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Quantum gates using linear optics and postselection
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Recently it was realized that linear optics and photodetectors with feedback can be used for theoretically
efficient quantum information processing. The first of three steps toward efficient linear optics quantum com-
putation is to design a simple postselected gate that implements a nonlinear phase shift on one mode. Here a
computational strategy is given for finding postselected gates for bosonic qubits with helper photons. A more
efficient conditional sign flip gate is obtained. What is the maximum efficiency for such gates? This question
is posed and it is shown that the probability of success cannot be 1.
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[. INTRODUCTION annihilation operators generate the group of linear optics
transformations. Among these, the ones that preserve the par-
Now that we know that linear optics and photodetectordicle number are called passive linear. Every passive linear
are sufficient for quantum information processidg?], itis  optics transformation can be achieved by a combination of
necessary to investigate how the required schemes can beam splitters and phase shiftersUlfis passive linear, then
realized more efficiently. One promising direction is to useUa'®|0)=3u,a'®|0), whereus, defines a unitary matrix
superpositions of squeezed or coherent states for encodiig Conversely, for every unitary matrix, there is a corre-
qubits[2,3]. In this paper, it is shown how the postselectedsponding passive linear optics transformat[df]. For the

gates at the foundation of the constructions[i can be  remainder of this paper, all linear optics transformations are
found and improved. Other relevant work in this direction agssumed to be passive.

includes[4—7], where networks suitable for experimental re-
alization are given. The focus of this paper is on what can be
done in principle. To that end, a systematic method is given
for finding postselected gates based on a combination of al- A conditional phase shift by on two modes is the map
gebraic solution finding, exploitation of known symmetries, CS,:|ab)—e'(@??ab) for 0<a,b<1. These phase shifts
and numerical optimization. By using the method, a condican be used to implement conditional sign flips on two
tional sign flip for bosonic qubits that succeeds with prob-bosonic qubits. A bosonic quib, s is defined by identifying
ability 1/13.5 using two helper photons is found. This im-a qubit’s logical|0) with |01),s and logical|1) with |10),.
proves the one ifl], which succeeds with probability 1/16. The modes ands can be two distinct spatial modes or the
To conclude this paper, the following question is consideredtwo polarizations of one spatial mode. A key gate in quantum
What is the optimum probability of success for any numberinformation processing is the controlledT (see, for ex-
of helper photons®See the problem at the end of the paper. ample,[11]), which “flips” the second qubit if the first qubit
A characterization of states that can be obtained from helpég in the statd1). A gate that is equivalent to the controlled-
photons with passive linear optics and no postselection isioT up to one-qubit transformations is the conditional sign
given. This characterization implies that the probability can-lip, which changes the sign dfi1). To realize the condi-
not be 1, a result related to known bounds on Bell measuregonal sign flip between two bosonic qubi@; , and Qs 4,
ments[8,9]. apply CSgo- to modes 1 and 3. The bosonic qubit
controlledNoT can then be implemented using conditional
Il. PRELIMINARIES sign flips and single qubit rotations, which are realizable

) ) _ ) with beam splitters. Note that all one-qubit gates can be re-
The physical system of interest consists of optical modesg|ized with linear optics on bosonic qubits.

each of whose state space is spanned by the number states|n [1], conditional sign flips were implemented indirectly

0),[1).]2), ... . If more than one mode is used, they areysing a postselectddeferred to there as “nondeterministic”
distinguished by labels. For examp|k&), is the state wittk  realization of the map

photons in the mode labeled The Hermitian transpose of

this state is denoted b(k|. The vacuum state for a set of NS:a|0)+ B|1)+ y|2)— «|0) + B| 1) — ¥|2) (1)

modes has each mode in the stdtgand is denoted bj0).

The annihilation operator for modss written asa” and the  that succeeds with probability 1/4. The realization of NS

creation operator asa'®=(al")". Recall thata'®m)  requires one helper photon and two ancilla modes. The

={ym+1|m+1). Labels are omitted when no ambiguity re- implementation of C§g- in [1] requires two instances of

sults. Hamiltonians that are at most quadratic in creation anillS, resulting in a probability of success of 1/16. The goal is
to implement C&y more efficiently directly using two
helper photons. One helper photon can be shown to be insuf-

*Electronic address: knill@lanl.gov ficient by means of the same algebraic method about to be

IIl. CONDITIONAL PHASE SHIFTS
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used. Let mode$ and2 contain the state to which G& to ~ and then complete the last four columns with any orthonor-
be applied. The basic scheme is to start with two ancillamal basis of the orthogonal complement of the space
modes3 and 4 initialized with one photon each, apply a spanned by the columns & The maximum singular value
linear optics transformation to modes2, ... k with k  constraint ensures that one can compute the square root in
=4, measure all but the first two of these modes, and accepe expression foK. If some of the singular values &f are

only a predetermined outcome, say where one photon is d&dual to 1, then fewer than four additional columns and rows
tected in each of mode8 and 4 and none in the added can be used.

modes. Letl be the unitary matrix associated with the linear _The S'”gu'?‘r value constraint cannot be easily ach|ev§ad
. . . . ~ using algebraic methods. In principle, one can reparametrize
optics transformation, withig, the entries olu. The postse-

| d final is d ined letelv by the the matrixV to guarantee the constraint, for example by us-
ected final state Is determined completely by the4tupper ing the polar decomposition and an Euler angle representa-

left submatrixV of u with entriesV,s=us, for s,r<4. tion of unitary matrices. In the case in which £8 to be
Itis necessary to consider the effects of the scheme on thgpplied to the “left” modes of a pair of bosonic qubits, the
initial - states [00)y,,|01)15,/10)15,/11);,. Since photon singular value constraint can be removed by exploiting a
number is conserved, we have, without renormalization,  rescaling symmetry. In this situation, there are two additional
modes contributed by the bosonic qubits. The total number

|00) 12— @000d 00) 12, @ of photons is always four. Le¢ be a matrix whose coeffi-
cients satisfy the identities for the,pcq- Let A=\ (V) be
101)12— @0101 0112+ 011d10)12, 3 the maximum singular value of and consider the matrix
110) 10— 1014 10) 1o+ @100 01) 12, (4) 110
Ve:_< ) (10
|11 10— 111112 15+ @112d20) 12+ @110402) 15 . 5 NO VvV

To be successful, the amplitudes have to satisfy wherel in the upper left corner oV, is a 2X2 identity

6) matrix whose indeces are associated with the two other

@0110™ @1001= A1120~ @1107= 0, wpi ; ; ;
(“right” ) qubit modes.V, has maximum singular value 1

1017 X0101= ©0000» 7) and can be extgnded t.o a unita}y as beforg. The claim _is
that if the resulting optics operation is applied to the pair of
a1111= € agoo0. (8) bosonic qubits with the same postselection procedure, it has

the intended effect with probability 1%. To see that this is
The probability of success isrged?. The amplitudes are true, first observe thaV’=\V, satisfies the polynomial
polynomials of the coefficients of. For example,agogg  €quations obtained by requiring that the operation works cor-
=U30a4F U3 43. More generally, definp=3,v,.a"®. If  rectly for the pair of bosonic qubits. The amplitudes in
the initial state in modes hasd, photons, then the output Egs.(2)—(5)] that occur in these equations are polynomials
state is given byjspgs| 0). Let p:HSpgs_ Thus,Pis a poly-  Which are either homogeneous linear in the coefficients of a

nomial of thea'®. If B is the coefficient of the monomial 9iven column ofV’ or independent of themA polynomial
,(a"®™ in P, then the output amplitude for having, is homogeneous of degrekif each monomial has total de-

hotons in each modeis given by JIL.(m.) 3. The coeffi.  9Iree exactlyd in the variables. This is because the input
Eientﬂ is a polynomial o% the cgeffi::(ier:tg[i)f the, . This states have at most one photon in each mode. Because each

: : input state under consideration has exactly four photons, the
tsr?e(z)z\jv,jthat the output amplitudes,,cq are polynomials of a_mplitude§ are a.” hqmogeneous_ of_degree 4 in the coefii-
The first step for constructing G3s to solve Eqs(6)— cients ofv’. This |mpl|es that multlpl_ylng/ by 5sca_le§ the
(8), which are polynomial identities in the ;. Before show- amplitudes byé_“. Since the equations to be satisfied are
ing how to reduce the difficulty of doing that, let us see hOWhomogeneous linear in the amplitudes, every scalar multiple

to proceed from there. Since there are 16 free complex varlc—)]c t/r\];.a‘th”lﬁmxbalso S?t'Sf'efStrt]he equations. h. instead of
ables, the solution will have a number of remaining free ! € observation ol Ihe previous paragrapn, instead o

variables that must be chosen to optimize the probability oFrylng to satisty th_e_ singular value COUS_"?"”L one can recal-
successagoed? and to satisfy one more constraint: The so—CUIate the prob%blllty of success by dividings propablhty
lution must be an(explicit) matrix V that needs to be ex- of success byr" before optimizing. Note that this works

. A . . . .. even ifA<1. In computer experiments using naive optimi-
tended to a unitary matriy. This is possible if and only if P b 9 b

h ) naul luGhat is th £ th zation methodgsee below, this usually led to solution¥
the maximum singular valuéhat is the square root of the with A=1 for 6=180° andd=90°.

maxiQO eigenvalue of'V) is _at most 1. The exAtension is To simplify solving the equations for the,,.q, one can
not unique. One can set the first four columnsuofo the  yse scaling symmetries to standardizeSince each of the

matrix with orthonormal columns, a,peq IS homogeneous in the variables associated with any
one row or column ofV, the equations of the forma,p.q

_ v ) 9) =0 are satisfied for any rescaling of a row or column. The

(I1-VTwv)2)” nonzeroa,,.q are homogeneous of degree 1 in the third and

052306-2



QUANTUM GATES USING LINEAR OPTICS AND.. .. PHYSICAL REVIEW 466, 052306 (2002
1 180 The scaling rules of the previous paragraph can be used to
introduce unconstrained scaling variables and standardize the
W @ entries ofV. For example, one can takgs=v,4=v33= Va4
180 =v43=1. Note that this choice implies that solutions where
any one of these variables is 0 are not easily found. It may
3 therefore be necessary to try solving with some of the vari-
E> ables set to 0. For example, the CS gaté¢ldfafter transla-
widddl B tion into the form used here satisfieg;=0. | did not find
E>4 @@ any solutions satisfying this constraint with better probability
of success.

FIG. 1. Optical network realizing G&-. The notation is as MATHEMATICA was used to solve the equatiof@y other
explained in[1]. The lines denote the time lines of optical modes. computer algebra system would do equally wellhe strat-
Modes1 and?2 are the input modes; the first gates applied to themegy was to solve linear equations first and then to simplify
are linear phase shifts exp@'a) that map|1)— —|1). Modes3  expressionsMATHEMATICA notes can be found in the appen-
and4 are prepared in their one-photon states; the elements appliegix of the online version of this pap¢i2] and include for-
to these modes at the end of the operation are photon countefigyy|as for the solution found. The solution can be expressed
vyher_e the outcome is conditioned_ on the indicat_ed classi'cal outpyh, terms of the remaining variables of the last two columns
gga(r:llwrdes.s;:lteerilemenvtvshg;? mlxa::rt];nm()de;xg (?Sa{?;)dgg A€o V and one additional variable. After some experimenta-

! tion, it seemed that in all the best solutiong;=v,. This

+e 4aMa’®) ) is determined by the two phasése given in Y X . 1 V22
degrees. In each instance, modesndB are the top and bottom V&S exploited in the final version of the optimization proce-

modes, respectively, at both the input and the output of the bearflure, implemented imATLAB (the programs are available by
splitter. requesk Briefly, the function to be optimized takes as input
the remaining free complex variables,v,3,v34,11), and
fourth column(because of the presence of the helper photong nonredundant subset of the scaling variables. To avoid in-
at the input in mode$8 and4) and in the third and fourth finities, one can provide the logarithms of the scaling vari-
row (because of the postconditioning on detecting exactlyables as inputs. The scales can be taken to be real since
one photon in each of mod&sand4). Because Eq47) and phases have no effect on the probability of success. The
(8) are homogeneous linear in the amplitudes, rescaling thesanction can then be optimized using random starting points.
rows or columns preserves the identities. The nonzgiRy  With the optimization procedures provided IMATLAB, it
satisfy that they are of equal degree and homogeneous in theas found useful to randomly perturb the point returned and
first column andseparatelyin the first row. This is due to  repeat until the solution no longer changes significantly. This
the fact that when a photon is present in madst the input,  procedure routinely finds the same optimum. Ber180°, it
this is designed to be the case at the output too. Thus multiyas possible to guess the algebraic numbers to which it con-

plying the first column bys and the first row by 19 does not  yerged. Here is a version of the matrix found, which turns
change the values. Similarly, this rescaling can be used 0§, to pe unitary

the second column and row.

—-1/3 —213 V213 213
J213 -1/3 —-2/3 V213

Viso=| _ V3+6/13 \3—6/3 —(3+6)213 1/6—1/(36)
—\3-6/3 —\3+.6/3 —\1/6—-1/(36) —(3+6)/2/3

The probability of success is 2/27. The matrix can be systematically decomposed into elementary beam splitter and phase-shift
operatorg 10]. An optical network realizing it is shown in Fig. 1. The implementation uses fewer eleitienideam splitters,
four modes, two photon counters, probability of success 2/27) than the solut[dn (six beam splitters, six modes, two
photon counters, two photodetectors, probability of success 1/16). As before, the counters must be able to distinguish between
zero, one, or more than one photon.

A matrix that can be extended to obtain by postselection was also obtained,

(11)

—0.3202+0.0418 —0.2520-0.3226 0.2883 —~0.1292-0.7221
y —0.2520-0.3226 —0.3202+0.0418 —0.1292-0.7221 0.2883 >
9071 —0.3216+0.7210 —0.17110.1725 0.2469 0.33220.3285 (12

—0.1711-0.1725 —0.3216+0.7210 0.3322+0.3285 0.2469
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The probability of success for this solution is 1/19.37. Ajzed) states™(y| ). Choosing as the set of states the coher-
“nice” beam splitter decomposition of this matrix was not ent states and using the fact that for these st@(@da’r(m)
found. This is partly due to the fact that because only two of_ m<7|; the mixture consists of states of the form
the singular values arglose t9 1, at least two extra modes
must be added for the unitary completion. The simplest n
method of decomposing a-66 unitary matrix normally re- H (ak0+;akm+ @ a’®
quires 15 beam splitters. k=1

It is an open problem to determine whether the above
solutions are indeed optimal, as is suggested by the results of
the numerical experiments.

+ At agmen@ ™)[0)1. -1y (16)

Iterating this procedure proves the desired result.
IV. BOUNDS ON CONDITIONAL PHASE SHIFTS? _Con5|der the cond|t|pnal sign-flip gate. With this gate and
using a few beam splitters, one can map the stal®0
To obtain bounds on the probability of success of a phaseo  the state ],/§(|110(>+ |0011)) = 1/\2(@®af@
shift gate implemented with helper photons, one can attempt a‘r(3)aT(4)), an entangled photon state. By the above, be-
to use a characterization of the states obtained in the outpgidre postselection on a measurement of the other modes and
modes after tracing out the helper modes. The purpose of thigith n helper photons, the state can be written as a mixture
section is to obtain such a characterization and to show tha§f products of linear expressions in the creation operators.
the phase-shift gate cannot be implemented with probabilityrherefore, to obtain a bound on the probability of success, it
of success 1. For obtaining a bound, the initial state of thguffices to obtain a bound on the overlap (abrmalized
modes that the gate is applied to can be chosen arbitrarilguch states with the Bell state. Because the normalized over-
Assume that this is a state obtained by applying linear opticgap of (a' @ +a’®)(a’ @+ a' ™) with the Bell state is /2,

to prepared single photons. In this case, the final state aftertfe bound on the probability of success thus obtained can be

linear optics transformation is given by no smaller than 1/2. It is clear that the probability of success
n cannot be made equal to 1: The polynomigh-uv associ-
)= H (@qa’ @+ + aymal™))|0). (13) ated with the creation operators in the Bell state cannot be
k=1 factored.
A problem suggested by the above is as follows.
The goal is to show that after tracing out modes Problem.What is the maximum probability of success for
+1,... m, the state in the remaining modes is a mixture ofimplementing C$ using linear optics with at most inde-
states of the form pendently prepared helper photons and postselection from

photon counters without feedback?

It was shown that fop=180°, a probability of success of
1 is not possible, but fok=2, 1/13.5 can be realized. A
variant of the problem asks the same question for conditional
In fact, this is the case even if the final state before tracingign shifts of two bosonic qubitéa four-mode operation
out is also of this form, which is more general than the formOther directions for investigation are to determine what im-
in Eq. (13). To be explicit, add to the factors in the expres- provements are possible if active linear optics operations can
sion for | ) any constant terma,, so that be used, or if initial states such as prepared entangled photon
pairs[6] or photon number states liK@) are available.

n
kﬂl (Beot Ba@ D+ -+ Bpa™)]0). (14

n

Loy =11 (aro+ama @+ +ama ™)0). (15
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