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Multipartite entanglement for entanglement teleportation
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A scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits
as a quantum channel. Based on the invariance of entanglement teleportation under an arbitrary two-qubit
unitary transformation, we derive relations for the separabilities of joint measurements at a sending station and
of unitary operations at a receiving station. From the relations of the separabilities it is found that an insepa-
rable quantum channel always leads to total teleportation of entanglement with an inseparable joint measure-
ment and/or a nonlocal unitary operation.
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I. INTRODUCTION

Quantum teleportation is one of the most striking featu
emerging from the quantum entanglement that is inheren
quantum mechanics@1#. Entangled systems divided into tw
parts enable transfer of the quantum information of an
known quantum state to a remote place while the origi
state is destroyed. No information about the unknown sta
ever revealed during the teleportation process. Quantum
portation has been especially considered in single-body
tems of two-level,N-dimensional, and continuous variab
states@1–3#.

Entanglement teleportation transfers the entanglement
tially imposed on an unknown multipartite state to a mu
partite state at a remote place@4#. The entanglement is trans
ferred onto a composite system of subsystems which h
never directly interacted. In this sense, entanglement tele
tation is similar to entanglement swapping@5#. However, en-
tanglement teleportation transfers not only the amount of
tanglement but also the entanglement structure~the
entangled state itself!. Entanglement teleportation of two qu
bits has recently been studied for pure and noisy quan
channels@4,6#. It is closely related to quantum computatio
as two-qubit teleportation together with one-qubit unitary o
erations are sufficient to implement the universal gates
quired for quantum computation@7#.

In earlier protocols for two-qubit teleportation, separa
Einstein-Podolsky-Rosen~EPR! pairs are utilized for the
quantum channel so that the joint measurement is decom
able into two independent Bell-state measurements and
unitary operation into two local one-qubit operations. Th
implies that entanglement teleportation can be implemen
by a series of single-qubit teleportations@1,4# which we call
‘‘series teleportation of entanglement.’’ It is desirable to a
the following questions: Is a quantum channel restricted o
to EPR entanglement, and, if not, what other types of
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tanglement are possible, and what role do they play in
tanglement teleportation? These questions have been
dressed in part by employing Greenberger-Horne-Zeilin
~GHZ! entanglement@8# of three and four qubits as a quan
tum channel@9,10#. However, the investigations have bee
restricted thus far to partially unknown entangled states s
as au01&1bu10& and do not cover all possible states of
two-qubit system.

In this paper we consider entanglement teleportation
completely unknown entangled states such as

au00&1bu01&1cu10&1du11& ~1!

wherea, b, c, andd are complex numbers and$u i j &% is an
orthonormal basis set. The present scheme is formulate
as to employ multipartite entanglement of four qubits as
quantum channel; the composite system of four qubits m
have various types of entanglement, for example, two E
pairs, four GHZ triads, etc. We show that entanglement te
portation has invariance under arbitrary two-qubit unita
transformation and variant protocols are available. Using
invariance of entanglement teleportation, we derive relati
of separabilities for joint measurements at a sending sta
and for unitary operations at a receiving station. Due to
relations of the separabilities, we show that an insepara
quantum channel always leads to a ‘‘total teleportation
entanglement,’’ which employs an inseparable joint measu
ment and/or a nonlocal unitary operation, as opposed t
series teleportation of entanglement.

II. TWO-QUBIT TELEPORTATION

In the original proposal@1#, quantum teleportation utilizes
an EPR pair as a quantum channel which is shared b
sender Alice and a receiver Bob. After she receives a part
in an unknown state and one of the entangled pair, Al
performs a joint measurement on their composite state.
transmits the outcome to Bob through a classical chan
Bob applies a corresponding unitary operation on his part
of the entangled pair, which is chosen in accordance with
©2002 The American Physical Society18-1
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outcome of the joint measurement. The final state of Bo
particle is completely equivalent to the original unknow
state if the quantum channel is maximally entangled.

A completely unknown state of two qubitsU1 andU2 to
teleport can be represented by

ufu&U5 (
i , j 50

1

ci j u i , j &U, ~2!

where the subscriptU denotes the composite system of tw
qubitsU1 andU2 , ci j is a complex number, and$u i , j &U% is
an orthonormal basis set;u i , j &U5u i &U1

^ u j &U2
with the basis

set$u0&q ,u1&q% of qubit q. Note that the unknown state in Eq
~2! is entangled unless the coefficient matrixci j is decom-
posable such thatci j 5diej for some complex vectorsdi and
ej .

We consider a quantum channel of four qubits which
divided into two parts, i.e., two qubits are sent to Alice a
the others to Bob as shown in Fig. 1. Alice’s two qubitsA1
andA2 are denoted byA and Bob’s two qubitsB1 andB2 by
B. A perfect teleportation requires that two parts ofA andB
be in a maximally entangled pure state, that is, the s
ufc&AB of the quantum channel satisfies the relation

TrB(A)~ ufc&AB^fcu!5
1

4
1A(B) , ~3!

where Tri is a partial trace over subsystemi and 1i is an
identity operator of parti. The channel stateufc& can be
written by Schmidt decomposition as

ufc&AB5
1

2 (
i , j 50

1

uc i j &A^ uw i j &B , ~4!

where uc i j &A5Ûu i , j &A , uw i j &B5V̂u i , j &B , and Û and V̂ are
two-qubit unitary operators. Note thatuc i j & is an entangled

FIG. 1. A schematic drawing of a total teleportation of the tw
qubit unknown state~2! via an inseparable quantum channel of fo
qubitsA1 , A2 , B1, andB2. The inseparable quantum channel is
the state given by Eq.~4! as the two EPR pairs generated in t

entangler are transformed by the nonlocal unitary operatorV̂ÛT in
the two-qubit gate. Suppose Alice obtains an outcome (a,b) in her
joint measurement represented by the basis set$umab&%. After re-
ceiving the four-bit classical message (a,b), Bob applies the cor-

responding unitary operatorÛab .
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state of Alice’s two qubits if the unitary operatorÛ is non-
local. Similarly, uw i j & is an entangled state of Bob’s two qu
bits if V̂ is nonlocal.

The channel stateufc&AB in Eq. ~4! can be represented i
the more convenient form of

ufc&AB5~1A^ V̂ÛT!uf̄c&AB, ~5!

where

uf̄c&AB5
1

2 (
i , j 50

1

u i , j &A^ u i , j &B . ~6!

The stateuf̄c& is also a maximally entangled state of the tw
partsA andB. On the other hand, it is separable into (A1 ,B1)
and (A2 ,B2) such that uf̄c&AB5uEPR&A1B1

^ uEPR&A2B2

whereuEPR&5( i u i ,i &/A2. The stateuf̄c& has been used as
quantum channel for entanglement teleportation@4,6#.

A pure generalized GHZ state of four qubits is defined
using the generalized Schmidt decomposition as@11#

uf4&AB5(
i 50

1

l i ua i&A1
^ ub i&A2

^ ug i&B1
^ ud i&B2

, ~7!

where$ua i&%, $ub i&%, $ug i&%, and$ud i&% are orthonormal vec-
tor sets and thel i ’s are positive. A pure generalized GH
state is not a good candidate for a quantum channel bec
it does not fulfill the requirement~3! of maximal entangle-
ment of two partsA andB. More explicitly,

TrB~ uf4&AB^f4u!5(
i 50

1

ul i u2ua i ,b i&A^a i ,b i u, ~8!

which is not proportional to1A . In fact it is proportional to a
projector that projects a state into a subspace spanne
$ua i ,b i&A%. We note, however, that a single-qubit telepor
tion can be performed via a quantum channel of three qu
which is in a maximal GHZ state@12#, and thus there could
be the possibility that a GHZ state of more than twice t
teleporting qubits may lead to perfect teleportation.

Alice performs a joint measurement on the four qub
A1 , A2 , U1, andU2. The joint measurement is constructe
using a set of 16 projectors$M̂ab5umab&AU^mabu%, where

umab&AU5~1A^ Ûab!ufc&AU . ~9!

Here ufc&AU is the same as the state given in Eq.~5! and
Ûab5ŝa ^ ŝb is a local unitary operator with Pauli spi
operatorsŝa51, ŝx , ŝy , andŝz . The set$M̂ab% satisfies a
completeness relation as

(
a,b51

4

M̂ab51A^ 1U . ~10!

Further, the 16 projectors are orthogonal such that
8-2
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M̂abM̂gd5Tr~Ûab
† Ûgd!umgd&AU^mabu5dagdbdM̂ab .

~11!

This implies that the joint measurement represented

$M̂ab% is an orthogonal measurement on the composite
tem of A andU.

A key step is to evaluate a partial inner produ
AU^mabufc&AB by applying an identity operator1U
5( i , j u i , j &U^ i , j u on the right side:

AU^mabufc&AB5
1

4
Ûab

† T̂BU , ~12!

where T̂BU5( i , j u i , j &B U^ i , j u is a transfer operator from

state ofU to that ofB such thatT̂BUuf&U5uf&B . The form

of Û†T̂ plays a crucial role in revealing an invariance
entanglement teleportation which will be discussed in
next section.

The stateuC&UAB of the whole composite system ofU, A,
and B can be represented with respect to the basis
$umab&AU% of the joint measurement as follows:

uC&UAB5ufu&U ^ ufc&AB

5S (
a,b51

4

M̂abD ufc&AB^ ufu&U

5
1

4 (
a,b51

4

umab&AU^ Ûab
† T̂BUufu&U . ~13!

Suppose Alice obtains an outcome (a,b) when she performs
the joint measurement on the composite system ofA andU.
Bob’s two qubits come to be in the state ofÛab

† ufu&B . When
he receives through a classical communication the four
message concerning the outcome (a,b), Bob applies the
corresponding unitary operationÛab on his qubits, which
completes the two-qubit teleportation process.

III. RELATIONS OF SEPARABILITIES FOR JOINT
MEASUREMENTS AND FOR UNITARY OPERATIONS

In the proposed protocol of two-qubit teleportation, w
employed an orthogonal measurement for the joint meas
ment. We may consider a positive operator valued meas
ment for a joint measurement, such that for a set of unit
operators$Ûg% with orderG,

1

G (
g

1^ Ûguf&AU^fu1^ Ûg
†5

1

42
1A^ 1U , ~14!

whereuf&AU is a maximally entangled state ofA andU. This
type of positive operator valued measurement was stu
for universal teleportation@13#. If Ûg5ŝa ^ ŝb , this mea-
surement is simply equal to the orthogonal joint measu
ment represented by the bases in Eq.~9!.

We shall show the invariance of entanglement telepo
tion under an arbitrary two-qubit unitary transformation. F
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a maximally entangled stateuf& of two parts, let$umg&AU

51A^ Ûguf&AU% be a set of joint measurement bases a

$ufg8&AB51A^ Ûg8uf&AB% be a set of unitarily transformed
channel states. The partial inner product ofumg&AU and
ufg8&AB is obtained as

AU^mgufg8&AB5
1

4
Ûg8Ûg

†TBU . ~15!

When g5g8, this is just a transfer operator. The telepor
tion is completely specified byG pairs of joint measuremen
bases and their corresponding channel states$umg&,ufg&%.
The partial inner product in Eq.~15! is invariant under the
transformation of

umg&AU→Ŵr
T

^ Ŵl umg&AU ~16!

and

ufg&AB→Ŵr
T

^ Ŵl ufg&AB ~17!

for eachg with some two-qubit unitary operatorsŴl and
Ŵr . Thus one may have variant protocols of entanglem
teleportation under the transformation in Eqs.~16! and ~17!,
due to the arbitrariness ofŴl andŴr . We note here that the
invariance of entanglement teleportation may be exten
further with respect to a rather general completely posit
operation@14#.

The invariance of entanglement teleportation raises
relations of separabilities for joint measurements and for u
tary operations. In particular, an inseparable joint measu
ment may be transformed into two independent Bell-st
measurements and/or a nonlocal unitary operation into a
cal operation. A joint measurement is said to be separa
when each measurement basis can be decomposed in
product state of either (A1 ,U1) and (A2 ,U2) or (A1 ,U2)
and (A2 ,U1). Further, a protocol of entanglement telepor
tion is called a series teleportation of entanglement when
joint measurement is separableand the corresponding uni-
tary operation is local. The series teleportation of entang
ment consists of independent Bell-state measurements
local unitary operations@4,6#. Otherwise, it is called a tota
teleportation of entanglement in the sense that it is not
composable into a series of single-qubit teleportation@4#.

In Sec. II we presented a protocol of total teleportation
entanglement with an inseparable joint measurement an
local unitary operation when the quantum channel state
Eq. ~5! is inseparable. One may try to construct a ser
teleportation of entanglement by using the invariance of
tanglement teleportation under the transformation of E
~16! and ~17!. Suppose that a joint measurement becom
separable in (A1 ,U1) and (A2 ,U2) for someŴl andŴr such
that

umab&AU→um̃ab&AU51A^ Ūabuf̄c&AU, ~18!

where Ūab5ŴlÛabV̂ÛTŴr5sa ^ sb . Then, the corre-
sponding unitary operators are transformed as
8-3
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Ûab→Ūab~V̂ÛT!†. ~19!

The transformed unitary operators are clearly nonlocal si
V̂ÛT is nonlocal due to the inseparability ofufc&. This pro-
tocol consists of the separable joint measurement and a
local unitary operation, which is the opposite case to
untransformed protocol of the inseparable joint measurem
and local unitary operation. However, the altered protoco
a total teleportation as well. An inseparable quantum chan
always leads to a total teleportation of entanglement.

It is possible to obtain two EPR pairs by applying som
two-qubit unitary operation to an inseparable quantum ch
nel, which enable a series teleportation of entanglement w
a rather simple Bell-state measurement@15# and local unitary
operation. Unless a quantum channel is likely to suffer fr
a reservoir, it may be the simplest protocol that employs E
pairs as a quantum channel. However, when a reservo
present, it is important to study inseparable quantum ch
nels because some inseparable channel can be more r
against decoherence than EPR pairs. It is known that s
particular state is robust against decoherence once the i
action with a reservoir is known. For example,
decoherence-free state, an eigenstate with zero eigenval
the interaction Hamiltonian, never becomes decoheren
the given reservoir. We will not further discuss the effects
decoherence, which are beyond the scope of this paper.

IV. MANY-QUBIT ENTANGLEMENT OF AN
INSEPARABLE QUANTUM CHANNEL

Any quantum channel in a maximally entangled state
two partsA andB can be employed for a perfect teleportati
of entanglement. Entanglement of four qubits may be cla
fied into two-qubit entanglement, three-qubit entangleme
and four-qubit entanglement. A state of four qubits is said
have two-qubit entanglement when some two qubits am
the four qubits are in an entangled state, three-qubit
tanglement when some three qubits are in a three-qubit G
state, and four-qubit entanglement when the four qubits
in a four-qubit GHZ state. Note thatW-class states and
biseparable states@16# belong to two-qubit entanglement b
our definition. As shown in Sec. II a four-qubit GHZ state
not a good candidate for a perfect teleportation of entan
ment.

The entanglement structure of a possible quantum cha
state ~4! depends on two-qubit unitary operatorV̂ÛT. A
quantum channel of two EPR pairs is in the stateuf̄c&AB ,
which is separable into (A1 ,B1) and (A2 ,B2), and it has
only two-qubit entanglement. We shall present an exampl
an inseparable quantum channel that has many-qubit
tanglement; the channel state is written as

ufc&AB5
1

2A2
~ u0000&2u0011&1u0101&2u0110&1u1001&

1u1010&1u1100&1u1111&)A1A2B1B2
. ~20!
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This state is obtained from Eq.~6! with the two-qubit unitary
operator

V̂ÛT5
1

A2 S 1 0 0 21

0 1 21 0

0 1 21 0

1 0 0 1
D , ~21!

which is represented in a product basis set

$u00&,u01&,u10&,u11&%. The operatorV̂ÛT transforms the
product bases to Bell bases.

The reduced density operator of each qubiti is propor-
tional to an identity operatorr i51i /2. Noting thatufc& is
pure, this implies thatufc& has no individual information bu
contains entanglement of a given qubit and the rest.

To investigate two-qubit entanglement, we employ t
Peres-Horodecki criterion@4,17# for two qubits that their
density operatorr is entangled if and only if its partial trans
position has any negative eigenvalue. The partial transp
tion of r is defined as

rT15(
i jkl

r j ikl u i &^ j u ^ uk&^ l u ~22!

whenr5( i jkl r i jkl u i &^ j u ^ uk&^ l u. As an example, consider
reduced density operator of a pair among four qubits wh
are in a symmetricW state,

uW&5
1

2
~ u0001&1u0010&1u0100&1u1000&). ~23!

The partial transposition of the reduced density operator
a negative eigenvalue (12A2)/4 for all pairs.

We shall show below that all pairs that can be selected
of four qubits in the stateufc& are in separable states. Eve
pair (i , j ) except (A1 ,B1) and (A2 ,B2) has the reduced den
sity operatorr i j 5

1
4 1i j and it is disentangled. In addition, th

reduced density operator of (A1 ,B1) or (A2 ,B2) is given as

rA1B1(A2B2)5
1

4 S 1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1
D . ~24!

The partial transposition ofrA1B1(A2B2) has only positive ei-

genvalues of (0,0,1/2,1/2). These results imply that the s
ufc& in Eq. ~20! has no two-qubit entanglement. Howeve
the stateufc& is entangled as shown in the consideration
the reduced density operators for single qubits, and it
three-qubit entanglement.

A reduced density operatorr of each triad is obtained by
tracing over the other qubit and is in the form of

r5
1

2
uf0&^f0u1

1

2
uf1&^f1u, ~25!
8-4
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where uf0&5u000&1l1u011&1u101&1l2u110& and uf1&
5l3u001&1l4u010&1u100&1u111& with l i given in Table I.
By generalized Schmidt decomposition@11# it is found that
both uf0& and uf1& are maximal three-qubit GHZ states.

To investigate three-qubit entanglement explicitly, o
may employ an entanglement witness scheme that a de
operator of three qubitsr has three-qubit entanglement
Tr(Wr),0 for some three-qubit GHZ entanglement witne
W @18#. However, it is nontrivial to find such an entangl
ment witness for a given density operator while a typi
entanglement witness is known as@18#

W5
3

4
12uf&^fu, ~26!

whereuf&5(1/A2)( i 50
1 ua i ,b i ,g i& is a maximal three-qubi

GHZ state. We perform numerical calculations with t

TABLE I. Amplitudes l i of two orthogonal GHZ statesuf0&
and uf1& in Eq. ~25!.

Triad l1 l2 l3 l4

(A1 ,A2 ,B1) 21 1 21 1
(A1 ,A2 ,B2) 1 1 21 21
(A1 ,B1 ,B2) 21 1 1 21
(A2 ,B1 ,B2) 21 21 1 1
d

.

.

rs

nd
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l

steepest decent method to search for some local trilat
rotation for the typical witness~26! to minimize Tr(Wr),
and we find Tr(Wr)>1/4. This implies that the typical en
tanglement witness cannot detect three-qubit entanglem
of triads.

V. REMARKS

We proposed a scheme for entanglement teleportation
completely unknown state so as to incorporate a multipar
entangled state as the quantum channel. By deriving the
lations of separabilities for joint measurements and for c
responding unitary operations, it was found that an inse
rable quantum channel always leads to a total teleportatio
entanglement. We gave an example of an inseparable q
tum channel with each triad in three-qubit entanglement.
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