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Trade-offs in the quantum search algorithm
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~Received 19 December 2001; published 21 November 2002!

Quantum search has been proved to be the best possible algorithm for the exhaustive search problem in the
sense that the number of queries it requires cannot be reduced. However, the number of nonquery operations,
and thus the total number of operations, can be reduced. The number of nonquery unitary operations can be
reduced by a factor of logN/a log(logN) while increasing the number of queries by a factor of only@1
1(log N)2a#. For example, by choosinga to beO„log N/log (logN)…, the number of nonquery unitary opera-
tions can be reduced by 40% while increasing the number of queries by just two.
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I. INTRODUCTION

Quantum search is a quantum-mechanical technique
searchingN possibilities in onlyO(AN) steps. It has been
proved through subtle properties of unitary transformatio
that the number of queries required by the algorithm is o
mal @3,2#. This is usually expressed by saying that ‘‘th
quantum search algorithm is the best possible algorithm
exhaustive search.’’ It is true that the number of queries
quired cannot be reduced, however there is room for
provement in the total number of operations required by
algorithm. This is achieved by breaking up the nonqu
transformations into bitwise operations in a way somew
reminiscent of the techniques used to improve the sor
algorithm beyond the information theoretic limit@4#.

It is shown that by slightly increasing the number of qu
ries, the total number of operations can be reduced b
logarithmic factor. This is accomplished by making use
the amplitude amplification principle.

II. AMPLITUDE AMPLIFICATION

A few years after the invention of the quantum sea
algorithm, it was generalized to a much larger class of ap
cations known as the amplitude amplification algorithms@5#
~similar results are independently proved in@6#!. In these
algorithms, the amplitude produced in a particular state,t ~t
for target!, by a unitary operationU when applied to ans
state~s for source! can beamplifiedby successively repeat
ing the sequence of operations:Q5I sU

†I tU. Here I s and
I t denote quantum transformations that selectively invert
amplitudes in the statess andt, respectively. If we start from
the s state and repeat the operation sequenceI sU

†I tU, h
times, followed by a single repetition ofU, then the ampli-
tude in thet state becomes approximately 2hUts ~provided
huUtsu!1). Also, if we start froms and carry outp/4uUtsu
repetitions ofQ followed by a single repetition ofU, we
reach t with certainty. The quantum search algorithm is
particular case of this withU being the Walsh-Hadamar
transformation~W! and s being the 0̄ state ~the Walsh-
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Hadamard transformation is the operationH51/&@1
1

21
1#,

independently applied to each qubit in the set ofn qubits that
were being used to represent 2n states!.

The power of the amplitude amplification technique li
in the fact thatU can beanyunitary operation. Once we ca
design a unitary operation~or a sequence of unitary opera
tions! U that produces a certain amplitude in the target sta
the amplitude amplification principle gives a prescription f
amplifying this amplitude. The amount of amplification in
creases linearly with the number of repetitions ofQ and
hence the probability of detectingt goes up quadratically. Fo
many applications, this results in a square-root speed up
the equivalent classical algorithm. In this paper, we use
amplitude amplification principle for enhancing the quantu
search algorithm. This is achieved by designing a seque
of bitwise operations that produces almost the same am
tude in thet state while requiring fewer operations.

III. THE QUANTUM SEARCH ALGORITHM

As mentioned before, the quantum search algorithm
particular case of amplitude amplification with the Wals
Hadamard transformation being theU operation ands being
the 0̄ state. For anyt, uUtsu51/AN. It follows from the am-
plitude amplification principle that if we start from 0¯ and
carry outpAN/4 repetitions of2I 0̄WItW, followed by W,
we reach thet state with certainty. Equivalently:

Let N be the number of items being searched. ThenI 0̄
requires us to calculate theAND of log2 N boolean variables
which can be carried out by log2 N C2NOT operations.W
requires log2 N one-qubit operations since it requires on
one operation per qubit. Thus the total number of additio
~nonquery! qubit operations required by the algorithm
pAN/4333 log2 N while the number of queries required
pAN/4. In the following section, we show how to reduce t
number of additional~nonquery! qubit operations while
keeping the number of queries approximately the same.
©2002 The American Physical Society14-1



rm
a
th
g

s

e

or

c
r

o

in

te

n

, t
he
d
d

te

ic

e
e

t in

t the
s
ch

s

h 0.

t

e in
er-
ver-

The

ns-
ring

a-

in
d by

s

LOV K. GROVER PHYSICAL REVIEW A66, 052314 ~2002!
IV. INVERSION ABOUT AVERAGE

The quantum search algorithm was first presented
terms of theinversion about averagetransformation@1,7#.
This paper combines the inversion about average transfo
tion with the amplitude amplification technique to obtain
faster algorithm for exhaustive search. Before presenting
new algorithm, we first recall the inversion about avera
transformation.

Consider the operation sequence (2WI0̄W). This may be
written as2W(I 22u0̄&^0̄u)W or equivalently (2Wu0̄&^0̄uW
2I ). The transformationWu0̄&^0̄uW can be represented a
anN3N matrix with each entry equal to 1/N, therefore each
element of the transformed vector is equal to the averag
all elements of the initial vector, i.e., if thei th component of
the input vectorā is a i , then each component of the vect
Wu0̄&^0̄uWā is aav, whereaav[(1/N)( ia i . Hence thei th
component of the transformed vector (2Wu0̄&^0̄uW2I )ā is
equal to 2aav2a i . This may be written asaav2(a i2aav),
i.e., thei th component in the transformed vector is as mu
below the average as thei th component in the initial vecto
was above the average; i.e., this transformation is aninver-
sion about average.

As mentioned before, the quantum search algorithm c
sists of the operation sequence

This may be written as

This has the following interpretation.
~i! Wu0̄& creates a superposition with equal amplitude

each ofN states.
~ii ! I t selectively inverts the amplitude in the target sta
Next the sequence of operations~3–4! is repeatedpAN/4

times.
~iii ! (2WI0̄W). As described above, this is the inversio

about average transformation. The average amplitude (aav)
is approximately equal to the amplitude of the (N21) non-
target states. Therefore, as a result of this transformation
amplitude in the nontarget states is unaltered. Since tt
state is inverted, its amplitude is below the average. As
scribed in@1#, its amplitude changes sign and its magnitu
increases by 2aav.

~iv! I t selectively inverts the amplitude in the target sta
thus undoing the sign change in~3!. This prepares the system
for the next inversion about average operation through wh
the magnitude of the amplitude in thet state is increased.

V. PARTIAL INVERSION ABOUT AVERAGE

Assume there to ben qubits. Then as described in th
previous section,2WI0̄W does an inversion about averag
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transformation on the entire set ofN[2n states. Consider a
set that containsm of the n qubits; denote this set byS.
Define the Walsh-Hadamard transformation onS as the op-
eration H51/&@1

1
21

1#, applied to each qubit in the setS,

and denote this byW(S). Similarly define the operationI
0̄

(S)

as the selective inversion of the state in which each qubi
S is 0.

Consider the transformation2W(S)I
0̄

(S)
W(S). Its effect is

to partition the states into subsets such that in each subse
qubits that are not inSstay fixed. This transformation leave
the total probability in each subset the same—within ea
subset, aninversion about averagetransformation takes
place. In Fig. 1, the setScontains qubits 3 and 4. It partition
the state into four subsets in which the qubitsnot in the set
are fixed, e.g., in the first subset, qubits 1 and 2 are bot

The transformation2W(S)I
0̄

(S)
W(S) does an inversion abou

average separately in each of the four subsets.

VI. IMPROVED QUANTUM SEARCH ALGORITHM

The quantum search algorithm increases the amplitud
the t state through successive repetitions of selective inv
sion and inversion about average. The inversion about a
age operation increases the amplitude in thet state by an
amount equal to the average amplitude over all states.
inversion about average requires three transformations—W,
I 0̄ , andW—each of which requires log2 N qubit operations.
We show how to carry out the inversion about average tra
formations over a smaller subset of states, thus requi
fewer than log2 N qubit operations.

A. Basic U operation

As mentioned earlier in Sec. III, the amplitude amplific
tion principle requires a basic transformationU that produces
a certain transition amplitude,Uts from s to t. This can then
be iterated as in Sec. III to amplify the amplitude int.

Partition the log2 N qubits used to represent theN items
into sets ofa log2(log2 N) qubits (a.1). Since there are

FIG. 1. 2W(S)I
0̄

(S)
W(S) performs an inversion about average

each of the four subsets of states. The four subsets are define
the condition that the qubitsnot in Sstay fixed~in the above figure,
the qubits not inSare qubits 1 and 2!; e.g., in the first subset, qubit
1 and 2 are both 0.
4-2
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log2 N qubits, there will beh[ log2 N/@a log2(log2 N)# sets
~the h52 case is depicted in Fig. 2!. Define the Walsh-
Hadamard transformation on thei th set as the operationH
51/&@1

1
21
1 #, applied to each qubit in the set, and deno

this by W( i ). Similarly, define the operationI
0̄

( i )
as the selec-

tive inversion of the state in which each qubit in thei th set is
0. Consider the following transformation:

U[~2W~h!I
0̄

~h!
W~h!!I t¯~2W~ i !I

0̄

~ i !
W~ i !!

3I t¯~2W~1!I
0̄

~1!
W~1!!I tW.

When applied to theu0̄& state,U has the following effect.
~i! Wu0̄& produces a superposition with equal amplitud

in all states. After this, each application of2W( i )I
0̄

( i )
W( i ) I t

does the following.
~ii ! I t inverts the amplitude in the target state.
~iii ! 2W( i )I

0̄

( i )
W( i ) does a partialinversion about average

in each subset of states defined by the condition that the
of all qubitsnot in the i th set stays constant~as shown in Fig.
1!.

Next consider the effect of steps~ii ! and~iii ! on the subset
of states that containst. Let the amplitude of thet state be
a/AN. After step~ii !, the amplitude oft becomes2a/AN;
the amplitude of each of the other states in the subset
taining t is the same as after step~i!, i.e., 1/AN. This is
because the first (i 21) inversion about average transform
tions acts on subsets of states in which the value of thei th
qubit is constant. Hence they produce no change in the
plitude of any state in which the value of thei th qubit is
different from the value of thei th qubit in thet state.

The number of states in each subset is 2a log2(log2 N), which
is (log2 N)a. Therefore the average amplitude in thei th sub-
set of states containingt is

1

AN
2

a11

~ log2 N!aAN
.

Step~iii ! ~the partial inversion about average! increases the
amplitude int to

FIG. 2. Theinversion about averagetransformation in the stan
dard quantum search algorithm is replaced by two such operat
one that acts on the horizontal sets and the other on the vertical
05231
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Assuminga11, log2 N, the increase in amplitude oft
due to~ii ! and ~iii ! is at least

2S 1

AN
2

1

~ log2 N!a21AN
D .

Therefore in theh repetitions of~ii ! and~iii ! the amplitude of
t increases by at least

2hS 1

AN
2

1

~ log2 N!a21AN
D .

The operationU described by~i!, ~ii !, and ~iii ! above
forms the building block for the amplitude amplification a
gorithm described in the following section.

B. Amplitude amplification

As described in the analysis above, the composite op
tion U when applied tou0̄& produces an amplitude of at lea

1

AN
F2hS 12

1

~ log2 N!a21D 11G
in t. Therefore, by the amplitude amplification principle,

pAN

4

1

2hS 12
1

~ log2 N!a21D11

repetitions of theI sU
†I tU operation sequence followed by

single application ofU will concentrate the amplitude in th
t state.

Note thatU† consists of the same operations asU but in
the opposite order,

U†[WIt~2W~1!I
0̄

~1!
W~1!!¯I t~2W~ i !I

0̄

~ i !
W~ i !!

3¯I t~2W~h!I
0̄

~h!
W~h!!.

C. Analysis

Each application ofU requiresh queries. Therefore, in
each application ofI sU

†I tU there are (2h11) queries. Ne-
glecting the single application ofU at the end, it follows that
the total number of queries is

~2h11!3
pAN

4

1

2hS 12
1

~ log2 N!a21D11

,

which is less than

s,
ts.
4-3
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pAN

4

1

S 12
1

~ log2 N!a21D .

The total number of applications ofU in the algorithm is

23
pAN

4

1

2hS 12
1

~ log2 N!a21D11

~as before, neglecting the single application ofU at the end!.
The number of additional~nonquery! qubit operations re-
quired in each application of U is log2 N133h
3a log2(log2 N), which is equal to 4 log2 N. The total number
of additional ~nonquery! qubit operations due to theU and
U† hence becomes

2pAN log2 N

2hS 12
1

~ log2 N!a21D11

.

In addition there are

pAN

4

1

2hS 12
1

~ log2 N!a21D11

I s

operations each of which requires log2 N operations. There-
fore, the total number of additional~nonquery! qubit opera-
tions required is

2pAN log2 N

2hS 12
1

~ log2 N!a21D11

3
9

8
.

This is less than9
8 paAN log2(log2 N) provideda>2.

VII. COMPARISON

The quantum search algorithm needspAN/4 queries and
(3pAN log2 N)/4 additional ~nonquery! qubit operations.
The algorithm of the previous section needs fewer than

pAN

4

1

S 12
1

~ log2 N!a21D
queries and fewer than

9
8 paAN log2~ log2 N!5~9pAN log2 N!/8h

additional ~nonquery! qubit operations~provided a>2).
Note that the ratio of the additional~nonquery! qubit opera-
tions required by the two algorithms is 3/2h.
05231
A. Smallest increase in the number of queries

In case (a21) is log2 N/2 log2(log2 N), then the number
of queries required by the improved algorithm is less tha

pAN

4

1

S 12
1

AN
D ,

i.e., the increase in the number of queries as compared to
required by the standard quantum search algorithm seem
be less than one. However, this is only suggestive since
eral other effects become significant whena becomes this
large „and thereforeh, the number of sets of qubits, whic
was log2 N/@a log2(log2 N)#, becomes small…. In fact, the
smallest value forh is 2. We analyze this case separate
below.

This is perhaps the simplest example of the partial inv
sion about average. The qubits are partitioned into two s
with 1

2 logN qubits in each set. Then the basicU operation is
the following:

U[~2W~2!I
0̄

~2!
W~2!!I t~2W~1!I

0̄

~1!
W~1!!I tW.

A simple analysis shows that the amplitude in thet state
after applying U to the 0 state~which is Uts) becomes
(5/AN)2(12/N)1O(1/N1.5). An amplitude amplification as
described previously in this paper will now amplify this am
plitude.

To compare this to the standard quantum search a
rithm, observe that the standard quantum search algorith
obtained by takingU to be as follows:

U[~2WI0̄W!I t~2WI0̄W!I tW.

This produces aUts of 5/AN1O(1/N1.5). Since the num-
ber of queries is known to be proportional toUts , the num-
ber of additional queries required by the new algorithm
obtained by scaling the queries required by the stand
quantum search. This gives the number of additional que
as approximately (pAN/4)3(12/5AN).2. Note that such a
small increase in the number of queries is not likely to
significant since it would typically take the quantum sear
algorithmpAN/46O(1) queries to go from an approximat
to the exact solution.

The number of additional~nonquery! qubit operations re-
quired can be compared to the standard quantum searc
comparing the twoU operations. Assuming eachW and I 0̄
need twice the number of operations as compared
W(1),W(2),I

0̄

(1)
,I

0̄

(2)
, it follows that the new algorithm will

need only 3
5 as many operations as compared to stand

quantum searching@1,8#.

B. Minimizing the total number of operations

If we permit a very slight increase in the number of qu
ries, the number of additional unitary operations and he
the total number of operations can be significantly reduc
4-4
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Assume that each query requiresK log2 N qubit opera-
tions, whereK is order 1. This is plausible since the query
a function of log2 N qubits and thus would needO(log2 N)
steps to evaluate. The total number of qubit operation
hence approximately

K log2 N
pAN

4

1

S 12
1

~ log2 N!a21D 1
9

8
paAN log2~ log2 N!

'K log2 N
pAN

4 S 11
1

~ log2 N!a21D
1

9

8
paAN log2~ log2 N!.

Differentiating with respect toa and setting the derivative to
zero gives the condition

2K log2 N
pAN

4

loge~ log2 N!

~ log2 N!a21 1
9

8
pAN log2~ log2 N!50.

This gives (log2 N)a225(K loge2)/4. Substituting in the ex-
pression for the total number of operations gives

pAN

4
K log2 N1

pAN

loge 2
1

9

8
pAN log2~ log2 N!

1pAN log2

K loge 2

4

'
pAN

4
K log2 N1

9

8
pAN log2~ log2 N!.
n

ci

05231
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In comparison, the standard quantum search algorithm
quires

pAN

4
K log2 N1

3pAN log2 N

4

qubit operations. Therefore the number of additional tw
qubit operations has been reduced by a factor
log2 N/@3 log2(log2 N)#.

VIII. CONCLUSION

There have been several extensions of the quantum se
algorithm. This is the first improvement of the quantu
search algorithm for the original exhaustive search proble
In addition, there have been several applications of the a
rithm to problems not immediately related to searching~e.g.,
optical interferometry!. Even for quantum searching, the
have been implementations that relied on the unitary na
of quantum information and the phase inversion could
carried out in a single step. It is hoped that future resea
will extend the framework of this paper to these situation
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