
PHYSICAL REVIEW A 66, 052319 ~2002!
Quantum walks in optical lattices
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We propose an experimental realization of discrete quantum walks using neutral atoms trapped in optical
lattices. The quantum walk is taking place in position space and experimental implementation with present-day
technology—even using existing setups—seems feasible. We analyze the influence of possible imperfections in
the experiment and investigate the transition from a quantum walk to the classical random walk for increasing
errors and decoherence.
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I. INTRODUCTION

The increasing effort to investigate theoretically and e
perimentally the possibility to construct and build a univer
quantum computer is mainly motivated by the expectat
that quantum computers offer a~possibly exponential!
speedup over classical computers. Despite the two celebr
milestones of Shor’s factoring algorithm@1# and Grover’s
database search algorithm@2#—which both offer a speedup
over their best~known! classical counterpart—no constru
tive way to generate efficient quantum algorithms is c
rently known. One possible direction of research is the ad
tion of known classical algorithms to the quantum
mechanical case.

Random walks on graphs play an essential role in vari
fields of natural science, ranging from astronomy, solid-s
physics, polymer chemistry, and biology to mathematics
computer science@3#. In particular, Markov chain simulation
has emerged as a powerful algorithmic tool and many c
sical algorithms, such as approximating the permanent, g
connectivity ork SAT @4# are based on random walks. It
possible and hoped that quantum walks allow in a sim
way, a constructive search for new quantum algorithms. T
justifies the increasing effort in the investigation of quantu
walks by several groups@5–15#. Different behavior of the
quantum walk—as compared to the classical random wal
have been reported under various circumstances. For
stance, a very promising feature of a quantum walk o
hypercube, namely an exponentially faster hitting time
compared to a classical random walk, has been very rece
found ~numerically! by Yamasakiet al. @12# and ~analyti-
cally! by Kempe @11#. Indeed, first quantum algorithm
based on quantum walks which offer an~exponential!
speedup over their optimal classical counterpart have b
reported in Refs.@34,35#.

In this paper, we consider the simplest and best-stud
version of a quantum walk, namely the discrete Hadam
walk on a line or a circle, first studied in Ref.@5#. We pro-
pose an experimental implementation of the quantum w
using neutral atoms trapped in an optical lattice. In contr
to the recently proposed implementations using ion traps
forward by Travaglione and Milburn@13# and microwave
cavities put forward by Sanderset al. @15#, in our proposal
the quantum walk is taking place in position space and s
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eral hundred steps may be implementable even with
present-day technology.

The paper is organized as follows. In Sec. II, we comp
features of the classical and quantum walks on the line
introduce some basic notation. Section III provides a desc
tion of the physical setup using optical lattices and imp
mentations of the Hadamard walk on a line using this set
Possible imperfections and their influence on the quan
features of the walk are discussed in Sec. IV. We summa
and conclude in Sec. V.

II. CLASSICAL WALK VS QUANTUM WALK

A. Classical random walk on a line

Consider an infinite line with allowed~integer! positions
xk[k, kPZ and a particle which is initially located at pos
tion x050. We consider a stepwise evolution in such a w
that at each step, the particle moves with probability 1/2 o
step to the left,x(n)5x(n21)21, and with probability 1/2
one step to the right,x(n)5x(n21)11. After n steps, the
probability pclassical(n,k) to find the particle at positionxk is
given by

pclassical~n,k!5
1

2n S n

k1n

2
D . ~1!

Note that if n is even~odd!, only even~odd! positions are
occupied. The standard deviation of the distribution isAn,
which implies a spreading time proportional toAn. The
probability to observe a particle at a distance of ordern from
the origin decreases exponentially withn and is zero; n0 ,
n0.n.

B. Quantum walk on a line

A quantum-mechanical analogy for the classical rand
walk would be a particle, whose state evolves at each s
into a coherent superposition of moving one step to the ri
and one step to the left. One readily finds@16# that unitarity
of the evolution implies that one has to consider a parti
with internal degrees of freedom to achieve this aim. W
consider a particle with two internal degrees of freedo
which can move on an infinite line with integer position
@7,8#. The corresponding Hilbert spaceH5HI ^ HX is given
by HI5C2, the internal state of the particle, andHX5C`, the
©2002 The American Physical Society19-1



is
h
e

ar

on
s-

r

on

-

tu
e

ar
m
in

o

tes
ali

ith
ng
ng

to

e

con-

uch

es,
-

-

te

ft,

i-

the

nd

te

is-

l
a-
he
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position space with basis statesuk&XPHX , 2`<k<`, cor-
responding to the particle located at thekth lattice site.

The internal state of the particle,u0&,u1& determines the
direction of the particle movement. If the internal state
u0&, the particle moves to the left, while it moves to the rig
if the internal state isu1&. This operation is described by th
unitary controlled-shift operation,

S5u0&^0u ^ (
k

uk21&^ku1u1&^1u ^ (
k

uk11&^ku, ~2!

i.e., Su0& I ^ uk&X5u0& I ^ uk21&X and Su1& I ^ uk&X5u1& I ^ uk
11&X .

We also introduce the Hadamard operation

H5
1

A2
S 1 1

1 21D , ~3!

which acts on Hilbert spaceHI such thatHu0&51/A2(u0&
1u1&) and Hu1&51/A2(u0&2u1&). The particle is initially
prepared in stateuc0&51/A2(u0& I1 i u1& I) ^ u0&X @17#. Each
step of the quantum walk—which is also called Hadam
walk—consists of applying the Hadamard operation,H ^ 1,
followed by the controlled–shift operationS. Let ucn&
5(SH)nuc0& be the state of the system aftern steps. The
probability p(n,k) to observe a particle at positionk after n
steps is given by

p~n,k!5trX@ uk&X^kutrI~ ucn&^cnu!# ~4!

and may be compared to the probability distributi
pclassical(n) of the classical random walk. The probability di
tribution p(n) has been analyzed in detail in Ref.@8#. While
pclassical(n) is given by a binomial distribution—which is fo
large n well approximated by a Gaussian—p(n) differs
greatly from a binomial distribution. The standard deviati
of the distributionpclassical(n) is An, while p(n) is almost
uniformly distributed in the interval (2n/A2,n/A2) and the
standard deviation is linear inn. This implies that the spread
ing time for a particle goes likeAn for the classical random
walk, while in the quantum walk it scaleslinearly with n.
This provides an essential different behavior of the quan
walk that follows from the possibility of interference in th
quantum-mechanical case.

In a similar way, the~quantum! walk on a circle is defined
using a position spaceHX5CN with periodic boundary con-
ditions, i.e., uk&X5uk mod(N)&X for some finiteN. Also in
this case, a quadratic speedup of the quantum walk comp
to the classical random walk is found in the spreading ti
of the particle@7#. Walks on general graphs can be defined
a similar way@7#.

III. IMPLEMENTATION IN OPTICAL LATTICES

In this section, we discuss possible implementations
the quantum~Hadamard! walk on a line or on a circle using
neutral atoms trapped in periodic optical potentials~for a
review see, e.g., Refs.@18,19#!.
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A. Physical setup

We consider two identical one-dimensional~1D! optical
lattices, each of them trapping one of the internal sta
u0&,u1& of a neutral atom. For example, one may use alk
atoms with a nuclear spin equal to 3/2 (87Rb,23Na), and
choose the hyperfine structure statesuF51,mf51& @ uF
52,mf52&] to representu0&@ u1&], respectively.

Each lattice consists of a periodic optical potential w
period d. The optical potentials are formed by the standi
waves resulting from two counterpropagating traveli
waves with the electric fields forming an angle of 2u, the
so-called lin/ lin configuration. By changingu, the right and
left circular polarized componentss6 of the standing waves
forming the total electric field can be shifted with respect
each other,EW 1(x,t)5E0e2 int@eW 1sin(kx1u)1eW2sin(kx2u)#.
We have denotedk5n/c as the laser wave vector,E0 as the
amplitude, andeW 6 as unit right and left circular polarized
vectors. The potentials ‘‘seen’’ by the atoms in th
internal states u0&,u1& are V0(x,u)5@Vms51/2(x,u)

13Vms521/2(x,u)#/4 and V1(x,u)5Vms51/2(x,u), where

Vms561/2(x,u)5auE0u2sin2(kx6u) @20#.
This basic architecture can be used for quantum state

trol of neutral atoms in optical lattices@18# and it constitutes
the basis of the proposals for quantum computation in s
systems@20,21#. As in the proposal of Ref.@20#, we make
use of the fact that a relative movement of the two lattic
i.e., the trapping potentialsV0 ,V1 can be achieved by vary
ing the angleu. In particular, starting withu50, the respec-
tive minima of the potentialsV0 ,V1 coincide and by chang
ing u from 0 to p/2, the potentialsV0 ,V1 move in opposite
directions until their respective minima coincide again. No
that the shape of the potentialV0 changes as it moves.

B. Implementation of the Hadamard walk

We consider a single neutral atom at positionx050 and
the case where lattice 0—which traps the internal stateu0& of
the neutral atom—moves with constant velocity to the le
v052v, while lattice 1—which traps the internal stateu1&
of the atom—moves with a constant velocityv15v to the
right. The initial position of the lattices is such that the min
mum of a potential well is located at positionx0 at t050.
The lattice movements are used to implement
controlled–shift operation@see Eq.~2!#, while laser pulses
allow one to manipulate the internal state of the atom, a
thus to select the corresponding trapping potential~and
therefore the direction of the movement!.

Given that the atom is initially prepared in sta
1/A2(u0&1 i u1&) @17# at positionx050, the application of
the Hadamard operation@see Eq.~3!# to the internal state of
the atom at timestn5nd/v readily implements the quantum
walk on a line using this setup. The spatial probability d
tribution of the atom at timetn , i.e., the probability to ob-
serve an atom at positionkd,2n<k<n at time tn corre-
sponds exactly top(n,k) @Eq. ~4!# of the one-dimensiona
Hadamard walk aftern steps. A simple fluorescence me
surement, together with several repetitions of t
experiment—allows one to measure this distribution.
9-2
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To justify this statement, note that a single atom initia
at positionx050, which is prepared in stateu0& @ u1&] moves
with constant velocity to the left,x(t)5x02vt @right, x(t)
5x01vt], respectively. After a timetn5nd/v, the position
of an atom is shifted by exactlyn lattice periodsnd and the
two lattices are again on top of each other. By changing
internal state of the atom, e.g., at timetn from u0& to u1&, one
can switch between the corresponding trapping potential
thus change the direction of the movement. Note that i
important to make such changes in the internal state of
atom only when the two lattices are on top of each other
ensure that the atom remains trapped in one of the poten
Coherent superpositions of two internal states behave l
wise. In the case of Rubidium withu0&5uF51,mf51&,
u1&5uF52,mf52&, one can use standard Raman pulse
microwave techniques to realize the Hadamard rotation
using fast laser pulses.

Note that on the Blochs sphere, the Hadamard opera
corresponds to a rotation of an anglep around the axisuW

51A2(ex
W1ez

W ). This corresponds to ap pulse rather than a
p/2 pulse in the usual terminology of quantum optics. Up
an irrelevant global phase, one may also achieve the H
amard operation by a sequence of threep/2 pulses,H
}e2 ip/4sxe2 ip/4sye2 ip/4sz. Experimentally, it may be easie
to use a p/2 pulse corresponding to the transformati
Up/25e2 ip/4sx instead of the Hadamard operation, and p
pare the atom initially in state 1/A2(u0&1u1&). This also
leads to a symmetric probability distribution for all timest
equivalent to the one resulting from the standard Hadam
walk.

The Hadamard operation has to be applied at all lat
sites, which can be easily achieved by using a nonfocu
laser beam. In fact, such a homogeneous operationH ^ N is
much easier to implement than individual operations on s
cific lattice sites. This is due to the fact that in current e
periments, the lattice periodd'425 nm—which is limited
by the optical wavelength—is smaller than the best ach
able focusing width of the laser beams,w'1 mm @25#. In
the fluorescence measurement, one can either detect uns
tively both internal statesu0& and u1& to reveal information
about the position of the atom, or one may use selec
resonance fluorescence methods. In the latter case, add
application of a randomsx operation (p pulse! before the
measurement is required to remove the dependence on
internal state of the spatial probability distribution. Provid
the atom was initially prepared in state 1/A2(u0&1 i u1&), the
probability distribution is symmetric when tracing out th
internal state of the atom, however the distributions con
tioned on the internal state of the atom are asymmetric
have mirror symmetry, which explains the additional app
cation of a randomsx operation. Notice the phasei in the
initial state, which is important to ensure symmetric behav
of the quantum walk.

We would like to emphasize that the procedure sketc
above is readily implementable with existing technology
does not require addressability of individual lattice sites.

The essential requirements are that the internal state
the atom—as well as their coherences—are sufficie
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stable and that the particle remains trapped in the poten
throughout the procedure. This can be satisfied if the mo
ment of the lattice is sufficiently slow~that isv!nosc, where
nosc'a0v is the rms velocity of the atoms in the vibration
ground state,v is the excitation frequency, anda0 is the size
of the ground state of the trap potential@20#! such that the
atom stays in the ground state of the potential during moti
This condition can be relaxed, as will be discussed in
subsequent section, and one can also allow nonadiabatic
locity profiles. The coherence of the internal state is mai
affected by fluctuations, the intensity and phase of the tr
ping lasers@26# as well as magnetic-field fluctuations, whic
may lead to uncontrollable energy splittings between the
ternal levels. We will address some of these issues in
following section. Given that these noise sources can be c
trolled sufficiently well, the number of steps of the quantu
walk one can perform is only limited by the spontaneo
emission lifetime of the atom in the lattice, which is of th
order of several seconds. This corresponds to a maxim
number of about n5104 time steps, assumingt1
'100 ms221 ms, which respects the adiabaticity requir
ment for lattice shifts. Note that the implementation of se
eral hundred time steps of the Hadamard walk correspond
a spatial width of the quantum distribution at the order
millimeters.

C. Improved implementation of the Hadamard walk

From a practical point of view, there are a number
difficulties with the procedure proposed in Sec. III B. F
example, the laser pulses to implement the Hadamard r
tion have to be fast compared to the time scale of the lat
movement. In addition, if the internal state of an atom
changed, e.g., fromu0& to u1&, this implies a sudden momen
tum change of the atom, as it is no longer trapped in
left-moving lattice but in the right-moving one. This mome
tum change may lead to heating of the atom and the a
may eventually even escape from the trap.

Another practical difficulty, one faces in current expe
ments is concerned with dephasing of the internal state
the atom. In particular, uncontrollable time and space dep
dent magnetic fields lead to energetic shifts of the inter
levels, which result in relative phase shifts destroying
coherence of the system@27#.

In this section, we propose a slight modification of t
implementation suggested in Sec. III B. This scheme is ba
on symmetrizing the procedure and avoids the proble
mentioned above. Instead of moving the lattices with co
stant velocity, they oscillate around the central positionx0
50. In the simplest case, the movement of the lattices
harmonic and may be described as follows:

x8~ t !5d/2~cosvLt21!,

x9~ t !52d/2~cosvLt21!, ~5!

where x8(t)@x9(t)# is the position of the central potentia
well of lattice 0 @1#, respectively. The oscillation frequenc
vL is chosen in such a way that the adiabaticity requirem
for the lattice movement—i.e., the atom remains in the m
9-3
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tional ground state throughout the procedure—is well f
filled, which leads to oscillation times of the order
100 ms221 ms. Note that one may replace the simple h
monic movement of the lattices by more complicated p
files, either specially suited to meet adiabaticity requireme
such as the one proposed in Ref.@20#, or specially designed
in such a way that adiabaticity requirements need not
matched, but are replaced by the weaker condition that
atoms—after moving the lattice by one period—are again
the motional ground state@26#. These specially designed pro
files may allow movement times of the order of a few tens
microseconds for a shift of one lattice period. The profiles
Refs. @20,26# need to be adopted in such a way that t
lattices oscillate around a central position, which may
accomplished by choosing the original profile until the latt
is displaced by one lattice period and the velocity is zero
a good approximation, and then use the time-inverse pro
In this way, periodic lattice movements are readily achiev
In what follows, we will restrict our discussion to harmon
lattice movements, which is sufficient to illustrate the ide
of the improved implementation of the Hadamard walk. T
is realized if, in addition,sx operations (p pulses! are ap-
plied at timestn[np/vL ,n51,2,3, . . . to all lattice sites,
with the effectu0&↔u1&.

Under these conditions, an atom initially in stateu0& is
trapped in lattice 0 and starts moving to the left together w
lattice 0, where at timet1, it is located at positiond and the
internal state changes tou1& due to the application ofsx .
The particle is, therefore, now trapped in lattice 1, where
moves to the left in the interval (t1 ,t2), leaving the trapped
atom at position 2d at time t2, etc. On one hand, we hav
that at timestn—when manipulations of the internal states
the atoms are performed, the two lattices are on top of e
other and the velocity of the atoms is zero, which overcom
the first difficulty mentioned above. One could in princip
also stop the lattice movement at these times until man
lation of the internal states is achieved, which allows to d
the requirement that manipulation of the internal states of
atom have to be fast compared to the time scale of the la
movement. On the other hand, since within a time span
2t1, the atom is in both the statesu0& and u1& for time t1,
relative phase shifts between internal statesu0& and u1& be-
come an irrelevant global phase shift. Also fluctuation
magnetic fields become irrelevant, provided the timescal
the fluctuations is much larger than 2t1 and the spatial varia
tion is negligible within 2d @28#. These requirements ar
well fulfilled, e.g., for the typical 50 Hz background nois
and oscillating timest1'100 ms221 ms when using har
monic lattice movements.

The implementation of the Hadamard walk using th
setup is straightforward. After thesx operations at timestn ,
the Hadamard operationH @see Eq.~3!# is applied at timestn
if n is even, whileH85sxHsx is applied at timestn if n is
odd. That is, at t0 , H is applied, while at tn , H8sx
5sxH@Hsx# is applied if n is odd ~even!. The use of the
operationH8 instead ofH results from the interchanged ro
of the internal statesu0& and u1& for even ~odd! n. One
readily checks that in this way, after timetn , n steps of the
quantum random Hadamard walk are implemented, provi
05231
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the internal state of the atom is 1/A2(u0&1 i u1&). The addi-
tional application ofH,H8 does not influence the symmetr
zation discussed in the previous paragraph. Fluoresce
measurements can be performed as described in Sec. II

D. Bounded quantum walks and quantum walk on a circle

Using above setup, one can also implement an one
two-side bounded quantum walk on a line@8,14#. Such a
bounded quantum walk is a simple generalization of its
bounded counterpart and was studied, e.g., in Refs.@8,14#. It
has been argued that studying the behavior of such~simple!
quantum walks may help to determine the properties of m
complicated quantum walks on general graphs, which m
offer possible applications in quantum algorithmic desig
The bounded quantum walk is such that at certain locati
x1 ,x2, barriers are introduced and the quantum walk en
once a particle reaches one of these locations. A one-
bounded quantum walk may, e.g., contain a barrier atx1
5100, while x2→2`. Such a barrier can in the optica
lattice setup, for instance, be implemented by shining a la
at a certain locationx1, which couples both statesu0& and
u1& to a fast decaying auxiliary level. In such a way, a~po-
sition! measurement of the atom projecting ontoP1
5ux1&X^x1u, is performed.

A modification of the trapping geometry may also allo
for the implementation of a quantum walk on a circle, fo
lowing the ideas of a recent proposal by Burkeet al. @23#,
using an evanescent field of a linear waveguide and a
resonator for trapping and guiding atoms~see also Ref.@24#!.
In this way, the periodic trapping potential can be modifi
such that lattices sites are located on a circle, forming
regular spaced pattern. Movements of the trapping poten
result in this case in a circular movement of the lattice si
and thus of the trapped particle. By means of Hadam
rotations, together with lattice movements, a quantum w
on a circle could be implemented. Measurements and
nipulations of the trapped atom can be performed in the sa
way as discussed in Secs. III B and III C. Note that in co
trast to the quantum walk on the line, the quantum walk
the circle cannot be implemented using existing experime
setups but rather relies on a proposed scheme.

E. Using 2D setup to measure probability distribution
of a 1D quantum walk

In current experiments, two-dimensional~2D! or three-
dimensional~3D! lattice arrays are used rather than 1D a
rays. In this case, four~six! interfering laser beams constitut
the two- ~three-! dimensional trapping potential. One ca
make use of such a setup to directly measure the probab
distribution of the one-dimensional quantum walk. Consid
a two-dimensional lattice, which may be loaded from
Bose-Einstein condensate~BEC! @22#. We assume that the
2D lattice is loaded in such a way that in one dimension,
x, only the central lattice sitex0 is occupied, while in the
other dimension, sayy, all lattice sites are occupied in
regular way with one atom per site. This can be acco
plished, for example, by first realizing a Mott transition in
3D optical lattice from a BEC to a Mott insulator state as
9-4
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QUANTUM WALKS IN OPTICAL LATTICES PHYSICAL REVIEW A 66, 052319 ~2002!
recent experiments of Greineret al. @22#, following a theo-
retical proposal of Ref.@29#. In a second step, one can, e.
use a gradient magnetic field to selectively address spe
lattice layers and to deplete unneeded lattice sites@25#. One
may also apply methods similar to the ones used in Ref.@30#
to achieve uniform filling factors.

Such a configuration allows for a parallel sampling
one-dimensional quantum walks~in thex direction!, by mov-
ing the lattices in thex direction only and applying Had
amard rotations to all atoms as described in Secs. III B
III C. Each of the atoms at positionyk5kd independently
performs a quantum walk. A fluorescence measurement,
a projective picture along they axis, allows one to directly
measure the corresponding probability distributionp(n),
provided the number of lattice sites iny direction is big
enough. Otherwise, the required number of repetitions of
experiment to determine the probability distribution is d
creased.

IV. EXPERIMENTAL IMPERFECTIONS

Although existing experiments using optical lattice sy
tems offer high accuracy in both coherent storage and
nipulation of the atoms, different kinds of errors may infl
ence the ideal evolution. These errors may disturb or e
destroy typical features of the quantum walk, such as lin
spreading time. In this section, we concentrate mainly
errors in the coherence of the internal states of the atoms
thereby observe a transition from quantum-mechanica
classical behavior of the walk for increasing errors. We
pect these kind of errors to constitute the dominating par
the experimental imperfections. On one hand, errors in
tice movements may lead to motional excitations of
atom. If sufficiently small, these should however, not effe
the essential behavior of the system. On the other hand
internal states of the atom are influenced by the decoher
resulting from, e.g., uncontrollable phase shifts and imp
fections in the manipulation by means of laser pulses as
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as fluctuations in the trapping potential during lattice shif
One may distinguish between errors introduced by mani
lations of internal state of the atom and errors in the posit
space of the atom, e.g., introduced by tunneling of ato
between neighboring lattice sites. While the former alwa
keeps the structure of the ideal Hadamard walk that aften
time steps, only even~odd! lattice sites are occupied ifn is
even~odd!, respectively, errors in the latter lead to occup
tions of all lattice sites.

We use two simple models to investigate imperfections
the coherence of the internal state of the atom. We treat
coherence effects and errors in the manipulation of the a
~imperfect Hadamard operations!, i.e., operations acting on
the total Hilbert spaceHI ^ HX asUI ^ 1X , in a joint way. In
the first model, we assume that the desired manipulation
the internal states of the atom,U, is performed with prob-
ability p at each time step, while with probability 12p, a
completely depolarized, random state is produced. The
rameterp serves not only as a measure of the accuracy of
operation—wherep51 describes perfect operations, whi
p50 corresponds to a completely random operation—
also includes other decoherence effects due to storage e
or phase fluctuations as well as lattice movements. Suc
covariant error model reflects our limited knowledge abo
the specific type of error that occurred in the system. T
error model has also been used in other contexts@31# and is
described by the following mapping:

E~r!5pUIrUI
†1~12p!1/21I ^ trI~r!. ~6!

Note that this model is equivalent to a~partially! depolariz-
ing channel, E(r)5pUIrUI

†1(12p)1/4(k50
3 sk

(I )rsk
(I ) ,

wheresk are Pauli matrices withs0[1.
The second model only includes phase errors and is

tivated by the expectation that phase fluctuation may be
dominating part of errors occurring in optical lattice system
This error model is described by the following mapping:
ct

ce
ve
e

FIG. 1. Probability distribution aftern5200
steps of quantum walk on a line with imperfe
operations using error model 1@see Eq.~6!#. Er-
ror parameterp51,0.99,0.97,0.95,0 from top to
bottom. Only even positions are plotted, sin
odd positions are not occupied. The lowest cur
corresponds to the probability distribution of th
classical random walk on the line.
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FIG. 2. Probability distribution for ideal quan
tum walk on a line~dotted line! and quantum
walk with imperfect operations using error mod
2 @see Eq.~7!# and p850.98 ~solid line! after n
550,100,150,200 steps~from top to bottom!.
Only even positions are plotted, since odd po
tions are not occupied.
n
W
tin
-

r

,
ith

e

ate
on

the
el 1

hat

an
tate
-

h
n-
E8~r!5p8UIrUI
†1~12p8!UIs3

(I )rs3
(I )UI

† . ~7!

Note that if the optical potentials are not very deep, tu
neling between neighboring sites may occur as well.
have used a simple model of incoherent tunneling—affec
only the position of the atom—which is given by the follow
ing mapping@32#:

E9~r!5qr1~12q!/2~U1rU1
† 1U2rU2

† !, ~8!

where U651I ^ (kuk61&X^ku is the unitary shift operato
which moves the particle either one position to the left,U2

or right, U1 . That is, with probabilityq nothing happens
and thus in total, the desired evolution occurs, while w
05231
-
e
g

probability (12q), tunneling of the atom to one of th
neighboring lattice sites occurs.

We have performed numerical simulations to investig
the influence of these kinds of errors on the quantum walk
the line, where we first assumed that errors affect only
internal state of the atom. Figure 1 is based on error mod
and shows the probability distribution aftern5200 steps of
the quantum walk for different error parameters. Note t
for completely random operations, i.e., parameterp50, the
particle performs exactly a classical random walk. This c
easily be understood by observing that an internal s
1/2151/2(u0&^0u1u1&^1u), when applying the controlled
shift operation~i.e., the lattice movement!, has the effect that
the particle moves with probability 1/2 to the left, while wit
probability 1/2, it moves to the right. In contrast to the qua
ct

rs

ns

he
to
FIG. 3. Probability distribution aftern5200
steps of quantum walk on a line with imperfe
operations using error model 1@see Eq. ~6!#
affecting the internal state of the atom and erro
due to tunneling described by Eq.~8!. Error
parameters (p;q)5(1;1),(1;0.95),(0.99;1),
(0.99;0.95) from top to bottom. Forq51, only
even positions are plotted because odd positio
are not occupied. Forq,1, even and odd posi-
tions are occupied and plotted, which explains t
lower occupation of specific sites as compared
q51.
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FIG. 4. Bounded quantum walk with barrie
at position x5210. Probability that atom was
observed at the barrier plotted as a function of t
number of steps for classical random walk~solid
line!, ideal quantum walk~dashed line!, and
quantum walk with imperfections in the manipu
lation of the internal state of the atom~dotted
line!, using error model 1 andp50.99 @see Eq.
~6!#.
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tum walk, the resulting state is anincoherentsuperposition
of the two possible states, which can be described classic
and thus no interference effects~as in the quantum walk!
occur. The internal state plays the role of a classical c
One observes from Fig. 1 that with increasing errors~de-
creasing parameterp), the probability distribution change
from the quantum-mechanical one to the classical one. E
for errors of the order of several percent, typical quantu
mechanical features of the probability distribution after a f
hundred steps are clearly visible, in particular occupation
the interval (An,n/A2) can be observed. A similar simula
tion was performed using error model 2@Eq. ~7!#. The ob-
served behavior of the system under this kind of error is v
similar to the one shown in Fig. 1 using error model 1. F
ure 2 shows the probability distribution after different num
ber of steps of the ideal~imperfect! quantum walk assuming
only phase errors.

In the following, we assume both internal and extern
errors ~tunneling!, described by Eqs.~6! and ~8!, respec-
tively. As shown in Fig. 3, the essential effect of incohere
tunneling is that the probability distribution is smeared ou

We have also considered a one-side bounded quan
walk. While the exit probability of the classically bounde
random walk approaches unity, this is not the case for
quantum walk~see e.g., Ref.@14#!. Figure 4—which shows
the probability to observe the atom at the barrier at posit
x5210 as a function of the number of steps—confirms t
behavior for the bounded classical random walk and the id
bounded quantum walk, and also illustrates the influence
errors on the exit probability.

Although no reliable estimates for the parametersp in-
cluding all possible imperfections and decoherence effe
are available, errors of the order of several percents are
tolerable to observe a clear quantum behavior of the quan
walk, even after a few hundred steps. This seems to be
perimentally achievable. In turn, the distribution measured
the experiment can be used to determine the degree o
05231
lly

.

en
-

n

y
-

l

t

m

e

n
s
al
of

ts
till
m
x-
n
o-

herence of the system, in particular the quality of the imp
mented operations. This may also serve as a test on the
ability of optical lattice systems to perform general purpo
quantum computation, following the proposals of Re
@20,33#.

V. SUMMARY AND CONCLUSIONS

We have proposed to use neutral atoms trapped in op
lattices to implement quantum walks on the line and on
circle. The quantum walk is performed in position space
periodically shifting the lattices and manipulating the inte
nal states of the atom~s! by homogeneous laser pulses. Rea
out of the resulting probability distribution is performed v
fluorescence measurements. Due to long lifetimes of
trapped atoms and efficient manipulation techniques, exp
mental realizability is expected with present-day technolo
We have also investigated the influence of decoherence
imperfections in manipulation of internal state of the ato
and showed a transition taking place from the ideal quan
walk to the classical random walk for increasing errors.
rors of the order of percent seem tolerable to still observ
clear quantum behavior of the walk after a few hundr
steps.
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DÜR et al. PHYSICAL REVIEW A 66, 052319 ~2002!
@1# P.W. Shor, inProceedings of the 35th Annual Symposium
Foundations of Computer Science~IEEE Computer Society
Press, Los Alamitos, CA, 1994!, p. 124.

@2# L.K. Grover, Phys. Rev. Lett.79, 325 ~1997!.
@3# M.N. Barber and B.W. Ninham,Random and Restricted Walks

Theory and Applications~Gordon and Breach, New York
1970!.

@4# M. Jerrum, A. Sinclair, and E. Vigoda, Proc. 33rd STOC 7
~2001!; R. Motwani and P. Raghavan,Randomized Algorithms
~Cambridge University Press, Cambridge, UK, 1995!; U.
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