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Entanglement required in achieving entanglement-assisted channel capacities
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Entanglement shared between the two ends of a quantum-communication channel has been shown to be a
useful resource in increasing both the quantum and classical capacities for these channels. The entanglement-
assisted capacities were derived assuming an unlimited amount of shared entanglement per channel use. In this
paper, bounds are derived on the minimum amount of entanglement required per use of a channel, in order to
asymptotically achieve the capacity. This is achieved by introducing a class of entanglement-assisted quantum
codes. Codes for classes of qubit channels are shown to achieve the quantum entanglement-assisted channel
capacity when an amount of shared entanglement per channel givééaﬁgif"é 1-Qg, is provided. Itis also
shown that for very noisy channels, as the capacities become small, the amount of required entanglement
converges for the classical and quantum capacities.

DOI: 10.1103/PhysRevA.66.052313 PACS nuntber03.67.Hk, 03.65.Ud, 89.76.c

[. INTRODUCTION The entanglement-assisted quantum-information capacity
for a channel is related to the classical quantity in &g by

Quantum-information theory is a generalization of the[4]'
classical theory of information transmission and processing,
where the encoding of information into a quantum system is o) =EC )
taken into accounfl]. The quantum phenomenon of en- E27F
tanglement, when utilized in quantum-information theory, al-
lows for uniquely quantum phenomena, such as quanturand the capacity is given iqubits The equality is derived by
dense coding2] and quantum teleportatidi3]. Dense cod- utilizing teleportation and dense coding to give a lower
ing was the first demonstration that entanglement could inbound toCg of 2Qg, and then boundg from below by
crease the classical communication capacity of a noiselessC .
quantum channel by encoding twice as much information In this paper, we examine whether the capacities in Egs.
than would be possible without shared entanglement. Thigl) and (2) can be achieved if the shared entanglement per
protocol required the use of one maximally entangled biparchannel is restricted to a predetermined amourt£€ o,
tite system, shared by sender and receiver, per use of thsger use of the channel. We assume that the amount of en-
noiseless channel. tanglement is determined by sharing copies of a maxi-

If the two ends of a quantum channel share unlimitedmally entangled state, par copies of the channel, with
prior entanglement, then the quantum capacities of the cham/n— £ asn— . Shared pure entangled states that are non-
nel are known exactly4,5]. The entanglement-assisted clas- maximally entangled can be converted to maximally en-
sical capacity of a channeh, is given by, tangled states with an equivalent amount of entanglement in

the asymptotic limit with vanishing amounts of classical
communicatior{ 8], and can therefore be considered equiva-
Ce=maxS(p)+S(Ap)—S((I®A)|p){#|)], (1) lent. The question of whether the distillable entanglement of
P shared mixed entangled resources is interconvertable with
vanishing classical communication in the asymptotic limit is
where| &) is any purification ofp, andS(p) the von Neu- yet to be dt_atgrmined. The two quantities of interest are thgre—
mann entropy of the statg, given by, S(p)=Trp log, p. fore the m|n|r_nal amounts of_ shared entanglement requ_lred
Traditionally the logarithm is taken to be base 2, giving thePe channel in order to achieve the entanglement assisted
information inbits. The equation is the analog of Shannon’s channel capacities in the asymptotic I|m|t. These quantities
equation for the classical information capacity of a noisy'® denoted by’c and &q, for the classical and quantum
classical channd]. The term on the right-hand side of Eq. feduirements, respectively, and are defined as the limit,
(1) has previously been labeled as the von Neumann capaciti™, ...INfL€:Re=Rx:}, whereR; is the channel capacity at-
of a quantum channel, and properties such as additivity haveinable with an amount of shared entanglement per channel
been shown to hol@i7]. It is known that if the maximum is equal to€.
obtained forp=(1/d)I, for a d-dimensional channel, then An upper bound on the entanglement required is obtained
dense coding suffices to obtain the given capacity. by introducing a class of entanglement-assisted quantum
codes. These codes are based on the stabilizer formalism,
with the exception that the ancillas used to encode the state
*Electronic address: g.bowen@qubit.org are replaced by shared maximally entangled states. The ex-
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amination of these entangled quantum codes may also giwbe Hilbert space in which the state is encod28]. Using
insight into the behavior of degenerate as well as nondegemandom stabilizer codes it has been shown that there exist
erate quantum codes. The introduction of degeneracy intoodes that achieve rates arbitrarily close to the nondegenerate
entanglement-assisted codes acts to give a lower bound @uantum Hamming bound in the asymptotic limit.

the capacity of a channel without entanglement. For a groupG acting on a Hilbert space, the stabilizer

of an element of the spaceg H, denoted by§ is the set of
elements inG for which sis an eigenvector of eigenvalue 1,
under the action o&. In the case of stabilizer codes on qu-

Quantum states may be protected against decoherence, bis, the group in question is referred to as the Pauli group,
encoding the state in a larger Hilbert space, thereby creatinG,,, and consists of the-tensor products of the Pauli matri-
redundancy in the states that is resistant to noise. The theones. To make the group easier to deal with we assufne,
of such quantum error-correcting codes is a rapidly growing=o,, Y=—io,, andZ=o,, which gives XY=Z. For the
area of researcf9—21. The standard method of encoding group to be closed, we must include the elemeri, the
involves introducing many ancilla quantum states in a knowmegative of the identity. However, this acts trivially on the
preparation. quantum states, as it simply takes|0)+ B|1)— — «|0)

A quantum code works by embedding a state in a sub- g|1), which is the same state modulo the phase. Hence,
space of a larger Hilbert space, that is invariant under theaking the subgroupdi={=+1}, we can actually assume for
encoding and decoding operations. A binary quantum code ithe most part we are working with the group modulo the
designated by three parametgrsk,d], wherek logical qu-  signs,G,,/H, with the major exception being the determina-
bits are encoded im physical qubits, and the code has ation whether elementsommuteor anticommute Since,
distanced, which means the code can corréet3(d—1)  (—g)h=h(—g), if gandh commute(similarly for anticom-
errors at unknown locations in the code block. This meansnutation), we can generally say that and h commute or
when expanded in terms of error operat&sat error cor-  anticommute(in G,,) whilst considering the group of errors
recting code reverses all errdesthat have weight or less.  as a subset oB,,/H.

II. QUANTUM ERROR-CORRECTING CODES

For codewordsi),|j) and errors, ,Ey, it is necessary If we take our codespace to be a basis of the stabilized
that, Hilbert spaceHg, for an Abelian subgrouf of G,,, then it
is easy to see that these codewords are unaffected by any
(i|EIEL|j)=0, (3)  error contained inS. Hence, we have a degeneracy in the

code for the errors itg, these errors do nothing. The set of
for i#], otherwise the erroE, on |i) is indistinguishable ~€rmors,E e Gy, that commute witt§, that is,gE=Eg, for all
from the errorE, on |j), and we would not know which geS, is known as the centralizer & in G, and denoted
error to correct for. In the case obndegeneratguantum Z(S). In the case of the error grou@,, there exists an

the subgroupS that is, Z(S)=N(S) [1]. Elements of the
GIEIEL )= Bandii 4) normalizer not in the stabilizeN(S)\'S, give all the errors
a ap™ij »

that result in a logical error on the encoded qubits, which can

so each error takes the code subspace to mutually orthogonté?SS:nedr} zgyi;hzsfa; éhr?e(ri'éi?; E?Lwti; El)l/é>esfgzricaell (g

errc?r ilﬁbspaf?esiatz Eag.‘{.ode'b':or degeneratequantum For all the errors that anticommute with at least one ele-
codes the sufficient condition becomes, ment of the stabilizer, then.

(I|ELEbli)=Msadyj (5) (IF1j)y=(i|FE[j)=—(i|EF|j)=0, (6)

—GIETE Iy o :
whereMpa=(i|E,Eali) is a_Hermltlan matrix. for E in the stabilizer, and= e G,\N(S), and the error~
A number of bounds exist for codes, including the quan-
. . takes the codewords to subspaces orthogonal to the code sub-
tum Hamming bound and quantum Gilbert-Varshamov

bound [11], the no-cloning bound?22,23, the quantum space. The act ofcompletg decoding gives a maps:Gy,

. . N(S), as it takes all the errors which map the code sub-
Singleton bound15], and the Rains bounk®4]. The quan-
. . space to orthogonal spaces back to the code subspace. The
tum Hamming bound only applies for nondegenerate quar;{Bap from the logical errors to the decoded qubitsN(S)

Rains shadow enumerator bound both apply to degeneratE’Gk' is then a homomorphism, whef& is the group of

and nondegenerate codes. The linear programming bound aﬁr_rors on the message qubits. Hendel(S)|=[Gyl|S|

plies by converting any additive quantum code to a classical’4 S| . and t.he errors iN(S) are divided into 4 c_osets of
code oveiGF(4) [14] equal size, with each coset of errors corresponding to one of
' the 4 logical errors.
The error correction magp is determined by choice of the

A. Additive quantum codes particular inverse map~* that takes a nondegenerate error

Additive quantum codeor stabilizer codesare obtained ~ Subspace back to the code space. We can choose the basis in
by utilizing the group structure of the set of errors acting onthe error subspacé|ke)}, for a particular erroh, such that
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h/k)=[ke), which gives all the other errors that map the
code space to this error space a grouping according to the
logical error in this basis. Supposeis an element of the
stabilizer, thenh=hs on the code space, and heneghs)
acts as the identity on the code subspace. A similar mapping
occurs for all the logical errors on the code subspace. Hence,
under the mappingky-1, if ge N(S)=g’' € G, then hg
=g’ e G,. SincehN(S) is a coset oN(S) in G,,, then the
map ¢ok:G,— Gy, dividesG,, up into 4 sets of equal size,
with all the members of each set corresponding to a different
logical error.

In summary, a complete error correction scheme deter-

mines a mapx, which we choose to correct a particular g 1. Representation of the stabilizer and coset structure for a
member of each coset ®{(S), which in turn corrects all - single encoded qubit. The stabilizerand logical error,Y, and
members of the image o in that coset. Obviously we 7 form the normalizer of the stabilizéenclosed in the box From
would like this set to contain the typical errors contained ineach coset of the normalizdi(S), a single coset of the stabiliz&r
the given coset oN(S). A diagrammatic representation of may be mapped back to the stabilizer, representing a correction of
this for a single encoded qubit is shown in Fig. 1. the errors in that coset, the rest of the cosets are mapped to the

Ill. ENTANGLEMENT-ASSISTED CODES corresponding logical errors. In this figure the error cog&shX,

By utilizing part of bipartite entangled states as the anciI-anOIJZ are the corrected cosets of errors.
las used in coding, the encoder and decoder may be able to

create correlations between the encoded state and the ref‘%qbspace by flipping the phases of the components of the

ence states held by the receiver. These correlations enhan oeq|cal zero and one. For each of the codewords we see that

the ability of the receiver to decode the state without a Iogi—ﬁ‘]e phases change as

cal error on the encoded states, thereby possibly increasing 11—+ + + + @)
the quantum and classical capacities of a noisy channel. ’

17—+ —+—, 9)

A. A simple entanglement-assisted code 12—+ ——+, (10)

The simplest quantum error correcting code is the three
qubit-repetition code, which encodes a single qubit, and cor- Z71—++——. (11
rects against a single bit flip on any of the three qubits. The ) ) )
qubit is encoded by using a controlledT gate (CNOT) on Hovyever, the code in the gxample is not a 5|_ngle error cor-
the state with each of the two ancilla qubits. By adjusting thd€¢ting,t=1, code as the single qubit errdd 1 is a logical
encoding procedure to use half of maximally entangled stat®'™or on the codeword, and hence cannot be corrected. The
|\P+)AB=(1/\/§)(|OO>+|11>), instead of the pure state an- obvious candidate for &=1 single error-correcting en-

; : _ tangled code is the five-qubk=1 single error-correcting
cillas, and encoding the pure sta =al0)+B|1), we X
obtain the codewor?j P fet)a=al0)+5[1) code[26]. The codewords for this code can be generated

using a pair of entangled ancillas using a local unitary op-
eration on the encoded state and the local halves of the two

o
|P))= §(|000>A|00>B+ |002)A|01)g+|0104|10)g entangled states. The unitary transformation is determined by
the change of basis,
+01D)4[12)p) + §(|111>A|00>B+|110>A|01>B /000 —[000) —[011) +{101) —[110),
+|100)4|10)5+[100) 4| 11)g), (7) |001)—[001) +[010 —[100) —[111),
which can easily be seen to correct a single bit flip on the /010 — —[001)+|010) +[100) — |111),
first three qubits of the codeword. However, in addition, if
any combination of the second and third qubits undergoes a |012)— —(|000)+|01D)+|10D) +|110)),
phase flip, then these errors are also correctable. For bit flip
errors, we can see that the structure of the entanglement code |100— — (|00 +|010 +|100) +|111)),
depends on the labels attributable to the nontransmitted por-
tion of the codewords, and we essentially break the coding |101)— —|000) +|011) +|101) —|110),
subspaces down to a classical (3,1,3) code for these labeled
spaces. If we look at the stabilizer formalism for the three- |110— —|000 —|011) +|101) +|110),
qubit repetition code, we can see that the elements of the
stabilizer act on the code space to take it to an orthogonal |111)— —|001)+|010 —|100) +|111), (12
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FIG. 2. The left-hand figure represents the

X X 52 51 normalizer from FIG. 1, subdivided into the indi-
vidual elements of the stabilizer and its cosets.
83X 84X S3 S4 Under an entangled code these all map to or-

thogonal subspaces, and hence the new stabilizer
S'=s,, and logical errorX,Y and Z, form the
normalizer of a new stabilizer. The increased
ability to choose correctable errors allows us to
attain the entanglement-assisted capacity for cer-
tain classes of qubit channels.

s, Y 1Y S, Z s Z

S3Y S4Y S3Z S4Z

which gives the codewords for the five-qubit single error-if we act on the statefk)®|00...0 and|k)®|00... 1),
correcting code. The five-qubit code is thus equivalent to arfor |k}, |I), basis states for the state to be encoded, we find,
entanglement-assisted three-qubit code, with an unassisted

stabilizer, S={111X1X,ZYY,YYZ. As the five-qubit (Kl®(0 ...0quTu|l)®]00...1)=0, (16)
single error-correcting code can correct single errors on the

last two qubits of the codewords, and these qubits are noiseind the code states with orthogonal ancillas are obviously
less in the entangled code, the code is not very efficient imrthogonal. Hence, by introducing the set of bit flip opera-
maximizing the number of errors that can be corrected. Inors, P(X), and applying them to the ancillas, we then have,
order to examine the error-correcting capability of additive

entangled codes we must look again at the quantum Ham- (k|®(0 ... 00QP;(X)UTUP;(X)[l)®[00 ... 0=y,

ming bound. 17)

which holds for all possible combinations of bit flip opera-
tors. By combining these states with the ba§ik)}, for the

The reason that entanglement-assisted codes are bettaessage qubits we then have a basis for the encoder’s Hil-
than their nonentangled counterparts, is that the entangldert space. When the ancillas consist of the shared entangled
ment allows us to increase the dimension of the decodingtates|¥ *),g, then we encode a linear combination of or-
Hilbert space to 2™k dimensions, form the number of thogonal states,
entangled ancillas, compared to th&'# dimensions fom
unentangled ancilla qubits. This gives a revised quantum
Hamming bound for entanglement-assisted codewordg]as

B. Revising the quantum hamming bound

|T<>=P(EX) Ua(lka)®P(X)[00 . .. 0))®P(X)[00 . .. 05,
(18

t
(n
26> 31( , )szm X, (13)  where the sum is over the set of all possible bit flips on the
j=0 J : . -
ancillas. Now, supposé& € S, is an element of the stabilizer,

which is easily satisfied for the three-qubit code above, wittthen,
k=1,n=3, andt=1.

t —
The asymptotic form of Eq.13) is given by (kl®(0 ... 0QU'EUP(X)|I)®[00 ... =0, (19

K m t ¢ for P(X)#1, this is becauseE=E' for E€S, and so
—-—<—4+1- —Iogz3—H2(—), (14 acting to the left the error leaves the bra invariant. This
n.n n n also applies for the encoding of all the basis states of the
wherem=n—k, which can be seen to exceed the normal™eSsage, and so these states are orthogonal to the code

quantum Hamming bound. Substituting the rate and errogﬁzﬁfé Also, the encoding operation has the freedom to

probability, forR=k/n, andp=t/n, we have,

p 1 D T =

N
which corresponds to the entanglement-assisted quantum ca- X (ka|UAEUA[l2)P1(X)[04)P1(X)[0g)  (20)
pacity for the depolarizing channel.
= 2 (0| P(X){ka UREUA[1)P(X)|0)
C. General entangled additive codes P(X)

- (21)
For general stabilizer codes we must prove that the ele-

ments of the stabilizer act to take the codewords to orthogo- =0, (22)

nal subspaces, which are also orthogonal to the other error

spaces generated by the elements outside the normalizethere the final line follows from the fact that, since the state,
(Fig. 2. As a code is constructed by a unitary transformation{P(X)|0)}, tensored with a basis for the space to be en-
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coded, forms a basis for the total encoding space, we caof C=Cg=1, but a zero quantum capacity. The
choose the encodind such that the encoded basis statesentanglement-assisted quantum capacity\ofs, therefore,
form a basis consisting of the eigenvectorsSfwhich is  Qg(A)=3Cg=3.
possible as all the elements 8tommute, ensuring half are First, we examine the standard teleportation protocol us-
+1 eigenvectors and hal-1 eigenvectors of anyEe S, ing this channel. For a single entangled resource, and a
excluding the identity. For any two stabilizer elemertsk single qubit,|#)=«|0)+ B|1), we undertake the transfor-
€S, the product,ETF=EF, is also in the stabilizer, and mation,
hence the argument above shows that any two different ele-
ments of the stabilizer map codewords to orthogonal sub- 100 ®[¢a) ®| ¥ ag)—Ua|003) © [¢ha) © ¥ ap), (24)
spaces for the entangled code. ) , L

Furthermore, we can also choose the basis, such that f§¥here the unitary encoding operation is given by
each givenP(X), the stateU|k)P(X)|0)}, all sit in the _ a4 IR -
same eigenspace. To see this, n>0te that> for thé& genera- Un= 1818 [¥ )W+ 18 0,@| 07 ) (7| + @l 7)
tors of the stabilizer, we write out binary strings with each X(DP 7|+ oy@ @ | T WP . (25)
element of the string corresponding to whether the given
basis state is & 1 or —1 eigenstate of that element. Each of The first two qubits in Eq(24) are sent through the quantum
these strings then corresponds to a gi®iX), and the re- channelA, and the operatiol »g applied to the three qubits
maining X bits required to label the basis can then corre-at the receivers end of the channel, where,
spond to each of the*basis states of the message spage
The fact that the subspaces generated by the stabilizer elgAB:|OOA><OOA|®HB+|01A><01A|®(’x8'+|10A><10A|®‘7y8
ments are then orthogc_mal to the subspaces generateq by e 1 |11,)(11) ® oy, (26)
rors outside the normalizer can then be shown by substituting
EF=EFE? into Egs.(20—(22), and noting that the states to give the resultant decoded state. The codeword generated
for each term in Eq(21) are bothx 1 eigenvectors of with in Eq. (24) can be written explicitly as
the same sign, and then noting tl&E=—FE. The proofs
that there exist entangled stabilizer codes that attain the ca-|®))=[00)|¥ ")|4)+|0D)|D ") oy 4), +[10)| D ") oy | 4h)
pacities for both unital qubit channels and the qubit erasure _
channel, with an amount of entanglement per channel given DY Yool 9, @7

Random_ 4 _ i i i L.
by £ =1-Qg, are outlined in the Appendix. and we may note that the label states consisting of the Bell

states that are not sent through the channel can be considered
redundant, and so we may encode the state by ignoring the
ancillas, and using aNnoT followed by a Hadamard transfor-

For an entangled additive code that encoklgabits using  mation on the encoded qubit. Thus,
m entangled ancillas ana nonentangled ancillas, there are,
|c|=2""k=22m*2 copies of the code spacfg|=4"m*2 [@))=100)| ) +[0D) 0| ) + [10) oy | ), + |1 D) 0| ),
physical errors, andN(S)|/|S|=4* logical errors on each (28
subspace, hence,

D. Entangled codes and degeneracy

and the label statd®0),|01),|10), and|11), are each invari-

|E| ant, up to a global phase, under the action of the chafinel
|S|= =28 (23 Upon measurement of the first two qubits/op g We obtain
|C| X 4k “ ” H H H H
an “error syndrome,” which is then corrected by application

of the appropriate unitary transformation. The code thus re-

] o ] quires two uses of the channglfor each state sent, giving a
and the number of elements in the stabilizer is determined by;te R= 1/2, which attains the entanglement-assisted capac-

the number of nonentangled ancillas used for the encodingsy for this channel. We can also note that the amount of
The case of every ancilla being an entangled state(, entanglement required per channel is simply estgit per
reduces Eq(23) to, |S|=1, and there are no degenerate o channels oréo=1-Qg=1/2. However, it is apparent
errors for such an entangled code. The paraméter/n,  hat teleportation codes can only be optimalG§=C, for
therefore, gives a measure of the degeneracy possible Wifhe channel. An example when they are not optimal is given
thenj”COd'”g’ as the size of the stabilizer scalesSks py 4 dephasing channel far#1/2, where the teleportation
=2 code still only has a rat&=1/2, whilst entangled codes
attainQg=1—3H(p)>1/2.

There is, however, a notable difference between the tele-
portation code compared to the entangled linear codes for the

The next entanglement-assisted codes we look at are telp=1/2 dephasing channel, in that the channel created by the
portation codes, based on the structure of the standard teleeleportation code is noiseless in the case of a finite number
portation protocol. The classical channel may be modeled bpf uses of the channel, whereas the entangled linear codes
a “classical” quantum channel such as the total dephasingbtain arbitrarily high fidelity only in the asymptotic limit. In
channel Ap=3(p+ o%po?), which has classical capacities this sense the teleportation code is an analog of a zero error

E. “Teleportation” codes
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code[6], but this relies on the ability of the channel to trans-teleport to createnQg noiseless quantum channels, and so

mit a zero error classical code. we obtain the boundy=<£&c+ Qe . Hence, a lower bound on
&g gives a lower bound of¢ . Putting this two inequalities
IV. ENTANGLEMENT PER CHANNEL REQUIREMENTS together gives the relationship,
The entanglement quantum Hamming boundrfoebits Qe=|&c— &l (32

in a lengthn code includes the terme=k+m+a, wherea

is the number of unentangled ancillas required in the codewvhich relates the capacities to the minimum entanglement

Therefore, requirements. From this inequality it is easily seen that as the
channel becomes so noisy that the entanglement-assisted ca-

. ' /n okt pacities become small, the entanglement requirements con-
2 Zo 3! j <2°mTEE, (29 verge, that isQe— 0= Ec— & .
a When coupled with a noiseless channel, the capacity of
which in the asymptotic limit gives any noisy quantum channel is additiy&3]. If we haven
copies of a noisy channel, and we atichoiseless channels,
R<1+&—-plog,3—H(p). (30 such that,m/n=&,, then sending maximally entangled

_ o _ states through the noiseless channel will give us enough en-
Sincem=n-—Kk equality gives the entanglement-assisted catanglement to achieve the entanglement-assisted capacity for

pacity for the depolarizing channel in E€L3), and so this  the noisy channels. Hencey+nQ= NEo+NQ=nQg, and,
requires a minimum entanglement 6&=1—R ebits per

channel to reach capacity with a nondegenerate code. If the Eo=Qe—Q, (33
entanglement per channel is given&y (1/M)(1—R), then

we obtain a family of entanglement Hamming bounds,giving a lower bound on the required entanglement in terms
where, of the channel capacities. Similarly, the classical capacity

version of this inequality also applies, whe&;=Cg—C.

_ M As the classical capacity of a channel is at least as great as
R<1-rglPlog:3+H(p)], (D the quantum capacity, the rat@/C<1. Thus,
corresponding to the limits for nondegenerate codes with the Q

given amount of entanglement per channel. As the amount of €c= E(CE_ ). (34)

entanglement per channel decreases, the size of the stabilizer

increases, and hence the possibility of using degeneracy ifihe combination of Eq$33) and(34) gives upper and lower

codes to increase the capacity beyond the correspondirigpunds on the quantum capacity of a channel based on the

Hamming bound is also presumed to increase. entanglement capacities, classical capacity, and required en-
WhenevelC>C, the entanglement-assisted classical catanglement, where,

pacity is generally assumed to requife- S(p) e-bits per

channel in order to achieve the capacity, wheiis the state C ~0=0p—& (35)

that achieves the maximum in E@L). In the case of unital Ce/C—1~ < <E @

qubit channels, if standard dense coding is used with halves

of shared maximally entangled pairs, which are then sent vialthough the upper bound may not be very tight for many

entangled quantum codes, the capadly=2Qg, can be channels.

achieved with€=1. This is not a very useful fact, as for this

type of channel it is already well known that dense coding B. Examples for particular channels

achieves this capacity, withpc=1 [4,13]. However, if a

degenerate entangled code can be found withl—Qg, The quantum erasure channel has known quantum and

then the capacitZe could be achieved witli< 1. With this classical capacitie$27,28. The entanglement-assisted ca-

in mind, we examine what bounds exist on the entanglemerRacities ar€Ce=2-2¢ and,Qe=1—¢, for a channel era-
requirementsS, and < . sure probabilitye [4]. Using Eq.(33) we can show that if

Eq=€— 0 for 6>0, then this implieQ>1—-2¢, a contra-
diction. Hence, we have a lower bound &g, which com-
bined with the random coding bourfy<1—Qg=¢, gives
Givenné&g sharede-bits, we can simulate Qg noiseless the equality€y= € for the erasure channel. For the erasure
guantum channels with noisy channels. Therefore, if we channel we can therefore see that whilt is attainable
are given extranQg sharede-bits, we can utilize dense cod- with e e-bits per channel, the classical capady is only
ing with these extrae-bits to obtain a capacity ohC’ attainable with more thad:=1- € e-bits (if not 1 e-bit),
=2nQg=nCg, and hencefo=Ec— Qg . Obtaining a lower and so for€=e<1/2 e-bits per channel the factor of two
bound on¢. therefore gives a lower bound @l . Similarly,  relationship between these capacities no longer holds, and
given & e-bits per channel means we can simulat€g hence,Cs<2Q.=Ckg.
noiseless classical channels witimoisy quantum channels, For the dephasing channeh=(1—-p)l+pZ, for Z a
hence withn Cc/2=n Qg e-bits of extra entanglement we can phase flip of the qubit, we can also calculate bounds on the

A. Upper and lower bounds on the required entanglement
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required entanglement, where, Q
Q==Ce— &, (42)
1-H(p)s=é&:=<1, (36)

1 for Q>0, that givesQ=Q— & wheneverCg=C.

5Q:§H(p)’ (37) The existence of degenerate entangled codes for unital
qubit channels would also imply that the entanglement-
where equality is obtained in the second case as the upp@fSisted classical capacity for such channels could be
and lower bounds again coincide. achieved with an amount of entanglement per chaidiel
The entanglement-assisted capacities for unital qubit-1. This would be a surprising result, as it is well known

channels are determined by sending half of the maximallyhat dense coding achieves the capacity withl, and this

entangled state through the chaniigB,29. This gives a Protocol has been assumed to be optimal.

lower bound on the entanglement of the Bell diagonal state

generated by sending half the maximally entangled state VI. CONCLUSION

through the channel, where, ) .
In this paper bounds on the minimum amount of shared

E(p)=Cg—1=1-S(p), (38)  entanglement necessary per channel required to achieve the
entanglement-assisted capacities were derived. An upper
and this quantity is equivalent to the distillable entanglemenpound on the entanglement required, for classes of qubit
of p using the Hashing protocol. This bound is derived forchannels, was obtained by introducing entanglement-assisted
Eq=1-Qg, however, iféq=1—-Qg— o for 6>0, then the  additive quantum codes. The difference between the amounts
lower bound on the entanglement is higher. This is becausgf entanglement required were shown to vanish as the
obtaining the capacity with less entanglement per channaintanglement-assisted capacities became small.
requires degeneracy in the code, and the degeneracy is what |t was then shown that the unassisted capacities of the
allows us to beat the Hashing bouf&D]. channel were bounded from below by the difference in the
Finally, note that for entanglement breaking channels thentanglement-assisted capacities and the amount of entangle-
two entanglement-assisted capacities are boundedpy ment required to achieve them. The introduction of degen-
<1 andQg=1/2, otherwise the ratio of entanglement thateracy into these entanglement-assisted codes would therefore
can be sent through the chani€l= Qg and the initial en- give a lower bound on the unassisted capacity for some of
tanglemenE=1— Qg would be larger than 1, allowing us to these channels that is higher than currently known lower

create entanglement through the channel. bounds. The use of such codes would also allow the
entanglement-assisted classical capacity, for classes of unital
V. DISCUSSION qubit channels, to be attained with less than edat per

. . ) . ._channel. Whether or not the generation of degenerate en-
At this point we make the conjecture that the unassistedyngied codes will be easier than simply determining classes
quantum capacity of a channel is given by of unassisted degenerate quantum codes is not known, but
O f — this method does provide a second avenue for investigation.
Q=Qe~&e=Cete. 39 Finally, a conjecture was made that there exists an equal-
wheneveQg= &, (and bothCg=E¢ andCe>C in the sec- ity betwegn the un_assisted guantum capa_city of a channel
ond equality, and zero otherwise. The first equality holds for @nd the difference in the entanglement-assisted capacity and
the dephasing and erasure channels, and the second equalft§ respective minimum required entanglement attaining that
will hold for both the dephasing and erasure channels, procapacity. If this conjecture is shown to hold, then it provides
vided £.=1 andp#1/2. The second equality requires the & further link _bet\_/veen entanglement as a resource and quan-
condition Cg>C, and would imply the equaliyQe=¢&. UM communication.
—&q . If this conjecture is true, then calculating the capacity
of a quantum channel could be achieved by calcula@ag ACKNOWLEDGMENTS
from Eq.(1), and eithe¢ or £, . Calculating either of these
two quantities, however, may be just as difficult as determin- | thank Luke Rallan and Sougato Bose for very helpful

ing the unassisted quantum capacity itself. So far it has beef{Scussions. G.B. is supported by the Oxford-Australia Trust,
shown in this paper that the Harmsworth Trust, and the CVCP.

Q=Qe— &g, (40) APPENDIX: SUMMARY OF THE PROOF FOR

ENTANGLEMENT-ASSISTED CODES ACHIEVING Qg

Ce—&c=Qe— &g, (41) . 3 _

By taking random stabilizer codes, and showing that the
so the reverse inequalities need to be shown for both of theseverage probability of error can be made vanishingly small
equations to prove the conjecture. The second of these ia the limit of large block sizes, we may infer the existence
likely to be a problem, as it breaks down whenew&  of stabilizer codes that have a vanishingly small maximal
=C, as this impliesQ=C, which is not true for many failure probability, with rates arbitrarily close to the capacity.
known channels. However, we do have the relationship  First, we outline the case of the unital qubit channels. For
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such a channel, the number of typical errors with total prob- 1
ability bounded byP=1—#, for >0, is bounded above Qe=1-5S(p), (A3)
by

N< 20 [ ¥ ) (¥ ]+2ns (A1) for entanglement-assisted codes usiiygs;S(p) e-bits per

' channel.
for any §>0, with n sufficiently large. The total probability ~ In the case of the qubit erasure channel, with erasure
of failure is then given by, probability €, the location of each of the errors is known. For
- largen the number of typical errors approaché$,4giving a
P(fail)< 2" U2 )V T +2n55 = (2n-2k) 4 ) average failure probability
< on{SII@A) W ) (¥ F[]+2R-2+25} 4 7, (A2) P(fail) < 22ne+2n9p=(2n-2K) 1 ;< p2n(e-1+R+9) 4

where the first term gives the probability of two typical er- (A4)

rors having the same syndrome, and the second term is trQNehiCh vanishes for larg, providedR<1—e— & for any

probability of an atypical error. The number of syndromes is ) . S _
determined by the fact that there ar&2¢ dimensions di- 8>0. Hence, the capacity obtained in this case Is

vided amongst ® encoded qubits. Hence, the average prob-

ability of failure becomes arbitrarily small, for large for Qe=1-¢ (AS)
any,R<1—3S(p)— &, wherep= (I A)|¥ "W (¥™*|. As the

rate for the average over stabilizer codes attainsRateere  usingE£= e e-bits per channel.

must exist particular codes with raReand arbitrarily small The amount of entanglement required in both these cases
average failure probability. Expurgation, that is, removal ofstems from the number of entangled states; n—k, uti-

half of the codewords corresponding to the highest probabilitized in the code. Dividing through by the number of chan-
ties of error, may then be used on such codes to assure thagls n we have an amount of entanglemef#1—R>1

the maximal probability of block error for such a code is also— Qg+ 8 per channel in the random coding derivation.
arbitrarily small, with minimal effect on the rate of the new Hence, in these cases the required entanglement is given by
code[31]. Thus the capacity is given by Sga”domz 1-Qg.
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