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Decoherence slowing down in a symmetry-broken environment
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We show how to characterize the temporal evolution of a single qubit interacting with a thermal bath by
correlation functions of the bath under quite general hypotheses. The aim is to show how the qubit decoherence
time depends on the degree of correlation of the bath. We explicitly study some spin-bath models where every
spin of the environment interacts with the qubit either directly or by the mediation of a harmonic oscillator. In
both cases we find an increase of the decoherence time as soon as a symmetry breaking occurs in the
environment. In the latter case a possible experimental setup is discussed.
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I. INTRODUCTION

Decoherence is one of the problems we have to face in
hypothetical process of quantum computation@1,2#. Here the
minimal information unit is called the quantum bit~qubit!.
The state of a qubit is a generic coherent superposition of
only two possible logical values that the classical bit c
assume. Computation can be realized by a sequence of
tary transformations that affects simultaneously each elem
of the superposition, the result being parallel data proces
~quantum parallelism!. Taking a register ofN qubits the cal-
culus speed increases exponentially, as we can performN

operations simultaneously instead of one~dense coding! @3#.
When a qubit interacts with an environment, the result

entanglement destroys the coherence of the initial state
the gain of information we wished to obtain, in comparis
to that a classical bit can store, quickly disappears. T
mechanism is calleddecoherenceand it brings about the
transition from a pure ensemble of quantum bits to a mixt
of classical ones@4–8#; the states of this mixture are select
by the form of the interaction and are usually calledpointer
states. We underline that the time scale of decoherence
usually much smaller than that of the expected loss of ene
of the qubit due to its relaxation@9#.

Two different strategies has been adopted to fight de
herence. The first, in analogy with the classical computat
is to resort to redundancy in encoding information, by me
of a so-callederror-correcting code@10–13#. The second,
introduced by Zanardi and Rasetti@14#, considers qubits tha
are symmetrically coupled with the same environment to
sign states that are hardly corrupted by the decoherence.
approach, however, reduces drastically the number of qu
tum states that can be used for the quantum computation
suggest a strategy that consists in making syst
environment entanglement difficult because the environm
ensemble is close to a macroscopic state in the directio
the pointer basis.

A generic qubit is represented by a state vector in
abstract two-dimensional Hilbert space, and, without loss
of generality, it can be formally associated with a1

2 spin state
in the form

uS&5cos
u

2
u↑&1eif sin

u

2
u↓&. ~1!
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An ensemble of such identical pure states can be statistic
described by the density operator

rS5uS&^Su5
1

2
1n•S, ~2!

where n5(sinu cosf,sinu sinf,cosu) is a vector that lies
on the surface of the Bloch sphere. In the basis of theSz

eigenvalues the density matrix is

rS5
I

2
1cosuSz1

1

2
sinu~e2 ifS11H. c.!. ~3!

The diagonal terms of Eq.~3! represent the probabilities o
the two possible values ‘‘up’’ and ‘‘down’’ and are usuall
referred to as the ‘‘occupation’’ or ‘‘population.’’ The off-
diagonal terms are associated, with their absolute value,
the amplitude of the interference patterns and quantify
coherence of the pure state. As a consequence of the Sc¨-
dinger equation, the temporal evolution of the isolated qu
is unitary and so an initial pure state evolves into anot
one, maintaining its coherence. Likewise, the evolution
the density matrix allows the vectorn to move only on the
surface of the sphere.

Introducing an external environment, we have to enla
the Hilbert space and consider the evolution of the ove
system including the bath. If the density matrix of the co
posed system is initiallyr(0)5rS^ rB , it will not generally
evolve into a product because of the entanglement betw
qubit and environment.

In this paper we consider only a thermal bath even thou
this is not the most general situation@15#.

The single-qubit dynamics, relative to the entangled to
system, can be characterized by the reduced density ope
obtained by a partial trace ofr(t) on the states of the bath

rS~ t !5TrB$r~ t !%5TrB$e2 iHtr~0!eiHt%. ~4!

Here the HamiltonianH is given by the unperturbed contr
bution of qubit and bath and by their mutual interaction:

H5HB1HS1HI . ~5!
©2002 The American Physical Society17-1
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The reduced matrix evolution is no longer unitary and it c
determine a suppression of the off-diagonal elements~typi-
cally much faster than the evolution of the diagonal one!.
Likewise, the vectorn leaves the surface of the Bloch sphe
and evolves into its internal vectors, so the initial pure st
of the qubit collapses into a statistical mixture of classi
bits, losing its coherence.

The decoherence time depends both on the thermal p
erties of the bath and on the quantum fluctuations@16#. The
latter are a characteristic of the delocalization of the envir
ment particles and they appear, for example, in the co
monly studied boson baths of harmonic oscillators@17–21#.

Usually a master equation formalism, together with
Markovian approximation@22–24#, is used to obtain a first
order differential equation for the reduced density opera
The approximation amounts to considering the evolut
‘‘local’’ in time, that is, rS(t1dt) is assumed completel
determined byrS(t), so the evolution become intrinsicall
irreversible. In this work we do not use this approximati
and, even though a perturbative expansion is adopted,
evolution obtained remains formally reversible. In our a
proach decoherence is the relaxation occurring in the tem
ral range between the characteristic time of interaction
the Poincare´ recurrence time. This temporal range increa
as the environment gains more degrees of freedom.

In the next section we obtain a general equation for
evolution ~4! involving only the temperature-dependent co
relation functions of the bath. This result can be applied t
wide variety of situations and it provides a useful tool
show how the qubit dynamics, and in particular its decoh
ence time, is influenced by a progressive ordering of
environment.

In the second and third sections we use this result to a
lyze two particular models where phase transitions can oc
in a spin-bath environment. Treating each spin as a local
particle, we show that only thermal effects produce the
coherence, which can be reduced increasing the order pa
eter at low temperatures.

Spontaneous symmetry breaking in a system modifies
correlation properties. This effect has been widely studied
the context of quantum optics@24# or of atomic Bose-
Einstein condensation@25#, by means ofn-order coherence
functions. Here we do not investigate a bosonic environm
but a spinlike one. Furthermore, by making use of the en
ronment properties, we want to study the temporal evolut
of a two-level system inside the environment.

II. EVOLUTION OF THE REDUCED DENSITY MATRIX

Equation~4! can be directly associated with the evolutio
of the qubit operators which define the reduced density
trix. As we can see in Eq.~2!, the number of operators w
have to take is three and they can be chosen from e
independent linear combination of$Sz(t),S1(t),S2(t)%.
These operators can be considered as elements of a v
v(t) evolving with a system of differential Heisenberg equ
tions:

v̇~ t !5 ie2 iHt@v~ t !,H#eiHt, ~6!
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where the Hamiltonian is given by the general form~5!.
Here we compute Eq.~6! under the following hypothese

on the model.
~1! The Hamiltonian of the bath is separable into t

Hamiltonans of each single element,

HB5(
k

H B
k ~7!

and @H B
k ,H B

k8#50. This condition can be exactly satisfie
~for example, in a set of noninteracting spins in an exter
magnetic field!, or a mean field approximation can be intr
duced, as we will see later.

~2! HI andHS are linear with respect to the qubit oper
tors so the temporal evolution has the form

v̇~ t !5 i(
k

gkL̂k~ t !v~ t !, ~8!

where L̂(t)k is a 333 matrix whose elements can includ
time-dependent Hermitian operators that act only on thekth
element of the environment.

~3! The temporal range considered is small in comparis
to the characteristic timet;1/gk ,

gkt!1. ~9!

If the coupling between qubit and environment is weakgk is
small too, and this range becomes larger. In particular,
will study the case in whichgk}1/AN, whereN is the num-
ber of environment elements, typically very large, so that
this case the hypothesis is not restrictive. Note that the p
vious assumption prevents us from observing any perio
recoherence phenomenon, intrinsic in the Schro¨dinger evolu-
tion, but it occurs after a time longer than the effectiveness
the model.

~4! The interaction with the qubit does not affect the ev
lution of the bath, or its contribution is negligible. If a ba
operatorOB

k is given we have

@H,OB
k #.@HB ,OB

k #. ~10!

As a consequence, for a statistical bath in thermal equi
rium described by the Boltzmann distributionrB(0)
5Z21e2bHB, the mean value ofOB can be considered time
independent. From a physical point of view, small excitatio
of the bath degrees of freedom, due to the interaction w
the qubit, are expected to relax very quickly and therefore
be irrelevant for the reduced matrix evolution. In our a
proximation these excitations are completely neglect
Within this assumption the evolution is still reversible b
cause it is associated with unitary operators.

These assumptions are not very restrictive and req
only a macroscopic spinlike bath or a bosonic one linea
and weakly interacting with an external two-level syste
Equation ~6! can be formally integrated using the chron
logical T product:
7-2
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v~ t !5TFei(
k

gkE
0

t

dt1L̂k(t1)Gv~0!

5)
k

TFeigkE
0

t

dt1L̂k(t1)Gv~0!. ~11!

Here, for factorizing theT product, we used the approxima
tion (kgkL̂k(t).e2 iHBt(kgkL̂ke

iHBt arising from the condi-
tion ~8!, and the well known properties of the exponent
noncommuting operators.

Defining the quantity

V5 ln TrBH)
k

TFeigkE
0

t

dt1L̂k(t1)G J ~12!

we have

v~ t !5eVv~0!, ~13!

so we can use the third condition~9! to expand first the
exponential given by Eq.~11! and then the logarithm, up to
second order in the powers ofgk . We obtain

V.(
k

S igkmkt2
gk

2

2
t2@Ck~ t !2mk

2# D , ~14!

where

mk5
1

Z
TrB$e2bH B

k
L̂k~ t !%, ~15!

Ck~ t !5
2

t2E0

tE
0

t1
dt1dt2

1

Z
TrB$e2bH B

k
L̂k~ t1!L̂k~ t2!%

are the mean value and the first-order temporal correla
function of the matrixL̂k(t).

This approximation does not affect the trace invariance
the density matrix because it transforms Eq.~2! into rS(t)
5 1

2 1n8(V)•S, whose trace is always 1.
Now the evolution of the reduced density operator d

pends only on the statistical properties of the bath and
described by Eq.~4!. In the last part of this work we use thi
result to analyze two particular models where phase tra
tions can occur in a spin-bath environment. By treating e
spin as a localized particle@26# we show that only therma
effects produce the decoherence, which can be reduce
increasing the order parameter at low temperatures.

III. RANDOM INTERACTION WITH A SPIN BATH

As a first example we consider a simple generalization
one of the first models introduced by Zurek@4#. Here the
bath is described by a simple long-range Ising modelHB5
2(J/N)( i , jSi

zSj
z , and the coupling is scaled withN to allow

the free energy to be extensive. We assume that the q
interacts randomly with each spin of the environment and
coupling constant is taken proportional to the standard de
tion 1/AN of a Poissonian distribution. Neglecting the se
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Hamiltonian of the qubit, we have the following Hami
tonian:

H52
J

N (
i , j

Si
zSj

z2
J0

AN
Sz(

k
xkSk

z, ~16!

wherexk can assume randomly the values 1 or21.
To obtain the condition~7! we introduce a mean field

approximation for the environment,

S 1

N (
k

Sk
z2mD 2

.0, ~17!

where the order parameterm is the Sk
z mean value, to be

determinated self-consistently. Expanding Eq.~16! and re-
placing it in HB we obtain a new HamiltonianH B

cm5

22Jm(kSk
z1m2J̃N.

The order parameter can be evaluated by minimizing

free energy f 52(1/Nb)ln Tr$e2bH B
cm

% and its value is
given by the Curie-Weiss equation

m5
1

2
tanh~bJm!. ~18!

When the phase transition occurs, under the critical temp
ture Tc5J/2K, the magnetization is different from zero an
every spin is under the influence of the self-consistent m
netic field.

Consider the vector

v~ t !5S S1~ t !

S2~ t !

Sz~ t !
D . ~19!

Its evolution has the form~8!

v̇~ t !5 i(
k

J0

AN
xkSk

zS 1 0 0

0 21 0

0 0 0
D v~ t !. ~20!

We see thatSz component, relative to the population, r
mains unaltered; instead, the spin-flip operators evolve
S6(t)5r (t)S6. Here ur (t)u is the so-called correlation am
plitude and it quantifies the coherence of the qubit. Using
~14! and observing thatCk(t)5 1

4 , we obtain

ur ~ t !u2.e2J0
2t2(1/42m2). ~21!

In the temporal range given by condition~9!, we see a
Gaussian suppression of the interference terms. The deco

ence time is given bytdec51/J0A1
4 2m2. As the order pa-

rameter tends to saturate to its maximum valuem2

5 1
4 , tdec becomes larger and larger. This is a very simp

example of how a symmetry-breaking phenomenon in
environment reduces the effect of the decoherence even
7-3
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external field is applied. Now we improve the model by r
moving the very unrealistic assumption of long-range int
action between spins.

We underline that in this model the approximation~10!
has not been used because the only bath operator involv
the reduced density evolution isSk

z that exactly commutes
with HI .

That model can also be solved exactly, the result for
correlation amplitude being

ur ~ t !u25S 12~12m2!sin2
Jt

2AN
D N

, ~22!

which is a periodic function of periodT52pAN/J and
shows explicitly the reversible nature of the evolution. Ne
ertheless, such arecoherencephenomenon requires a tim
proportional toAN that is of no physical interest as soon
the environment has a macroscopic number of degree
freedom. We see that in the limit~9! the two equations~22!
and ~21! coincide.

IV. INTERACTION BETWEEN SPINS
AND A HARMONIC OSCILLATOR

Consider, as a model for the environment, a set ofN two-
level systems~TLSs! coupled, in the dipole approximation
with a unidimensional harmonic oscillator, with frequen
v. If the wavelength is larger than the spatial range wh
the TLSs are confined, the interaction does not depend on
position of the TLS inside the cavity. The level separation
m and each TLS can be described by a spin formalism. O
of these spins is selected to play the qubit rule, its le
separation beingm0. The Hamiltonian is

H5va†a2m(
k

Sk
x2g~a1a†!(

k
Sk

z

2m0Sx2g0~a1a†!Sz. ~23!

The model describes, roughly speaking, an array of Rydb
atoms interacting with a mode of the radiation field. Here
coupling constant has the formg}m/AvV, whereV is the
coherence volume of the mode and, assuming a cons
density for the atoms, is proportional toN.

The effect of the delocalized oscillator is to induce
effective long-range interaction between spins and, to m
it clear, we operate a displacement transformation by

unitary operatorD5e(g/v)(a†2a)(kSk
z
. If a phase transition

occurs the oscillator becomes strongly polarized and we
assume that

D†~a1a†!D5a1a†12
g

v (
k

Sk
z.2

g

v (
k

Sk
z . ~24!

The spin-flip operators change in

D†Sk
6D.e2(g2/2v2)Sk

6 , ~25!
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where we substitutede7(g/v)(a†2a) with its mean value in the
oscillator vacuum state. The transformation allows us
separate the contribution of the oscillator from that of t
spins; as a result we obtain a new Ising-like model for
spins:

H̃52
J

N S (
k

Sk
zD 2

2w(
k

Sk
x2m0Sx

2
J0

AN
Sz(

k
Sk

z, ~26!

whereJ5Ng2/v, J0 /AN52g0g/v, andw5me2g2/2v2
.

The mean field approximation~17! can be introduced
again, obtaining the Curie-Weiss equationQ/J
5tanh(bQ/2) for the quantityQ5Aw214m2J2. Although
the critical temperatureTc5J/2K remains the same, th
added transverse componentSk

x hampers the transition, so th
additional conditionw/J,tanh(bw/2) is required.

In the symmetry-broken phase, the resulting Hamilton

Hcm522Jm(
k

Sk
z2w(

k
Sk

x2m0Sx

2
J0

AN
Sz(

k
Sk

z ~27!

satisfies all the conditions previously required for Eq.~13! to
be valid.

It is convenient to choose, for the qubit, the vector

v~ t !5S S̃1~ t !

S̃2~ t !

Sz~ t !
D , ~28!

whereS̃6(t)5(1/A2)S6(t). Its evolution is given by

v̇~ t !

5 i(
k S J0

AN
Sk

z~ t ! 0 2
m0

NA2

0 2
J0

AN
Sk

z~ t !
m0

NA2

2
m0

NA2

m0

NA2
0

D v~ t !.

~29!

Here Sk
z(t) can be computed by introducing a vectorvk(t),

analogous to Eq.~28!, that satisfies
7-4
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u̇k~ t !5 iM uk~ t !

5 iS 2Jm 0 2
w

A2

0 22Jm
w

A2

2
w

A2

w

A2
0

D uk~ t !. ~30!

Integrating this equation, we obtainuk(t)5eiMtuk(0),
whose exponential can be exactly calculated by the recur
property for the powers ofM.

Consider the case wherem050, we have the following
expression for the correlation amplitude:

ur ~ t !u2.exp2H J0
2t2F 1

4Q2 S 4J2m21w2sinc2
Qt

2 D2m2G J
~31!

which tends to the asymptotic function~see Fig. 1!

ur as~ t !u25e2J0
2m2t2[J2/Q221]. ~32!

We can see an oscillatory behavior with periodTosc
52p/Q, caused by the precession induced byw, damped by
a Gaussian function with decoherence timetdec

5Q/J0mA(J22Q2). Again, at low temperature,Q saturates
to J and the decoherence time increases.

If m05” 0, integrating Eq.~29! becomes more laboriou
because the matrixV cannot simply be exponentiated b
analytic methods. Nevertheless, an asymptotic study of
eigenvalues, for larget, can be done and the result is iden
cal to Eq.~32!.

V. A POSSIBLE EXPERIMENT

The last example suggests a possible experiment. A lin
microcavity @27#, i.e., a plane parallel faced Fabry-Pe´rot in-
terferometer, can be used to select one mode of the ele
magnetic field interacting with an array of Rydberg ato
inside. The interaction is analogous to the superradia
model@28,29# but the problem is different because no pum
ing is needed and no spontaneous, collective emissio
studied. If the length of the cavity is one-half of the cuto
wavelength in the spectral density of the radiation, all
lower frequencies are cut off. All multiples of the fundame
tal frequency are permitted, but their contribution is neg
gible because of their small contribution to the spectrum
also because the coupling constantg becomes smaller on
increasing the frequency. So just one frequency~or a thin
band around it! is selected.

We consider a given number of atoms put in the cente
the cavity, i.e., on the wave antinode, in a spatial range s
in comparison with the selected wavelength, so that the c
pling constants can be assumed independent of the indivi
position. At the same time, the atoms must be far eno
apart to neglect the Coulomb interaction between them.
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array can be oriented both longitudinally and transvers
with respect to the cavity. In the last configuration the ava
able volume to be filled by atoms does not depend on
cavity length but only on the transverse spatial coherenc
the mode.

For a visible chaotic light spectrum, for example, a cav
of about 150 nm can be used to eliminate all the frequen
under the uv, that is, the visible cutoff. For this configurati
a lateral open cavity is needed and the mode is not perfe
confined. In addition, the short distance between the mirr
prevents us from longitudinally putting a number of atom
larger than 50–100. Working in the microwave range, a
closing the cavity in all directions, can also be convenien
completely confine the mode and to increase the numbe
atoms inside it.

A selected atom, with a different energy separation, r
resents the qubit and its state can be modified by a reso
laser pulse.

FIG. 1. Absolute value of the correlation amplitude~continuous
lines! versus the asymptotic function~dashed lines! for different
values of the ratioR5b/bc @~a! R51.25, ~b! R52.5] at fixed
values ofw/J50.5 andJ0 /J51.
7-5
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VI. CONCLUSION

The problem of decoherence of a given initial qubit, i
teracting with an environment, has been studied, relating
reduced matrix evolution to the environment correlati
functions. This situation can be found in models of quant
computers to be realized by NMR, quantum dots, or atom
an optical cavity. This approach, even if only with a me
field approximation for the environment, has the advant
of avoiding irreversible evolution as in the usual treatm
ne

c

05231
e
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with a Markovian master equation. As a consequence, de
herence is associated with a well defined temporal ran
Spontaneous symmetry breaking of the environment imp
an enhancement of coherence. This prediction can be ver
by a suitable experiment.
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