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Quantum gambling using three nonorthogonal states
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We provide a quantum gambling protocol using th{sgmmetrig nonorthogonal states. The bias of the
proposed protocol is less than that of previous ones, making it more practical. We show that the proposed
scheme is secure against nonentanglement attacks. The security of the proposed scheme against entanglement
attacks is shown heuristically.
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[. INTRODUCTION that are in one of three given nonorthogonal states: If Bob
makes a corredincorrec} guess at the identity of a quantum

Unforgetable quantum money proposed by Wiegrgr state that Alice has sent, he wiflsseg. We show that the
opened the field of quantum cryptography. The most succesgroposed scheme is secure against nonentanglement attacks.
ful of the quantum cryptographic protocols is the BennettThe security of the proposed scheme against entanglement
and BrassardBB84) quantum key distributiofQKD) pro-  attacks is shown heuristically. However, since the idea be-
tocol [2], whose unconditional security was proved morehind the proof is simple, we believe that a rigorous one will
than a decade lat¢B]. Since another very useful ingredient be found as in the case of the QKB,4,15. The advantage
in cryptographic tasks is the bit commitment, there has beenf the proposed scheme over previous ones is that theshias
much effort to find an unconditionally secure quantum bitis proportional to 1R. We discuss this advantage.
commitment protocol. However, it turns out that no such
thing exists[5,6]. This fact motivated the search for a
slightly weaker protocol, quantum coin tossing. However, it [l. QUANTUM GAMBLING USING THREE
turns out that the ideal quantum coin tossing protocol also NONORTHOGONAL STATES

does not exisf7]. It is still an open question whether almost Let us now describe the three symmetric nonorthogonal

ideal quantum coin tossing exists or i8t. However, it was states to be used in the protocol. Lt ,|i)(i[} denote a

found that there exists a quantum gambling protocol that IS ixture of pure stateli )(i| with relative frequencyp; with
weaker than quantum coin tossif@j.

>ipi=1. p=2;pi|i)(i| is a density operator that corresponds
We can say that the quantum money and the BB84 proto the mixture{p; |i)(i|}. Any pure quantum bitéqubit9

. . t
et " can b repesented yree-mensionl Ecidar
ferent property in quantum mechanics is that nonorthogonaloch vecterr; as|i)(i|=(1/2)(1+r;- ) [16]. Herelis the
guantum states cannot be distinguished with certdit@y. It identity operator,o=(oy,0y,0,), and oy,0,,0, are the
is interesting to search for quantum protocols utilizing thisPauli operators. The Bloch vectors of the three nonorthogo-
property. Bennett's later QKD scheme indeed utilizes thisnal stateda), |b), and|c) are in the same plane and make
property[13]. Recently, Hwanget al. gave a quantum gam- an angle 2r/3 with one another to be symmetric. Here we
bling scheme that utilizes this basic propelrty]. adopt |a)=|0), |b)=1/2/0)+y3/2]1), and |c)=1/2/0)

The two quantum gambling protocd8,14| are not ideal —/3/21), where|0) and|1) denote two mutually orthogo-
in the sense that there is a bids 0: It is an unfair game by nal states of a qubit as usual.
the amount of the bia8. That is, for each round of the game  Let us now give the protocol.
the expectation value of one party’s gain is given by the bias (1) Alice randomly chooses one among the three nonor-
8. However, since the bia8 is proportional to 1{R, where  thogonal state$a), |b), and|c), and sends it to Bob.

R is the money penalty, the bidscan be made negligible by (2) On the qubit he receives, Bob performs an optimal
makingR very large in both schem¢$9,14]. measurement, that is, a measurement by which he can obtain
In this paper, we provide a quantum gambling protocolthe maximal probabilityp of correctly guessing the identity

using three nonorthogonal states. In the proposed schemef the qubit.
two participants Alice and Bob can be regarded as playing a (3) On the basis of the measurement’s results, he makes a
game of making guesses at the identities of quantum stategiess at which one the qubit is and annouces it to Alice.
(4) If he made a correctincorrec} guess, Alice an-
nounces he has wafost).

*Present address: Tech.—L 359, Center for Photonic Communica- (5) When Bob has won, Alice gives him one coin. When
tion and Computing, Northwestern University, 2145 N. Sheridanhe has lost, Bob gives hgr(1—p) coins.
Road, Evanston, IL  60208-3118. Email address: However, after the first step, Bob follows the following
wyhwang@ece.northwestern.edu steps 6-9 instead of steps 2—5, at randomly chosen instances

TEmail address: keiji@qci.jst.go.jp with a rater (0<r<1).
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(6) Bob performs no measurement on the qubit and storeg performed. Thus one term in Alice’s gaf®, is —rR[1

) . —cog(6,/2)] whererR is set to be much larger than 1. Now
_(7) He announces his randomly chosen guess at the idefy js gimple to see that Alice should prepare only states that
tity of the QUb.'t' are highly nonorthogonal to one of the)’s. Thus one of the
(8) Step 4 is repeated, 0,’s is very small. Otherwise, Alice’s gaiG , will be domi-

(9) In the previous step, Alice has actually revealed which : . - :
one she chose to tell him the qubit(regardless of her hon- hated by the_ hlghly negative term rR1 - cos(6,/2)] n
any case. Similarly, we can see that she should claim the

esty.t\r/]Vhen Itl is|a) (a:a’bt’% E.Ob performzsa].c t(Sa IS é:)repared state to be the one that is nearest to it.
an orthogona' measurement nat Is COmposed of tWo projec- ..o it should be noted that we should take into account

tion operators a)(a| and|a’)(a’|. Here|a’) is a r?O”T,‘a" the fact that Alice obtains partial information about whether
ized state that is orthogonal te).) If the outcome iga’), :
" ) Bob has performed the measurement or not, due to Bayes
Bob annour;]ces tlhat he perf_ormsg and gota’) afs ﬁ” rule. However, Alice still cannot increase her gain as long as
outcome._T enBAkljce must %'Ye 't')ﬁ (>lh)' ﬁoms. Ifthe  heRis large enough, because she cannot be confident that
ggtczwgrﬁgg ,ang fjl?gssms):em% about whic measure.mentBob has already performed the measurement.f.die Al-
P W b o ice’s estimation of the probability that Bob did not perform

As in the two-state schenjé4], it is important in step 2 e measurement. With no informatioy is r. However
for Bob to perform the optimal measurement that assureg] , ' . u s . '
ob’s announced guess gives her partial information about

maximal probabilityp of correctly guessing the identity of - ; . . .
the qubit pm order){cg assure hisyn?aximal ggain The o);;timar"s measurement’s result if he performed it. This information

measurment for the three nonorthogonal stateswas re-  €an be used to make a better estimaté,ofFor example, in
cently given[17]. It is a positive operator valued measure- the case where Alice sendls) and Bob performs the opti-
ment(POVM) [18] whose component operators are, interestMal measurement, we obtain using Bayes’ rule that
ingly, proportional to the three operatétg)(a| [17]. Thatis, = ("/3)/L(r/3)+(1—r)(2/3)] when his guess ifer). How-

they are (2/3)a)(al, (2/3)|b)(b|, and (2/3)c)(c|. Nowitis  EVer itis clear thaf,,=r/3: when Bob did not perform the

easy to see that the maximal probabilitys 2/3. measurement, he simply guesses it with equal probabilities
regardless of what he received. Thus, by Bayes'’ rule, Alice

can see that there remains a probability greater tharhat
ll. SECURITY OF THE PROTOCOL Bob did not perform the measurement. The relatige:r/3
also holds for the entanglement attacks, since it is satisfied
for any|a).

Now let us consider a stafé) that satisfies the require-
mentsf,~0, 6,~2m/3, andf.~2x/3, without loss of gen-
a%rality. The probabilityP that Bob makes a correct guess is
given by Pc=(2/3)cog(6,/2). That for an incorrect one is

it.

Now let us show how each player's average gain is as
sured.(Here we repeat the corresponding part of R&4] in
a slightly varied form.

First it is clear by definition that Bob can do nothing
better than performing the optimal measurement, as long
Alice prepares the specified qubits. In the protocol, the num

bers of coins that Alice and Bob pay are adjusted so that ng'Ven by Pi=1—Pc. Alice’s gain is —1 (2) when Bob
one gains when Bob’s win probability 5 Thus Bob’s gain makes a corredincorrec) guess. Let us denote Alice’s gain

Gg cannot be greater than zero, that@,<0. G (G,i_) i_n the case of the normr;éthecléing _ste,ps. Alicen’s
Next let us consider Alice’s strategy. As noted above, welotal gain is given byG,=(1-r)G,+rG,.. Alice’s gainG,

first show the security against Alice’s nonentanglement atin the case of the normal steps can be obtained as

tacks. Roughly speaking, Alice can do nothing but prepare

the given statefe) and honestly tell Bob the identity of the

state later. Otherwise she must pRy(>1) coins to him GA=(—1)(2/3)cos(6,/2)

sometimes, making her gain negative. Let us consider this _

more precisely. In the most general nonentanglement attacks, +2{1-(2/3)co(0,/2)}

Alice rgndomly generates each qu.bit i-n a sthpgwith a =2{1—coS(6,/2)}. )

probability p; . Here thel|i)’s are arbitrarily specified states

of qubits,i=1,2,... N and Eini=1. However, since Bob

has no information about whidh) Alice has selected at each Alice’s gainG¢ in the case of the checking stefvehen Alice

instance, his treatments of the qubits actually become equg|aims that the sent qubit {®)) is given by

for all qubits. Thus it is sufficient to show the security for a

qubit in an arbitrary state. Let us denote the angles that the

Bloch vector of a statéi) makes with those dfa) asé, . At GE = — R[1— cO&(0./2) ]+ cO( 6,/2). )

ramdomly chosen instances with a rat@ob checks Alice’s

claim by measuring, when the claim is that the state|is)

(the steps 6-0 If the measurement's outcomes a€), the  The second term in the right-hand side of E2).is because
claim is proved wrong. Then Alice must give Bé&bcoins.  Boh makes a random guess without performing the optimal
The probability that a stati) is checked isl{a’[i}|?=1  measurement in the checking steps and thus it is disadvanta-
—cog(6,/2) in the case when the checking measurenggnt geous for him. Then we can obtain that
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Ga=(1-1)2{1—cog(6,/2)} generatesi) with probability p; . The only thing that Alice
can do to utilize the entanglement is to choose her measure-
—IR{1—C0S(0,/2)} +1COS( 6,/2) ments according to Bob’s announced guesses. However, the

B checking steps also prevent Alice from increasing her gain:
={2-r(R+2){1-cog(6./2)} she must choose the measurement that gives some mixture

+rCcog(0,/2). (3)  {pi.|i)(i|} at Bob's site such that eachis the same as one
o _ _ _ of the Bloch vectors of the three nonorthogonal states
Here it is easy to see thati{R+2)>2 the optimal choice s js pecause any vector that deviates from those of the
for Alice is that§,=0. Then the maximal gain for Alice is | )5 will decrease Alice’s gain due to the checking steps,
given by G4™=r. If we determine the values afandR  ihyolving a negative term containingR. Therefore, Alice
such that they satisfy the relatiaf{R+2)=k>2 (k is @  pas no freedom in the choice of measurements but a given

constan), Alice’s maximal gain or the bias is r. Thusthe  cpojce. Thus the attack reduces to nonentanglement attacks
bias & is proportional to 1/R The basic reason for this ad- fgr the reasons noted above.

vantage is that the measured stafe$ coincide with the

elements of the optimal POVM in the proposed scheme. Al- IV. DISCUSSION AND CONCLUSION
ice could increase her gai@j, for the normal steps by in- .
creasingd, in both two- and three-state schemes but with the Let us discuss the advantage of the proposed scheme. The

following difference. In the three-statgwo-stat¢ scheme pro_blem of quantum gambling sphemes is that Alice can
n . . ’claim that the error is due to noise or decoherence on the
G, increases with the secoriirst) order of 6, while the

- ) . uantum channel, whenever it is checked and thus she must
zrobablllty to be checked increases with the second order ogayR to Bob. This problem cannot be clearly solved even if
a guantum error-correcting codg¢$6] are successfully imple-
ented because a small amount of error always remains. The
lution to this problem is that Bob aborts the whole protocol
e error rate claimed by Alice is greater than the expected
dual error rate. However, Bob should actually accept his
ss, which amounts to the product of the number of errors
dR, until data for a sufficient number of errors accumu-
MNate. Thus it is hard for Bob to do so whéis too large.

Let us heuristically show the security against Alice’s en-
tanglement attacks. In entanglement attacks, she does ng
send a separate state but sends qubits that are entangled V\ﬁt
some other qubits she preserves. If she can change BObrési
statepg as she likes, she can always win. The basic idea i§
that she cannot do so even in entanglement attacks. Inste
by appropriately choosing her measurement, Alice can ge

erate at Bob's site any ensemble; |i)(i[} satisfying However, in the previous schemégroposed schemewe
Zipi|i)i[=pe (the theorenl Oi H“th“’”’ Jozsg, a_nd WOOt'have tha’tR~ 1/82p(R~ 1/5), nameéls, fF(;r a given kr)])ilgs the
ters [19]. Letpg=(1/2)(1+T - 0). Sinceps=Z=ipi|i)(il and  value of R of the proposed scheme is less than that of the
li)(i|=(1/2)(1+r;- o) wherer; is the corresponding Bloch previous schemes by a factor of51/Therefore we can say
vector, we have (1/2)(+r-a)=(1/2)(1+[Z;pir;]- o) and that the proposed scheme is more practical than previous
thus ones.
In conclusion, we provided a quantum gambling protocol
F_E - 4 using three(symmetrig nonorthogonal states. We showed
T4 Pifi - (4) that the proposed scheme is secure against nonentanglement

attacks. The security of the proposed scheme against en-
Therefore, for a givemg whose Bloch vector is, Alice can  tanglement attacks was shown heuristically. The advantage
prepare at Bob's site any mixtuf@; ,|i)(i|} as long as its Of the proposed scheme over previous ones is that theshias
Bloch vectorst; satisfy Eq.(4). However, if Alice always is proportional to IR. We discussed its practical advantage.

performs a given measurement, the entanglement attacks re- ACKNOWLEDGMENTS

duce to the nonentanglement attacks: the outcomes of mea-

surements on entangled pairs do not depend on the temporal We are very grateful to Professor Hiroshi Imai and the
order of the two participants’ measurements. So we can con}apan Science Technology Corporation for financial support.
fine ourselves to the case where Alice measures first. TheWe are also very grateful to Dr. Alberto Carlini for helpful
the attack reduces to a honentanglement attack, where Aliatiscussions.

[1] S. Wiesner, SIGACT New45, 78 (1983. [6] D. Mayers, Phys. Rev. Let?8, 3414(1997.
[2] C.H. Bennett and G. Brassard, froceeding of the IEEE In-  [7] H.-K. Lo and H.F. Chau, Physica D20, 177 (1998.
ternational Conference on Computers, Systems, and Signal[8] A. Ambainis, inProceedings of the Thirty-Third Annual ACM

Processing, Bangalord EEE, New York, 1984, p. 175. Symposium of Theory of Computit®CM, New York, 2002,
[3] D. Mayers, J. Assoc. Comput. Mach8, 351 (2001). p. 134.
[4] P.W. Shor and J. Preskill, Phys. Rev. L&%, 441 (2000. [9] L. Goldenberg, L. Vaidman, and S. Wiesner, Phys. Rev. Lett.
[5] H.-K. Lo and H.F. Chau, Phys. Rev. Lei#t8, 3410(1997. 82, 3356(1999.

052311-3



W.-Y. HWANG AND K. MATSUMOTO PHYSICAL REVIEW A 66, 052311 (2002

[10] W.K. Wootters and W. Zurek, Naturé_ondon 229 802 Quantum Information(Cambridge University Press, Cam-
(1982. bridge, England, 2000
[11] D. Dieks, Phys. Lett92A, 271(1982. [17] E. Andersson, S.M. Barnett, C.R. Gilson, and K. Hunter, Phys.
[12] H.P. Yuen, Phys. Lett113A, 405(1986. Rev. A65, 052308(2002.
[13] C.H. Bennett, Phys. Rev. Let8, 3121(1992. [18] A. Peres,Quantum Theory: Concepts and Metha#duwer,
[14] W.Y. Hwang, D. Ahn, and S.W. Hwang, Phys. Rev. 64, Dordrecht, 1998 Chap. 9.
064302(2001). [19] L.P. Hughston, R. Jozsa, and W.K. Wootters, Phys. Leti33

[15] H.-K. Lo and H.F. Chau, Scienc83 2050(1999.

) _ 14 (1993.
[16] M. A. Nielsens and I. L. ChuandgQuantum Computation and

052311-4



