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Einstein-Podolsky-Rosen correlations of spin measurements in two moving inertial frames

Jakub Rembielin´ski* and Kordian Andrzej Smolin´ski†
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The formula for the correlation function of spin measurements of two particles in two moving inertial frames
is derived within Lorentz-covariant quantum mechanics formulated in the absolute synchronization framework.
These results are the first exact Einstein-Podolsky-Rosen correlation functions obtained for Lorentz-covariant
quantum-mechanical systems in moving frames under physically acceptable conditions, i.e., taking into ac-
count the localization of the particles during the detection and using the spin operator with proper transforma-
tion properties under the action of the Lorentz group. Some special cases and approximations of the calculated
correlation function are given. The resulting correlation function can be used as a basis for a proposal of a
decisive experiment for a possible existence of a quantum-mechanical preferred frame.
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I. INTRODUCTION

Contemporary considerations of the Einstein-Podols
Rosen~EPR! @1,2# correlations are restricted mostly to o
servers staying in a fixed inertial frame of reference~for the
theoretical prescriptions and experimental results see,
Refs.@3–13#!. This is motivated not only by the experimen
tal requirement but, first of all, because of very serious d
ficulties connected with description of EPR-like experime
in frames in a relative motion. There are two reasons of
troubles with understanding and calculating the EPR co
lation function in this case. The first one is related to t
relativity of the notion of simultaneity for moving observe
versus instantaneous state reduction. The second proble
related to the nonexistence of a covariant notion of locali
tion in the relativistic quantum mechanics@14#. The latter
deficiency is especially serious because every realistic m
surement involves localization in the detector area.

Proposed solutions to these problems strongly depen
the adopted interpretation of quantum mechanics. From
orthodox point of view, attribution of physical meaning
the final probabilities only does not lead to a serious tens
between quantum mechanics~QM! and special relativity, so
they can ‘‘peacefully coexist’’@15–18#.

The second line of understanding of QM lies in attributi
a physical meaning to the physical state, its time evoluti
localization, etc. From this point of view there are serio
problems on the border between quantum mechanics
special relativity@19–23#. The most important ones are: lac
of the manifest Lorentz covariance of quantum mechan
with finite degrees of freedom and the above mentioned n
existence of a covariant notion of localization. Troubles w
a sharp localization in the relativistic QM arise also if w
restrict ourselves to a fixed inertial frame~cf. Hegerfeld theo-
rem @24,25#!.

Following Bell @19#, a consistent formulation of quantum
mechanics requires a preferred frame~PF! at the fundamenta
level ~it is interesting that also Einstein and Dirac had adm
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ted such a ‘‘nonmechanical’’ notion of a preferred fram
@26,27#!. Bell gives the very clear point of view on to thi
question in Ref.@28#.

A conceptual difficulty related to the notion of the PF lie
in an apparent contradiction with the Lorentz symmetry.
Refs. @29–31# it was shown that this is not the case: it
possible to arrange Lorentz group transformations in suc
way that the Lorentz covariance survives while the relativ
principle ~democracy between inertial frames! is broken on
the quantum level. Moreover, such an approach is consis
with all the classical phenomena. The physical meaning
the new form of the Lorentz group transformations lies
new, absolute synchronization scheme for clocks differ
from Einstein’s scheme@30–37#. Both synchronizations, the
new and the standard one, are physically inequivalent on
classical level only for velocities greater than the velocity
light. Furthermore, the causality notion, which is implied b
the nonstandard absolute synchronization, is more gen
than the Einstein one and thus it is applicable to nonlo
phenomena. A Lorentz-covariant formulation of QM bas
on the above mentioned absolute synchronization sch
was given in Ref.@29#. In such a formalism it is possible to
define the Lorentz-covariant notion of localization and sp
i.e., covariant localized states and a covariant position op
tor as well as the spin operator transforming properly un
the action of the Lorentz group. Note, that exactly these
tions are relevant to a correct discussion of~non! locality in
QM.

A serious candidate for a PF is the cosmic backgrou
radiation frame~CBRF!; this choice is connected with pos
sible dynamical ~cosmological! distinguishing of a local
privileged frame. Most recent EPR experiments performed
Geneva@38# have been analyzed according to PF hypothe
@29# and give a lower bound for the speed of ‘‘quantu
information’’ in CBRF at 23104c. Moreover, some attention
was also devoted to PF as a consequence of a possible b
ing of the Lorentz invariance@39,40# in high-energy pro-
cesses.

Since the covariant spin operator also exists in the form
lation of QM based on the absolute synchronization sche
@29#, therefore we can calculate precisely the EPR corre
tion function for any spin. To our knowledge, our results a
©2002 The American Physical Society14-1
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the first exact EPR correlation functions obtained
Lorentz-covariant quantum-mechanical systems in mov
frames under physically acceptable conditions~some at-
tempts were given in interesting papers by Czachor@41,42#;
see however Ref.@48#!. Because the resulting formula for th
correlation function depends on the velocities of the p
ferred frame it can also help us to answer the old ques
concerning the existence of a PF by means of the quant
mechanical EPR experiment and possibly solve the dilem
posed by Bell.

II. PRELIMINARIES

A. Realizations of the Lorentz group in the absolute
synchronization scheme

In this section we briefly describe main features of t
absolute synchronization scheme mentioned above whic
used in this work. The derivation of the presented results
be found in Refs.@29–31#. The main idea is based on
well-known fact that the definition of time coordinate d
pends on the procedure used to synchronize clocks@33#. If
we restrict ourselves to the timelike or lightlike signal prop
gation, the choice of this procedure is a convention@32–37#.
Now, the form of Lorentz transformations depends on
synchronization scheme, and we can find a synchroniza
procedure which leads to the desired form of Lorentz tra
formation preserving instant time~i.e., x05const) hyper-
planes. To perform such a program one has to distinguis
inertial frame, called the preferred frame: Every absol
synchronization scheme~ASS! distinguishes formally such a
priviledged inertial frame. We can go from one ASS to a
other by the action of the so-called synchronization gro
@29,31#. The classical relativity principle can be formulate
in this language as the invariance of physical laws under
action of the synchronization group, or more simply, by t
statement that each inertial frame can be chosen as the
ferred frame, i.e., the choice of the preferred frame is ph
cally irrelevant. The very serious advantage of ASS is
separation of the two fundamental notions of special rela
ity, namely, the relativity principle and the Lorentz cova
ance. In the absolute synchronization scheme, even in
case if the relativity principle is broken, the Lorentz symm
try survives.

Now, each inertial frame is determined by its fou
velocity with respect to the preferred one. We shall den
the four-velocity of the preferred frame as seen by an
server at rest in an inertial frame byu5(u0,u).

According to Refs.@30,31#, the transformation of the co
ordinates between inertial framesOu andOu8 takes the fol-
lowing form:

x8~u8!5D~L,u!x~u!, ~1a!

whereL is an element of the Lorentz group,u is the four-
velocity of the preferred frame with respect toOu , and
D(L,u) is a 434 matrix depending onL andu. This equa-
tion must be accompanied by the transformation law for
four-velocity of a preferred frame, which@according to Eq.
~1a!# takes the form
05211
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u85D~L,u!u. ~1b!

We point out that both Eqs.~1! are written for contravarian
components of coordinate and four-velocity.

The explicit form of the matrixD(L,u) is ~see Refs.
@29,31#!, for rotations,

~2a!

where RPSO(3) is a standard rotation matrix, and f
boosts,

~2b!

wherew5(w0,w) denotes a four-velocity of the frameOu8
as seen by the observer in the frameOu .

Hereafter we use the natural system of units withc5\
51.

Transformations ~1! leave the line elementds2

5gmn(u)dxm dxn invariant, where

Notice that g(u) is constant~i.e., x independent! in each
inertial frame and is congruent to the Minkowskian met
h5diag(1,2,2,2). It is easy to check that the space el
ment is Euclidean, i.e.,dl25dx2.

The four-velocitiesu, u8, andw are related by

w05
u0

u80
, w5

~u01u80!~u2u8!

11u0u80~11u•u8!
. ~3!

The relation between coordinates in the standard and
absolute synchronization is given by

xE
05x01u0u•x, xE5x, ~4a!

uE
05~u0!21, uE5u, ~4b!

where the subscriptE indicates coordinates in the standa
~Einstein’s! synchronization, while the coordinates in the a
solute synchronization are written without any subscript.
see that only the time coordinate changes. Note also tha
the same point of space we haveDxE

05Dx0, so the time
lapse is the same in both synchronizations. The coordin
xE in the Einstein’s synchronization transform according
the standard law, i.e.,x8E

m5Lm
nxE

n .
It is important to stress that the transformations~1! form a

realization of the Lorentz group which transforms linea
space-time coordinates according to Eq.~1a! and simulta-
neously, nonlinearly transforms the PF four-velocity acco
ing to Eq. ~1b!. The round-trip velocity of light is invariant
under Eqs.~1!. In particular, the Reichenbach synchroniz
4-2
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tion coefficient@32,33# is given bye(n,u)5(12u0n•u)/2.
Moreover, from Eqs.~4! we have the following relation be
tween velocities in the absolute and the standard synchr
zations:

v5
vE

12
vE•uE

uE
0

, ~5a!

vE5
v

11u0v•u
. ~5b!

Notice that foruvEu.1 the above formulas have singularitie
i.e., if a superluminal propagation~possibly related to the
nonlocality of the theory! takes place then both description
are no longer equivalent and consequently an ASS is ph
cally distinguished in such a case even on the classical l
@31#. It is remarkable that the velocity manifold of spaceli
particles is a proper carrier space for the Lorentz group o
in an ASS@31#.

We point out that the triangular form~2b! of a boost ma-
trix implies that under Lorentz transformations the time c
ordinate is only rescaled by a positive factor, i.e.,x80

5x0/w0, so the time ordering of events cannot be inver
by any Lorentz transformations between inertial frames,
gardless of the space-time separation. This is important in
QM context because the transformations of time do not
volve position operators.

B. Lorentz-covariant quantum mechanics

The Lorentz-covariant QM was discussed in the fram
work of an absolute synchronization scheme in Ref.@29#. We
associate with each inertial observer inOu a Hilbert space
Hu , so we have a bundle of Hilbert spaces rather tha
single Hilbert space of states. It has been shown in Ref.@29#
that one can introduce Hermitian momentum and coordin
four-vector operators satisfying

@ x̂m~u!,p̂n~u!#5 i S unp̂m~u!

ulp̂l~u!
2dn

mD , ~6a!

@ p̂m~u!,p̂n~u!#50, ~6b!

@ x̂m~u!,x̂n~u!#50. ~6c!

We see thatx̂0 commutes with all the observables. This a
lows us to interpretx̂0 as a parameter just like in the standa
nonrelativistic quantum mechanics. Moreover, forx̂, Eq.~6a!
is equivalent to@ x̂i ,p̂k#5 idk

i and@ x̂i ,p̂0#5 p̂i / p̂0 ~notice that
the covariant componentsui50 in each frame!, i.e., it has
the standard form. We stress that the commutation relat
~6! are covariant in the absolute synchronization. In fac
we have the following transformation law for four-vect
operators
05211
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U~L!x̂m~u!U†~L!5@D21~L,u!#m
nx̂n~u8!, ~7a!

U~L! p̂m~u!U†~L!5@DT~L,u!#m
np̂n~u8!, ~7b!

whereu85D(L,u)u andD(L,u) is given by Eqs.~2!. Us-
ing Eqs.~7! we can transform Eqs.~6! to another reference
frame. We point out once again that under transformati
~7a! for the time componentx̂0 does not mix with spatial
componentsx̂k(k51,2,3). One can also check that

@ x̂m~u!,p̂2~u!#5@ p̂m~u!,p̂2~u!#50, ~8!

which means that a localized state has a definite mass.
important to stress that the unitary map which connects
choice of ASS to another choice of ASS and preserves E
~6! and ~7! does not exist~this means that the synchroniza
tion group@29,31# cannot be unitarily realized in this case!.
For this reason QM distinguishes an ASS, i.e., a particu
preferred frame—the quantum preferred frame. In Ref.@31#
it was shown that the choice of the quantum preferred fra
can be done by the spontaneous breaking of the synchr
zation group. As it was mentioned earlier, a natural candid
for quantum preferred frame is the CBRF@49# .

Transformations of the Lorentz group induce an orbit in
bundle of Hilbert spacesHu . Unitary orbits are parameter
ized by mass and spin, similarly as for standard unitary r
resentations of the Poincare´ group.

An orbit induced by an action of the operatorU(L) in the
bundle of Hilbert spaces under consideration is fixed by
following covariant conditions:~i! k25m2, ~ii ! sgn(k0) is
invariant; for physical representationsk0.0, sgn(k0)51.
As a consequence there exists a positive defined Lore
invariant measure

dm~k,m!5d4k u~k0!d~k22m2!. ~9!

Now, applying the Wigner method and using Eqs.~7! one
can easily determine the action of the operatorU(L) on a
basis of eigenvectors of the four-momentum operator@29#

p̂m~u!uk,u,m;s,s&5kmuk,u,m;s,s&. ~10!

We find @50#

U~L!uk,u,m;s,s&5D s~R(L,u)!lsuk8,u8,m;s,l&, ~11!

where the contravariant componentsum andkm transform as
follows:

u85D~L,u!u5D~Lu8 ,ũ!ũ, ~12!

k85D~L,u!k, ~13!

while
4-3
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R(L,u)5D~R(L,u) ,ũ!

5D21~Lu8 ,ũ!D~L,u!D~Lu ,ũ!PSO~3!. ~14!

Here ũ5(1,0), u5D(Lu ,ũ)ũ andD s is the standard spins

matrix representation of SU(2), s50,1
2 ,1, . . . ; s,l52s,

2s11, . . . ,s21,s. R(L,u) is a Wigner rotation belonging to
the little group of a vectorũ. It should be noted that in this
approach, contrary to the standard one, representations o
Poincare´ group are induced from the little group of the ve
tor ũ, and notk̃5(m,0,0,0). Finally, the normalization con
dition for the basis vectors takes the form

^k,u,m;s,luk8,u,m;s8,l8&52k0d3~k82k!ds8sdl8l ,
~15!

wherek denotes the vector formed from covariant comp
nents of the momentum, i.e.,k5(k1 ,k2 ,k3).

C. The localized states and spin

Following Ref.@29# we construct the localized states~i.e.,
the eigenvectors of the position operator which coincides
PF with the Newton-Wigner one! and the covariant spin op
erator. Eigenstates of the position operatorx̂(u) ~locked up
in the t050) are of the form@29#

ux,u,m;s,s&5
1

~2p!3/2E d3k

2v~k!
Aulkl eik•xuk,u,m;s,s&,

~16!

wherev(k)5k0 is a positive solution of the dispersion rel
tion gmn(u)kmkn5m2. In the Schro¨dinger picture, after time
t5x0 they develop as

ux0,x,u,m;s,s&

5
1

~2p!3/2E d3k

2v~k!
Aulkl eikmxm

uk,u,m;s,s&, ~17!

which is not an eigenvector ofx̂(u) except forx050. These
vectors transform under the action of the Lorentz group
cording to the following law:

U~L!ux0,x,u,m;s,s&5D s~R(L,u)!lsux80,x8,u8,m;s,l&,
~18!

wherex8 and u8 are given by Eqs.~1!. Notice that forx0

50 we havex8050 andx8k5D(L,u)k
ix

i .
Now we define a spin operator@51# in absolute synchro-

nization as follows:

Ŝ~u!uk,u,m;s,t&5Sst
s uk,u,m;s,s&, ~19a!

so

Ŝ~u!ux,u,m;s,t&5Sst
s ux,u,m;s,s&, ~19b!
05211
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whereSs are the standard generators of rotation in the r
resentationD s. The transformation law~11! for states im-
plies the following transformation law for the components
Ŝ(u):

U~L!Ŝi~u!U†~L!5R(L,u)
T i

j Ŝ
j~u8!, ~20!

whereR(L,u) is a Wigner rotation as above.
Moreover, Ŝi(u) fulfill the standard commutation rela

tions such that

@Ŝi~u!,Ŝj~u!#5 i e i jk Ŝk~u!. ~21!

The invariantu-independent spin square operatorŜ2 can be
written in terms ofŜ(u) in the standard form

Ŝ25„Ŝ~u!…25s~s11!I . ~22!

We stress that only in that formulation of QM it is possible
introduce the spin operator which transforms properly un
the action of the Lorentz group@see Eq.~20!# and satisfies
the standard commutation relations~21! @52#.

To analyze the EPR-type experiments we define an
servablen•Ŝ(u), where

n5S sinu cosf

sinu sinf

cosu
D ,

which is the projection of operatorŜ(u) on the direction of a
unit vectorn in the frame of referenceOu . SinceŜ and x̂
commute, i.e.,@Ŝ(u),x̂(u)#50, we can introduce a set o
common eigenvectors ofx̂(u) and n•Ŝ(u). They are given
by

ux,n,u,m;s,l&5A2u0 exp~ iuen•Ŝ~u!!ux,u,m;s,l&

5D s~eiuen•Ss
!slA2u0ux,u,m;s,s&, ~23!

where

en5S sinf

2cosf

0
D .

Vectors~23! satisfy the following eigenequations:

x̂~u!ux,n,u,m;s,l&5xux,n,u,m;s,l&, ~24a!

n•Ŝ~u!ux,n,u,m;s,l&5lux,n,u,m;s,l&, ~24b!

with the normalization
4-4
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^x,a,u,m;s,luy,b,u,m;s,s&

5d3~x2y!D s~e2 iuaea•Seiubeb•S!ls . ~25!

Thus the projector corresponding to a regionV and to a
valuel of the spin component in then direction in the frame
Ou is of the form

PV,n
l ~u!5E

V
d3x ux,n,u,m;s,l&^x,n,u,m;s,lu. ~26!

Now, in the Schro¨dinger picture projectorsPV,n
l (u), locked

up in x050, are time independent and transform under L
entz group transformations by means of Eqs.~5! and~23! as
follows:

U~L!PV,n
l ~u!U†~L!5PV8,n8

l
~u8!, ~27!

here n85R(L,u)n and the regionV8 is obtained from the
region V by x8k5D(L,u)k

ix
i . We stress that there is n

analog of Eq.~27! in the standard formulation of relativisti
QM.

III. EPR CORRELATIONS

In this section we employ the formalism introduced abo
to the calculation of the correlation function of the EPR-ty
experiment. We consider distinguishable particles~the case
of identical particles is quite analogous!. In this case vectors
describing pure states belong toH a

sa(u) ^ H b
sb(u), where in-

dicesa andb denote particles. We associate with the obse
ersA andB the two framesAuA

andBuB
, the preferred frame

four-velocities with respect toAuA
andBuB

areuA anduB ,
respectively. These observers measure the spin compone
the a and b directions, respectively (uau5ubu51), in the
space regionsA andB, respectively. Let us denote their ob
servables asMA,a andMB,b , respectively. If we assume tha
the observerA registers the particlea and the observerB
registers the particleb, then

MA,a~uA!5 (
ma52sa

sa

maPA,a
ma ~uA! ^ I[ (

ma52sa

sa

maPA,a
ma ,

~28a!

MB,b~uB!5I ^ (
mb52sb

sb

mbPB,b
mb ~uB![ (

mb52sb

sb

mbPB,b
mb ,

~28b!
05211
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wherePA,a
ma andPB,b

mb are given by Eq.~26!.
A state of the system under consideration in frameOu at a

time t is denoted byr(u,t). Now we write down the se-
quence of events describing the development of the s
r(u,t).
~1! The observerA performs measurement with selection
the spin componentma in the directiona, localizing the
particle in the space regionA at a timetA

1 . This causes the
following state reduction

r~uA ,tA
1 !°

PA,a
ma r~uA ,tA

1 !PA,a
ma

Tr@r~uA ,tA
1 !PA,a

ma #
[rA~uA ,tA

1 ;ma!.

~2! The observerB sees the staterA(uA ,tA
1 ;ma) at a timetB

1

as

rA~uB ,tB
1 ;ma!5U~L!rA~uA ,tA

1 ;ma!U†~L!,

where

xB5D~L,uA!xA ,

uB5D~L,uA!uA ;

so

tB
15D~L,uA!0

0tA
1 .

~3! The state evolves freely in time fromtB
1 to tB

2 to

rA~uB ,tB
2 ;ma!5U~ tB

22tB
1 !rA~uB ,tB

1 ;ma!U†~ tB
22tB

1 !.

~4! The observerB performs measurement with selection
the observableMB,b at a timetB

2 ,

rA~uB ,tB
2 ;ma!°

PB,b
mb rA~uB ,tB

2 ;ma!PB,b
mb

Tr@rA~uB ,tB
2 ;ma!PB,b

mb #

[rAB~uB ,tB
2 ;mbuma!.

Recall that in the absolute synchronizationtB
22tB

1

5D(L,uA)0
0(tA

22tA
1) andD(L,uA)0

0.0, so the causal re
lationship between measurements inA andB is well estab-
lished ~contrary to the Einstein’s synchronization!.

Therefore the probabilityp(ma) that the observerA has
measured valuema and the probabilityp(mbuma) that the
observerB has measured the valuemb if the observerA had
measuredma are
p~ma!5Tr@r~uA ,tA
1 !PA,a

ma #,

p~mbuma!5Tr@rA~uB ,tB
2 ;ma!PB,b

mb #

5
Tr@r~uA ,tA

1 !PA,a
ma U†~L!U†~ tB

22tB
1 !PB,b

mb U~ tB
22tB

1 !U~L!PA,a
ma #

p~ma!
,

4-5
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thus

p~ma!p~mbuma!5Tr@r~uA ,tA
1 !PA,a

ma U†~L!U†~ tB
22tB

1 !PB,b
mb U~ tB

22tB
1 !U~L!PA,a

ma #.
ur

e

.

g

e

Therefore the correlation function reads

C~a,b!5 (
ma ,mb

mambp~ma!p~mbuma!

5(
ma

maTr@r~uA ,tA
1 !PA,a

ma U†~L!U†~ tB
22tB

1 !

3MB,bU~ tB
22tB

1 !U~L!PA,a
ma #. ~29!

Recall that inHa ^ Hb , U(L)5U(L)a ^ U(L)b and for the
free evolutionU(t)5U(t)a ^ U(t)b .

IV. CORRELATION FUNCTION—A PARTICULAR CASE

In this section we discuss the case when the meas
ments inA and B are simultaneous. So we assume thattB

2

5tB
1[tB @i.e., there is no free evolution of a state betwe

measurements 1 and 2, soU(tB
22tB

1)5I ]. Moreover, we as-
sume that the regionsA andB are disjoint. Therefore in Eq
~29! MB,b commutes withU(L)PA,a

ma U†(L) and in this case
we have (tA

1[tA)

C~a,b!5Tr@r~uA ,tA!MA,aU
†~L!MB,bU~L!#. ~30!

Assume that the initial state is a pure stateuC&
PHa(uA) ^ Hb(uB), thus r(uA ,tA)5uC&^Cu, ^CuC&51.
Since in this case

C~a,b!5^CuMA,a~uA!U†~L!MB,b~uB!U~L!uC&,

therefore usingU(L)5U(L)a ^ U(L)b , we find

C~a,b!5 (
ma ,mb

mamb^Cu~PA,a
ma ~uA!

^ U~L21!PB,b
mb ~uB!U†~L21!!uC&. ~31!

Hence, taking into account Eq.~27! we obtain

C~a,b!5 (
ma ,mb

mamb^CuPA,a
ma ~uA! ^ P

BA ,b8

mb ~uA!uC&,

~32!

whereBA is obtained from the regionB by transformation
x8 i5D21(L,uA) i

j x
j and b85R(L,uA)

T b. Now, using the ex-

pansion of the vectoruC& such that

uC&5 (
la ,lb

E d3xE d3y 2u0clalb
~x,y,uA!

3ux,uA ,ma ;sa ,la& ^ uy,uA ,mb ;sb ,lb&, ~33!
05211
e-
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where

^CuC&5E d3xE d3y Tr@c†~x,y,uA!c~x,y,uA!#51,

~34!

~hereafterc denotes the matrixc5@clalb
#) and using Eqs.

~30! and ~31! we get, after some calculations, the followin
formula:

C~a,b!5E
A
d3xE

BA
d3y Tr@c†~x,y,uA!a•Ssac~x,y,uA!

3~R(L,uA)
T b!•SsbT#. ~35!

Consider now the case of the spinsa5sb51/2. We can
write then c(x,y,uA)5( i /A2)x(x,y,uA)s2 and S5 1

2 s,
wheres i( i 51,2,3) are the Pauli matrices. Thus

C~a,b!52
1

4EA
d3xE

BA
d3y ux~x,y,uA!u2~a•R(L,uA)

T b!,

i.e., up to a factor

C~a,b!}a•R(L,uA)
T b. ~36!

If the orientation of axes in the framesAuA
and BuB

is the

same, we need to deal with boostsL(w) only and

C~a,b!}a•R(L(w),uA)
T b, ~36a!

wherewm are components of four-velocity of the frameBuB

with respect toAuA
.

From Eq.~14! we can calculate the explicit form of th
Wigner matrixR

„L(w),uA…
,

R
„L(w),uA…

5B21~uB!V~w,uA!B~uA!, ~37!

where

B~u!5I 1
u0

11u0
u^ uT, ~38a!

V~w,u!5I 1
1

11A11w2
w^ wT2u0w^ uT, ~38b!

and by means of Eq.~3!,

uB
05

uA
0

w0
, uB5uA2

w

uA
0

11w0

11A11w2
. ~39!
4-6
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The corresponding velocities of the preferred frame with
spect to framesA and B are sA5uA /uA

0 and sB5uB /uB
0 ,

respectively, while the velocity of the frameB with respect
to A is V5w/w0 ~see Fig. 1!. We remark that it is possible to
expressR

„L(w),uA…
, given by Eq.~38!, by these velocities as

well as by the corresponding velocities in the Einstein’s s
chronization with the help of Eqs.~5! because it is only a
reparametrization on the level ofclassicalparameters, so i
cannot affect the quantum correlations: They are still dep
dent on the corresponding velocities of PF with respect to
observers. Indeed, as it was discussed in Sec. II B, the Q
built up on the different PFs are not unitary equivalent. Th
the dependence of quantum correlation functions on the
locities of PF is unremovable because it is a pure quan
phenomenon.

Now, the correlation function~36a! is

C~a,b!}a•B~uA!VT~w,uA!B21~uB!b, ~40!

whereB andV are given by the formulas~38!. Note, that the
correlation function given by Eq.~41! depends on the choic
of PF, i.e., the two correlation functions, sayC(a,b) obtained
for PF with the four-velocitiesuA anduB with respect to the
observers andC̃(a,b) obtained underanother choiceof PF
with the four-velocitiesũA andũB with respect to the observ
ers,do not turn into themselveswhen expressinguA anduB

by ũA and ũB or vice versa. This property, related to th
above mentioned nonequivalence of QMs built on differ
PFs, can be used to set up the experiments testing the
tence and/or identification of the quantum preferred fram

Let us discuss some special cases of Eq.~40!.

~1! w50 ~i.e., V50). In this case both measurements a
performed in the same inertial frame. It follows from E
~41!, that the correlation function has the standard nonre
tivistic form in this case,

C~a,b!}a•b5cosuab , ~41!

FIG. 1. A schematic EPR experiment in moving frames. T
detectorsA andB are at rest in the framesA andB, respectively.sA

andsB denote the velocities of PF with respect toA andB, respec-
tively; while V denotes the velocity ofB with respect toA.
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as it should be expected. We would like to point out that
correlation function for relativistic EPR particles calculat
in Refs. @41,42# contains corrections of the orde
(particle velocity/c)2 to Eq. ~41!. It would be interesting to
verify both the predictions experimentally.
~2! uA50 or uB50. In this case one of the observers pe
forms his measurement in the preferred frame. With the h
of Eqs.~40! and ~39! we find that

C~a,b!}a•b, ~42!

that is, we get the standard nonrelativistic formula.
~3! Let us assume that the velocitiessA andsB are small,
i.e., usAu!1 and usBu!1. Such a situation occurs if th
quantum-mechanical preferred frame coincides with
CBRF and the observers’ velocities are similar to the vel
ity of the solar system~i.e., usAu and usBu;1023). In this
case

R
„L(w),uA…

.I 1
V^ sA

T2sA^ VT

2
5I 1

sA^ sB
T2sB^ sA

T

2
,

so

C~a,b!}a•b1
~a3b!•~sA3sB!

2
. ~43!

HeresA , sB , andV are related by the approximate formu
sB.sA2V. In the formula~43! the velocities are given in
the absolute synchronization scheme but up to the fou
order corrections they have the same form in terms of velo
ties VE ,sAE ,sBE defined in the Einstein’s synchronizatio
scheme~as it was mentioned above the reparametrization
theclassicalvelocities cannot affect the distinguishing of th
quantum preferred frame, i.e., the quantum correlation fu
tion is still dependent on the corresponding velocities of
with respect to the observers!. The deviation from the stan
dard formula whena andb are perpendicular is shown in th
Fig. 2.

Note that it follows from Eq.~43! that the corrections to
the standard formula are of the order 2 in velocities. With
identification of the preferred frame with the CBRF andA

FIG. 2. Correlation functionC(a,b) given by Eq.~43! for the
case whena'b. Herea is the angle betweena3b and sA3sB ,
andb is the angle betweensA andsB .
4-7
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andB with the solar system these corrections are of the or
1026. Therefore, we can imagine an experiment testing
identification based on the measurement of the quantum
relations under the condition that the vectorsa and b are
perpendicular. In this case the standard part of the correla
function vanishes and only the effect caused by the existe
of the quantum preferred frame remains@see Eq.~43! and
Fig. 2#. Now, unlike in the standard EPR experiments,
should not measure the dependence of the correlation f
tion on the angle between the vectorsa andb, but rather its
dependence on the change of the velocities of PF,sA and
sB , caused by the movement of the Earth.
~4! Finally we consider the case when velocities of the p
ferred frame are high. DenotinguA /uuAu5nA , uB /uuBu5nB
we obtain in this case

R
„L(w),uA…

.I 2~nA^ nA
T1nB^ nB

T1nA^ nB
T

2~112nA•nB!nB^ nA
T!~11nA•nB!21,

hence,

C~a,b!}a•b2
1

11nA•nB
@~a•nA!~b•nA!1~a•nB!~b•nB!

1~a•nB!~b•nA!2~112nA•nB!~a•nA!~b•nB!#.

~44!
We point out that the simultaneity of the measureme

(tA5tB) is defined in thecorresponding absolute synchron
zation schemerelated to the choice of the PF@53#.

V. CONCLUSIONS

In the framework of the Lorentz-covariant quantum m
chanics with the preferred frame one can build the formal
that allows to calculate correlation function in the EPR-ty
experiments@see Eqs.~29! and ~30!# performed in moving
inertial frames. We would like to point out that our resu
are the exact EPR correlation functions obtained for Loren
covariant quantum-mechanical systems in moving fram
under physically acceptable conditions, i.e., taking into
count the localization of the particles during the detect
and using the spin operator with proper transformation pr
erties under the action of the Lorentz group.
A.
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We applied the general result to the case of simultane
measurements of the spin component for bipartite spin-
system done by the spatially bounded detectors. The re
ing correlation function is proportional toa•R(L,uA)

T b, where

a and b are the direction vectors andR(L,uA) is the Wigner

rotation matrix associated with the Lorentz transformationL
connecting the frames of the detectors. Next we have stu
the limiting cases of this particular correlation function a
have shown that in the case when both measurements
performed in the same inertial frame we obtain the stand
nonrelativistic result that the correlation function is propo
tional to the scalar product of the direction vectors. Th
result also holds if one of the measurements is performe
the preferred frame. We have also found the limit of t
correlation function for small velocities and shown that
leads to the correction of the second order in velocities to
standarda•b relation. On the other hand, the correlatio
function for the very high velocities of the PF with respect
the observers depends only on the directions of movemen
the PF.

It is important to stress that the exact EPR correlat
function ~29! depends on the PF velocity in an essential w
i.e., this dependence cannot be removed by expressing
correlation function by classical quantities~velocities! given
in the Einstein’s synchronization scheme. This means
the Lorentz-covariant quantum mechanics must distinguis
preferred frame. The above results can be used to propos
realistic experiment which can answer the question of
existence of quantum-mechanical preferred frame~and its
possible identification with the CBRF!. A more exhaustive
discussion of this problem as well as an analysis of the su
question concerning the synchronization of clocks in the
perimental setup will be given in the forthcoming paper.
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