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Bohm'’s interpretation and maximally entangled states
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Several no-go theorems showed the incompatibility between the locality assumption and quantum correla-
tions obtained from maximally entangled spin states. We analyze these no-go theorems in the framework of
Bohm’s interpretation. The mechanism by which nonlocal correlations appear during the results of measure-
ments performed on distant parts of entangled systems is explicitly put into evidence in terms of Bohmian
trajectories. It is shown that a GHZ-like contradiction of the typ&=—1 occurs for well-chosen initial
positions of the Bohmian trajectories and that it is this essential nonclassical feature that makes it possible to
violate the locality condition.
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[. INTRODUCTION in Sec. Il of this paper how in the situation considered in the
no-go theorems of Mermifb] and Greenberger, Horne, Shi-
Several no-go theorems show that it is impossible to conmony, and Zeilingef4] the GHZ-like contradiction occurs
ciliate locality and quantum mechanics. The essence of theder all the initial positions.
theorems is that it is impossible to simulate the results of
observations carried out on distant parts of an entangled i
guantum system in terms of a local common cause mecha- Il. BELL'S THEOREM IN A BOHMIAN DESCRIPTION
nism. This impossibility can be expressed through the viola- A, Simultaneous Stern-Gerlach measurements performed
tion of an inequality{1—3] or, even “stronger,” of an equal- on a pair of entangled particles
ity [4,5]. Besides it is well known that the Bohmian
interpretation, according to which particles have at any timetiCI

a well-defined positiofi6], makes it possible to simulate all ) .
jSurements are performed simultaneously on each particle.

the quantum predictions for massive particles in the nonre The full funci iated with h a stat b
ativistic regime. Therefore, it is interesting to understand bet- . '4" Wave function associated with such a state can be

ter how nonlocality appears in the Bohmian picture. It is wellPutin the form
known that for entangled systems the velocity associated 1T (r, R, D)=ay, (1, rr.D]+)®]+)r
with the Bohmian trajectories can be nonlocally influenced n T

In the situation described in Bell’s theordr], two par-
es are prepared in an entangled spin state and spin mea-

[7,8]. The goal of our paper is to analyze in detail the nature +biry _(ry,rg )| +) @ —)r

of the Bohmian trajectories in the specific situations encoun-

tered in the formulation of three well-known no-go theorems, +e_(ry rr, D)@ +)r

Bell's theorem[1], Mermin’s theorem[5], and the(GHZ) +dy__(r D)= )R, (D)

Greenberger-Horne-Zeilinger theord#l, in which, respec-

tively, two, three, and four spifit/2) particles are assumed to

be prepared in maximally entangled states. The knowledgeherea,b,c,d are complex constants representative of the
of the initial positions of these particles is sufficient in Bo- spin entanglement, the indicésand R represent arbitrary
hm’s formulation in order to predict the whole trajectories spatial reference frames in two distant regions, the left and
and also the results of local spin measurements performetight regions,r g represent the position vector expressed in
with Stern-Gerlach devices. Note, however, that the specifithese frames, andl+/—) ,r represent the up/down spin
cation of the initial positions together with the full measure-states along thdnot necessary parallelZ axes of these
ment setup(not only its local partsis required in order to frames. We shall assume for convenience that Stern-Gerlach
explain all the quantum correlations. This property reflectddevices are disposed at the same distance from the source,
the nonlocality of Bohmian dynamics, a fundamentally non-along the axes of propagatiof) ,r of the particles, that the
classical feature of Bohm'’s interpretation by which Bell waspoint of penetration inside them coincides with the origins of
led, together with the argument of Einstein, Podolsky, andhe spatial frames, and with the origin of time, and that the
Rosen(EPR [9], to his famous inequalitiegl]. We shall initial state consists of a pair of Gaussian shaped particles of
show explicitly in Sec. Il of this paper how, for well-chosen massm propagating at a speeq:

initial positions, a GHZ-like contradiction occurs for a situ-

ation during which Bell’s inequalities get violated. This re-

sult confirms Hardy’s formulation of Bell's inequaliti€$0] ¥ )= 1 —rf—rﬁ
according to which the violation of Bell's inequalities is pro- (W (rere,t)= (2\/;&0)6/29)( 45r2
portional to the probability that a GHZ-like contradiction of 0

the type+ 1= —1 occurs[4]. We shall also show explicitly xexdikey(X, +Xg)]. 2
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When theZ, ;i axis is parallel to the./R magnetic field, it This density depends, in general, on the two positions
can be shown that the equation of evolution is separable intfr, ,rg). The six-dimensional velocitjEq. (B9)] associated
the coordinatesx_ ,y, ,Z, ,Xr,YRr,Zr). For reasons of con- with the conserved density through the relati@s p-v can
venience, we shall also assume that the Stern-Gerlach setups split into two local three-dimensional velocities ,vg

are similar in the left and right regions. Then, it is easy todefined as follows:

show that the solution of the equation of evolution given in

Appendix B can be expressed in terms of the solution of the f
single-particle case: o (r . rr )= m—p{lm[lﬂﬂ_(ﬁ_ OV g (r,0)]
|W(r,rp,t)=ag (re D r(rr,D[+)L®]+)r X[ayr(rr,t)|>+[by_r(rg,t)[?]
+hy  (re, Dy j(rR,D[+)L®]—)r HIml (re,OD* Vg (0]
togo Ly DR, D=)1L®+)R X[lcy . r(rr,t)|*+]dy_r(rg,DI?}, (6)

+dg_ (r DY g(rr, D= )L®| )R, 7
(3) vR(errRat):m_p{lm[l//+R(rRat)*VR'7[’+R(rRrt)]

with X[|ag, (re 2 +[cy_ (re H)]?]
+Im[_r(rg,t)* Vey_g(rg,t)]
X[y (r O)2+]dy_ (r D)%}, (7)

Yo —ur(TUR D=4 LrOXUR) W Lk

X(Yur DS~ Lr(ZUR), (4)

whereV (g, is the gradient on the spatial Igfight) coordi-

wherey” ,_ ¢, , andy? ,_ are the solutions of the single- nates and In¥) is the imaginary part of. In general, these
particle case that were originally derived by Bohii]. This  velocities contain a nonvanishing contribution depending on
derivation is reproduced in detail in Appendix A. the position of the particle situated at the other side of the
source, and are thus influenced by what happens in a region
from which they are separated by a spacelike distance. In the
formulation of Bell's theorem, the particles are assumed to

Bohm's interpretatior{6] is, in summary, the following: pe prepared in the so-called singlet state for whichd
whenever we can associate with the equation of evolution of (1/,2)sin@/2) andb=—c=(1/y2)cos@2), where g is
a quantum system a conservation equation of the foym  the angle between the magnetic fields in the left and right

=div(), wherep is a positive definite density of probabil- stern-Gerlach devices. When these axes are parallel, we re-
ity, and div(J) is the divergence of a current vector, we cancover the standard expression

interpret this density as a distribution of localized material

points moving with the velocity7/p. It is thus possible to 1
formulate a hidden variable theory for the system: it would |W(r ,rg,t))=—u, (r )y _gr(rg.t)|+).®|—)r
consist of a spatial distribution of material points, which ini- \/E

tially coincides with the quantum distributidigiven by p);

B. Bohm’s interpretation

these points move with a velocity equal #8p. In virtue of _ i (r, 1) (rr, )| =) ®]+)
the conservation equation, the spatial distribution deduced \/Ewﬂ L OdR(TR L R
from this evolution coincides then for all times with the

guantum distribution. According to de Broglie, all the mea- (8

surements being, as a last resort, position measurements, this

hidden variable theory is, for what concerns practical purdt is worth noting that when the axes of the devices are par-

poses, equivalent to orthodox quantum mechanics. allel, the results of spin measurements are always opposite.
In Appendix B, we show how to deduce such a conservaThis perfect correlation is due to the fact that the singlet state

tion equation for the pair of particles considered here. Fronis maximally entangled, and that its expression is invariant

this equation of conservation, it is straightforward to deduceunder a simultaneous rotation of the axes of quantization,

the conserved densif{eq. (B8)] when both axes are parallel. The specificatioradb, ¢ and
d allows us to express explicitly the Bohmian dynamics dur-
p(re rr ) =(W(r_,rg,t)|W(ry ,rg,t)) ing the passage through the Stern-Gerlach devices. We ob-
—lag, (rL Dt a(fr.b)]? tain, after some lengthy but simple computations, the follow-
FLUL T RUR ing velocities for the left as well as for the rightandy
by, (1 DY (TR D[ components:
ey (L) g r(rrb? dx K2
Hdy (DY D ) at ot Tt vt ©
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dy K y 10 y=yoV1+Kk4t?. (12)
dt — 1+K3%2

In Appendix A we show that, during a typical Stern-Gerlach
experiment, the diffusion is negligible during the time of
(Wherek:ﬁ/Zmé‘zro expresses the diffusion inherent to the ﬂlght thrOUgh the Stern-Gerlach devices. The tl’ajectories
Schralinger equation The solutions of these dynamical @long these axes are thus essentially free translations, and
equations are present no special interest for the understanding of the mea-
surement process.

In the singlet state, the dynamics of ta@omponents is
X=vot+Xov1+Kk?t?, (1)  given by

5 B (ztzR)| B (z-z)| B (—z+zr)| B> (—2.—2g)
+s%exp ——p ——— —_ |- -
dz. K - 1+kt2 2 1+kt2 2 1+k°t? 2 1+k%t? 2
it 1k B> (zu+7g) ) Bt* (—z.+7) B> (—zr—2.)
+s%ex +c2exp ——— +c% +s%ex
1+kt2 2 1+kt2 2 1+k%t? 2 1+k°t? 2
L2
X mzats‘f‘zat s (13)
dzz K .
at . 1rKkE R
4 <%ex B> (z+7g) _ Pex Bt (z-zR)| B> (—z.+7) _ ex B> (—zr—2z.)
. 1+kt2 2 1+kt?2 2 1+k°t? 2 1+k%t? 2
Bt®  (z.+7g) Bt (z2.—2g) Bt?  (—z +2g) Bt* (—z.—2zr)
+s%exp 55 ———— | +c%exg — 5 ————| +¢? 7 +s%ex T
1+k-t 2 1+k-t 2 1+ ket 2 1+k-t 2
_ 12
X mat3+2at ’ (14)

where a=a,u/2m, B=a,u/mérs, c=cos@?2) and s terms, we can také to be equal to O in the previous equa-

=sin(6/2). tion, which gives the classical expression for the velocities
Numerical computationgéconfirmed by a careful evalua- (2« is the magnitude of the classical acceleration undergone

tion of the terms present in the last equatjoshow that, inside the magnetic field of the device

when the two magnets act simultaneously, there exist four

attractors for the trajectories, corresponding to the results of ﬁz L oat
spin measurement§. refers to “up” and »~/ to “down”) dt '
(//1_ ,MR), (/‘L ,(/R), (’/L ,//pR), and Q/L ,(/R). During the
passage through the device, the trajectories can be shown to dzg
fall very quickly in the basin of one of these attractors. For at +2at.
instance, in the attractor basin of theg (~g) outcome, the
exponential factoe[ Bt?/(1 + k?t?)(z, +zg)/2] will domi-  Similarly, in say the attractor basin of the’(,~z) outcome,
nate all the other exponential factors, andzivelocities will  we shall get
obey the following equations:
dz
dz. k? —K? 5 T 2at,
at —1+k2t2t2|_+1 1712 at>+2at;,
dzg
dzg k2 — K2 . T +2at.
ar thR‘Fl mat +2at;.

This means that after a short time, the trajectories become
In virtue of the fact that in a well-conceived device, we canand remain quasiclassical. The choice of the attractor basin is
neglect the diffusion terms relatively to the classical driftdeterministically specified by the initial positions. It is worth
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noting that when the initial positions lie in between the re-exhibits perfect100% correlations; if we assume that dis-
gions that are characterized by this quasiclassical behaviotant measurements may not influence the local spin values,
the deflection will be quite less important. These positionghen these values existed necessarily before their measure-
can be associated with the tails of the outgoing wave packei@ent took place. This means that the local valimethe left

and their weight is negligible, because the diffusion of theregion but also in the right region by a similar reasoniofy

Gaussian wave packets is negligible relative to the averagge spin along an arbitrary direction ought to be predeter-
deflection undergone during the passage through the Stergined before the measurement.

Gerlach device. Obviously, if the locality assumption was valid, we could
) o ) deduce from the predictions relative to the two first joint
C. GHZ-like contradiction in the two-particles case measurementi(/{ZL1/!’ZR)7(/12{_1/!2(?)) that the third result

As a last resort, the final outcome is thosarly always  ought to be (‘ZL’”ZR) too, which is not the case hee find

unambiguously determined by the initial positioms and ) ; )
Zg, together with the specifications of the directions of the_(//ZL’”ZR)]' In Ref.[12] we showed how Bohmian nonlocal

magnets in the left and right regions. Let us assume that wiY is related to the nonfactorizability conditi_o.n postulated by

choose to change the direction of the magnet in the righ?e" as a consequence of the locality condition. For the pur-
device. Then, the final outcome is determined by the initialP0Ses Of the present paper, we went further. We also inte-
positionsz, and zk. zj depends orys andz; and on the grated the velocities when the magnets are parallel to the

angle between the old quantization a%is and the new one diréction €. ,Zg), and we found the outcome, ,z;). By

Z. It could happen that for the same initial position coor-assigning a value-1 to the outcome spin up and1 to the
dinatesz, ,yg,zg, the attractor basin of the left trajectory outcome spin down, we arrive at a GHZ-like contradiction of
changes due to the changezfto z;. This means that the the type+1=—1 that we shall study in detail in the follow-
choice of the basis of detection in the right region can noning section. This can be done by considering the product of
locally influence the outcome of the measurement in the lefthe outcomes o, NZg and Z{ NZ} on one side and the
region. Therefore although the results of all possible meaproduct of the outcomes @ NZ andZ N Z; on the other
surements can be deterministically foreseen on the basis sfde. If the outcomes associated with the four experiments
the knowledge of the initial positions, which constitutes awere predetermined, these products ought clearly to be
deterministic mechanism, this mechanism is nonlocal, conequal, but for the choice of initial position considered here,
trarily to the common cause mechanisms considered by Bethey are, respectively, equal t61 and —1, which can be
[1], which are assumed to be deterministic and local. Thigut in the paradoxical form+1=—1.

helps to understand how Bohmian mechanics makes it pos- It can be shown[12] that when the four directions
sible to violate Bell’'s inequalities. The probability of an out- (Z, ,Z| ,Z,Z[,) are coplanar and are all separated by angles
come can be obtained, after integration of the Bohmian veof 120°, whilezZ| andZ are parallel, and that the system of
locities, by performing a weighted average on the predictionswo particles is prepared in the singlet state, Bell's and
associated with this outcome for particular initial positions.Clauser-Horne’s inequalities are violated. It can also be
The weight is equal to the initial probability of presence, ashown that a GHZ-like contradiction occurs only for a frac-
Gaussian distribution in our case. In accordance with Bohm'sion of the initial positions that differs significantly from
interpretation, the probability obtained so is exactly the sameinity. For instance, when the initial coordinates of position
as the gtandard guantum probability. In Réf2], the attrac-  of the pair are defined as follows: y(,z)(t=0)

tor basins of the outcomes related to different noncompatible- 10-3 cmx (/3/2,1/2) and Yr,ZR)(t=0)=—1

spin measurements in the left and right regions were explicsc 19-3 cmx (1/3/2,1/2), then we shall observe, after inte-
itly determined for a well-chosen initial position and the fol- gration of the Bohmian velocities, the following outcomes:
lowing result was shown. If we choose four d'recnons(//zL'/zR):(/sz,f/z,;)' (//zL:/z,;)v and Q‘ZL"/ZR)' In this

Z,,Z| \Zr,Z5) such that the directiong, ,Z, ,Z5 are co- b
(IaLnarLanz arFfa) all separated by anales oLf 12LO° RV\ZﬂIand case, no GHZ contradiction occurs, and the results of local
b b y ang ! .measurements do not depend on which measurements are

ZR are parallel, that the syster_n .O.f two par't|cles IS prepa_red herformed in a distant region. These results confirm Hardy’s
the singlet state, and that the initial coordinates of position o

. . e nalysis, who showefi10] that the degree of violation of
the pair are defined as followsy(,2)(t=0)=10""cm g5 and Clauser-Horne's inequalities is proportional to the

X (13/2,1/2) and Yr,Zr)(t=0)=1.1x10 _3 CM  probability of encountering GHZ-like paradoxical situations.
x(\/§(2,1/2), then we shall observe, after integration of the  Besides, Perefl3] showed that for two particles in the
Bohmian  velocities, ~ the  following  outcomes: sjnglet state, such a paradoxical situation also characterized
(wz s002) (2] s0ezp), @D (/7 7). If the locality assump-  the quantum average values of well-chosen observables. The
tion was valid, the results of the measurements ought to biterpretation of Peres’s paradox in the framework of Bo-
predetermined before the measurements take place. This cam’s theory was already studied by Dewdney in R8f, so

be shown by an EPR-like reasonifg], which is, roughly  we shall not repeat his work in the present paper. Further-
summarized, the following: in the singlet state, the value ofmore, it is impossible to express Peres’s paradox in terms of
the spin component along an arbitrary axis of reference in theocal Stern-Gerlach measurements, only because it involves
left region can be deduced from the observation of the cornonlocal measurements. Therefore, presently, there is no ex-
responding value in the right region because the singlet staggicit formulation of this paradox in terms of Bohmian tra-
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jectories. Nevertheless, such a formulation is possible, imated by an angle of 120°+); (| —);) represents a spin-up
principle [8]. It is worth noting that the implications of Bo- (spin-dowr) state along the direction of propagation of the
hm’s theory regarding nonlocality were already recognizedth particle. Four “product” observables, each of which is
by Bohm and Bell, and that the elucidation of certain no-goassociated with a simultaneous spin measurement performed
theorems was qualitatively developed in the paste, for  on the three particles, are consideraf> 233, 313253
instance, Refd.7,8] and references thergirComputer simu- 212323, and 2%2525, where E; represents a Stern-
lations of the dynamiCS inside the Stern-Gerlach deVice%e”ach mesurement performed on i"]b partic'e with the
(with two particles and parallel magnets ontan be found  magnet parallel to thX direction, which is orthogonal to the
in Ref. [8], as well as a qualitative discussion of their con-pjane of propagation of the particles, aﬁ@ represents a
nection with Peres's paradox. The analytical expression 0&ern-Gerlach mesurement performed onitheparticle with
Bohm's velocities in the general two-particle cdséth par-  he magnet parallel to the; direction, which is orthogonal
allel and nonparallel magnetwas given in Refl12], aswell 1, the direction of propagation of thi¢h particle and toX.

as the connection between Bohmian nonlocality and ”O”faCTheE matrices possess two eigenvaluesl and—1. The
toriz.ab.ility..Nevertheless, Fhe occurrence of a GHZ-like CC,”?'eigenvalueJrl corresponds to the outcome spin up and
tradiction in the two-particle case as well as the epr|C|t_1 to the outcome spin dowt¥ (r,r5,r5,t)) is the simul-

study of the topology of the attractor basins for the three- angh a5 eigenstate of the four product observables for the
four-particle cases and their connection to GHZ-like contra-, igenvalues + 1,+1,+1,—1. This imposes severe con-

dictions were not, to the knowledge of the authors, publishe traints on the results of | ocal spin measurements. For in-

elsewhere. This brings us to the following section. stance, without performing the measuremenEéf, we can
deduce what would be the outcome observed during this
measurement from the results of the measuremerig ahd
>3, By an EPR-like reasoning similar to that described in
The two paradoxes that we shall study in this section ar¢he preceding section, the locality assumption implies that
of the following form: for well-chosen local observables andthe outcome of the measurementXf must be determined
guantum states, the quantum correlations are such that if tHeefore the measurement took place and does not depend on
results of the local measurements are fixed in advance and dehich measurement is performed in distant regions on the
not depend on the measurements that are performed in disther particles. A similar reasoning holds for the measure-
tant regions we come to a contradiction of the typd= ment ofi)l,, 25, 232,, 23, andEi. Let us denote as, and
—1. We showed in the preceding section that in the '[WO-S'y the prediction assigned to the measureme[ﬁ')pandz'y;
particle case such a contradiction could occur for well-the prediction+1 corresponds to an “up” deflection inside
chosen initial positions. However, after averaging over thahe Stern-Gerlach device, andl to a “down” deflection.
initial positions of the particles, for which the contradiction The constraints imposed by the properties of the maximally

occurs sometimes but not always, the paradox is expresseghtangled state in which the particles are prepared can be
by the violation of an inequality in accordance with Hardy's expressed as follows:

analysis[10]. The novelty of Mermin’s and GHZ paradoxes

IIl. MERMIN AND GHZ NO-GO THEOREMS
IN A BOHMIAN DESCRIPTION

[4,5] is that the contradiction does not take the form of the SiS§§= +1,
violation of an inequality but really of an equality. As we
shall now show, the meaning of this result, interpreted in S§S§§y=+l,
terms of Bohm's trajectories is that all the initial positions
lead to the same paradoxical situation, and not only some of S§S§Sf= +1,
them, as in the two-particle case. 1o
SSS=-1. (16

A. Mermin’s no-go theorem: GHZ-like contradiction
in the three-particle case
1\2/c2\2 2cle23
In Mermin’s theoreni5], three particles are prepared in a (S)%(S) (ﬁ) stxﬁ_ +1 17
maximally entangled spin state of the form

The product of the three first equations gives

S'y being equal tot+ or —1, we get
1 1c2c3_
I\P(rl,rz,rg,t)>=T¢/;+1(r1,t)z//+2(r2,t)x/;+3(r3,t)|+>1 SSS=+1 (18
2 which together with the fourth equation leads to a contradic-
1 tion of the type+1=—1. We encountered already such a
R )o@+ )g— —=ip_1(ry, )¢ _» contradiction in the preceding section, and showed that it
\/E could be explained in terms of the nonlocal properties of
Bohmian trajectories. This is also true in the present case. By
X(r2, )¢ 5(rs,H)] =)18[=)2®[—)s. a straightforward generalization of the two-particle case, it
(15)  can be shown that the Bohmian velocities during the mea-
surement of one spin component aloKg one component
The particles are sent along three coplanar directions sepatongY, and another one alony’ are the following:
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dx k2
gt 1rkaEX

p( Bt? (X+y+y’)) p( Bt? (X*y*y’)) p( Bt? (*X*y+y’)) p( Bt? (*X+y*y’)>
+ ex + ex| —eX —eX

1+ K22 2 1+Kk%t? 2 1+K%t? 2 1+ K22 2
e Bt?  (x+y+y’) ox Bt? (x—y—y) ¢ ex Bt (—x—y+y') Bt (—x+y-y')
1+k2t2 2 1+ k2t2 2 1+ k22 2 1+ k22 2

L2

X mats‘i‘ 2atp, (19

ond PE YYD BY (x=y—yO| [ Bt (—x-y+y’) B2 (—x+y—y’)
dy K e 1+ K3t? 2 1+Kkt? 2 1+ K2t? 2 1+ K2t? 2
a1k vod POy IO BT oymyD B (Cxmyty) B (—x+y-y")
1+K2t? 2 1+Kk%t? 2 1+K2t? 2 1+ K322 2
_ L2
X mat3+2at , (20
dy’ K )
ar 1k
toxd PE YYD BY (x=y—yh) [ B (cx=yty)) B (—x+y-y')
1+Kk%t? 2 1+k%t? 2 1+Kk%t? 2 1+Kk%t? 2
e Bt?  (x+y+y’) Bt? (x—y—y’) e Bt*  (—x—y+y’) B2 (—x+y-y’)
1+Kk%t? 2 1+k%t? 2 1+Kk%t? 2 1+Kk%t? 2
—k2
X mate’-l-Zat . (21)

They possess four attractor basins that correspond to the outcames-{, (+——), (——+), and (—+ —). During the
measurement of the fourth observaBlgs 232 the Bohmian trajectories obey

dx, Kk

a9t Trke™

Cex B2 (—X1—Xp—X3) _ B2 (=X +Xp+X3) B2 (+X1—Xp+X3) Bt (+Xg+Xa—Xa)
1+K%t? 2 1+k2t? 2 1+Kk2t? 2 1+Kk2t? 2
+ex Bt? (—X1—Xp—X3) Bt* (—X1+Xo+X3) Bt? (+X1—Xp+X3) Bt (+Xg+Xa—Xa)
1+K2t? 2 1+k2t? 2 1+K2t? 2 1+Kk2t? 2
2
X W&t3+2at s (22
dx, k?
_:TtXZ
at ~ I+KA
Cex B2 (—X1—Xo—X3) « Bt? (—X+Xo+X3) ex B2 (+X1—XpHX3) « B2 (+Xg+Xa—Xs)
1+k3t2 2 1+Kk3t2 2 1+k3t2 2 1+Kk3t2 2
tex Bt* (—X1—Xo—X3) Bt* (=X +Xp+X3) Bt* (+X1—Xo+X3) Bt? (+Xg+X2—Xs)
1+k3t? 2 1+Kk3t2 2 1+k3t2 2 1+Kk3t2 2
—K?
X chﬁﬁ-zm}, (23
dxg k?
T T X
dt  1+ket
ex B2 (—X1—X—X3) « Bt? (=X +Xp+X3) « B2 (+X1—Xp+X3) ~ex B2 (+Xg+X—Xs)
N 1+k3t? 2 1+Kk3t2 2 1+k3%t? 2 1+Kk3t2 2
+ex Bt® (—X1—X—X3) N Bt® (=X +Xp+X3) N Bt* (+X1—Xp+X3) N Bt? (+Xg+Xa—Xs)
1+k3t? 2 1+Kk3t2 2 1+k3%t? 2 1+Kk3t2 2
2
X Wat3+2at . (24)
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They possess four attractor basins that correspond to the out-
comes ——), (—++), (+—+), and (++-). Very
quickly, the Bohmian trajectory will fall into one of these
basins and follow a nearly classical dynamics. For each
choice of initial position(except for the initial positions that
belong to the regions that separate two basins, which are
regions of negligible weight that correspond to the tails of
the Gaussian packetghe product of the predicted outcomes
associated with the observabEsg, 32, and3? is equal to
+1 when we consider their realization during the first three
experiments and te- 1 when we consider the last one during
which they are simultaneously measured.

PHYSICAL REVIEW A 66, 052109 (2002

sisisisi= -1
SySisysi=-1,
SSSS=-1,
S.SiSysy=+1. (26)

The product of the three last equations gives

SSiSiSi= +1, 27

which together with the first equation leads to a contradiction
of the type+1=—1. The analysis of Bohm’s trajectories is

B. Greenberger, Horne, and Zeilinger’s no-go theorem:
GHZ-like contradiction in the four-particle case

For what concerns the GHZ paradf4], we shall first

similar to the two- and three-particle cases, so that we shall
not repeat it entirely here. For instance, during the measure-
ment of 232533 % we get that the velocity of the first par-

reformulate it in a simplified form that is closer to Mermin’s ticle obeys the following equation:

formulation. Four particles are now prepared in a maximally
entangled spin state of the form

|qr(rllr2!r3ir4it)>

1
= — 1 (r, 0 o(r, D Y_3(ra, ) 4(rg, )| +)4
V2

dt

1
®[+)2®|—)3®|—)a— E'ﬂ—l(rl,t)l/f— 2(ra,1)

Xihyg(rg, )y 4(rg,)[—)1®]=)2@[+)3®|+),4.
(25

The patrticles are sent along four different coplanar directions
and|+); (] —);) represents a spin-ugpin-down state along

the direction of propagation of thi¢h particle. Four product
observables, each of which is associated with simultaneous
spin measurements performed on the four particles, are con-
sidered: 337300, NISISOSE SISESSSE and

3 323359, whereX) represents a Stern-Gerlach mesure-
ment performed on thih particle with the magnet parallel

to theX direction, which is orthogonal to the plane of propa-

T Tt

k2

. t?
—sml{m(—xl—xz—xyr X4)

2 ,Btz
—sink{m(—xl—k Xo+Xz+Xy) +Sim’{m

X(+X1—X2+X3+X4)

/

pt?
+CO0sS m(—X1+X2+X3+ X4)

[ Bt
+sin m(+x1+x2

— X3+ Xy4)

2
+COSV{W(—X1—X2—X3

+Xy)

2
+COSN—— 55 (+ X —Xo+X3+X
y{l_’_thZ( 1 2 3 4)

2
+COSH 55 (+ X1+ Xo— X3+ X
y{l_i_thZ( 1 2 3 4)

X

_ k2
3
Wat + Zat] . (28)

gation of the particles, andl, represents a Stern-Gerlach gimjjar equations are associated with the other velocities and
measurement performed on thté particle with the magnet tg the other measurements. Only the factor that contains ex-
parallel to theY direction, which is orthogonal to the direc- ponential terms changes from equation to equation. It is easy
tion of propagation of theith particle and toX. g guess the form of this factor because it obeys the follow-

|W(ry,r2,r3,r4,t)) is the simultaneous eigenstate of the fouring simple rules. To each outcome corresponds, at the nu-

product observables for the eigenvalue$,—1,—1,+1. As  merator and at the denominator as well, a product of expo-

before, this imposes severe constraints on the results of locakntial factors of the form

spin measurements. By performing an EPR-like reasoning

similar to the previous ones, the assumption of locality im- F{ Bt? (X X X3EX,)
ex

1+ k%t? 2

plies that these results must be determined before the mea-
surements take place and may not depend on which measure-
ment is performed in distant regions on the other particlesyherex; represents the projection on the axis parallel to the
Let us denote byS, and S the prediction assigned to the |ocal ith magnet. The sign aof; in the exponent represents
measurement ak, andX ; the prediction+ 1 corresponds the spin value asymptotically reached during the local mea-
to an up deflection inside the Stern-Gerlach device, andsurement. The weight of this product is equal, at the numera-
—1 to a down deflection. These constraints are expressed & and at the denominator as well, to the probability of find-
follows: ing the corresponding outcome. When the sigrxoin the
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exponent is negative, the whole product will also be negaGerlach device, the field is always parallel to #hdirection,

tively weighted at the numerator when we consider the equaand its gradient is constanB{=B,=0 andB,=ay+a,2).

tion of evolution ofx;. Otherwise, and also at the denomi- Then, the evolutions of the two spin components decouple

nator, the products will have a positive weight. This can beand we get

checked directly in the previous equation and is also true for

the two- and three-particle cases. ) 72

As in the three-particle case treated in the preceding sec- 170=(r\)=—5 A () + u(ap+a:2)¢(r.b).

tion, the integration of the velocities leads to a paradoxical (A2)

situation for any value of the initial positiotexcepted for

some positions that belong to a region of negligible weight when the incoming wave packet is initially Gaussian shaped,
this equation is separable in Cartesian coordinates, and we

IV. CONCLUSIONS find
In conclusion, we showed in this paper how the elucida- 52
tion of several paradoxical situations related to the question ih % (x,t)=— Z_ailpi(x,t),
+ m XY=

of nonlocality can be realized in the framework of Bohm’s
interpretation and is finally reduced to the study of the topol-

ogy of attractor basins of the Bohmian dynamics. One could 2

: - . . . . . i y R YA
object that this explanation is obvious, being given that no 1o (y,) = = 5 dy g (y.b),
satisfying relativistically covariant formulation of Bohm’s
interpretation exists for situations in which more than one 72
(entangled particles are involved. This criticism is valid: in iho s (z,t)=— %aﬁz/ﬁi(z,t)i,u(afr a,2) ¥ (zZ,1).

the present approach, we systematically considered the
Schralinger equation, in which a unique time appears, simi-

lar to the Newtonian, absolute, time. Now, a theorem by . . .
Hardy[14] shows the impossibility to build a Lorentz invari- The two first equations correspond to a free propagation, and

ant realistic theory that would mimic the predictions of quan-'" the”c?(se of an 'g't'a.l Gaussian Wav? pzckgt,tth(:tl)r scl)(lutlofn
tum mechanics. In order to preserve realism it is thereford> WEI Known and given in many standard textbooks o

necessary to reintroduce a kind of absolute or etheric timequantum mechanics, so we shall not discuss how we obtain

attached to an absolute or special frame of reference, whicWeir contribution to the solutior_1. The third_equation IS less
answers the previous criticism. The interesting question i ommon. We shall ShOW‘. following Bohm himsgffl], how
then: Could the Bohmian interpretation help us to conceiv 0 solve it. Let us try tzo flnd_a generahze_d pl_anez—wave solu-
an experiment that would reveal the existence of this quant-Ion of the form 4. (2,1) = . (z,t) exli(kz-AkU/2m)].
tum ether. The original Bohmian interpretation is mhoc 1 hen.f fulfills

to allow for such a possibility, but slightly modified versions
of the interpretationiin which the randomization of the hid-
den variable, here the position of the particle, according to
the ¢ distribution is not guaranteed for all timesould _ ,
allow us to conceive such experimefis). A realistic inter- +p(agta2)fi(zt). (A4)
pretation in the manner of would then open the door to the

conception of a quantum version of the Michelson-Morley!f we could neglect the derivatives, we would haffe(z,t)

(A3)

ﬁZ
ihafi(z,t)=— ﬁ(afi 2ikd,)f2 (z,t)

experiment. =exd xi(ut/h)(ap+a;2)], but then the derivatives are not
zero but vyield #%/2m[ +kt(2a,u/h)+ (aut/A)?]. This
APPENDIX A: BOHM'S SOLUTION FOR THE PASSAGE term depends on time only, so that we can compensate it by
OF ONE SPIN-(1/2) PARTICLE THROUGH multiplying the postulated value off by expi[
A STERN-GERLACH DEVICE T (a;u/2m)kt?— (w2a3/6m#)t3]). We find, thus, the exact
solution:

Let us describe the wave function of a spii2) particle

as superposition of a spin-up and spin-down components ut au
along the directionZ of the magnetic field of the Stern- wi(z,t)=ex+ kz—thtIth—(aoJralz)IthZ
Gerlach device: W (r,t)=¢, (r,t)|+)+¢_(r,t)|=). The - h 2m
Pauli-Schrdinger equation describes the evolution of this Mzai

wave function in the presence of an external magnetic field ~ t3 } (A5)
B:

hZ

. Whent=0, this wave is planeg? (z,0)=exp(kz). Thanks
ihoW(r,t)y=— %A\If(r,t)—,uB-E\If(r,t), (A1)

to the linearity of the Schidinger equation, the general so-
lution is a superposition of these generalized plane waves
whereX, represents the Pauli matrices gids the gyromag-  with as the weight the Fourier components at time zero as the
netic coupling constant of th@eutra) particle. In a Stern- weight. The initial packet being Gaussian shaped, we have
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\/ ! p(_zz J dv exp(—av?+bv) \/;exr{ b*
Z(2t=0)= ' v —av v)=\/T —.
¥ (z,t=0) 2lmor) ex 2o . a 1a

Its Fourier transform is easily obtained thanks to the well-It gives V&rolx/;exp(— 5r§ K2).
known formula The wave function at time is thus

z _ 1 Ao 712 ot _&p p?a 3 oo e21,2
Yi(z,t)= 2 dkexpi| kz—hakt/2m= 7 (aptaz)+ om kt t N exp(— orgk?).
a a

- 6mh (A6)
We can let go out of the integral the terms independerk, aind reorder the other ones:
R t 2a? a
Vi (zt)= 2J_sﬁzex;{ i%(ao—i-alz)— 'gmﬁlt"') f dkexp[ —k2(5r§+iht/2m)+ik(z:zl—::ﬁ”. (A7)
o
We get
au z
z+—t
. 1 fit ut wlal ; “om ”8)
Pi(z,t)= ——| Orp+i exp t—(agta;z)— —t°|ex . A8
o\ 2mér, h 6mfi 4(Sr2+iht/2m)
Using the equalities
1 (6r3—iht/2m)
Sr2+inti2m  (Sri+h2t24m?)’
[ 1 ht 1 oo
——| Oro+i = exp| —iarccos
2w\ 2marg = [ PR \/ 722
AVE Sri+——— o4 ——
( 0 4m25r§) ( 0 4m25r§)
and
h2t2
2 2
= + —
ory=orgl 1 4m25ré)’
we get the contribution o/ (z,t) to the wave function:
%&o)
= — arccos$ —
(20— 1 ex;{ - (Z+31Mt2/2m)2)e i fit(z=aypt?2m)® St +'u—t(a vaz) ,uzait3
U (o fmery)v2 46°r, 2mé°r g4 or? 2 a0 Y ema
(A9)

Notice thaty?. (y,t) is obtained in exactly the same way, with the requirementagata;=0.
In conclusion,
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org
¢ 1 (x—vot)? | At(x—vgt)? fik2t arcco%g_rt)
L PN A 4512 2mé?rodor? O 2m 2
oro
X ex —y—2 exp i fity” —arcco or ex _(ZIalMt2/2m)2)
46?2 2méro4or? 2 457,
org
_ arcco$— -
ht(zF a ut?/2m)? oy ut pal |
= +—(ay+a,z)—
7 ex 2mé?r g4 or? 2 expg =5~ (gt a1z) — 5ot (A10)

with or2=r2(1+#%t%/4m?sr ). The interpretation of this  The heights of the centers of the outgoing bundles moving
solution, which appeared originally in Refl1], is straight- upwords and downwards after the time are equal to
forward: the wave packet of the particles with spin up=a7?=*0.258 cm. Their Z velocities are *2a 7=
(down) diffuses under the influence of the free part of the*5.15 ms?'. The spreading is then, taking the diffusion
Schralinger evolution(the Laplacian termand is simulta- into account, ry\1+k%7?=10"3{1+(2.91x10 °)? cm
neously uniformly accelerated upwardgownwardg. It (=10 3 cm), which is very small in comparison to the dis-
“feels” effectively a potential due to the gyromagnetic cou- tance between the bundlé€3.515 cn), so that these bundles
pling, which varies linearly irz, and the changes of sign with are clearly separated. If we place a screen at a distance of 1
the z spin. m from the magnet, it is reached after ¥0s, and the spots
After a time 7, the particles leave the Stern-Gerlach de-are separated by a distance of the order of 11 cm, while the
vice, and the Gaussian packets move freely, diffusing aroundxtent of a single spot is still of the order of 1dcm.
centers that conserve the velocity that they possessed when

leaving the magnets. The dependence is thus, up to ir- APPENDIX B: THE TWO-PARTICLE CASE
relevant global phases,

The Pauli-Schidinger equation allows us to describe the

(zFa urt/m+a uwr?/2m)? evolution of the wave function inside the magnets of the
exp( - 4512 ) devices:
t
- 2 2 h?
xexg i T e N a2 BT (1 TR = = (A ARW(rL Mo )+ (uBL 30
2mé?r 4 or?
T uBr ZR)W(rL Mg, b), (B1)
+a,ur/m(zFaur?2m)|, (A11) _
with
while the dependence inandy is the same as before. ALAR[ Y (ry D) Y r(rr D) @] £ )R]
In a typical single Stern-Gerlach experiment involving sil- B ,
ver atoms. the mass of the incoming atom is equal to =[ALg L (r O] R(R D[ )@= DRl (1)
1.8010 #? g, the gyromagnetic coupling constaatis equal X(Ais m(Tr,D)E)L®] = )R), B2)

to 9.27x10 21 gen?s 2G ™%, the gradient of the magnetic

field along theZ axis is equal to 1DGcm 2, the length of  whereA | is the Laplacian operator in the left/right coordi-
the magnet is equal to 10 cm, the velocity of the incomingnates, B, is the magnetic field in the left/right regions,
particle along theX axis is equal to 1Dcms !, the time of  while the components o, are theS matrices of Pauli.
flight through the magnet is equal to 10° s, 7 is equal to  When the magnetic fields are parallel to thaxes, only the
1.05<10 %" ergs, the spreading of the incoming particle third 3 matrices appear, which are defined by

8o is equal to 102 cm. Then,

EE(R)‘/&LUL D r(rr, D[ )@= )R

A
k=5 =2.91 st (A12) =H2(E) P (ry D r(rr D] =) ®] )R
° (B3)
a=a;u/2m=2.58<10° cms 2, (A13)

Then, it is easy to check that the Pauli-Salinger equation
) N 1 is separable into the six spatial coordinates and that the gen-
B=a,u/msrg=5.15<10" cm 's™%  (Al4)  eral solution, when the wave packet is initially Gaussian, can
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be expressed in terms of the solutions associated with the We can rewrite the second member of the last equation as
single-particle case that we obtained in the preceding appenhke six dimensional divergency of a six dimensional flux:
dix.

Let us now derive the conservation equation associated W' (r t)[AW(r,t)]-[A¥T(r,t)]¥(r,t)

with this evolution law. We can write it in the form )
=div[¥T(r,t)-grad¥ (r,t)—grad¥ T(r,t)- ¥(r,t)].
2

iho’lt\lf(r,t)z—;—mAW(r,t)+MB~EW(r,t), (B4) (B7)

Now, W'(r,t)-grad¥(r,t) is the complex conjugate of
grad¥ T(r,t)- ¥(r,t) so that we obtain the equation of con-
servationd,p=div(J), where

where the Laplacian is a six-dimensional Laplacian, the mag
netic field a six-dimensional field. It is worth noting tiatis

a self-adjoint operator on the spin spaé@morph toC%).
The adjoint(transposed conjugatef the previous equation

s p=TT(rHW(r,) (B8)
. h? or, in another notation,
—iho ¥l (r,t)=— ﬁA«Iﬁ(r,t)+«1r1“(|r,t);u3.2,
(B5) p(ry,rr, t)=(W¥(r_ 1|’R,t)|‘l’(|'L TR1) (B9)
where we used the fact that=3". Let us now multiply the and
equation of evolution by?'', its adjoint equation by, and
take their difference, we get T=(HIm)Im[ ¥ (r ) grad® (r,1)], (B10)
. h?
ifig UT(r, )W (r,t)=— %\Iﬁ(r,t)[A\P(r,t)] where Img) is the imaginary part of.

The three- and four-particle cases can be treated in a simi-
—[AWT(r,t)]¥(r,t). (B6) lar way.
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