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Quantum gambling using three nonorthogonal states
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We provide a quantum gambling protocol using three~symmetric! nonorthogonal states. The bias of the
proposed protocol is less than that of previous ones, making it more practical. We show that the proposed
scheme is secure against nonentanglement attacks. The security of the proposed scheme against entanglement
attacks is shown heuristically.
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I. INTRODUCTION

Unforgetable quantum money proposed by Wiesner@1#
opened the field of quantum cryptography. The most succ
ful of the quantum cryptographic protocols is the Benn
and Brassard~BB84! quantum key distribution~QKD! pro-
tocol @2#, whose unconditional security was proved mo
than a decade later@3#. Since another very useful ingredie
in cryptographic tasks is the bit commitment, there has b
much effort to find an unconditionally secure quantum
commitment protocol. However, it turns out that no su
thing exists @5,6#. This fact motivated the search for
slightly weaker protocol, quantum coin tossing. However
turns out that the ideal quantum coin tossing protocol a
does not exist@7#. It is still an open question whether almo
ideal quantum coin tossing exists or not@8#. However, it was
found that there exists a quantum gambling protocol tha
weaker than quantum coin tossing@9#.

We can say that the quantum money and the BB84 pr
col are based on a basic property of quantum mechanics
no-cloning theorem@10,11#. Another closely related but dif
ferent property in quantum mechanics is that nonorthogo
quantum states cannot be distinguished with certainty@12#. It
is interesting to search for quantum protocols utilizing t
property. Bennett’s later QKD scheme indeed utilizes t
property@13#. Recently, Hwanget al. gave a quantum gam
bling scheme that utilizes this basic property@14#.

The two quantum gambling protocols@9,14# are not ideal
in the sense that there is a biasd.0: It is an unfair game by
the amount of the biasd. That is, for each round of the gam
the expectation value of one party’s gain is given by the b
d. However, since the biasd is proportional to 1/AR, where
R is the money penalty, the biasd can be made negligible b
makingR very large in both schemes@9,14#.

In this paper, we provide a quantum gambling proto
using three nonorthogonal states. In the proposed sch
two participants Alice and Bob can be regarded as playin
game of making guesses at the identities of quantum st
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that are in one of three given nonorthogonal states: If B
makes a correct~incorrect! guess at the identity of a quantum
state that Alice has sent, he wins~loses!. We show that the
proposed scheme is secure against nonentanglement att
The security of the proposed scheme against entanglem
attacks is shown heuristically. However, since the idea
hind the proof is simple, we believe that a rigorous one w
be found as in the case of the QKD@3,4,15#. The advantage
of the proposed scheme over previous ones is that the bid
is proportional to 1/R. We discuss this advantage.

II. QUANTUM GAMBLING USING THREE
NONORTHOGONAL STATES

Let us now describe the three symmetric nonorthogo
states to be used in the protocol. Let$pi ,u i &^ i u% denote a
mixture of pure statesu i &^ i u with relative frequencypi with
( i pi51. r5( i pi u i &^ i u is a density operator that correspon
to the mixture$pi ,u i &^ i u%. Any pure quantum bits~qubits!
u i &^ i u can be represented by a~three-dimensional Euclidean!

Bloch vecterr̂ i asu i &^ i u5(1/2)(11 r̂ i•s¢ ) @16#. Here1 is the
identity operator,s¢ 5(sx ,sy ,sz), and sx ,sy ,sz are the
Pauli operators. The Bloch vectors of the three nonortho
nal statesua&, ub&, and uc& are in the same plane and mak
an angle 2p/3 with one another to be symmetric. Here w
adopt ua&5u0&, ub&51/2u0&1A3/2u1&, and uc&51/2u0&
2A3/2u1&, whereu0& andu1& denote two mutually orthogo
nal states of a qubit as usual.

Let us now give the protocol.
~1! Alice randomly chooses one among the three non

thogonal statesua&, ub&, anduc&, and sends it to Bob.
~2! On the qubit he receives, Bob performs an optim

measurement, that is, a measurement by which he can o
the maximal probabilityp of correctly guessing the identity
of the qubit.

~3! On the basis of the measurement’s results, he mak
guess at which one the qubit is and annouces it to Alice.

~4! If he made a correct~incorrect! guess, Alice an-
nounces he has won~lost!.

~5! When Bob has won, Alice gives him one coin. Whe
he has lost, Bob gives herp/(12p) coins.

However, after the first step, Bob follows the followin
steps 6–9 instead of steps 2–5, at randomly chosen insta
with a rater (0,r !1).

a-
n
:
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~6! Bob performs no measurement on the qubit and sto
it.

~7! He announces his randomly chosen guess at the i
tity of the qubit.

~8! Step 4 is repeated.
~9! In the previous step, Alice has actually revealed wh

one she chose to tell him the qubit is~regardless of her hon
esty!. When it isua& (a5a,b,c), Bob performsŜa . (Ŝa is
an orthogonal measurement that is composed of two pro
tion operatorsua&^au and ua8&^a8u. Here ua8& is a normal-
ized state that is orthogonal toua&.! If the outcome isua8&,
Bob announces that he performedŜa and got ua8& as an
outcome. Then Alice must give himR (@1) coins. If the
outcome isua&, Bob says nothing about which measureme
he performed and follows step 5. j

As in the two-state scheme@14#, it is important in step 2
for Bob to perform the optimal measurement that assu
maximal probabilityp of correctly guessing the identity o
the qubit, in order to assure his maximal gain. The optim
measurment for the three nonorthogonal statesua& was re-
cently given@17#. It is a positive operator valued measur
ment~POVM! @18# whose component operators are, intere
ingly, proportional to the three operatersua&^au @17#. That is,
they are (2/3)ua&^au, (2/3)ub&^bu, and (2/3)uc&^cu. Now it is
easy to see that the maximal probabilityp is 2/3.

III. SECURITY OF THE PROTOCOL

Now let us show how each player’s average gain is
sured.~Here we repeat the corresponding part of Ref.@14# in
a slightly varied form.!

First it is clear by definition that Bob can do nothin
better than performing the optimal measurement, as lon
Alice prepares the specified qubits. In the protocol, the nu
bers of coins that Alice and Bob pay are adjusted so tha
one gains when Bob’s win probability isp. Thus Bob’s gain
GB cannot be greater than zero, that is,GB<0.

Next let us consider Alice’s strategy. As noted above,
first show the security against Alice’s nonentanglement
tacks. Roughly speaking, Alice can do nothing but prep
the given statesua& and honestly tell Bob the identity of th
state later. Otherwise she must payR (@1) coins to him
sometimes, making her gain negative. Let us consider
more precisely. In the most general nonentanglement atta
Alice randomly generates each qubit in a stateu i & with a
probability pi . Here theu i & ’s are arbitrarily specified state
of qubits, i 51,2, . . . ,N and ( i

Npi51. However, since Bob
has no information about whichu i & Alice has selected at eac
instance, his treatments of the qubits actually become e
for all qubits. Thus it is sufficient to show the security for
qubit in an arbitrary state. Let us denote the angles that
Bloch vector of a stateu i & makes with those ofua& asua . At
ramdomly chosen instances with a rater, Bob checks Alice’s
claim by measuringŜa when the claim is that the state isua&
~the steps 6–9!. If the measurement’s outcomes areua8&, the
claim is proved wrong. Then Alice must give BobR coins.
The probability that a stateu i & is checked isz^a8zi &u251
2cos2(ua/2) in the case when the checking measurementŜa
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is performed. Thus one term in Alice’s gainGA is 2rR@1
2cos2(ua/2)# whererR is set to be much larger than 1. No
it is simple to see that Alice should prepare only states t
are highly nonorthogonal to one of theua& ’s. Thus one of the
ua’s is very small. Otherwise, Alice’s gainGA will be domi-
nated by the highly negative term2rR@12cos2(ua/2)# in
any case. Similarly, we can see that she should claim
prepared state to be the one that is nearest to it.

Here it should be noted that we should take into acco
the fact that Alice obtains partial information about wheth
Bob has performed the measurement or not, due to Ba
rule. However, Alice still cannot increase her gain as long
the R is large enough, because she cannot be confident
Bob has already performed the measurement. Letf u be Al-
ice’s estimation of the probability that Bob did not perfor
the measurement. With no information,f u is r. However,
Bob’s announced guess gives her partial information ab
his measurement’s result if he performed it. This informati
can be used to make a better estimate off u . For example, in
the case where Alice sendsua& and Bob performs the opti
mal measurement, we obtain using Bayes’ rule thatf u
5(r /3)/@(r /3)1(12r )(2/3)# when his guess isua&. How-
ever, it is clear thatf u>r /3: when Bob did not perform the
measurement, he simply guesses it with equal probabili
regardless of what he received. Thus, by Bayes’ rule, Al
can see that there remains a probability greater thanr /3 that
Bob did not perform the measurement. The relationf u>r /3
also holds for the entanglement attacks, since it is satis
for any ua&.

Now let us consider a stateu i & that satisfies the require
mentsua;0, ub;2p/3, anduc;2p/3, without loss of gen-
erality. The probabilityPC that Bob makes a correct guess
given by PC5(2/3)cos2(ua/2). That for an incorrect one is
given by PI512PC . Alice’s gain is 21 ~2! when Bob
makes a correct~incorrect! guess. Let us denote Alice’s gai
GA

n (GA
c ) in the case of the normal~checking! steps. Alice’s

total gain is given byGA5(12r )GA
n1rGA

c . Alice’s gainGA
n

in the case of the normal steps can be obtained as

GA
n5~21!~2/3!cos2~ua/2!

12$12~2/3!cos2~ua/2!%

52$12cos2~ua/2!%. ~1!

Alice’s gainGA
c in the case of the checking steps~when Alice

claims that the sent qubit isua&) is given by

GA
c 52R@12cos2~ua/2!#1cos2~ua/2!. ~2!

The second term in the right-hand side of Eq.~2! is because
Bob makes a random guess without performing the optim
measurement in the checking steps and thus it is disadva
geous for him. Then we can obtain that
1-2
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GA5~12r !2$12cos2~ua/2!%

2rR$12cos2~ua/2!%1rcos2~ua/2!

5$22r ~R12!%$12cos2~ua/2!%

1rcos2~ua/2!. ~3!

Here it is easy to see that ifr (R12)@2 the optimal choice
for Alice is thatua50. Then the maximal gain for Alice is
given by GA

max5r . If we determine the values ofr and R
such that they satisfy the relationr (R12)5k@2 (k is a
constant!, Alice’s maximal gain or the biasd is r. Thus the
bias d is proportional to 1/R. The basic reason for this ad
vantage is that the measured statesua& coincide with the
elements of the optimal POVM in the proposed scheme.
ice could increase her gainGA

n for the normal steps by in
creasingua in both two- and three-state schemes but with
following difference. In the three-state~two-state! scheme,
GA

n increases with the second~first! order of ua while the
probability to be checked increases with the second orde
ua .

Let us heuristically show the security against Alice’s e
tanglement attacks. In entanglement attacks, she does
send a separate state but sends qubits that are entangled
some other qubits she preserves. If she can change B
staterB as she likes, she can always win. The basic ide
that she cannot do so even in entanglement attacks. Ins
by appropriately choosing her measurement, Alice can g
erate at Bob’s site any ensemble$pi ,u i &^ i u% satisfying
( i pi u i &^ i u5rB ~the theorem of Hughston, Jozsa, and Wo
ters! @19#. Let rB5(1/2)(11 r̂ •s¢ ). SincerB5( i pi u i &^ i u and
u i &^ i u5(1/2)(11 r̂ i•s¢ ) where r̂ i is the corresponding Bloch
vector, we have (1/2)(11 r̂ •s¢ )5(1/2)(11@( i pi r̂ i #•s¢ ) and
thus

r̂ 5(
i

pi r̂ i . ~4!

Therefore, for a givenrB whose Bloch vector isr̂ , Alice can
prepare at Bob’s site any mixture$pi ,u i &^ i u% as long as its
Bloch vectorsr̂ i satisfy Eq.~4!. However, if Alice always
performs a given measurement, the entanglement attack
duce to the nonentanglement attacks: the outcomes of m
surements on entangled pairs do not depend on the tem
order of the two participants’ measurements. So we can c
fine ourselves to the case where Alice measures first. T
the attack reduces to a nonentanglement attack, where A
gn
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generatesu i & with probability pi . The only thing that Alice
can do to utilize the entanglement is to choose her meas
ments according to Bob’s announced guesses. However
checking steps also prevent Alice from increasing her ga
she must choose the measurement that gives some mi

$pi ,u i &^ i u% at Bob’s site such that eachr̂ i is the same as one
of the Bloch vectors of the three nonorthogonal statesua&.
This is because any vectorr̂ i that deviates from those of th
ua& ’s will decrease Alice’s gain due to the checking step
involving a negative term containingrR. Therefore, Alice
has no freedom in the choice of measurements but a g
choice. Thus the attack reduces to nonentanglement att
for the reasons noted above.

IV. DISCUSSION AND CONCLUSION

Let us discuss the advantage of the proposed scheme
problem of quantum gambling schemes is that Alice c
claim that the error is due to noise or decoherence on
quantum channel, whenever it is checked and thus she m
payR to Bob. This problem cannot be clearly solved even
quantum error-correcting codes@16# are successfully imple-
mented because a small amount of error always remains.
solution to this problem is that Bob aborts the whole proto
if the error rate claimed by Alice is greater than the expec
residual error rate. However, Bob should actually accept
loss, which amounts to the product of the number of err
and R, until data for a sufficient number of errors accum
late. Thus it is hard for Bob to do so whenR is too large.
However, in the previous schemes~proposed scheme!, we
have thatR;1/d2 (R;1/d), namely, for a given bias the
value of R of the proposed scheme is less than that of
previous schemes by a factor of 1/d. Therefore we can say
that the proposed scheme is more practical than prev
ones.

In conclusion, we provided a quantum gambling protoc
using three~symmetric! nonorthogonal states. We showe
that the proposed scheme is secure against nonentangle
attacks. The security of the proposed scheme against
tanglement attacks was shown heuristically. The advant
of the proposed scheme over previous ones is that the bid
is proportional to 1/R. We discussed its practical advantag
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