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Quantum walks in optical lattices
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We propose an experimental realization of discrete quantum walks using neutral atoms trapped in optical
lattices. The quantum walk is taking place in position space and experimental implementation with present-day
technology—even using existing setups—seems feasible. We analyze the influence of possible imperfections in
the experiment and investigate the transition from a quantum walk to the classical random walk for increasing
errors and decoherence.
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[. INTRODUCTION eral hundred steps may be implementable even with the
present-day technology.

The increasing effort to investigate theoretically and ex- The paper is organized as follows. In Sec. Il, we compare
perimentally the possibility to construct and build a universaiféatures of the classical and quantum walks on the line and
quantum computer is mainly motivated by the expectatior|1troduce some basic notation. Section lll provides a descrip-
et quantum_ computers ofe possity exponental 19 0 he PRUSER Seup usig ptes) e i e
an}:ee(as?grﬁ)egvi:‘ Cslizsrl'gaml;cgg]r?nug;eséc?r?tﬁ%ﬁ ;:%tg?ocviﬁgrat ssible imperfections ar)d their iljfluence on the quantum

) ) features of the walk are discussed in Sec. IV. We summarize
database_: search algorlt}‘[rﬁ]_—whlch both offer a speedup and conclude in Sec. V.
over their besiknown) classical counterpart—no construc-
tive way to generate efficient quantum algorithms is cur- Il. CLASSICAL WALK VS QUANTUM WALK
rently known. One possible direction of research is the adap-
tion of known classical algorithms to the quantum-
mechanical case. Consider an infinite line with allowe¢intege) positions

Random walks on graphs play an essential role in varioug,=k, ke Z and a particle which is initially located at posi-
fields of natural science, ranging from astronomy, solid-statéion x,=0. We consider a stepwise evolution in such a way
physics, polymer chemistry, and biology to mathematics andhat at each step, the particle moves with probability 1/2 one
computer sciencE3]. In particular, Markov chain simulation step to the leftx(n)=x(n—1)—1, and with probability 1/2
has emerged as a powerful algorithmic tool and many clasene step to the rights(n) =x(n—1)+ 1. After n steps, the
sical algorithms, such as approximating the permanent, grapprobability peassica(N,K) to find the particle at positiory is
connectivity ork SAT [4] are based on random walks. It is given by
possible and hoped that quantum walks allow in a similar

A. Classical random walk on a line

way, a constructive search for new quantum algorithms. This 1 n
justifies the increasing effort in the investigation of quantum Pelassic N, K) = — k+n |. 1)
walks by several groupg5—15]. Different behavior of the 2 2

guantum walk—as compared to the classical random walk—
have been reported under various circumstances. For ifNote that ifn is even(odd), only even(odd positions are
stance, a very promising feature of a quantum walk on @ccupied. The standard deviation of the distributions
hypercube, namely an exponentially faster hitting time agvhich implies a spreading time proportional tn. The
compared to a classical random walk, has been very recentgrobability to observe a particle at a distance of oml&om
found (numerically by Yamasakiet al. [12] and (analyti-  the origin decreases exponentially withend is zerov no,
cally) by Kempe [11]. Indeed, first quantum algorithms No=nN.
based on quantum walks which offer aexponential
speedup over their optimal classical counterpart have been
reported in Refs[34,35|. A quantum-mechanical analogy for the classical random
In this paper, we consider the simplest and best-studied/alk would be a particle, whose state evolves at each step
version of a quantum walk, namely the discrete Hadamaréhto a coherent superposition of moving one step to the right
walk on a line or a circle, first studied in R¢b]. We pro-  and one step to the left. One readily fifd$] that unitarity
pose an experimental implementation of the quantum wallof the evolution implies that one has to consider a particle
using neutral atoms trapped in an optical lattice. In contrastith internal degrees of freedom to achieve this aim. We
to the recently proposed implementations using ion traps putonsider a particle with two internal degrees of freedom,
forward by Travaglione and Milburfil3] and microwave which can move on an infinite line with integer positions
cavities put forward by Sandegt al. [15], in our proposal [7,8]. The corresponding Hilbert spagé=H,® Hy is given
the quantum walk is taking place in position space and sevby H,=(?, the internal state of the particle, aftf=C", the

B. Quantum walk on a line
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position space with basis statésy e Hy, —e<k=w, cor-
responding to the particle located at i lattice site.
The internal state of the particlf)),|1) determines the
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A. Physical setup

We consider two identical one-dimensiorfdD) optical
lattices, each of them trapping one of the internal states

direction of the particle movement. If the internal state is|0),|1) of a neutral atom. For example, one may use alkali

|0), the particle moves to the left, while it moves to the right
if the internal state i$1). This operation is described by the
unitary controlled-shift operation,

S=|0><0|®§ |k—1><k|+|1><1|®§ k+1)(Kl, (2

e., 5|0)®|k)x=0);®|k—1)x and S[1);®|k)x=[1);®|k
+1)x.
We also introduce the Hadamard operation
1

2

which acts on Hilbert spacg{, such thatH|0)=1/,/2(|0)
+]1)) and H|1)=1/2(|0)—|1)). The particle is initially
prepared in statéyy)=1/y2(]0),+i|1),)®|0)x [17]. Each

1
1

1
-1

)

step of the quantum walk—which is also called Hadamard

walk—consists of applying the Hadamard operatibi® 1,
followed by the controlled—shift operatio® Let |i,)
=(SH)"|¢,) be the state of the system aftersteps. The
probability p(n,k) to observe a particle at positidnaftern
steps is given by

p(n,K) = try[ [K)x(K|tr (| 7n){#nl) ]

and may be compared to the probability distribution
PeiassicaN) Of the classical random walk. The probability dis-
tribution p(n) has been analyzed in detail in RE8). While
PelassicalN) IS given by a binomial distribution—which is for
large n well approximated by a Gaussiampfn) differs

4

greatly from a binomial distribution. The standard deviation

of the distributionpgassicaln) is vn, while p(n) is almost
uniformly distributed in the interval<€n/+/2,n/2) and the
standard deviation is linear im This implies that the spread-
ing time for a particle goes like/n for the classical random
walk, while in the quantum walk it scaldsearly with n.

atoms with a nuclear spin equal to 3/8’Rb,?*Na), and
choose the hyperfine structure statgs=1m;=1) [|F
=2,m;=2)] to represent0)[|1)], respectively.

Each lattice consists of a periodic optical potential with
periodd. The optical potentials are formed by the standing
waves resulting from two counterpropagating traveling
waves with the electric fields forming an angle of,2the
so-called lir_lin configuration. By changing, the right and
left circular polarized components™ of the standing waves
forming the total electric field can be shifted with respect to
each otherE*(x,t)=Eqe™ [ €, sinkx+ 6)+e_sinkx—6)].

We have denoteld=v/c as the laser wave vectdt, as the
amplitude, ande. as unit right and left circular polarized
vectors. The potentials “seen” by the atoms in the
internal  states [0),[1) are Vo(X,0)=[Vi 12X, 0)
+3Vim— -1, 0)1/4 and Vi(X,0) =V 11X, 6), where
Vi = = (X, 0) = a| Eq| *sinf (kx 6) [20].

This basic architecture can be used for quantum state con-
trol of neutral atoms in optical latticg4.8] and it constitutes
the basis of the proposals for quantum computation in such
systemg20,21]. As in the proposal of Ref.20], we make
use of the fact that a relative movement of the two lattices,
i.e., the trapping potentialg,,V,; can be achieved by vary-
ing the angled. In particular, starting wittd=0, the respec-
tive minima of the potential¥,V, coincide and by chang-
ing 6 from O to w/2, the potentiald/y,V,; move in opposite
directions until their respective minima coincide again. Note
that the shape of the potentid}, changes as it moves.

B. Implementation of the Hadamard walk

We consider a single neutral atom at positigy=0 and
the case where lattice 0—which traps the internal $Gitef
the neutral atom—moves with constant velocity to the left,
vo=—v, while lattice 1—which traps the internal stdte)
of the atom—moves with a constant velocity=v to the
right. The initial position of the lattices is such that the mini-

This provides an essential different behavior of the quantuninum of a potential well is located at positioq at t,=0.

walk that follows from the possibility of interference in the
guantum-mechanical case.

In a similar way, thequantum walk on a circle is defined
using a position spacky=CN with periodic boundary con-
ditions, i.e.,|k)x=|k mod(N))x for some finiteN. Also in

The lattice movements are used to implement the
controlled—shift operatiofisee Eq.(2)], while laser pulses
allow one to manipulate the internal state of the atom, and
thus to select the corresponding trapping potentaid
therefore the direction of the movemgnt

this case, a quadratic speedup of the quantum walk compared Given that the atom is initially prepared in state
to the classical random walk is found in the spreading timel/v2(|0)+i[1)) [17] at positionx,=0, the application of
of the particle[7]. Walks on general graphs can be defined inthe Hadamard operatidsee Eq(3)] to the internal state of

a similar way([7].

IIl. IMPLEMENTATION IN OPTICAL LATTICES

the atom at times,=nd/v readily implements the quantum
walk on a line using this setup. The spatial probability dis-
tribution of the atom at time,,, i.e., the probability to ob-
serve an atom at positiokd, —n<k=n at timet, corre-

In this section, we discuss possible implementations ogponds exactly tg@(n,k) [Eq. (4)] of the one-dimensional

the quantumHadamargwalk on a line or on a circle using
neutral atoms trapped in periodic optical potentiéis a
review see, e.g., Ref§18,19).

Hadamard walk aften steps. A simple fluorescence mea-
surement, together with several repetitions of the
experiment—allows one to measure this distribution.
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To justify this statement, note that a single atom initially stable and that the particle remains trapped in the potential
at positionxy,= 0, which is prepared in statg) [|1)] moves throughout the procedure. This can be satisfied if the move-
with constant velocity to the lefix(t)=x,— vt [right, x(t) ~ ment of the lattice is sufficiently slowhat isv < v,s;, Where
=xo+uvt], respectively. After a timeé,=nd/v, the position  Vos¢~aow is the rms velocity of the atoms in the vibrational
of an atom is shifted by exactly lattice periodsnd and the ~ ground statew is the excitation frequency, arag is the size
two lattices are again on top of each other. By changing th&f the ground state of the trap potentja@0]) such that the
internal state of the atom, e.g., at timyefrom |0) to |1), one ~ &tom stays in the ground state of the potential during motion.

can switch between the corresponding trapping potential andhis condition can be relaxed, as will be discussed in the
thus change the direction of the movement. Note that it i ubsequent section, and one can also allow nonadiabatic ve-

important to make such changes in the internal state of th city profiles. The _coherencc_a of th_e internal state is mainly
atom only when the two lattices are on top of each other toaffeCted by fluctuations, the intensity and phase of the trap-

ensure that the atom remains trapped in one of the potential%ng laserq 26] as well as magnetic-field fluctuations, which

. ) . may lead to uncontrollable energy splittings between the in-
Cpherent superpositions Of. two mtgrnal states behave IIkefernal levels. We will address some of these issues in the
wise. In the case of Rubidium with0)=|F=1m;=1),

D F=2m—2 tandard R | following section. Given that these noise sources can be con-
| .>_| = ome= > One can use standard Raman pu'sé Ot qq gyfficiently well, the number of steps of the quantum
microwave techniques to realize the Hadamard rotation b¥va|k one can perform is only limited by the spontaneous

using fast laser pulses. ._emission lifetime of the atom in the lattice, which is of the
Note that on the Blochs sphere, the Hadamard Opefat'oBrder of several seconds. This corresponds to a maximum

corresponds to a rotation of an angtearound the axisi number of about n=10° time steps, assumingt;

=1\/§(é;+ é;). This corresponds to & pulse rather than a ~100 us——1 ms, which respects the adiabaticity require-

/2 pulse in the usual terminology of quantum optics. Up toment for lattice shifts. Note that the implementation of sev-

an irrelevant global phase, one may also achieve the Hadkral hundred time steps of the Hadamard walk corresponds to

amard operation by a sequence of thre€ pulses,H a spatial width of the quantum distribution at the order of

wg ImoxgmimlAoya—imlio; Experimentally, it may be easier millimeters.

to use aw/2 pulse corresponding to the transformation

U,,=e '™ instead of the Hadamard operation, and pre-  C. Improved implementation of the Hadamard walk

pare the atom initially in state J2(]0)+|1)). This also

leads to a symmetric probability distribution for all times g

equivalent to the one resulting from the standard Hadamar xample, the laser pulses to implement the Hadamard rota-

walk. : . X
The Hadamard operation has to be applied at all Iattic%}on have to be fast compared to the time scale of the lattice

From a practical point of view, there are a number of
ifficulties with the procedure proposed in Sec. Il B. For

sites. which can be easilv achieved by USING & NONfocuse ovement. In addition, if the internal state of an atom is
’ y y 9 anged, e.g., frof0) to | 1), this implies a sudden momen-

laser beam. In fact, such a homogeneous operdficH is tum change of the atom, as it is no longer trapped in the

much easier to implement than individual operations on spe- .. : : : I~ : . i
cific lattice sites. This is due to the fact that in current ex-Ieft moving lattice but in the right-moving one. This momen

: . o SO tum change may lead to heating of the atom and the atom
Eerlrr?entst,. thle Iatt|c|e pfkr]'Od.~425 ”nmEWh'tChh '; Ilrtnlteﬂ may eventually even escape from the trap.
y the optical wavelengtn—is smaller than the best achiev= A ey practical difficulty, one faces in current experi-

able focusing width of the laser beanvs;w_l pm [25]. In ments is concerned with dephasing of the internal states of
the fluorescence measurement, one can either detect unselges . |, particular, uncontrollable time and space depen-
tively both internal statef0) and|1) to reveal information dent magnetic fields lead to energetic shifts of the internal

about the position of the atom, or one may use Selecuv_?evels, which result in relative phase shifts destroying the

resonance fluorescence methods. In the latter case, addit'%herence of the systefa7]

application of a randqrra:jx operation @hpuése) beéore the In this section, we propose a slight modification of the
measurement IS require to remove t € dependence on t}ﬂ’ﬁplementation suggested in Sec. Il B. This scheme is based
internal state of the spatial probability distribution. ProwdedOn symmetrizing the procedure and avoids the problems
the atom was initially prepared in statey2(|0)+i|1)), the  entioned above. Instead of moving the lattices with con-

probability distribution is symmetric wheq tr_acin_g out the_ stant velocity, they oscillate around the central positign
internal state of the atom, however the distributions condi-—g |, the simplest case, the movement of the lattices is

tioned on the internal state of the atom are asymmetric anfl; - onic and may be described as follows:
have mirror symmetry, which explains the additional appli- '

cation of a randonu, operation. Notice the phasen the x'(t)=d/2(cosw t—1),
initial state, which is important to ensure symmetric behavior
of the quantum walk. X"(t)=—d/2(cosw t—1), (5

We would like to emphasize that the procedure sketched
above is readily implementable with existing technology. Itwhere x’ (t)[x"(t)] is the position of the central potential
does not require addressability of individual lattice sites.  well of lattice 0[1], respectively. The oscillation frequency
The essential requirements are that the internal states @, is chosen in such a way that the adiabaticity requirement
the atom—as well as their coherences—are sufficientlyfor the lattice movement—i.e., the atom remains in the mo-
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tional ground state throughout the procedure—is well ful-the internal state of the atom is\i2(|0)+i|1)). The addi-
filled, which leads to oscillation times of the order of tional application ofH,H’ does not influence the symmetri-
100 us——1 ms. Note that one may replace the simple harzation discussed in the previous paragraph. Fluorescence
monic movement of the lattices by more complicated pro-measurements can be performed as described in Sec. III B.
files, either specially suited to meet adiabaticity requirements

such as the one proposed in Rg0], or specially designed D. Bounded quantum walks and quantum walk on a circle

in such a way that adiabaticity requirements need not be . .
matched, but are replaced by the weaker condition that the Using above setup, one can also |mplement an one- or
atoms—after moving the lattice by one period—are again i wo-side bounded quantum vyalk on a I"ﬁ&.’ld']: SUCh. a
the motional ground staf@6]. These specially designed pro- Pounded quantum walk is a simple generalization of its un-
files may allow movement times of the order of a few tens of?ounded counterpart and was studied, e.g., in R8f34]. It

microseconds for a shift of one lattice period. The profiles of1@S been argued that studying the behavior of sashple
Refs. [20,26) need to be adopted in such a way that theduantum walks may help to determine the properties of more

lattices oscillate around a central position, which may befomPplicated quantum walks on general graphs, which may

accomplished by choosing the original profile until the Iatticeoﬁer possible applicationslkin quanr:urr? algorithmicldesign.
is displaced by one lattice period and the velocity is zero tol Ne bound_ed quantgm walk s such that at certain locations
X5, barriers are introduced and the quantum walk ends

a good approximation, and then use the time-inverse profilél’ - ! -
In this way, periodic lattice movements are readily achieved®"'C€ @ particle reaches one of these locations. A one-side
In what follows, we will restrict our discussion to harmonic Pounded quantum walk may, e.g., contain a barriex;at
lattice movements, which is sufficient to illustrate the ideas= 100, While X,——<. Such a barrier can in the optical

of the improved implementation of the Hadamard walk. This/atticé setup, for instance, be implemented by shining a laser
is realized if, in additiongo, operations ¢ pulse$ are ap- at a certain locatiorx,, which couples both statd®) and

plied at timest,=nw/w,_,n=1,2,3 ... to all lattice sites, |1) to a fast decaying auxiliary level. In such a way(pe-
with the effect|0)—|1). sition) measurement of the atom projecting onf®,
Under these conditions, an atom initially in std@ is = Xux{(X, is performed.

trapped in lattice 0 and starts moving to the left together with A modification of the trapping geometry may also allow
lattice 0, where at timé,, it is located at positionl and the [0 the implementation of a quantum walk on a circle, fol-
internal state changes {a) due to the application of,.  'oWing the ideas of a recent proposal by Bureal. [23],

The particle is, therefore, now trapped in lattice 1, where it!SINg @n evanescent field of a linear waveguide and a ring
moves to the left in the intervaly,t,), leaving the trapped 'esonator for trapping and guiding atorsee also Re{24]).

atom at position @ at timet,, efc. On one hand, we have In this way, the periodic trapping potential can be modified

that at timed,,—when manipulations of the internal states of such that lattices sites are located on a C'rd?’ formmg_ a
the atoms are performed, the two lattices are on top of eac??gu'a.r spaped pattern. Movements of the trapping poten.tlals
other and the velocity of the atoms is zero, which overcomeéesu“ in this case in a C|rcular. movement of the lattice sites
the first difficulty mentioned above. One could in principle and thus of the trapped particle. By means of Hadamard
also stop the lattice movement at these times until manipu
lation of the internal states is achieved, which allows to dropo_ . .
the requirement that manipulation of the internal states of thé"'OUI""t'on.S of the tr_apped atom can be performed in the same
atom have to be fast compared to the time scale of the lattic@Y @S discussed in Secs. Ili B and |1l C. Note that in con-

movement. On the other hand, since within a time span offast to the quantum walk on the line, the quantum walk on

2t,, the atom is in both the staté@) and|1) for time t;, the circle cannot be implemented using existing experimental
relative phase shifts between internal std@sand|1) be- setups but rather relies on a proposed scheme.

come an irrelevant global phase shift. Also fluctuation of ) S

magnetic fields become irrelevant, provided the timescale of ~E- Using 2D setup to measure probability distribution

the fluctuations is much larger tham,2and the spatial varia- of a 1D quantum walk

tion is negligible within 21 [28]. These requirements are In current experiments, two-dimension@D) or three-
well fulfilled, e.g., for the typical 50 Hz background noise dimensional(3D) lattice arrays are used rather than 1D ar-
and oscillating timed;~100 us——1 ms when using har- rays. In this case, fousix) interfering laser beams constitute

rotations, together with lattice movements, a quantum walk
n a circle could be implemented. Measurements and ma-

monic Ia_\ttice movements. _ ~ the two- (three) dimensional trapping potential. One can
The implementation of the Hadamard walk using thismake use of such a setup to directly measure the probability
setup is straightforward. After the, operations at timet,,  distribution of the one-dimensional quantum walk. Consider

the Hadamard operatidi [see Eq(3)] is applied attimes,  a two-dimensional lattice, which may be loaded from a
if nis even, whileH'=0,Ho, is applied at times,, if nis  Bose-Einstein condensat8EC) [22]. We assume that the
odd. That is, atty, H is applied, while att,, H'oy 2D lattice is loaded in such a way that in one dimension, say
=o,H[Ho,] is applied ifn is odd (even. The use of the x, only the central lattice sit&, is occupied, while in the
operationH’ instead ofH results from the interchanged role other dimension, say, all lattice sites are occupied in a
of the internal state$0) and |1) for even (odd n. One regular way with one atom per site. This can be accom-
readily checks that in this way, after timg, n steps of the plished, for example, by first realizing a Mott transition in a
guantum random Hadamard walk are implemented, provide8D optical lattice from a BEC to a Mott insulator state as in
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recent experiments of Greinet al. [22], following a theo-  as fluctuations in the trapping potential during lattice shifts.
retical proposal of Ref.29]. In a second step, one can, e.g., One may distinguish between errors introduced by manipu-
use a gradient magnetic field to selectively address specifiations of internal state of the atom and errors in the position
lattice layers and to deplete unneeded lattice $2&% One  space of the atom, e.g., introduced by tunneling of atoms
may also apply methods similar to the ones used in B&i.  between neighboring lattice sites. While the former always
to achieve uniform filling factors. keeps the structure of the ideal Hadamard walk that after
Such a configuration allows for a parallel sampling oftime steps, only evefodd) lattice sites are occupied if is
one-dimensional quantum walkis the x direction), by mov-  even(odd), respectively, errors in the latter lead to occupa-
ing the lattices in thex direction only and applying Had- tions ofall lattice sites.
amard rotations to all atoms as described in Secs. Ill B and We use two simple models to investigate imperfections in
[l C. Each of the atoms at position,=kd independently the coherence of the internal state of the atom. We treat de-
performs a quantum walk. A fluorescence measurement, e.gecpherence effects and errors in the manipulation of the atom
a projective picture along thg axis, allows one to directly (imperfect Hadamard operations.e., operations acting on
measure the corresponding probability distributiptn), the total Hilbert spacé{,® Hy asU,® 1y, in a joint way. In
provided the number of lattice sites W direction is big the first model, we assume that the desired manipulation of
enough. Otherwise, the required number of repetitions of théhe internal states of the atort, is performed with prob-
experiment to determine the probability distribution is de-ability p at each time step, while with probability-1p, a
creased. completely depolarized, random state is produced. The pa-
rameterp serves not only as a measure of the accuracy of the
IV. EXPERIMENTAL IMPERFECTIONS operation—whergp=1 describes perfect operations, while
o ) ) ) ) p=0 corresponds to a completely random operation—but
Although existing experiments using optical lattice sys-5|50 includes other decoherence effects due to storage errors
tems offer high accuracy in both coherent storage and ma;; phase fluctuations as well as lattice movements. Such a
nipulation of the atoms, different kinds of errors may influ- coyariant error model reflects our limited knowledge about
ence the ideal evolution. These errors may disturb or eveg,e specific type of error that occurred in the system. This

destroy typical features of the quantum walk, such as lineagror model has also been used in other contg8$and is
spreading time. In this section, we concentrate mainly oryescriped by the following mapping:

errors in the coherence of the internal states of the atoms. We
thereby observe a transition from quantum-mechanical to
classical behavior of the walk for increasing errors. We ex-
pect these kind of errors to constitute the dominating part in
the experimental imperfections. On one hand, errors in latNote that this model is equivalent to(partially) depolariz-
tice movements may lead to motional excitations of theing channel, &p)=pU,pU{+(1—p)1/423_solpal’,
atom. If sufficiently small, these should however, not effectwhereo, are Pauli matrices witlry=1.

the essential behavior of the system. On the other hand, the The second model only includes phase errors and is mo-
internal states of the atom are influenced by the decoherendwated by the expectation that phase fluctuation may be the
resulting from, e.g., uncontrollable phase shifts and imperdominating part of errors occurring in optical lattice systems.
fections in the manipulation by means of laser pulses as wellhis error model is described by the following mapping:

0.05F ' y
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= 02t i FIG. 2. Probability distribution for ideal quan-
o . | tum walk on a line(dotted lin@ and quantum
8 200 150 150 200 walk with imperfect operations using error model
O ook ' ' ) 2 [see Eq.7)] andp’=0.98 (solid line) aftern
5_ ’ =50,100,150,200 step&from top to botton.
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E'(p)=p'UpUl+(1-p)U,0PpcPUl. (7)  probability (1-q), tunneling of the atom to one of the

neighboring lattice sites occurs.

Note that if the optical potentials are not very deep, tun- We have performed_numerical simulations to investigate
neling between neighboring sites may occur as well Wéhe influence of these kinds of errors on the quantum walk on
have used a simple model of incoherent tunneling—affecting€ IN€. where we first assumed that errors affect only the

only the position of the atom—uwhich is given by the follow- nternal state of the atom. Figure 1 is based on error model 1
ing mapping[32]; and shows the probability distribution after=200 steps of

the quantum walk for different error parameters. Note that
for completely random operations, i.e., paramgterO, the
particle performs exactly a classical random walk. This can
easily be understood by observing that an internal state
where U. =103, |k=1)x(k| is the unitary shift operator 1/21=1/2(|0)(0|+|1){1|), when applying the controlled-
which moves the particle either one position to the lelft, shift operation(i.e., the lattice movemehthas the effect that

or right, U, . That is, with probabilityq nothing happens, the particle moves with probability 1/2 to the left, while with
and thus in total, the desired evolution occurs, while withprobability 1/2, it moves to the right. In contrast to the quan-

&' (p)=ap+(1—q)/2U,pul+U_pul), (8

0.04 1
0.021 .
-2000 150 100 -50 0 50 100 1 éO 200
. . . . . T . FIG. 3. Probability distribution aften=200
002 8 steps of quantum walk on a line with imperfect
gom_ | operations using error model fisee Eg.(6)]
fe) M _ . . I.J\ affecting the internal state of the atom and errors
O .2000 150 100 50 0 50 100 150 200 due to tunneling described by E@8). Error
O . . . . . T . parameters  f;9)=(1;1),(1,0.99,(0.991),
Q 004 . (0.99;0.95) from top to bottom. Far=1, only
o 002 | even positions are plotted because odd positions
are not occupied. Fog<1, even and odd posi-
Mo a0 00 =0 o %0 700 180 200 tions are occupied and plotted, which explains the
. . . . . T . lower occupation of specific sites as compared to
0.02}- . gq=1.
0.01- 4
-2000 -150 -1 OIO -S(IJ (I) 5I0 1 (I)O 150 200

particle posifion
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FIG. 4. Bounded quantum walk with barrier
at positionx=—10. Probability that atom was
observed at the barrier plotted as a function of the
number of steps for classical random wadolid
line), ideal quantum walk(dashed ling and
quantum walk with imperfections in the manipu-
lation of the internal state of the atofdotted
line), using error model 1 ang=0.99[see Eq.

©)].
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tum walk, the resulting state is ancoherentsuperposition herence of the system, in particular the quality of the imple-
of the two possible states, which can be described classicalipented operations. This may also serve as a test on the suit-
and thus no interference effectas in the quantum walk ability of optical lattice systems to perform general purpose
occur. The internal state plays the role of a classical coinquantum computation, following the proposals of Refs.
One observes from Fig. 1 that with increasing err@s-  [20,33.
creasing parametqy), the probability distribution changes
from the quantum-mechanical one to the classical one. Even
for errors of the order of several percent, typical quantum- V. SUMMARY AND CONCLUSIONS
mechanical features of the probability distribution after a few
hundred steps are clearly visible, in particular occupation in We have proposed to use neutral atoms trapped in optical
the interval (/n,n/\/2) can be observed. A similar simula- lattices to implement quantum walks on the line and on the
tion was performed using error model[Bqg. (7)]. The ob-  circle. The quantum walk is performed in position space by
served behavior of the system under this kind of error is veryeriodically shifting the lattices and manipulating the inter-
similar to the one shown in Fig. 1 using error model 1. Fig-nal states of the atofs) by homogeneous laser pulses. Read-
ure 2 shows the probability distribution after different num- out of the resulting probability distribution is performed via
ber of steps of the idedimperfec quantum walk assuming  flyorescence measurements. Due to long lifetimes of the
only phase errors. ) trapped atoms and efficient manipulation techniques, experi-
In the following, we assume both internal and externalmental realizability is expected with present-day technology.
errors (tunneling, described by Eqs(6) and (8), respec-  we have also investigated the influence of decoherence and
tively. As shown in Fig. 3, the essential effect of incoherentimperfections in manipulation of internal state of the atoms
tunneling is that the probability distribution is smeared out. and showed a transition taking place from the ideal quantum
We have also considered a one-side bounded quantupalk to the classical random walk for increasing errors. Er-
walk. While the exit probability of the classically bounded yqors of the order of percent seem tolerable to still observe a

random walk approaches unity, this is not the case for thgjear quantum behavior of the walk after a few hundred
quantum walk(see e.g., Ref.14]). Figure 4—which shows  steps.

the probability to observe the atom at the barrier at position
x=—10 as a function of the number of steps—confirms this

behavior for the bounded classical _random walk a_nd the ideal ACKNOWLEDGMENTS
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