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Entanglement required in achieving entanglement-assisted channel capacities

Garry Bowen*
Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

~Received 22 May 2002; published 21 November 2002!

Entanglement shared between the two ends of a quantum-communication channel has been shown to be a
useful resource in increasing both the quantum and classical capacities for these channels. The entanglement-
assisted capacities were derived assuming an unlimited amount of shared entanglement per channel use. In this
paper, bounds are derived on the minimum amount of entanglement required per use of a channel, in order to
asymptotically achieve the capacity. This is achieved by introducing a class of entanglement-assisted quantum
codes. Codes for classes of qubit channels are shown to achieve the quantum entanglement-assisted channel
capacity when an amount of shared entanglement per channel given by,E Q

Random>12QE , is provided. It is also
shown that for very noisy channels, as the capacities become small, the amount of required entanglement
converges for the classical and quantum capacities.

DOI: 10.1103/PhysRevA.66.052313 PACS number~s!: 03.67.Hk, 03.65.Ud, 89.70.1c
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I. INTRODUCTION

Quantum-information theory is a generalization of t
classical theory of information transmission and process
where the encoding of information into a quantum system
taken into account@1#. The quantum phenomenon of e
tanglement, when utilized in quantum-information theory,
lows for uniquely quantum phenomena, such as quan
dense coding@2# and quantum teleportation@3#. Dense cod-
ing was the first demonstration that entanglement could
crease the classical communication capacity of a noise
quantum channel by encoding twice as much informat
than would be possible without shared entanglement. T
protocol required the use of one maximally entangled bip
tite system, shared by sender and receiver, per use o
noiseless channel.

If the two ends of a quantum channel share unlimi
prior entanglement, then the quantum capacities of the ch
nel are known exactly@4,5#. The entanglement-assisted cla
sical capacity of a channel,L, is given by,

CE5max
r

@S~r!1S~Lr!2S„~I^ L!uf&^fu…#, ~1!

where uf& is any purification ofr, andS(r) the von Neu-
mann entropy of the stater, given by, S(r)5Trr log2 r.
Traditionally the logarithm is taken to be base 2, giving t
information inbits. The equation is the analog of Shannon
equation for the classical information capacity of a no
classical channel@6#. The term on the right-hand side of E
~1! has previously been labeled as the von Neumann capa
of a quantum channel, and properties such as additivity h
been shown to hold@7#. It is known that if the maximum is
obtained forr5(1/d)I, for a d-dimensional channel, the
dense coding suffices to obtain the given capacity.

*Electronic address: g.bowen@qubit.org
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The entanglement-assisted quantum-information capa
for a channel is related to the classical quantity in Eq.~1!, by
@4#,

QE5
1

2
CE , ~2!

and the capacity is given inqubits. The equality is derived by
utilizing teleportation and dense coding to give a low
bound toCE of 2QE , and then boundQE from below by
1
2 CE .

In this paper, we examine whether the capacities in E
~1! and ~2! can be achieved if the shared entanglement
channel is restricted to a predetermined amount, 0,E,`,
per use of the channel. We assume that the amount of
tanglement is determined by sharingm copies of a maxi-
mally entangled state, pern copies of the channel, with
m/n→E asn→`. Shared pure entangled states that are n
maximally entangled can be converted to maximally e
tangled states with an equivalent amount of entanglemen
the asymptotic limit with vanishing amounts of classic
communication@8#, and can therefore be considered equiv
lent. The question of whether the distillable entanglemen
shared mixed entangled resources is interconvertable
vanishing classical communication in the asymptotic limit
yet to be determined. The two quantities of interest are the
fore the minimal amounts of shared entanglement requ
per channel in order to achieve the entanglement assi
channel capacities in the asymptotic limit. These quanti
are denoted byEC and EQ , for the classical and quantum
requirements, respectively, and are defined as the li
lim

n→`
inf$E:RE5R`%, whereRE is the channel capacity at

tainable with an amount of shared entanglement per cha
equal toE.

An upper bound on the entanglement required is obtai
by introducing a class of entanglement-assisted quan
codes. These codes are based on the stabilizer forma
with the exception that the ancillas used to encode the s
are replaced by shared maximally entangled states. The
©2002 The American Physical Society13-1
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amination of these entangled quantum codes may also
insight into the behavior of degenerate as well as nondeg
erate quantum codes. The introduction of degeneracy
entanglement-assisted codes acts to give a lower boun
the capacity of a channel without entanglement.

II. QUANTUM ERROR-CORRECTING CODES

Quantum states may be protected against decoherenc
encoding the state in a larger Hilbert space, thereby crea
redundancy in the states that is resistant to noise. The th
of such quantum error-correcting codes is a rapidly grow
area of research@9–21#. The standard method of encodin
involves introducing many ancilla quantum states in a kno
preparation.

A quantum code works by embedding a state in a s
space of a larger Hilbert space, that is invariant under
encoding and decoding operations. A binary quantum cod
designated by three parameters@n,k,d#, wherek logical qu-
bits are encoded inn physical qubits, and the code has
distanced, which means the code can correctt5 1

2 (d21)
errors at unknown locations in the code block. This me
when expanded in terms of error operatorsE, a t error cor-
recting code reverses all errorsE that have weightt or less.

For codewordsu i &,u j & and errorsEa ,Eb , it is necessary
that,

^ i uEa
†Ebu j &50, ~3!

for iÞ j , otherwise the errorEa on u i & is indistinguishable
from the errorEb on u j &, and we would not know which
error to correct for. In the case ofnondegeneratequantum
codes, a sufficient condition is also,

^ i uEa
†Ebu j &5dabd i j , ~4!

so each error takes the code subspace to mutually orthog
error subspacesHa5EaHcode. For degeneratequantum
codes the sufficient condition becomes,

^ i uEa
†Ebu j &5Mbad i j , ~5!

whereMba5^ i uEb
†Eau i & is a Hermitian matrix.

A number of bounds exist for codes, including the qua
tum Hamming bound and quantum Gilbert-Varsham
bound @11#, the no-cloning bound@22,23#, the quantum
Singleton bound@15#, and the Rains bound@24#. The quan-
tum Hamming bound only applies for nondegenerate qu
tum codes, whereas the quantum Singleton bound and
Rains shadow enumerator bound both apply to degene
and nondegenerate codes. The linear programming boun
plies by converting any additive quantum code to a class
code overGF(4) @14#.

A. Additive quantum codes

Additive quantum codes~or stabilizer codes! are obtained
by utilizing the group structure of the set of errors acting
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the Hilbert space in which the state is encoded@25#. Using
random stabilizer codes it has been shown that there e
codes that achieve rates arbitrarily close to the nondegene
quantum Hamming bound in the asymptotic limit.

For a groupG acting on a Hilbert spaceH, the stabilizer
of an element of the space,sPH, denoted byS, is the set of
elements inG for which s is an eigenvector of eigenvalue 1
under the action ofS. In the case of stabilizer codes on q
bits, the group in question is referred to as the Pauli gro
Gn , and consists of then-tensor products of the Pauli matr
ces. To make the group easier to deal with we assumeX
5sx , Y52 isy , andZ5sz , which gives,XY5Z. For the
group to be closed, we must include the element21, the
negative of the identity. However, this acts trivially on th
quantum states, as it simply takes,au0&1bu1&→2au0&
2bu1&, which is the same state modulo the phase. Hen
taking the subgroupH5$61%, we can actually assume fo
the most part we are working with the group modulo t
signs,Gn /H, with the major exception being the determin
tion whether elementscommute or anticommute. Since,
(2g)h5h(2g), if g andh commute~similarly for anticom-
mutation!, we can generally say thatg and h commute or
anticommute~in Gn) whilst considering the group of error
as a subset ofGn /H.

If we take our codespace to be a basis of the stabili
Hilbert spaceHS , for an Abelian subgroupS of Gn , then it
is easy to see that these codewords are unaffected by
error contained inS. Hence, we have a degeneracy in t
code for the errors inS, these errors do nothing. The set
errors,EPGn , that commute withS, that is,gE5Eg, for all
gPS, is known as the centralizer ofS in Gn and denoted
Z(S). In the case of the error groupGn , there exists an
equivalence between the centralizer and normalizer,N(S), of
the subgroupS, that is, Z(S)5N(S) @1#. Elements of the
normalizer not in the stabilizer,N(S)\S, give all the errors
that result in a logical error on the encoded qubits, which c
be seen by the fact thatg(Euc&)5Eguc&5Euc& for all g
PS anduc& in HS , and henceEuc& is in the codespace ofS.

For all the errors that anticommute with at least one e
ment of the stabilizer, then,

^ i uFu j &5^ i uFEu j &52^ i uEFu j &50, ~6!

for E in the stabilizer, andFPGn\N(S), and the errorF
takes the codewords to subspaces orthogonal to the code
space. The act of~complete! decoding gives a map,k:Gn
→N(S), as it takes all the errors which map the code su
space to orthogonal spaces back to the code subspace
map from the logical errors to the decoded qubits,f:N(S)
→Gk , is then a homomorphism, whereGk is the group of
errors on the message qubits. Hence,uN(S)u5uGkuuSu
54kuSu, and the errors inN(S) are divided into 4k cosets of
equal size, with each coset of errors corresponding to on
the 4k logical errors.

The error correction mapk is determined by choice of the
particular inverse maph21 that takes a nondegenerate err
subspace back to the code space. We can choose the ba
the error subspace,$uk̃E&%, for a particular errorh, such that
3-2



e
t

pi
nc

,
e

te
ar

in
f

cil
le
e
a
g
si

re
o
h

th
at
-

th
i
s
fl

co
po
in
e
e
th
n

the
that

or-

The
-

ted
p-
two

d by

or a

n of
the
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huk̃&5uk̃E&, which gives all the other errors that map th
code space to this error space a grouping according to
logical error in this basis. Supposes is an element of the
stabilizer, thenh5hs on the code space, and hencek(hs)
acts as the identity on the code subspace. A similar map
occurs for all the logical errors on the code subspace. He
under the mappingkh21, if gPN(S)>g8PGk then hg
>g8PGk . SincehN(S) is a coset ofN(S) in Gn , then the
mapf+k:Gn→Gk , dividesGn up into 4k sets of equal size
with all the members of each set corresponding to a differ
logical error.

In summary, a complete error correction scheme de
mines a mapk, which we choose to correct a particul
member of each coset ofN(S), which in turn corrects all
members of the image ofS in that coset. Obviously we
would like this set to contain the typical errors contained
the given coset ofN(S). A diagrammatic representation o
this for a single encoded qubit is shown in Fig. 1.

III. ENTANGLEMENT-ASSISTED CODES
By utilizing part of bipartite entangled states as the an

las used in coding, the encoder and decoder may be ab
create correlations between the encoded state and the r
ence states held by the receiver. These correlations enh
the ability of the receiver to decode the state without a lo
cal error on the encoded states, thereby possibly increa
the quantum and classical capacities of a noisy channel.

A. A simple entanglement-assisted code

The simplest quantum error correcting code is the th
qubit-repetition code, which encodes a single qubit, and c
rects against a single bit flip on any of the three qubits. T
qubit is encoded by using a controlled-NOT gate~CNOT! on
the state with each of the two ancilla qubits. By adjusting
encoding procedure to use half of maximally entangled st
uC1&AB5(1/A2)(u00&1u11&), instead of the pure state an
cillas, and encoding the pure state,uf&A5au0&1bu1&, we
obtain the codeword,

uF&&5
a

2
~ u000&Au00&B1u001&Au01&B1u010&Au10&B

1u011&Au11&B)1
b

2
~ u111&Au00&B1u110&Au01&B

1u101&Au10&B1u100&Au11&B), ~7!

which can easily be seen to correct a single bit flip on
first three qubits of the codeword. However, in addition,
any combination of the second and third qubits undergoe
phase flip, then these errors are also correctable. For bit
errors, we can see that the structure of the entanglement
depends on the labels attributable to the nontransmitted
tion of the codewords, and we essentially break the cod
subspaces down to a classical (3,1,3) code for these lab
spaces. If we look at the stabilizer formalism for the thre
qubit repetition code, we can see that the elements of
stabilizer act on the code space to take it to an orthogo
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subspace by flipping the phases of the components of
logical zero and one. For each of the codewords we see
the phases change as

111→1111, ~8!

Z1Z→1212, ~9!

1ZZ→1221, ~10!

ZZ1→1122. ~11!

However, the code in the example is not a single error c
recting,t51, code as the single qubit errorZ11 is a logical
error on the codeword, and hence cannot be corrected.
obvious candidate for ak51 single error-correcting en
tangled code is the five-qubitk51 single error-correcting
code @26#. The codewords for this code can be genera
using a pair of entangled ancillas using a local unitary o
eration on the encoded state and the local halves of the
entangled states. The unitary transformation is determine
the change of basis,

u000&→u000&2u011&1u101&2u110&,

u001&→u001&1u010&2u100&2u111&,

u010&→2u001&1u010&1u100&2u111&,

u011&→2~ u000&1u011&1u101&1u110&),

u100&→2~ u001&1u010&1u100&1u111&),

u101&→2u000&1u011&1u101&2u110&,

u110&→2u000&2u011&1u101&1u110&,

u111&→2u001&1u010&2u100&1u111&, ~12!

FIG. 1. Representation of the stabilizer and coset structure f
single encoded qubit. The stabilizerS, and logical errorsX,Y, and
Z, form the normalizer of the stabilizer~enclosed in the box!. From
each coset of the normalizerN(S), a single coset of the stabilizerS
may be mapped back to the stabilizer, representing a correctio
the errors in that coset, the rest of the cosets are mapped to
corresponding logical errors. In this figure the error cosetsgS, hX,
and jZ are the corrected cosets of errors.
3-3
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FIG. 2. The left-hand figure represents th
normalizer from FIG. 1, subdivided into the ind
vidual elements of the stabilizer and its cose
Under an entangled code these all map to
thogonal subspaces, and hence the new stabil
S85s1, and logical errorsX,Y and Z, form the
normalizer of a new stabilizer. The increase
ability to choose correctable errors allows us
attain the entanglement-assisted capacity for c
tain classes of qubit channels.
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which gives the codewords for the five-qubit single err
correcting code. The five-qubit code is thus equivalent to
entanglement-assisted three-qubit code, with an unass
stabilizer, S5$111,X1X,ZYY,YYZ%. As the five-qubit
single error-correcting code can correct single errors on
last two qubits of the codewords, and these qubits are no
less in the entangled code, the code is not very efficien
maximizing the number of errors that can be corrected
order to examine the error-correcting capability of addit
entangled codes we must look again at the quantum H
ming bound.

B. Revising the quantum hamming bound

The reason that entanglement-assisted codes are b
than their nonentangled counterparts, is that the entan
ment allows us to increase the dimension of the decod
Hilbert space to 22m1k dimensions, form the number of
entangled ancillas, compared to the 2m1k dimensions form
unentangled ancilla qubits. This gives a revised quan
Hamming bound for entanglement-assisted codewords a@7#

2k(
j 50

t

3 j S n

j D<22n2k, ~13!

which is easily satisfied for the three-qubit code above, w
k51, n53, andt51.

The asymptotic form of Eq.~13! is given by

k

n
<

m

n
112

t

n
log232H2S t

nD , ~14!

where m5n2k, which can be seen to exceed the norm
quantum Hamming bound. Substituting the rate and e
probability, forR5k/n, andp5t/n, we have,

R<12
p

2
log232

1

2
H2~p!, ~15!

which corresponds to the entanglement-assisted quantum
pacity for the depolarizing channel.

C. General entangled additive codes

For general stabilizer codes we must prove that the
ments of the stabilizer act to take the codewords to ortho
nal subspaces, which are also orthogonal to the other e
spaces generated by the elements outside the norma
~Fig. 2!. As a code is constructed by a unitary transformati
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if we act on the statesuk& ^ u00 . . . 0& and uk& ^ u00 . . . 1&,
for uk&, u l &, basis states for the state to be encoded, we fi

^ku ^ ^0 . . . 00uU†Uu l & ^ u00 . . . 1&50, ~16!

and the code states with orthogonal ancillas are obviou
orthogonal. Hence, by introducing the set of bit flip ope
tors,P(X), and applying them to the ancillas, we then hav

^ku ^ ^0 . . . 00uPi~X!U†UPj~X!u l & ^ u00 . . . 0&5d i j dkl ,
~17!

which holds for all possible combinations of bit flip oper
tors. By combining these states with the basis,$uk&%, for the
message qubits we then have a basis for the encoder’s
bert space. When the ancillas consist of the shared entan
states,uC1&AB , then we encode a linear combination of o
thogonal states,

uk̃&5 (
P(X)

UA~ ukA& ^ P~X!u00 . . . 0A&) ^ P~X!u00 . . . 0B&,

~18!

where the sum is over the set of all possible bit flips on
ancillas. Now, suppose,EPS, is an element of the stabilizer
then,

^ku ^ ^0 . . . 00uU†EUP~X!u l & ^ u00 . . . 0&50, ~19!

for P(X)ÞI, this is becauseE5E† for EPS, and so
acting to the left the error leaves the bra invariant. T
also applies for the encoding of all the basis states of
message, and so these states are orthogonal to the
space. Also, the encoding operation has the freedom
ensure,

^k̃uEu l̃ &5 (
P1(X),P2(X)

^0BuP2~X!^0AuP2~X!

3^kAuUA
†EUAu l A&P1~X!u0A&P1~X!u0B& ~20!

5 (
P(X)

^0AuP~X!^kAuUA
†EUAu l A&P~X!u0A&

~21!

50, ~22!

where the final line follows from the fact that, since the sta
$P(X)u0&%, tensored with a basis for the space to be e
3-4



c
te

el
ub

t

ch
e
of

re

e
y
tin
s

c
u
ve

e,

b
in

te

w

te
te
b

in
s

e

us-
d a
-

ated

Bell
ered
the

-

l

n
re-

a
ac-
of

t

en

s

ele-
the
the
ber
des

rror

ENTANGLEMENT REQUIRED IN ACHIEVING . . . PHYSICAL REVIEW A66, 052313 ~2002!
coded, forms a basis for the total encoding space, we
choose the encodingU such that the encoded basis sta
form a basis consisting of the eigenvectors ofS ~which is
possible as all the elements ofScommute!, ensuring half are
11 eigenvectors and half21 eigenvectors of any,EPS,
excluding the identity. For any two stabilizer elements,E,F
PS, the product,E†F5EF, is also in the stabilizer, and
hence the argument above shows that any two different
ments of the stabilizer map codewords to orthogonal s
spaces for the entangled code.

Furthermore, we can also choose the basis, such tha
each givenP(X), the states$Uuk&P(X)u0&%, all sit in the
same eigenspace. To see this, note that for the 2n2k genera-
tors of the stabilizer, we write out binary strings with ea
element of the string corresponding to whether the giv
basis state is a11 or 21 eigenstate of that element. Each
these strings then corresponds to a givenP(X), and the re-
maining 2k bits required to label the basis can then cor
spond to each of the 2k basis states of the message spaceu j &.
The fact that the subspaces generated by the stabilizer
ments are then orthogonal to the subspaces generated b
rors outside the normalizer can then be shown by substitu
EF5EFE2 into Eqs. ~20!–~22!, and noting that the state
for each term in Eq.~21! are both61 eigenvectors ofE with
the same sign, and then noting thatEF52FE. The proofs
that there exist entangled stabilizer codes that attain the
pacities for both unital qubit channels and the qubit eras
channel, with an amount of entanglement per channel gi
by E Q

Random512QE , are outlined in the Appendix.

D. Entangled codes and degeneracy

For an entangled additive code that encodesk qubits using
m entangled ancillas anda nonentangled ancillas, there ar
uCu52n2k522m1a copies of the code space,uEu54k1m1a

physical errors, and,uN(S)u/uSu54k logical errors on each
subspace, hence,

uSu5
uEu

uCu34k
52a, ~23!

and the number of elements in the stabilizer is determined
the number of nonentangled ancillas used for the encod
The case of every ancilla being an entangled state,a50,
reduces Eq.~23! to, uSu51, and there are no degenera
errors for such an entangled code. The parameterA5a/n,
therefore, gives a measure of the degeneracy possible
the encoding, as the size of the stabilizer scales asuSu
52nA.

E. ‘‘Teleportation’’ codes

The next entanglement-assisted codes we look at are
portation codes, based on the structure of the standard
portation protocol. The classical channel may be modeled
a ‘‘classical’’ quantum channel such as the total dephas
channel,Lr5 1

2 (r1sZrsZ), which has classical capacitie
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of C5CE51, but a zero quantum capacity. Th
entanglement-assisted quantum capacity ofL is, therefore,
QE(L)5 1

2 CE5 1
2 .

First, we examine the standard teleportation protocol
ing this channel. For a single entangled resource, an
single qubit,uc&5au0&1bu1&, we undertake the transfor
mation,

u00A& ^ ucA& ^ uCAB
1 &→UAu00A& ^ ucA& ^ uCAB

1 &, ~24!

where the unitary encoding operation is given by

UA5I^ I^ uC1&^C1u1I^ sx^ uF1&^F1u1sx^ I^ uF2&

3^F2u1sx^ sx^ uC2&^C2u. ~25!

The first two qubits in Eq.~24! are sent through the quantum
channelL, and the operationVAB applied to the three qubits
at the receivers end of the channel, where,

VAB5u00A&^00Au ^ IB1u01A&^01Au ^ sxB ,1u10A&^10Au ^ syB

1u11A&^11Au ^ szB , ~26!

to give the resultant decoded state. The codeword gener
in Eq. ~24! can be written explicitly as

uF&&5u00&uC1&uc&1u01&uF1&sxuc&,1u10&uF2&syuc&

1u11&uC2&szuc&, ~27!

and we may note that the label states consisting of the
states that are not sent through the channel can be consid
redundant, and so we may encode the state by ignoring
ancillas, and using aCNOT followed by a Hadamard transfor
mation on the encoded qubit. Thus,

uF&&5u00&uc&1u01&sxuc&1u10&syuc&,1u11&szuc&,
~28!

and the label statesu00&,u01&,u10&, andu11&, are each invari-
ant, up to a global phase, under the action of the channeL.
Upon measurement of the first two qubits ofLrAB we obtain
an ‘‘error syndrome,’’ which is then corrected by applicatio
of the appropriate unitary transformation. The code thus
quires two uses of the channelL for each state sent, giving
rateR51/2, which attains the entanglement-assisted cap
ity for this channel. We can also note that the amount
entanglement required per channel is simply onee-bit per
two channels or,EQ512QE51/2. However, it is apparen
that teleportation codes can only be optimal if,CE5C, for
the channel. An example when they are not optimal is giv
by a dephasing channel forpÞ1/2, where the teleportation
code still only has a rateR51/2, whilst entangled code
attainQE512 1

2 H(p).1/2.
There is, however, a notable difference between the t

portation code compared to the entangled linear codes for
p51/2 dephasing channel, in that the channel created by
teleportation code is noiseless in the case of a finite num
of uses of the channel, whereas the entangled linear co
obtain arbitrarily high fidelity only in the asymptotic limit. In
this sense the teleportation code is an analog of a zero e
3-5
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GARRY BOWEN PHYSICAL REVIEW A66, 052313 ~2002!
code@6#, but this relies on the ability of the channel to tran
mit a zero error classical code.

IV. ENTANGLEMENT PER CHANNEL REQUIREMENTS

The entanglement quantum Hamming bound form e-bits
in a lengthn code includes the terms,n5k1m1a, wherea
is the number of unentangled ancillas required in the co
Therefore,

2k(
j 50

t

3 j S n

j D<22m1k1a, ~29!

which in the asymptotic limit gives

R<11E2p log2 32H~p!. ~30!

Sincem<n2k equality gives the entanglement-assisted
pacity for the depolarizing channel in Eq.~13!, and so this
requires a minimum entanglement ofE512R e-bits per
channel to reach capacity with a nondegenerate code. If
entanglement per channel is given byE5(1/M )(12R), then
we obtain a family of entanglement Hamming bound
where,

R<12
M

M11
@p log2 31H~p!#, ~31!

corresponding to the limits for nondegenerate codes with
given amount of entanglement per channel. As the amoun
entanglement per channel decreases, the size of the stab
increases, and hence the possibility of using degenerac
codes to increase the capacity beyond the correspon
Hamming bound is also presumed to increase.

WheneverCE.C, the entanglement-assisted classical
pacity is generally assumed to requireE5S(r) e-bits per
channel in order to achieve the capacity, wherer is the state
that achieves the maximum in Eq.~1!. In the case of unital
qubit channels, if standard dense coding is used with ha
of shared maximally entangled pairs, which are then sent
entangled quantum codes, the capacity,CE52QE , can be
achieved withE51. This is not a very useful fact, as for th
type of channel it is already well known that dense cod
achieves this capacity, withEDC51 @4,13#. However, if a
degenerate entangled code can be found with,E,12QE ,
then the capacityCE could be achieved withE,1. With this
in mind, we examine what bounds exist on the entanglem
requirementsEQ andEC .

A. Upper and lower bounds on the required entanglement

Given nEQ sharede-bits, we can simulatenQE noiseless
quantum channels withn noisy channels. Therefore, if w
are given extranQE sharede-bits, we can utilize dense cod
ing with these extrae-bits to obtain a capacity ofnC8
52nQE5nCE , and hence,EQ>EC2QE . Obtaining a lower
bound onEC therefore gives a lower bound onEQ . Similarly,
given EC e-bits per channel means we can simulatenCE
noiseless classical channels withn noisy quantum channels
hence withnCE/25nQE e-bits of extra entanglement we ca
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teleport to createnQE noiseless quantum channels, and
we obtain the boundEQ<EC1QE . Hence, a lower bound on
EQ gives a lower bound onEC . Putting this two inequalities
together gives the relationship,

QE>uEC2EQu, ~32!

which relates the capacities to the minimum entanglem
requirements. From this inequality it is easily seen that as
channel becomes so noisy that the entanglement-assiste
pacities become small, the entanglement requirements
verge, that is,QE→0⇒EC→EQ .

When coupled with a noiseless channel, the capacity
any noisy quantum channel is additive@13#. If we haven
copies of a noisy channel, and we addm noiseless channels
such that, m/n.EQ , then sending maximally entangle
states through the noiseless channel will give us enough
tanglement to achieve the entanglement-assisted capacit
the noisy channels. Hence,m1nQ.nEQ1nQ>nQE , and,

EQ>QE2Q, ~33!

giving a lower bound on the required entanglement in ter
of the channel capacities. Similarly, the classical capa
version of this inequality also applies, where,EC>CE2C.
As the classical capacity of a channel is at least as grea
the quantum capacity, the ratioQ/C<1. Thus,

EC>
Q

C
~CE2C!. ~34!

The combination of Eqs.~33! and~34! gives upper and lower
bounds on the quantum capacity of a channel based on
entanglement capacities, classical capacity, and required
tanglement, where,

EC

CE /C21
>Q>QE2EQ , ~35!

although the upper bound may not be very tight for ma
channels.

B. Examples for particular channels

The quantum erasure channel has known quantum
classical capacities@27,28#. The entanglement-assisted c
pacities areCE5222e and,QE512e, for a channel era-
sure probabilitye @4#. Using Eq.~33! we can show that if
EQ5e2d for d.0, then this impliesQ.122e, a contra-
diction. Hence, we have a lower bound onEQ , which com-
bined with the random coding boundEQ<12QE5e, gives
the equalityEQ5e for the erasure channel. For the erasu
channel we can therefore see that whilstQE is attainable
with e e-bits per channel, the classical capacityCE is only
attainable with more thanEC>12e e-bits ~if not 1 e-bit!,
and so forE5e,1/2 e-bits per channel the factor of two
relationship between these capacities no longer holds,
hence,CE,2QE5CE .

For the dephasing channel,L5(12p)I1pZ, for Z a
phase flip of the qubit, we can also calculate bounds on
3-6
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required entanglement, where,

12H~p!<EC<1, ~36!

EQ5
1

2
H~p!, ~37!

where equality is obtained in the second case as the u
and lower bounds again coincide.

The entanglement-assisted capacities for unital q
channels are determined by sending half of the maxim
entangled state through the channel@13,29#. This gives a
lower bound on the entanglement of the Bell diagonal s
generated by sending half the maximally entangled s
through the channel, where,

E~r!>CE21512S~r!, ~38!

and this quantity is equivalent to the distillable entanglem
of r using the Hashing protocol. This bound is derived
EQ512QE , however, ifEQ512QE2d for d.0, then the
lower bound on the entanglement is higher. This is beca
obtaining the capacity with less entanglement per chan
requires degeneracy in the code, and the degeneracy is
allows us to beat the Hashing bound@30#.

Finally, note that for entanglement breaking channels
two entanglement-assisted capacities are bounded byCE
<1 andQE<1/2, otherwise the ratio of entanglement th
can be sent through the channelE85QE and the initial en-
tanglementE512QE would be larger than 1, allowing us t
create entanglement through the channel.

V. DISCUSSION

At this point we make the conjecture that the unassis
quantum capacity of a channel is given by

Q5QE2EQ5CE2EC , ~39!

wheneverQE>EQ ~and bothCE>EC andCE.C in the sec-
ond equality!, and zero otherwise. The first equality holds f
the dephasing and erasure channels, and the second eq
will hold for both the dephasing and erasure channels, p
vided EC51 and pÞ1/2. The second equality requires th
condition CE.C, and would imply the equalityQE5EC
2EQ . If this conjecture is true, then calculating the capac
of a quantum channel could be achieved by calculatingCE
from Eq.~1!, and eitherEC or EQ . Calculating either of these
two quantities, however, may be just as difficult as determ
ing the unassisted quantum capacity itself. So far it has b
shown in this paper that

Q>QE2EQ , ~40!

CE2EC>QE2EQ , ~41!

so the reverse inequalities need to be shown for both of th
equations to prove the conjecture. The second of thes
likely to be a problem, as it breaks down wheneverCE
5C, as this impliesQ5C, which is not true for many
known channels. However, we do have the relationship
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C
CE2EC , ~42!

for Q.0, that givesQ>Q2EC wheneverCE5C.
The existence of degenerate entangled codes for u

qubit channels would also imply that the entangleme
assisted classical capacity for such channels could
achieved with an amount of entanglement per channelEC
,1. This would be a surprising result, as it is well know
that dense coding achieves the capacity withE51, and this
protocol has been assumed to be optimal.

VI. CONCLUSION

In this paper bounds on the minimum amount of sha
entanglement necessary per channel required to achieve
entanglement-assisted capacities were derived. An up
bound on the entanglement required, for classes of q
channels, was obtained by introducing entanglement-ass
additive quantum codes. The difference between the amo
of entanglement required were shown to vanish as
entanglement-assisted capacities became small.

It was then shown that the unassisted capacities of
channel were bounded from below by the difference in
entanglement-assisted capacities and the amount of enta
ment required to achieve them. The introduction of deg
eracy into these entanglement-assisted codes would ther
give a lower bound on the unassisted capacity for some
these channels that is higher than currently known low
bounds. The use of such codes would also allow
entanglement-assisted classical capacity, for classes of u
qubit channels, to be attained with less than onee-bit per
channel. Whether or not the generation of degenerate
tangled codes will be easier than simply determining clas
of unassisted degenerate quantum codes is not known
this method does provide a second avenue for investigat

Finally, a conjecture was made that there exists an eq
ity between the unassisted quantum capacity of a cha
and the difference in the entanglement-assisted capacity
the respective minimum required entanglement attaining
capacity. If this conjecture is shown to hold, then it provid
a further link between entanglement as a resource and q
tum communication.
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APPENDIX: SUMMARY OF THE PROOF FOR
ENTANGLEMENT-ASSISTED CODES ACHIEVING QE

By taking random stabilizer codes, and showing that
average probability of error can be made vanishingly sm
in the limit of large block sizes, we may infer the existen
of stabilizer codes that have a vanishingly small maxim
failure probability, with rates arbitrarily close to the capaci
First, we outline the case of the unital qubit channels. F
3-7
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such a channel, the number of typical errors with total pr
ability bounded by,P>12h, for h.0, is bounded above
by

N<2nS[( I^ L)uC1&^C1u] 12nd, ~A1!

for any d.0, with n sufficiently large. The total probability
of failure is then given by,

P~ fail!<2nS[( I^ L)uC1&^C1u] 12nd22(2n22k)1h

<2n$S[( I^ L)uC1&^C1u] 12R2212d%1h, ~A2!

where the first term gives the probability of two typical e
rors having the same syndrome, and the second term is
probability of an atypical error. The number of syndromes
determined by the fact that there are 22n2k dimensions di-
vided amongst 2k encoded qubits. Hence, the average pr
ability of failure becomes arbitrarily small, for largen, for
any,R,12 1

2 S(r)2d, wherer5(I^ L)uC1&^C1u. As the
rate for the average over stabilizer codes attains rateR there
must exist particular codes with rateR and arbitrarily small
average failure probability. Expurgation, that is, removal
half of the codewords corresponding to the highest proba
ties of error, may then be used on such codes to assure
the maximal probability of block error for such a code is a
arbitrarily small, with minimal effect on the rate of the ne
code@31#. Thus the capacity is given by
,

d

l,

l,

.

ne

05231
-

he
s

-

f
i-
hat

QE512
1

2
S~r!, ~A3!

for entanglement-assisted codes usingE5 1
2 S(r) e-bits per

channel.
In the case of the qubit erasure channel, with eras

probabilitye, the location of each of the errors is known. F
largen the number of typical errors approaches 4ne, giving a
average failure probability

P~ fail!<22ne12nd22(2n22k)1h<22n(e211R1d)1h,
~A4!

which vanishes for largen, providedR,12e2d for any
d.0. Hence, the capacity obtained in this case is

QE512e, ~A5!

usingE5e e-bits per channel.
The amount of entanglement required in both these ca

stems from the number of entangled states,m5n2k, uti-
lized in the code. Dividing through by the number of cha
nels n we have an amount of entanglementE512R.1
2QE1d per channel in the random coding derivatio
Hence, in these cases the required entanglement is give
E Q

Random512QE .
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