b! The detectable characteristic valuesai of A1 andbi of
B2 areequally probablein r12. Besides, the ideal measur
ment ofA1 and that ofB2 @actually of (A1^ 12) and of (11
^ B2)] convert r12 into the same state~cf. the general for-
mula of Lüders for ideal measurement@7#!. This makes pos-
sible the so-calleddistant measurement@11#: One can mea-
sure B2 in r12 without any dynamical influence on th
second subsystem by just measuringA1 on the first sub-
system~or vice versa! in the stater12 of the bipartite system

~c! For an arbitrary event~projector! E2 for subsystem 2
one can write

Tr @r12P1
i E2#5piTr @r2~P1

i !E2#,

i.e., one can factorize coincidence probability into probab
ity of the condition P1

i and conditional probability of the
eventE2 ~in analogy with classical physics!. The conditional
stater2(P1

i ), when giving probability one,extendsthe abso-
lute implication in quantum logic~which is E<F⇔EF
5E, E and F projectors! by state-dependent implicatio
@14#. This makesP1

i andP2
i to imply each otherr12 depen-

dently.
~d! Since the detectable characteristic values of twin

servablesA1 and B2 are arbitrary, one can choose the
equal:; i :ai5bi . Then the algebraic conditionstrengthens
into

A1r125B2r12.

This case was studied in detail in previous work@11,13#.
It was shown that the stronger algebraic condition implies
three above properties, i.e., it by itself makesA1 andB2 twin
observables~as defined in this article! with the additional
property~iv!: ; i :ai5bi . It was also shown that in the pur
state case the multiplicities ofai andbi necessarily coincide
but they need not be equal in the mixed-state case.

Without property ~iv! twin observables have a wide
scope of potential application.

Let us return to the above discussion of quasiclass
informations inherent in a given pure state vectoruF&12. In
view of the information-theoretic condition in property~iii !
of twin observables, it clearly follows from the above discu
sion of Eqs.~15a! and ~15b! that one is dealing with twin
observables.

One can say that it is the pair (A1 ,B2) of twin observ-
ables given by Eqs.~15a! and~15b! that realizes, in simulta-
neous measurement, the entire quasiclassical informatio
05232
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The ideal nonselective measurements ofA1, that of B2,
and that ofA1`B2 each convertuF&12 into one and the same
mixed state

r128 [(
i

r i u i &1^ i u1^ u i &2^ i u2 ~18!

@cf. Eq. ~14!#.
As it is easily seen, the same pair of observables~15a! and

~15b! arecomplete twin observablesnot only with respect to
uF&12, but also regardingr128 . Also Eq. ~16! holds true for
the latter. Again, the same pair of twin observables ‘‘carr
the entire subsystem-measurement-accessible part of in
mation. But instead of Eq.~17!, we have zero quantum dis
cord. There is no subsystem-measurement-inaccessible
of information.@No wonder, we are dealing with a biorthogo
nal separable mixed state in Eq.~18!.#

In view of the fact that twin observables have a variety
particular properties, one may wonder if the pair given
Eqs.~15a! and ~15b! is, perhaps, of some relevance also f
the quantum discord inuF&12 @cf. Eq. ~14!#. To reach an
answer in the affirmative, we must first introduce entropy
coherence.

Entropy of coherence or of incompatibility. To begin with,
we should notice that the difference between Eqs.~14! and
~18! lies in coherence, which is present in the former an
absent in the latter. One may wonder if coherence can
given a precise and general definition.

I suggest to consider the following quantity asthe amount
of coherence or of incompatibilitybetween a given observ
able A5( iai P

i ~in the unique spectral form! and a given
quantum stater, and call it the entropy of coherence or o
incompatibility,

EC~A,r![S~TAr!2S~r! ~19!

@cf. Eq.~5!#, i.e., the increase of entropy in ideal nonselect
measurement ofA in r.

That the RHS of Eq.~19! is always nonnegative and zer
if and only if A andr commute~compatibility! was proved
in Ref. @15# ~pp. 380–387! for completeA. That for any state
r and for any incomplete observableA there always exists a
complete oneB such that the former is a function of the latt
and such thatTAr5TBr was proved in Ref.@16# ~Theorem 2
there!. Hence, the RHS of Eq.~19! is always nonnegative
also for incomplete observables, and it is zero if and only
@A,r#50. @Namely, the commutation is sufficient forTAr
5r, and hence for zero LHS of Eq.~19!. On the other hand
the mentioned zero implies, as stated, commutation withB,
and hence also withA.#

Utilizing the mixing property of entropy, we can rewrit
Eq. ~19! as

EC~A,r!5H~A!2S S~r!2(
i

wiS~r i ! D , ~20!

where ; i :wi[Tr Pir, r i[PirPi /wi ~for wi.0) and
H(A)[H(wi) is the mixing entropy, which is, simulta
neously, also theentropy of the observable Ain r.
1-4
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It was proved in Ref.@17# ~Theorem 2 there! that, when-
everS(r),`, the second term on the RHS of Eq.~20! is, in
its turn, always nonnegative, and zero if and only
; i :S(r i)5S(r). ~This condition is satisfied, e.g., whenr
and allr i are pure states, like in the case of measuremen
a pure state.! On the other hand, the above discussion sho
that the mentioned second term never exceeds the first;
they are equal if and only if@A,r#50.

If A is completeandr mixed or pure, then the statesr i are
pure and

EC~A,r!5H~A!2S~r!. ~21!

If r is pureandA is incomplete or complete, the statesr i are
again pure, and

EC~A,r!5H~A!. ~22!

If both A is complete, i.e.,; i :Pi5u i &^ i u, andr is pure, i.e.,
r5uf&^fu, then

EC~A,r!5H~ u f i u2!, ~23a!

where

uf&5(
i

f i u i & ~23b!

is the relevant expansion.
Now we may face the question if the twin observab

given by Eqs.~15a! and ~15b! have anything to do with
quantum discord inuF&12.

Purely quantum information and coherence in bipart
pure states. The entropy of coherence of (A1^ 1) given by
Eq. ~15a! or of its twin observable (1̂ B2) @cf. Eq. ~15b!# in
uF&12 @cf. Eq. ~14!# is H(A)5H(B)5S(1)5S(2), which
equals the relative entropy of entanglementERE(uF&12) or
the quantum discordd(m2→1) in this state. Inr128 given by
Eq. ~18! the analogous coherence entropies are zero„because
@(A1^ 1),r128 #5@(1^ B2),r128 #50….

Thus, inevery pure bipartite stateuF&12 it is not only true
that a pair of twin observablesA1 andB2 ‘‘carries’’ the qua-
siclassical part of correlations, i.e., the one accessible by
system measurement, but it is also true thatthe same twin
observables ‘‘carry’’ also the subsystem-measureme
inaccessible part of correlations, i.e., the quantum entangle
ment, via the amount of coherence of any of the twin obse
ables in the bipartite state.

APPENDIX A

Proof of relations~9! is based on( j (Q2
j )251, and on

Tr2@(r12Q2
j )Q2

j #5Tr2 @Q2
j (r12Q2

j #,

TAr1[(
i

P1
i ~Tr2 r12!P1

i 5(
i

P1
i FTr2S (

j
Q2

j r12Q2
j D GP1

i

5Tr2(
i

P1
i S (

j
Q2

j r12Q2
j D P1

i 5Tr2 TATBr12.

The second relation in Eq.~9! is proved symmetrically.
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APPENDIX B

Proofs for the initial claims in the definition of twin ob
servables. As well known, statistical operators, in particula
the reduced ones, have purely discrete spectra and their s
tral forms ~with distinct characteristic values! read: rs

5(kr k
sQs

k , s51,2. As a consequence of the commutations
property ~i!, one has; k:@A1 ,Q1

k#50,@B2 ,Q2
k#50. Since

the range projectorsQs of rs areQs5(kQs
k , s51,2 ~all r k

s

are positive!, one has also@A1 ,Q1#50, @B2 ,Q2#50.
Hence, the ~topological closures of the! ranges R(rs)

„R̄(rs)5R(Qs)…, s51,2 are invariant subspaces forA1 and
B2, respectively. Further, since also the characteristic s
spacesR(Q1

k) of r1 are invariant forA1, and they are nec-
essarily finite dimensional~because (kdk

1r k
15Tr r151,

wheredk
1 is the multiplicity of r k

1), only discrete character
istic values ofA1 appear inR(r1), and symmetrically for
B2.

Let ( lal P1
l be the discrete part of the spectral form~with

distinct characteristic values! of A1. This operator andA1Q1

act equally inR̄(r1). Further, as already proved, all spectr
projectors ofA1 belonging to its~possible! continuous spec-
trum are subprojectors of the null-space projectorQ1

' .
Hence, A1Q15( lal(P1

l Q1). Omitting all terms in which
P1

l Q150, and changing the index froml to i in the remain-
ing sum, one obtains the spectral formA1Q1

5( iai(P1
i Q1). Obviously,A1 has those and only those cha

acteristic valuesai in R̄(r1) for which P1
i Q1Þ0.

On the other hand, the detectable discrete character
values an of A1 in r12 are those for which 0,pn

[Tr(r1P1
n). One can always writer15r1Q1. Therefore,

pn5Tr@r1(P1
nQ1)#. If P1

nQ150, thenpn50. If P1
nQ1Þ0,

and we substitute the spectral formr15(kr k
1Q1

k , then pn

5(kr k
1Tr(P1

nQ1
k). ~We omitQ1 becauseQ1Q1

k5Q1
k .) Since

(kP1
nQ1

k5P1
nQ1, which is nonzero by assumption, not a

P1
nQ1

k can be zero. The nonzero termsr k
1Tr(P1

nQ1
kP1

n) are
obviously positive. Thus,pn.0, andan is detectable. This
bears out the claim that precisely the detectable values oA1

in r12 appear as its characteristic values inR̄(r1). ~Thus, we
can writei instead ofn like in the preceding passage.!

Proof of equivalence of the four conditionswill be given
via the following closed chain of implications:~a! ⇒ ~d! ⇒
~b! ⇒ ~c! ⇒ ~a!.

LINK ~a! ⇒ ~d!.
Let

r125(
k

wkuF&12
k ^Fu12

k ~B1!

be a~convex linear! decomposition ofr12 into ray projectors.
~For instance, theuF&12

k can be the characteristic state vecto
of r12.) If a projectorE is probability-one inr12, then so
is it in each uF&12

k @as seen from 15Tr(r12E)
5(kwkTr(uF&12

k ^Fu12
k E) and(kwk51]. Further,
1-5
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15^Fu12
k EuF&12

k ⇒05^Fu12
k E'uF&12

k ⇒uuE'uF&12
k uu2

50⇒E'uF&12
k 50⇒EuF&12

k 5uF&12
k .

The sum( i P1
i (( i P2

i ) of all detectable values ofA1 (B2) is
a probability-one projector inr12. Therefore,

; k:uF&12
k 5S (

i
P1

i D uF&12
k 5S (

i
P2

i D uF&12
k ,

and

uF&12
k 5S (

i
P1

i D S (
i

P2
i D uF&12

k 5(
i i 8

P1
i P2

i 8uF&12
k .

~B2!

Assuming the validity of condition~a!, and utilizing Eq.
~B1!, we have

iÞ i 8 ⇒ 05pii 8[Tr r12P1
i P2

i 8

5(
k

wk^Fu12
k P1

i P2
i 8uF&12

k .

Since; k:wk.0, the second factor in each term in th
sum, generally nonnegative, must be zero. This implies,
making use of the definiteness of the norm as above, tha
distinct i and i 8

; k:P1
i P2

i 8uF&12
k 50. ~B3!

Relations~B2! and ~B3! imply

; k,i :P1
i uF&12

k 5P1
i P2

i uF&12
k 5P2

i uF&12
k . ~B4!

Relation~B4! in conjunction with Eq.~B1! finally gives con-
dition ~d!.

LINK ~d! ⇒ ~b!
Making use of condition~d! and its adjoint in the LHS of

condition ~b!, this condition is immediately derived.
.
.

05232
y
or

LINK ~b! ⇒ ~c!
The LHS of condition~c! can be rewritten as

; i :pi
21TrP1

i ~P2
i r12P2

i !P1
i .

If one utilizes condition~b!, this expression becomespi
21pi ,

i.e., condition~c! follows.
LINK ~c! ⇒ ~a!
Let us return to the argument given in the proof of the li

@~a! ⇒ ~d!#, and to Eq.~B1!. It was shown that a probability
one projectorE in r12 is such an event also in eachuF&12

k ,
and; k:EuF&12

k 5uF&12
k . Then, Eq.~B1! implies

Er125r12. ~B5!

Assuming the validity of~c!, P2
i is a probability-one pro-

jector in r2(P1
i ), hence, on account of the adjoint of E

~B5!, one has

r2~P1
i !5r2~P1

i !P2
i . ~B6!

The LHS of condition~a!, due to Eq.~B6!, implies

pii 8[Tr~r12P1
i P2

i 8!5piTr@r2~P1
i !P2

i 8#

5piTr@„r2~P1
i !P2

i
…P2

i 8#5d i ,i 8pi .

Thus,~a! is derived.
Proof of the stronger algebraic relation. Since r12

5(( i P1
i )r12, one hasA1r125(( iai P1

i )r12. Assuming then
property ~iv!, i.e., ; i :ai5bi ; and utilizing condition~d!,
one further obtains

A1r125S (
i

bi P2
i D r125B2r12.

The last equality is due to the fact that for the second s
system one has the symmetric argument. Thus, the stro
algebraic relation is derived.
/
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