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Trade-offs in the quantum search algorithm
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Quantum search has been proved to be the best possible algorithm for the exhaustive search problem in the
sense that the number of queries it requires cannot be reduced. However, the number of nonquery operations,
and thus the total number of operations, can be reduced. The number of nonquery unitary operations can be
reduced by a factor of loly/alog(logN) while increasing the number of queries by a factor of oly
+(logN)~“]. For example, by choosing to be O(log N/log (logN)), the number of nonquery unitary opera-
tions can be reduced by 40% while increasing the number of queries by just two.
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. INTRODUCTION Hadamard transformation is the operatibin=1~72[1 _1],
independently applied to each qubit in the sehqjubits that
Quantum search is a quantum-mechanical technique fowere being used to represerit &ates.
searchingN possibilities in onlyO(y/N) steps. It has been The power of the amplitude amplification technique lies
proved through subtle properties of unitary transformationsn the fact thatU can beany unitary operation. Once we can
that the number of queries required by the algorithm is opti-design a unitary operatiofor a sequence of unitary opera-
mal [3,2]. This is usually expressed by saying that “the tions) U that produces a certain amplitude in the target state,
guantum search algorithm is the best possible algorithm fothe amplitude amplification principle gives a prescription for
exhaustive search.” It is true that the number of queries reamplifying this amplitude. The amount of amplification in-
quired cannot be reduced, however there is room for im¢reases linearly with the number of repetitions @fand
provement in the total number of operations required by thdience the probability of detectiiggoes up quadratically. For
algorithm. This is achieved by breaking up the nonquerymany applications, this results in a square-root speed up over
transformations into bitwise operations in a way somewhathe equivalent classical algorithm. In this paper, we use the
reminiscent of the techniques used to improve the sortingmplitude amplification principle for enhancing the quantum
algorithm beyond the information theoretic linfi]. search algorithm. This is achieved by designing a sequence
It is shown that by slightly increasing the number of que-of bitwise operations that produces almost the same ampli-
ries, the total number of operations can be reduced by #ude in thet state while requiring fewer operations.
logarithmic factor. This is accomplished by making use of
the amplitude amplification principle. lIl. THE QUANTUM SEARCH ALGORITHM
As mentioned before, the quantum search algorithm is a
Il. AMPLITUDE AMPLIFICATION particular case of amplitude amplification with the Walsh-
) ) Hadamard transformation being thleoperation and being
A few years after the invention of the quantum searchy, o' qtate For any, |U.|=1/YN. It follows from the am-
algorithm, it was generalized to a much larger class of appli- . e S . —
cations known as the amplitude amplification algoritHiis plitude amplification pr!nmple that if we start from and
(similar results are independently proved [8]). In these C&y out N/4 repetitions of—1,WI,W, followed by W,
algorithms, the amplitude produced in a particular state, W€ réach the state with certainty. Equivalently:
for targe}, by a unitary operatio’d when applied to ars _
state(s for source can beamplifiedby successively repeat- ~ W(=IWILW)---(=IgWIL,W)(=IgWIW)(—IcWI,W)|0)=|r).
ing the sequence of operationsQ=1.,U'I,U. Herel, and

I; denote quantum transformations that selectively invert the 7N "

amplitudes in the statesandt, respectively. If we start from 4 repetitions

the s state and repeat the operation sequenté'l,U, #

times, followed by a single repetition &f, then the ampli- Let N be the number of items being searched. Thgn

tude in thet state becomes approximately;@ (provided  requires us to calculate thnb of log, N boolean variables
7|Us/<1). Also, if we start froms and carry outm/4/Us]  which can be carried out by lgd) CZZNOT operations.W
repetitions ofQ followed by a single repetition o), we  requires logN one-qubit operations since it requires only
reacht with certainty. The quantum search algorithm is aone operation per qubit. Thus the total number of additional
particular case of this withJ being the Walsh-Hadamard (nonquery qubit operations required by the algorithm is
transformation(W) and s being the O state (the Walsh- mN/4x 3% log, N while the number of queries required is
m+N/4. In the following section, we show how to reduce the
number of additional(nonquery qubit operations while
*Email address: lkgrover@bell-labs.com keeping the number of queries approximately the same.
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IV. INVERSION ABOUT AVERAGE Qubits 3 & 4 Qubits 3 & 4
. i . M W
The quantum search algorithm was first presented in HE " H

terms of theinversion about averagé&ansformation[1,7]. " Qﬁ) M

This paper combines the inversion about average transforma J— —werswe) S I
tion with the amplitude amplification technique to obtain a N Q\L_D m N 3

faster algorithm for exhaustive search. Before presenting the — +# @ \u @

new algorithm, we first recall the inversion about average T T > W 4T T T

transformation. Qubits 1 & 2 Qubits 1 & 2
Consider the operation sequenceW I,W). This may be

written as—W(I —2|0)(0|)W or equivalently (2V|0){0|W

—1). The transformatioiW|0)(0|W can be represented as  FIG. 1. —VV(S)I(ES)VV(S) performs an inversion about average in

anNXx N matrix with each entry equal toll/ therefore each each of the four subsets of states. The four subsets are defined by

element of the transformed vector is equal to the average ahe condition that the qubitsotin Sstay fixed(in the above figure,

all elements of the initial vector, i.e., if tHéh component of  the qubits not irSare qubits 1 and)2e.g., in the first subset, qubits

the input vectora is «;, then each component of the vector 1 and 2 are both 0.

W|0)(0|Wea is a,,, Wherea,=(1/N)Z,«;. Hence theth

component of the transformed vectorW2)(0|W—1)a'is  transformation on the entire set N=2" states. Consider a
equal to Zv,,—a;. This may be written as,—(ai—aa),  set that containsn of the n qubits; denote this set b$

i.e., theith component in the transformed vector is as muchpefine the Walsh-Hadamard transformation ®as the op-
below the average as thﬂeh component in the initial vector erationH=1/2[} 1], applied to each qubit in the s&
was above the average; i.e., this transformation isngar-

Set S contains qubits 3 & 4

sion about average and denote this byv®. Similarly define the operatiorﬁs)
As mentioned before, the quantum search algorithm conas the selective inversion of the state in which each qubit in
sists of the operation sequence Sis 0.
W(—IGWIW)---(—IgWI,W)(—IgWI,W)(— IgWI,W)|0). Consider the transformation W(S)I(ES)W(S). Its effect is
to partition the states into subsets such that in each subset the
q-r\/ﬁ qubits that are not ii$ stay fixed. This transformation leaves
4 repetitions the total probability in each subset the same—within each
) ] subset, aninversion about averagdransformation takes
This may be written as place. In Fig. 1, the s& contains qubits 3 and 4. It partitions
(—WIGW)I - (—WIZW)I, (— WIGW)I,W|0). the state into four subsets in which the qubitst in the set
are fixed, e.g., in the first subset, qubits 1 and 2 are both 0.
N The transformation—W(S)I(ES)W(S) does an inversion about
4 repetitions average separately in each of the four subsets.

This has the following interpretation.

(i) W|0) creates a superposition with equal amplitude in v, IMPROVED QUANTUM SEARCH ALGORITHM
each ofN states.

(i) 1, selectively inverts the amplitude in the target state. The quantum search algorithm increases the amplitude in
Next the sequence of operatiof®-4) is repeated-r\/ﬁm the t state through successive repetitions of selective inver-
times. sion and inversion about average. The inversion about aver-
(i) (—WIW). As described above, this is the inversion age operation increases the amplitude in tretate by an
about average transformation. The average amplitugg) (  amount equal to the average amplitude over all states. The
is approximately equal to the amplitude of tHé-{1) non-  inversion about average requires three transformatioffs—
target states. Therefore, as a result of this transformation, thg, andW—each of which requires IgdN qubit operations.
amplitude in the nontarget states is unaltered. Sincet the We show how to carry out the inversion about average trans-
state is inverted, its amplitude is below the average. As deformations over a smaller subset of states, thus requiring
scribed in[1], its amplitude changes sign and its magnitudefewer than logN qubit operations.
increases by @,,.
(iv) I selectively inverts the amplitude in the target state
thus undoing the sign change(i). This prepares the system A. Basic U operation
for the next inversion about average operation through which  A¢ mentioned earlier in Sec. 11, the amplitude amplifica-

the magnitude of the amplitude in thestate is increased. o principle requires a basic transformatidrthat produces
a certain transition amplitudé),s from sto t. This can then
be iterated as in Sec. lll to amplify the amplitudetin
Assume there to b@& qubits. Then as described in the  Partition the logN qubits used to represent tieitems
previous section;- WIGW does an inversion about average into sets of« log,(log, N) qubits (@>1). Since there are

V. PARTIAL INVERSION ABOUT AVERAGE
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FIG. 2. Theinversion about averaggansformation in the stan-

dard quantum search algorithm is replaced by two such operations,
one that acts on the horizontal sets and the other on the vertical sets.

log, N qubits, there will bep=log, N/[alog,(log, N)] sets
(the =2 case is depicted in Fig.)2Define the Walsh-
Hadamard transformation on thth set as the operatioH

=1n2[11,], applied to each qubit in the set, and denote

this by W), Similarly, define the operatiotg) as the selec-

tive inversion of the state in which each qubit in illle set is
0. Consider the following transformation:

UE(—\/\/(??)|(67/)W(7]))|t. "(_W(i)|%)W(i))
Xlt---(_W<l)|(al)W(1))|tW_

When applied to th¢6) state,U has the following effect.

in all states. After this, each application ef\N(‘)Ié—i)W(‘) I
does the following.
(i) 1, inverts the amplitude in the target state.

(iii) —W(i)lé—i)w(i) does a partiainversion about average
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a 1 a+1l

— 2| =+ —F=
VN LN (log, N)#YN

Assuminga+ 1<log, N, the increase in amplitude df
due to(ii) and(iii) is at least

1

1
W (log;N)* 1N

Therefore in they repetitions of(ii) and(iii ) the amplitude of
t increases by at least

2

1 1
2 )
”(m (IogzNWJN)
The operationU described by(i), (ii), and (iii) above

forms the building block for the amplitude amplification al-
gorithm described in the following section.

B. Amplitude amplification

As described in the analysis above, the composite opera-
tion U when applied td0) produces an amplitude of at least

1

VN

1
2yl 1———— | +1
’7( <IogZN>“)

in t. Therefore, by the amplitude amplification principle,
(i) W|6> produces a superposition with equal amplitudes

Tl'\/ﬁ 1

1
27’( 1= logN)* T

+1

. T B
in each subset of states defined by the condition that the stafP€titions of thd U 'I,U operation sequence followed by a

of all qubitsnotin theith set stays constarfas shown in Fig.
1).

Next consider the effect of stefig) and(iii) on the subset
of states that containts Let the amplitude of the state be
a/\N. After step(ii), the amplitude oft becomes—a/\/N;

the amplitude of each of the other states in the subset con-

taining t is the same as after stdf), i.e., 1A/N. This is

because the first (1) inversion about average transforma-

tions acts on subsets of states in which the value ofitine

single application ofJ will concentrate the amplitude in the
t state.

Note thatU" consists of the same operationsladut in

the opposite order,

UT=WI(—WOTEPWD)- o (= Wi i)

><...|t(_W(7l)|(a77)W(77))_

qubit is constant. Hence they produce no change in the am-

plitude of any state in which the value of thth qubit is
different from the value of théth qubit in thet state.

The number of states in each subset1¢°20°%2N  which
is (log, N)*. Therefore the average amplitude in ftie sub-
set of states containingis

1 atl
N (log; N)*yN’

Step(iii) (the partial inversion about averggacreases the
amplitude int to

C. Analysis
Each application olU requiresn queries. Therefore, in

each application ofUI,U there are (2)+ 1) queries. Ne-
glecting the single application &f at the end, it follows that
the total number of queries is

7N
(2np+1)X 7 1
29| 1— ——1

which is less than
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’lT\/N 1

" g
1= logNy= T

The total number of applications &f in the algorithm is

'n'\/ﬁ 1

2X
+1

1
2”( 1= log )= T

(as before, neglecting the single applicatiorloét the endl
The number of additiona(nonquery qubit operations re-
quired in each application ofU is logN+3X7y
X alog,(log, N), which is equal to 4 logN. The total number
of additional (nonquery qubit operations due to thd and
UT hence becomes

277\/Nlogz N
1
(logo N)*~*

27 1—- +1

In addition there are
W\/N 1

1
2’7( 1= log N)* T

s

+1

operations each of which requires jd¢ operations. There-
fore, the total number of addition@honquery qubit opera-
tions required is

2mNlog, N 9

1
2’7( 1~ llog, N)“) “

This is less tharg 7a N log,(log, N) provideda=2.

VII. COMPARISON

The quantum search algorithm needgN/4 queries and
(37N log,N)/4 additional (nonquery qubit operations.
The algorithm of the previous section needs fewer than

W\/N 1

4

- o]
(logo N)*~*
gueries and fewer than
smaN logy(log, N)= (97N log, N)/87
additional (nonquery qubit operations(provided a=2).

Note that the ratio of the additionahonquery qubit opera-
tions required by the two algorithms is 3/2

PHYSICAL REVIEW A66, 052314 (2002

A. Smallest increase in the number of queries

In case @—1) is log, N/2log,(log, N), then the number
of queries required by the improved algorithm is less than

W\/N 1

4 1
1__

NN

i.e., the increase in the number of queries as compared to that
required by the standard quantum search algorithm seems to
be less than one. However, this is only suggestive since sev-
eral other effects become significant wherbecomes this
large (and thereforey, the number of sets of qubits, which
was log N/[alog,(log, N)], becomes small In fact, the
smallest value fory is 2. We analyze this case separately
below.

This is perhaps the simplest example of the partial inver-
sion about average. The qubits are partitioned into two sets
with 3 log N qubits in each set. Then the baslmperation is
the following:

U= (= WTEPW) 1 (— WO W) [,

A simple analysis shows that the amplitude in thetate
after applyingU to the O state(which is U,s) becomes
(5/\/N) — (12IN) + O(1/N*9). An amplitude amplification as
described previously in this paper will now amplify this am-
plitude.

To compare this to the standard quantum search algo-
rithm, observe that the standard quantum search algorithm is
obtained by takindJ to be as follows:

U=(—WIgW)l,(—WIgW)I,W.

This produces &, of 5//N+ O(1/N*9. Since the num-
ber of queries is known to be proportionaltys, the num-
ber of additional queries required by the new algorithm is
obtained by scaling the queries required by the standard
quantum search. This gives the number of additional queries
as approximately 4+/N/4)x (12/5/N)=2. Note that such a
small increase in the number of queries is not likely to be
significant since it would typically take the quantum search
algorithm 7y/N/4=O(1) queries to go from an approximate
to the exact solution.

The number of additionghonquery qubit operations re-
quired can be compared to the standard quantum search by
comparing the twdJ operations. Assuming eadlV and Iy
need twice the number of operations as compared to

W(l),W(Z),I(El) ,I(EZ), it follows that the new algorithm will
need only¥ as many operations as compared to standard
guantum searchinfl,8].

B. Minimizing the total number of operations

If we permit a very slight increase in the number of que-
ries, the number of additional unitary operations and hence
the total number of operations can be significantly reduced.
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Assume that each query requirslog, N qubit opera- In comparison, the standard quantum search algorithm re-
tions, whereK is order 1. This is plausible since the query is quires
a function of log N qubits and thus would need(log, N)
steps to evaluate. The total number of qubit operations is

hence approximately N 377\/N|og2 N
—KI 0g, N
7N 1 9
K log, N N + = 7aN log,(log, N)
4 ( 1 ) 8
(logy N)*~* qubit operations. Therefore the number of additional two-
qubit operations has been reduced by a factor of
logpNTIN (14 % l0g; N/[3l0g,(log; N)]
TSR log Ny T ’ o
9
+3 maN log,(log, N). VIil. CONCLUSION
Differentiating with respect tar and setting the derivative to There have been several extensions of the quantum search
zero gives the condition algorithm. This is the first improvement of the quantum
search algorithm for the original exhaustive search problem.

7N loge(log; N)

277('092 logy N)=0 In addition, there have been several applications of the algo-
4 (log N)*~* '

rithm to problems not immediately related to searchiag.,
optical interferometry. Even for quantum searching, there
have been implementations that relied on the unitary nature
of quantum information and the phase inversion could be

—Klog, N

This gives (logN)* ?=(K log, 2)/4. Substituting in the ex-
pression for the total number of operations gives

N /N 9 carried out in a single step. It is hoped that future research
- Klog, N+ 00,2 + 3 N log,(log, N) will extend the framework of this paper to these situations.
e
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