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Einstein-Podolsky-Rosen correlations of spin measurements in two moving inertial frames
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The formula for the correlation function of spin measurements of two particles in two moving inertial frames

is derived within Lorentz-covariant quantum mechanics formulated in the absolute synchronization framework.
These results are the first exact Einstein-Podolsky-Rosen correlation functions obtained for Lorentz-covariant
guantum-mechanical systems in moving frames under physically acceptable conditions, i.e., taking into ac-
count the localization of the particles during the detection and using the spin operator with proper transforma-
tion properties under the action of the Lorentz group. Some special cases and approximations of the calculated
correlation function are given. The resulting correlation function can be used as a basis for a proposal of a
decisive experiment for a possible existence of a quantum-mechanical preferred frame.
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[. INTRODUCTION ted such a “nonmechanical” notion of a preferred frame
[26,27). Bell gives the very clear point of view on to this
Contemporary considerations of the Einstein-Podolskyquestion in Ref[28].
Rosen(EPR [1,2] correlations are restricted mostly to ob- A conceptual difficulty related to the notion of the PF lies
servers staying in a fixed inertial frame of referelie the  in an apparent contradiction with the Lorentz symmetry. In
theoretical prescriptions and experimental results see, e.drefs.[29-31] it was shown that this is not the case: it is
Refs.[3-13]). This is motivated not only by the experimen- possible to arrange Lorentz group transformations in such a
tal requirement but, first of all, because of very serious dif-way that the Lorentz covariance survives while the relativity
ficulties connected with description of EPR-like experimentsprinciple (democracy between inertial frameas broken on
in frames in a relative motion. There are two reasons of thehe quantum level. Moreover, such an approach is consistent
troubles with understanding and calculating the EPR correwith all the classical phenomena. The physical meaning of
lation function in this case. The first one is related to thethe new form of the Lorentz group transformations lies in
relativity of the notion of simultaneity for moving observers new, absolute synchronization scheme for clocks different
versus instantaneous state reduction. The second problemfiem Einstein's schemg30—-37. Both synchronizations, the
related to the nonexistence of a covariant notion of localizanew and the standard one, are physically inequivalent on the
tion in the relativistic quantum mechani¢$4]. The latter classical level only for velocities greater than the velocity of
deficiency is especially serious because every realistic medight. Furthermore, the causality notion, which is implied by
surement involves localization in the detector area. the nonstandard absolute synchronization, is more general
Proposed solutions to these problems strongly depend aihan the Einstein one and thus it is applicable to nonlocal
the adopted interpretation of quantum mechanics. From aphenomena. A Lorentz-covariant formulation of QM based
orthodox point of view, attribution of physical meaning to on the above mentioned absolute synchronization scheme
the final probabilities only does not lead to a serious tensiomvas given in Ref[29]. In such a formalism it is possible to
between quantum mechani@M) and special relativity, so define the Lorentz-covariant notion of localization and spin,
they can “peacefully coexist[15-18. i.e., covariant localized states and a covariant position opera-
The second line of understanding of QM lies in attributingtor as well as the spin operator transforming properly under
a physical meaning to the physical state, its time evolutionthe action of the Lorentz group. Note, that exactly these no-
localization, etc. From this point of view there are serioustions are relevant to a correct discussionmdn locality in
problems on the border between quantum mechanics angM.
special relativityf 19—23. The most important ones are: lack A serious candidate for a PF is the cosmic background
of the manifest Lorentz covariance of quantum mechanicsadiation frame(CBRP); this choice is connected with pos-
with finite degrees of freedom and the above mentioned norsible dynamical (cosmological distinguishing of a local
existence of a covariant notion of localization. Troubles withprivileged frame. Most recent EPR experiments performed in
a sharp localization in the relativistic QM arise also if we Genevd 38| have been analyzed according to PF hypothesis
restrict ourselves to a fixed inertial frarief. Hegerfeld theo- [29] and give a lower bound for the speed of “quantum
rem|[24,25). information” in CBRF at 2x 10*c. Moreover, some attention
Following Bell [19], a consistent formulation of quantum was also devoted to PF as a consequence of a possible break-
mechanics requires a preferred fra(®®) at the fundamental ing of the Lorentz invarianc¢39,4Q in high-energy pro-
level (it is interesting that also Einstein and Dirac had admit-cesses.
Since the covariant spin operator also exists in the formu-
lation of QM based on the absolute synchronization scheme
*Electronic address: J.Rembielinski@merlin.fic.uni.lodz.pl [29], therefore we can calculate precisely the EPR correla-
"Electronic address: K.A.Smolinski@merlin.fic.uni.lodz.pl tion function for any spin. To our knowledge, our results are
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the first exact EPR correlation functions obtained for u'=D(A,u)u. (1b)
Lorentz-covariant qgantum-mechanical systems in movin%v ) ] )
tempts were given in interesting papers by Czadddr42; cor_:]kr])onentls_ (')tf ?oordlnfa'iﬁ and fto_”BVi'OC'ty; Ref
see however Ref48]). Because the resulting formula for the e epr icit form of the matrixD(A,u) is (see Refs.
correlation function depends on the velocities of the prepg’gﬂ)’ or rotations,

ferred frame it can also help us to answer the old question

concerning the existence of a PF by means of the quantum- 1o
mechanical EPR experiment and possibly solve the dilemma D(R,u)= ) (2a)
posed by Bell. O[R

where Re SO(3) is a standard rotation matrix, and for
Il. PRELIMINARIES boosts,

A. Realizations of the Lorentz group in the absolute 0n—1
synchronization scheme (w") | 0

T
absolute synchronization scheme mentioned above which is I+ WQ;W
used in this work. The derivation of the presented results can 1+y1+|w]?
be found in Refs[29-31. The main idea is based on a (2b)
well-known fact that the definition of time coordinate de- 0 )
pends on the procedure used to synchronize clfgRs If ~ Wherew=(w",w) denotes a four-velocity of the fran@,,
we restrict ourselves to the timelike or lightlike signal propa-2S S€€n by the observer in the fra@g. .
gation, the choice of this procedure is a convenfig2—37. Hereafter we use the natural system of units vithf
Now, the form of Lorentz transformations depends on thezl' . .
synchronization scheme, and we can find a synchronization Transfoanatuzr}s (1). leave the line elementds®
procedure which leads to the desired form of Lorentz trans- 9,,(u)dx* dx” invariant, where
formation preserving instant timé.e., x°=const) hyper- 0T
planes. To perform such a program one has to distinguish an 1 | “u
inertial frame, called the preferred frame: Every absolute [8u(#)]= 0 | 0na rl
synchronization schem@SS) distinguishes formally such a wu | —I+(u’)ueu
priviledged inertial frame. We can go from one ASS 10 an-Notice thatg(u) is constant(i.e., x independentin each
other by the action of the so-called synchronization groufinertial frame and is congruent to the Minkowskian metric
[29,31. The classical relativity principle can be formulated ,=diag(+,—,—,—). It is easy to check that the space ele-
in this language as the invariance of physical laws under thenent is Euclidean, i.edl?= dx?.
action of the synchronization group, or more simply, by the ~ The four-velocitiesu, u’, andw are related by
statement that each inertial frame can be chosen as the pre-
ferred frame, i.e., the choice of the preferred frame is physi- o U (WU (u-u)
cally irrelevant. The very serious advantage of ASS is the w _ﬁ’ W_1+u°u’°(1+u-u’)' C)
separation of the two fundamental notions of special relativ-
ity, namely, the relativity principle and the Lorentz covari- The relation between coordinates in the standard and the
ance. In the absolute synchronization scheme, even in thabsolute synchronization is given by
case if the relativity principle is broken, the Lorentz symme-
try survives.

Now, each inertial frame is determined by its four-
velocity with respect to the preferred one. We shall denote
the four-velocity of the preferred frame as seen by an obwhere the subscripE indicates coordinates in the standard
server at rest in an inertial frame fy=(u°,u). (Einstein’g synchronization, while the coordinates in the ab-

According to Refs[30,31], the transformation of the co- solute synchronization are written without any subscript. We
ordinates between inertial framéx, and O, takes the fol- ~See that only the time coordinate changes. Note also that in

In this section we briefly describe main features of the D(w,u)=
- —uOweu’
|

x2=x"+ulu-x, xe=x, (4a)

ul=u%"t  ug=u, (4b)

lowing form: the same point of space we hae2=Ax°, so the time
lapse is the same in both synchronizations. The coordinates
X"(u")=D(A,u)x(u), (1@  xg in the Einstein’s synchronization transform according to
the standard law, i.ex'f=A# X¢.
where A is an element of the Lorentz group,is the four- It is important to stress that the transformatigbsform a

velocity of the preferred frame with respect @,, and realization of the Lorentz group which transforms linearly
D(A,u) is a 4X4 matrix depending oA andu. This equa- space-time coordinates according to Et@ and simulta-
tion must be accompanied by the transformation law for theneously, nonlinearly transforms the PF four-velocity accord-
four-velocity of a preferred frame, whidrccording to Eq. ing to Eq.(1b). The round-trip velocity of light is invariant
(1a)] takes the form under Egs.(1). In particular, the Reichenbach synchroniza-
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tion coefficient[32,33 is given by e(n,u)=(1—u’n-u)/2. UA)x*(u)UT(A)=[D (A, u)]# x"(u"), (73
Moreover, from Eqs(4) we have the following relation be-
tween velocities in the absolute and the standard synchroni-

zations: U(A)p,(WUT(A)=[DT(A,u)],”p,(u"),  (7b
VE whereu’=D(A,u)u andD(A,u) is given by Eqs(2). Us-
V= Ve e | (5a ing Egs.(7) we can transform Eq$6) to another reference
1—-E 5 E frame. We point out once again that under transformations
Ug (7a) for the time componenk® does not mix with spatial
component§<k(k=1,2,3). One can also check that
%
Vp=——. 5b
F 1+u0v-u (5b)

[X“(u),pA(u)]=[p,(u),p?(u)]=0, ®)

Notice that forjvg|>1 the above formulas have singularities, . . . - .
i.e., if a superluminal propagatiofpossibly related to the which means that a localized state has a definite mass. It is

nonlocality of the theorytakes place then both descriptions imhpprtanft LO stress thar: thehur)itaryfr'zap Whigh connects Eone
are no longer equivalent and consequently an ASS is physf0Ic€ of ASS to another choice of ASS and preserves Egs.

cally distinguished in such a case even on the classical Ievéfs) and (7) gge?’s not exis(éhis ”?ea_rl‘s thalt_ thg _synhc_hroniza-
[31]. It is remarkable that the velocity manifold of spacelike tion %r_oup[ 31 Canc?.Ot. € l.mr']ta” y reaslée 1 this ca)_sel
particles is a proper carrier space for the Lorentz group only 0" tis reason QM distinguishes an ASS, i.e., a particular
in an ASS[31]. preferred frame—the quantum preferred frame. In R&f]

We point out that the triangular fori2b) of a boost ma- it was shown that the choice of the quantum preferred frame

trix implies that under Lorentz transformations the time co-can be done by _the spontar_leous bregklng of the synchrom-
ordinate is only rescaled by a positive factor, i.&° zation group. As it was mentioned earlier, a natural candidate

=x%wP°, so the time ordering of events cannot be inverted‘cor quantum prgferred frame is the CBR‘E] ' .
by any Lorentz transformations between inertial frames, re- Transforrr_latlons of the Loren_tz group_lnduce an orbitin a
gardless of the space-time separation. This is important in th_gundle of Hilbert spa_ce%{_u . Unitary orbits are parameter-
QM context because the transformations of time do not in-'rzeesir%t?;ﬁzso??gesggh (S:,;ngﬂ':g;lg as for standard unitary rep-
volve position operators. An orbit induced by an action of the operatd(A) in the
bundle of Hilbert spaces under consideration is fixed by the
following covariant conditions(i) k?=m?, (ii) sgnk®) is

The Lorentz-covariant QM was discussed in the framedinvariant; for physical representatiok®>0, sgnk®) =1.
work of an absolute synchronization scheme in IRg9]. We  As a consequence there exists a positive defined Lorentz-
associate with each inertial observer@y a Hilbert space invariant measure
H,, so we have a bundle of Hilbert spaces rather than a
single Hilbert space of states. It has been shown in Ré&. o 0 2
tha? one can inltaroduce Hermitian momentum and coordinate dp(k,m)=d% O(k7) o(k™—m"). ©)
four-vector operators satisfying

B. Lorentz-covariant quantum mechanics

Now, applying the Wigner method and using E¢#). one
can easily determine the action of the operdiigr\) on a

[;(M(U),IBV(U)]:i(UV’E)I:(U) B 5¢) ' 63 basis of eigenvectors of the four-momentum operp26i
u\p*(u)
pL(Wk,u,m;s,a)=k,[k,u,m;s,a). (10
[P,.(),P,(w)]=0, ©5 We find[50]
[X#(u),X"(u)]=0. (60) U(A)]k,u,m;s,0)=DRex,urolk’,U",m;s,\), (11)

We see thak® commutes with all the observables. This al- where the contravariant components andk* transform as
lows us to interprex® as a parameter just like in the standard follows:

nonrelativistic quantum mechanics. Moreover,¥pEq. (6a)

is equivalent tdx',p,]=i 6}, and[x',pe]=p'/p° (notice that W =D(A,uu=D(L, T (12)
the covariant component§=0 in each framg i.e., it has ' ureE

the standard form. We stress that the commutation relations

(6) are covariantin the absolute synchronization. In fact, k'=D(A,u)k, (13
we have the following transformation law for four-vector
operators while
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Roa.m=D(Riau ) where3* are the standard generators of rotation in the rep-
' ' resentationDs. The transformation law11) for states im-
=D XLy, ,ﬁ)D(A,u)D(Lu j]) eSQ(3). (19 plies the following transformation law for the components of
u):
Hereu=(1,0), u=D(L,,u)u andD* is the standard spis S
matrix representation of §2), s=03,1,...; o,A=—s, & TAy—pT 0 &y,
—s+1,...5-1s. Ry is a Wigner rotation belonging to VS UUHA) =R S (W), (20
the little group of a vectou. It should be noted that in this whereR, , is a Wigner rotation as above.
approaph, contrary to the standard one, representations of the Moreover, 3 (u) fulfill the standard commutation rela-
Poincaregroup are induced from the little group of the vec- ions such that
tor U, and notk=(m,0,0,0). Finally, the normalization con-
dition for the basis vectors takes the form N o N
[S(u),S(u)]=i€e*S(u). (21)
(k,u,m;s,A|K’,u,m;s" Ny =2k%83(k' —K) 85158y ,
(15  The invariantu-independent spin square operaf3rcan be

wherek denotes the vector formed from covariant compo-ertten in terms of5(u) in the standard form

nents of the momentum, i.&k= (kq,k;,ks).
= (S(u))?=s(s+1)l. (22)
C. The localized states and spin

We stress that only in that formulation of QM it is possible to
introduce the spin operator which transforms properly under
he action of the Lorentz groufsee Eq.(20)] and satisfies
the standard commutation relatio(®l) [52].

To analyze the EPR-type experiments we define an ob-

servablen- §(u), where

Following Ref.[29] we construct the localized staté<.,
the eigenvectors of the position operator which coincides i
PF with the Newton-Wigner oneand the covariant spin op-
erator. Eigenstates of the position operatfu) (locked up
in thety=0) are of the forn{29]

1 d3k _ .
|X,u,m;s,a):2—3/2f T(_k)‘/uhkk e'*Xk,u,m;s,o), sin 6 cos¢
(2m) - (16) n=| sinésing

cosd
wherew(k) = k® is a positive solution of the dispersion rela-

tion g,,,(u)k“k”=m?. In the Schrdinger picture, after time which is the projection of operat&(u) on the direction of a
t=x° they develop as - : L -

unit vectorn in the frame of referenc®,. SinceS and x
commute, i.e.[§(u),x(u)]=0, we can introduce a set of
common eigenvectors o:f(u) and n~§(u). They are given
1 f d3k by

:(27)3/2 T(_k)‘/u)\k; |k, u,m:s, o), an

[x%,x,u,m;s, o)

Ix,n,u,m;s,\)=/2u® exp(i fe,- S(u))|x,u,m;s,\)
which is not an eigenvector of(u) except forx’=0. These I
vectors transform under the action of the Lorentz group ac- =D3(e'" =) nv2u”|x,u,m;s,0), (23)
cording to the following law:

where
U(A)[X%,x,u,m;s,0) =D3(Rx y)ro|X %X U’ m;s,\), .
(18 siné
wherex’ andu’ are given by Eqgs(1). Notice that forx? &=| ~C0sé
=0 we havex'°=0 andx’*=D(A,u)%x'. 0
Now we define a spin operat@bl] in absolute synchro- ] ] ) ]
nization as follows: Vectors(23) satisfy the following eigenequations:
S(u)|k,u,m;s, ) =35 _[k,u,m;s,o?, (193 X(u)|%,n,u,m;s,\)=x|x,n,u,m;s,\), (243
o) R
n-S(u)[x,n,u,m;s,\)=\|x,n,u,m;s,\),  (24b
S(w)lx,u,m;s, 1) =25 |x,u,m;s,o), (19 with the normalization
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(x,a,u,m;s,A|y,b,u,m;s, o) whereP < and Pg4 are given by Eq(26).
_ 3y S o 0,80 i B8y 3 A state of the system under consideration in fraieat a
O (x=y)D(e TR, (25 time t is denoted byp(u,t). Now we write down the se-

Thus the projector corresponding to a regifnand to a  duence of events describing the development of the state

value\ of the spin component in thedirection in the frame p(u,b). . .
0, is of the form (1) The observerd performs measurement with selection of

the spin componenj, in the directiona, localizing the
particle in the space regioh at a timet};. This causes the

Po, n(U)_f d3x (26)  following state reduction
Now, |n the Schrdinger picture projector®y, ,(u), locked 1 HZ?aP(UAytJR)HZ?a: (.
up inx°=0, are time independent and transform under Lor- p(Un,ta)—> Tr[p(uA,t,i)H”a =pa(Un taspa)-
entz group transformations by means of E&s.and(23) as Aa
follows: (2) The observes sees the statea(Ua,th;u,) at a timety
as
U(A)PY (WUT(A) =P, . (u"), (27)

Ug,th i a) =U(A)pa(Ua,ti: ma)UT(A),
heren’=R, yn and the region()’ is obtained from the Pallis 13 t4a) (A)paluataina)UT(A)

region Q by x'¥=D(A,u)¥x'. We stress that there is no where
analog of Eq(27) in the standard formulation of relativistic
QM. Xg=D(A,Up)Xa,

Ill. EPR CORRELATIONS Ug=D(A,up)Up;

In this section we employ the formalism introduced abovesgo
to the calculation of the correlation function of the EPR-type
experiment. We consider distinguishable partidite case t5=D(A,up)%t5.
of identical particles is quite analoggu#n this case vectors o )
describing pure states belong7(u) @ H ;(u), where in- (3) The state evolves freely in time frotd to t3 to
dicesa andB denote particles. We associate with the observ- 2. 2 1 1. f.2 .1
ers.A andB the two framesd,, andB,,_, the preferred frame PalUg tg;ma) =U(tg—tg) pa(Up,tg;ua)U ' (tg—t5).

four-velocities with respect tol,, and B, areu, andug,  (4) The observel3 performs measurement with selection of
respectively. These observers measure the spin componenttime observablé ,, at a timet3,
the a and b directions, respectively|é/=|b|=1), in the

space region# and B, respectively. Let us denote their ob- 155 pa(ug 2 s TIES,
servables abl 5 , andMg y,, respectively. If we assume that pa(Ug ,té T > m -
the observerA registers the particler and the observeB Tr[PA(UB’tB;Ma)HB?b]
registers the particl@, then = pap(Up 15 iyl pa)-
Sa Sa Recall that in the absolute synchronizatiog—t3
Mas(Up)= 2> KaPRE(Up) ®1= > Balln%, =D(A,up)%(ta—tx) andD(A,ua)%>0, so the causal re-
Ha= " Sa Ha= " %a (283 lationship between measurementsAnand 3 is well estab-

lished (contrary to the Einstein’s synchronizatjon
s Therefore the probabilityp(u,) that the observed has

M (Us)=1® PXE (Ug)= "6 measured valug:, and the probabilityp(up|u,) that the
B.o(Us) ,LVE #gPb(Ue) E 'LLB B.b observer3 has measured the valyg, if the observer4 had

(28b) measuregu, are

P(ra)=Trp(ua, tR)IIR2],

P(pl a) =Tl pa(Us 3 s TIE

Trlp(ua tA) TR UT(A)UT(tE—ty) TTER U (15— ta) U(A)TT L2,
B p(1ta)
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thus

P(ra) Pl a) =T p(Ua tD)TIAZUT(A)UT(EE — t5) TTES U (5~ tg) U(A) T2,

Therefore the correlation function reads where

<\P|"P>:f dgxf dgyTr[wT(leiuA) '#(XaY:UA)]:l,
(34)

Clab)= X wamoP(ra)P(uplpa)

MaMp

=2 paTp(ua tDTTAUT(A)UT (13— 13)

(hereaftery denotes the matriyy=[ i, }‘B]) and using Egs.
Ma &

(30) and(31) we get, after some calculations, the following
X Mg pU(tg—tg)U(A)IIL2]. (290  formula:
Recall that inH ,®Hg, U(A)=U(A),®U(A)z and for the

— 3 3 T .$'S,
free evolutionU(t)=U(t) ,®U(t). clab) fAd XJBAd Y Ty (Y, Up)3 22X, Up)

X(R(x ub) 2], (35

IV. CORRELATION FUNCTION—A PARTICULAR CASE

In this section we discuss the case when the measure- Consider now the case of the sgp=s;=1/2. We can
ments inA and B are simultaneous. So we assume tat  write then ¥(x,y,un) =(i/\2)x(x,y,us)o* and 3=3o,
=ti=tg [i.e., there is no free evolution of a state betweenwhereo'(i=1,2,3) are the Pauli matrices. Thus

measurements 1 and 2, B{t3—t3)=1]. Moreover, we as-

sume that the region& andB are disjoint. Therefore in Eq.

(29 Mg, commutes withJ(A)HZf‘aUT(A) and in this case
we have (r=t,)

C(ab)=Tr{ p(Ua,taA)Ma UT(A)Mg sU(A)].  (30)

Assume that the initial state is a pure statd)

€ Ha(Up) ®Hp(Ug), thus p(Ua,ta)=[UNW|, (¥|¥)=1.

Since in this case
C(ab)=(¥|Mp (U UT(A)Mg h(ug) U(A)| W),

therefore usindJ(A)=U(A),®U(A)z, we find

Clab= >

Mgk

B

Pkt gV (PR (UA)
®U(AHPEE(ug)UT(A™H)[W). (31
Hence, taking into account ER7) we obtain
c<a,b>=#2ﬂﬁ rats{ Y [PRAUA@PE? | (Un)[W),
(32
whereB 4 is obtained from the regioB by transformation

x"'=D"}(A,un)'x) andb’=R(, , b. Now, using the ex-
pansion of the vectoV) such that

)= 2 fdsxf dy 2u%, \ (XY.Ua)
Ng g a”p

X

XvuAvma;Sav)\a>®|y!uA=mﬁ;Sﬁa)\,8>y (33)

1
Clan=-7] a[ dy [xtxy.ulaRl b,
A

i.e., up to a factor

Clab)xa-Riy b (36)

If the orientation of axes in the frame4, and B, is the
same, we need to deal with boost$w) only and

C(ab)xa:Riyw),ub: (36

wherew* are components of four-velocity of the franﬁﬁ’gB
with respect tQAuA.

From Eq.(14) we can calculate the explicit form of the
Wigner matrixRx w),u,) -

R(A(w),uA):Bfl(UB)Q(W,UA)B(UA), (37)
where
u0
B(u)=1+ ueu’, (383
1+u®
Q(w,u)=1+ ;W(&WT—UOW@ u’, (38b
’ 1+J1+w? ’
and by means of Eq3),
s Ua w o 1+wP 39
ud=—", Ug=Up— — ———.
Bwo B W1+ w?
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A

PF‘ FIG. 2. Correlation functiorC(a,b) given by Eq.(43) for the
case wheral b. Here a is the angle betweeaxb and o4 X 03,

FIG. 1. A schematic EPR experiment in moving frames. The@nd B is the angle betweear, and o .

detectorsA andB are at rest in the framed and 5, respectivelyos ) ) )
and o denote the velocities of PF with respectdaands, respec-  as it should be expected. We would like to point out that the

tively; while V denotes the velocity oB with respect toA. correlation function for relativistic EPR particles calculated
in Refs. [41,42 contains corrections of the order

The corresponding velocities of the preferred frame with re{particle velocity£)? to Eq. (41). It would be interesting to

spect to framesd and B are ox=U,/u and og=ug/uy,  Verify both the predlct|on§ experimentally.

respectively, while the velocity of the franig with respect  (2) Ua=0 or ug=0. In this case one of the observers per-

to A is V=w/wP° (see Fig. 1 We remark that it is possible to forms his measurement in the preferred frame. With the help

expressRx w).u,)» given by Eq.(38), by these velocities as Of EGs.(40) and(39) we find that

well as by the (;orresponding velocities in the E.in.stein’s syn- C(ab)=a-b, (42)

chronization with the help of Eq45) because it is only a

reparametrization on the level ofassicalparameters, so it that is, we get the standard nonrelativistic formula.

cannot affect the quantum correlations: They are still depenez) | et us assume that the velocities, and o are small,

dent on the correspond_mg velo.cmes of P_F with respect to theg |oa|<1 and|og|<1. Such a situation occurs if the

observers. Indeed, as it was discussed in Sec. Il B, the QMg antum-mechanical preferred frame coincides with the

built up on the different PFs are not unitary equivalent. ThUSCBRF and the observers’ velocities are similar to the veloc-
the dependence of quantum correlation functions on the Véity of the solar systenti.e., |oa| and|og|~10"3). In this

locities of PF is unremovable because it is a pure quanturggge

phenomenon.
Now, the correlation functioii36a is . I Ve opr— oaeV' OAR O — O O)
Aw)u)=!+ =+ ,
Clab)xa BuyQ(w,u)B Yugb, (40 * 2 2
whereB and(} are given by the formula@8). Note, that the
correla}tion function given py Ec(.41)_ depends on the c_hoice (axb)-(oaX 0p)
of PF, i.e., the two correlation functions, s@ya,b) obtained C(a,b)xa-b+ > (43

for PF with the four-velocitiesi, andug with respect to the

observers an€(a,b) obtained undeanother choiceof PF Hereo,, o, andV are related by the approximate formula
with the four-velocitiesu, andug with respect to the observ- og=0,—V. In the formula(43) the velocities are given in
ers,do not turn into themselveshen expressing, andug  the absolute synchronization scheme but up to the fourth-
by EA and EB or vice versa. This property’ related to the Ordel’ CorreCtionS they ha.Ve the same fOI’m in terms Of VeIOCi-
above mentioned nonequivalence of QMs built on differentti€S Ve, oag,ose defined in the Einstein's synchronization
PFs, can be used to set up the experiments testing the ex@cheme(as it was mentioned above the reparametrization of
tence and/or identification of the quantum preferred frame. the classicalvelocities cannot affect the dlStlngUlShlng of the

Let us discuss some special cases of [@q). quantum preferred frame, i.e., the quantum correlation func-

tion is still dependent on the corresponding velocities of PF

(1) w=0 (i.e., V=0). In this case both measurements arewith respect to the observersThe deviation from the stan-
performed in the same inertial frame. It follows from Eq. dard formula whera andb are perpendicular is shown in the
(41), that the correlation function has the standard nonrelaFig. 2.

tivistic form in this case, Note that it follows from Eq(43) that the corrections to
the standard formula are of the order 2 in velocities. With the
C(a,b)xa-b=cosby,y,, (41)  identification of the preferred frame with the CBRF add
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and B with the solar system these corrections are of the order We applied the general result to the case of simultaneous
10" ©. Therefore, we can imagine an experiment testing thigneasurements of the spin component for bipartite spin-1/2
identification based on the measurement of the quantum cosystem done by the spatially bounded detectors. The result-
relations under the condition that the vectarsind b are  ing correlation function is proportional @ RE—A,UA)bY where

perpendicular. In this case the standard part of the correlatio 5ndqp are the direction vectors arR, ., is the Wigner
HA

function vanishes and only the effect caused by the existence | . . . .
of the quantum preferred frame remaisee Eq.(43) and rotation matrix associated with the Lorentz transformation

Fig. 2]. Now, unlike in the standard EPR experiments wetonnecting the frames of the detectors. Next we have studied

should not measure the dependence of the correlation fundbe limiting cases of this particular correlation function and
tion on the angle between the vectarandb, but rather its have shown that in the case when both measurements are

dependence on the change of the velocities of #Fand performed in the same inertial frame we obtain the standard
oy, caused by the movement of the Earth. nonrelativistic result that the correlation function is propor-

(4) Finally we consider the case when velocities of the prefional to the scalar product of the direction vectors. This
ferred frame are high. Denotings /|us|=n,, Ug/|Ug|=ng result also holds if one of the measurements is p_erformed in
we obtain in this case the preferred frame. We have also found the limit of the
correlation function for small velocities and shown that it
Riawy.up=!— (NA®NA+Ng@Ng+Na@ng leads to the correction of the second order in velocities to the
standarda- b relation. On the other hand, the correlation
—(1+2na-Ng)Ng® nl)(1+ Na-Ng) 1, function for the very high velocities of the PF with respect to
the observers depends only on the directions of movement of
hence, the PF.
It is important to stress that the exact EPR correlation
[(a-ny)(b-ny)+(a ng)(b-ng) function(29) depends on the PF velocity in an essential way,
1+na-ng i.e., this dependence cannot be removed by expressing the
correlation function by classical quantitiégelocities given
*(a:ng)(b-na) = (1+2na-Ng)(a-Na) (b-Ng)]. in the Einstein’s synchronization scheme. This means that
(44)  the Lorentz-covariant quantum mechanics must distinguish a
We point out that the simultaneity of the measurementspreferred frameThe above results can be used to propose a
(ta=tg) is defined in thecorresponding absolute synchroni- realistic experiment which can answer the question of the

C(a,b)cca-b—

zation schemeelated to the choice of the HB3]. existence of quantum-mechanical preferred frafaed its
possible identification with the CBRFA more exhaustive
V. CONCLUSIONS discussion of this problem as well as an analysis of the subtle

question concerning the synchronization of clocks in the ex-

In.the framework of the Lorentz-covariar}t quantum me-perimental setup will be given in the forthcoming paper.
chanics with the preferred frame one can build the formalism

that allows to calculate correlation function in the EPR-type

experimentdsee Eqs(29) and (30)] performed in moving ACKNOWLEDGMENTS
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