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Bohm’s interpretation and maximally entangled states
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Several no-go theorems showed the incompatibility between the locality assumption and quantum correla-
tions obtained from maximally entangled spin states. We analyze these no-go theorems in the framework of
Bohm’s interpretation. The mechanism by which nonlocal correlations appear during the results of measure-
ments performed on distant parts of entangled systems is explicitly put into evidence in terms of Bohmian
trajectories. It is shown that a GHZ-like contradiction of the type11521 occurs for well-chosen initial
positions of the Bohmian trajectories and that it is this essential nonclassical feature that makes it possible to
violate the locality condition.

DOI: 10.1103/PhysRevA.66.052109 PACS number~s!: 03.65.Ud, 03.65.Ta
on
e
o
le

ch
la

n
m
ll
re
e
el
te
e
ur
un
s

o
dg
o-
es
m
ci
e

ct
n
as
n

n
u-
e-

o-
of

he
i-

ea-
icle.
be

the

nd
in

n

lach
urce,

of
the
s of
I. INTRODUCTION

Several no-go theorems show that it is impossible to c
ciliate locality and quantum mechanics. The essence of th
theorems is that it is impossible to simulate the results
observations carried out on distant parts of an entang
quantum system in terms of a local common cause me
nism. This impossibility can be expressed through the vio
tion of an inequality@1–3# or, even ‘‘stronger,’’ of an equal-
ity @4,5#. Besides it is well known that the Bohmia
interpretation, according to which particles have at any ti
a well-defined position@6#, makes it possible to simulate a
the quantum predictions for massive particles in the non
ativistic regime. Therefore, it is interesting to understand b
ter how nonlocality appears in the Bohmian picture. It is w
known that for entangled systems the velocity associa
with the Bohmian trajectories can be nonlocally influenc
@7,8#. The goal of our paper is to analyze in detail the nat
of the Bohmian trajectories in the specific situations enco
tered in the formulation of three well-known no-go theorem
Bell’s theorem@1#, Mermin’s theorem@5#, and the~GHZ!
Greenberger-Horne-Zeilinger theorem@4#, in which, respec-
tively, two, three, and four spin-~1/2! particles are assumed t
be prepared in maximally entangled states. The knowle
of the initial positions of these particles is sufficient in B
hm’s formulation in order to predict the whole trajectori
and also the results of local spin measurements perfor
with Stern-Gerlach devices. Note, however, that the spe
cation of the initial positions together with the full measur
ment setup~not only its local parts! is required in order to
explain all the quantum correlations. This property refle
the nonlocality of Bohmian dynamics, a fundamentally no
classical feature of Bohm’s interpretation by which Bell w
led, together with the argument of Einstein, Podolsky, a
Rosen~EPR! @9#, to his famous inequalities@1#. We shall
show explicitly in Sec. II of this paper how, for well-chose
initial positions, a GHZ-like contradiction occurs for a sit
ation during which Bell’s inequalities get violated. This r
sult confirms Hardy’s formulation of Bell’s inequalities@10#
according to which the violation of Bell’s inequalities is pr
portional to the probability that a GHZ-like contradiction
the type11521 occurs@4#. We shall also show explicitly
1050-2947/2002/66~5!/052109~11!/$20.00 66 0521
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in Sec. III of this paper how in the situation considered in t
no-go theorems of Mermin@5# and Greenberger, Horne, Sh
mony, and Zeilinger@4# the GHZ-like contradiction occurs
for all the initial positions.

II. BELL’S THEOREM IN A BOHMIAN DESCRIPTION

A. Simultaneous Stern-Gerlach measurements performed
on a pair of entangled particles

In the situation described in Bell’s theorem@1#, two par-
ticles are prepared in an entangled spin state and spin m
surements are performed simultaneously on each part
The full wave function associated with such a state can
put in the form

uC~rL ,rR , t !&5ac11~rL ,rR ,t !u1&L ^ u1&R

1bc12~rL ,rR ,t !u1&L ^ u2&R

1cc21~rL ,rR ,t !u2&L ^ u1&R

1dc22~rL ,rR ,t !u2&L ^ u2&R , ~1!

wherea,b,c,d are complex constants representative of
spin entanglement, the indicesL and R represent arbitrary
spatial reference frames in two distant regions, the left a
right regions,rL/R represent the position vector expressed
these frames, andu1/2&L/R represent the up/down spi
states along the~not necessary parallel! Z axes of these
frames. We shall assume for convenience that Stern-Ger
devices are disposed at the same distance from the so
along the axes of propagationXL/R of the particles, that the
point of penetration inside them coincides with the origins
the spatial frames, and with the origin of time, and that
initial state consists of a pair of Gaussian shaped particle
massm propagating at a speedv0:

uC~rL ,rR ,t !&5
1

~2Apdr 0!6/2
expS 2rL

22rR
2

4dr 0
2 D

3exp@ iko~xL1xR!#. ~2!
©2002 The American Physical Society09-1
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When theZL/R axis is parallel to theL/R magnetic field, it
can be shown that the equation of evolution is separable
the coordinates (xL ,yL ,zL ,xR ,yR ,zR). For reasons of con
venience, we shall also assume that the Stern-Gerlach se
are similar in the left and right regions. Then, it is easy
show that the solution of the equation of evolution given
Appendix B can be expressed in terms of the solution of
single-particle case:

uC~rL ,rR ,t !&5ac1L~rL ,t !c1R~rR ,t !u1&L ^ u1&R

1bc1L~rL ,t !c2R~rR ,t !u1&L ^ u2&R

1cc2 L~rL ,t !c1R~rR ,t !u2&L ^ u1&R

1dc2L~rL ,t !c2R~rR ,t !u2&L ^ u2&R ,

~3!

with

c1/2L/R~rL/R ,t !5c1/2L/R
x ~xL/R!c1/2L/R

y

3~yL/R ,t !c1/2L/R
z ~zL/R!, ~4!

wherec1/2
x ,c1/2

y , andc1/2
z are the solutions of the single

particle case that were originally derived by Bohm@11#. This
derivation is reproduced in detail in Appendix A.

B. Bohm’s interpretation

Bohm’s interpretation@6# is, in summary, the following:
whenever we can associate with the equation of evolutio
a quantum system a conservation equation of the form] tr
5div(J), wherer is a positive definite density of probabi
ity, and div(J) is the divergence of a current vector, we c
interpret this density as a distribution of localized mater
points moving with the velocityJ/r. It is thus possible to
formulate a hidden variable theory for the system: it wou
consist of a spatial distribution of material points, which in
tially coincides with the quantum distribution~given byr);
these points move with a velocity equal toJ/r. In virtue of
the conservation equation, the spatial distribution dedu
from this evolution coincides then for all times with th
quantum distribution. According to de Broglie, all the me
surements being, as a last resort, position measurements
hidden variable theory is, for what concerns practical p
poses, equivalent to orthodox quantum mechanics.

In Appendix B, we show how to deduce such a conser
tion equation for the pair of particles considered here. Fr
this equation of conservation, it is straightforward to dedu
the conserved density@Eq. ~B8!#

r~rL ,rR ,t !5^C~rL ,rR ,t !uC~rL ,rR ,t !&

5uac1L~rL ,t !c1R~rR ,t !u2

1ubc1L~rL ,t !c2R~rR ,t !u2

1ucc2L~rL ,t !c1R~rR ,t !u2

1udc2L~rL ,t !c2R~rR ,t !u2. ~5!
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This density depends, in general, on the two positio
(rL ,rR). The six-dimensional velocity@Eq. ~B9!# associated
with the conserved density through the relationJ5r•v can
be split into two local three-dimensional velocitiesvL ,vR
defined as follows:

vL~rL ,rR ,t !5
\

mr
$Im@c1L~rL ,t !*“Lc1L~rL ,t !#

3@ uac1R~rR ,t !u21ubc2R~rR ,t !u2#

1Im@c2L~rL ,t !*“Lc2L~rL ,t !#

3@ ucc1R~rR ,t !u21udc2R~rR ,t !u2#%, ~6!

vR~rL ,rR ,t !5
\

mr
$Im@c1R~rR ,t !*“Rc1R~rR ,t !#

3@ uac1L~rL ,t !u21ucc2L~rL ,t !u2#

1Im@c2R~rR ,t !*“Rc2R~rR ,t !#

3@ ubc1L~rL ,t !u21udc2L~rL ,t !u2#%, ~7!

where“L(R) is the gradient on the spatial left~right! coordi-
nates and Im(z) is the imaginary part ofz. In general, these
velocities contain a nonvanishing contribution depending
the position of the particle situated at the other side of
source, and are thus influenced by what happens in a re
from which they are separated by a spacelike distance. In
formulation of Bell’s theorem, the particles are assumed
be prepared in the so-called singlet state for whicha5d
5(1/A2)sin(u/2) and b52c5(1/A2)cos(u/2), whereu is
the angle between the magnetic fields in the left and ri
Stern-Gerlach devices. When these axes are parallel, w
cover the standard expression

uC~rL ,rR ,t !&5
1

A2
c1L~rL ,t !c2R~rR ,t !u1&L ^ u2&R

2
1

A2
c2L~rL ,t !c1R~rR ,t !u2&L ^ u1&R .

~8!

It is worth noting that when the axes of the devices are p
allel, the results of spin measurements are always oppo
This perfect correlation is due to the fact that the singlet s
is maximally entangled, and that its expression is invari
under a simultaneous rotation of the axes of quantizat
when both axes are parallel. The specification ofa, b, c and
d allows us to express explicitly the Bohmian dynamics d
ing the passage through the Stern-Gerlach devices. We
tain, after some lengthy but simple computations, the follo
ing velocities for the left as well as for the rightx and y
components:

dx

dt
5v01

k2

11k2t2 t~x2v0t !, ~9!
9-2
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dy

dt
5

k2

11k2t2 ty ~10!

~wherek5\/2md2r 0 expresses the diffusion inherent to th
Schrödinger equation!. The solutions of these dynamica
equations are

x5v0t1x0A11k2t2, ~11!
-

o
s

n
o

an
rif

05210
y5y0A11k2t2. ~12!

In Appendix A we show that, during a typical Stern-Gerla
experiment, the diffusion is negligible during the time
flight through the Stern-Gerlach devices. The trajector
along these axes are thus essentially free translations,
present no special interest for the understanding of the m
surement process.

In the singlet state, the dynamics of thez components is
given by
dzL

dt
5

k2

11k2t2 tzL1

1s2expS bt2

11k2t2

~zL1zR!

2 D1c2expS bt2

11k2t2

~zL2zR!

2 D2c2expS bt2

11k2t2

~2zL1zR!

2 D2s2expS bt2

11k2t2

~2zL2zR!

2 D
1s2expS bt2

11k2t2

~zL1zR!

2 D1c2expS bt2

11k2t2

~zL2zR!

2 D1c2expS bt2

11k2t2

~2zL1zL!

2 D1s2expS bt2

11k2t2

~2zR2zL!

2 D
3H 2k2

11k2t2 at312atJ , ~13!

dzR

dt
5

k2

11k2t2 tzR

1

1s2expS bt2

11k2t2

~zL1zR!

2 D2c2expS bt2

11k2t2

~zL2zR!

2 D1c2expS bt2

11k2t2

~2zL1zL!

2 D2s2expS bt2

11k2t2

~2zR2zL!

2 D
1s2expS bt2

11k2t2

~zL1zR!

2 D1c2expS bt2

11k2t2

~zL2zR!

2 D1c2expS bt2

11 k2t2

~2zL1zR!

2 D1s2expS bt2

11k2t2

~2zL2zR!

2 D
3H 2k2

11k2t2 at312atJ , ~14!
a-
ies
one

me
in is
th
where a5a1m/2m, b5a1m/mdr 0
2, c5cos(u/2) and s

5sin(u/2).
Numerical computations~confirmed by a careful evalua

tion of the terms present in the last equations! show that,
when the two magnets act simultaneously, there exist f
attractors for the trajectories, corresponding to the result
spin measurements~u refers to ‘‘up’’ and d to ‘‘down’’ !
(uL ,uR), (uL ,d R), (d L ,upR), and (d L ,d R). During the
passage through the device, the trajectories can be show
fall very quickly in the basin of one of these attractors. F
instance, in the attractor basin of the (uL ,uR) outcome, the
exponential factore@bt2/(1 1 k2t2)(zL1zR)/2# will domi-
nate all the other exponential factors, and thez velocities will
obey the following equations:

dzL

dt
5

k2

11k2t2 tzL11H 2k2

11k2t2 at312atJ ,

dzR

dt
5

k2

11k2t2 tzR11H 2k2

11k2t2 at312atJ .

In virtue of the fact that in a well-conceived device, we c
neglect the diffusion terms relatively to the classical d
ur
of

to
r

t

terms, we can takek to be equal to 0 in the previous equ
tion, which gives the classical expression for the velocit
(2a is the magnitude of the classical acceleration underg
inside the magnetic field of the device!:

dzL

dt
512at,

dzR

dt
512at.

Similarly, in say the attractor basin of the (d L ,uR) outcome,
we shall get

dzL

dt
522at,

dzR

dt
512at.

This means that after a short time, the trajectories beco
and remain quasiclassical. The choice of the attractor bas
deterministically specified by the initial positions. It is wor
9-3
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noting that when the initial positions lie in between the
gions that are characterized by this quasiclassical beha
the deflection will be quite less important. These positio
can be associated with the tails of the outgoing wave pac
and their weight is negligible, because the diffusion of t
Gaussian wave packets is negligible relative to the aver
deflection undergone during the passage through the S
Gerlach device.

C. GHZ-like contradiction in the two-particles case

As a last resort, the final outcome is thusnearly always
unambiguously determined by the initial positionszL and
zR , together with the specifications of the directions of t
magnets in the left and right regions. Let us assume tha
choose to change the direction of the magnet in the r
device. Then, the final outcome is determined by the ini
positionszL and zR8 . zR8 depends onyR and zR and on the
angle between the old quantization axisZR and the new one
ZR8 . It could happen that for the same initial position coo
dinateszL ,yR ,zR , the attractor basin of the left trajector
changes due to the change ofzR to zR8 . This means that the
choice of the basis of detection in the right region can n
locally influence the outcome of the measurement in the
region. Therefore although the results of all possible m
surements can be deterministically foreseen on the bas
the knowledge of the initial positions, which constitutes
deterministic mechanism, this mechanism is nonlocal, c
trarily to the common cause mechanisms considered by
@1#, which are assumed to be deterministic and local. T
helps to understand how Bohmian mechanics makes it
sible to violate Bell’s inequalities. The probability of an ou
come can be obtained, after integration of the Bohmian
locities, by performing a weighted average on the predicti
associated with this outcome for particular initial position
The weight is equal to the initial probability of presence
Gaussian distribution in our case. In accordance with Boh
interpretation, the probability obtained so is exactly the sa
as the standard quantum probability. In Ref.@12#, the attrac-
tor basins of the outcomes related to different noncompat
spin measurements in the left and right regions were exp
itly determined for a well-chosen initial position and the fo
lowing result was shown. If we choose four directio
(ZL ,ZL8 ,ZR ,ZR8 ) such that the directionsZL ,ZL8 ,ZR8 are co-
planar and are all separated by angles of 120°, whileZL8 and
ZR are parallel, that the system of two particles is prepare
the singlet state, and that the initial coordinates of position
the pair are defined as follows: (yL ,zL)(t50)51023 cm
3(A3/2,1/2) and (yR ,zR)(t50)51.131023 cm
3(A3/2,1/2), then we shall observe, after integration of
Bohmian velocities, the following outcomes
(uZL

,uZR
),(uZ

L8
,uZ

R8
), and (d Z

L8
,uZR

). If the locality assump-

tion was valid, the results of the measurements ought to
predetermined before the measurements take place. This
be shown by an EPR-like reasoning@9#, which is, roughly
summarized, the following: in the singlet state, the value
the spin component along an arbitrary axis of reference in
left region can be deduced from the observation of the c
responding value in the right region because the singlet s
05210
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exhibits perfect~100%! correlations; if we assume that dis
tant measurements may not influence the local spin val
then these values existed necessarily before their meas
ment took place. This means that the local value~in the left
region but also in the right region by a similar reasoning! of
the spin along an arbitrary direction ought to be prede
mined before the measurement.

Obviously, if the locality assumption was valid, we cou
deduce from the predictions relative to the two first jo
measurements„(uZL

,uZR
),(uZ

L8
,uZ

R8
)… that the third result

ought to be (uZ
L8
,uZR

) too, which is not the case here@we find

(d Z
L8
,uZR

)]. In Ref. @12# we showed how Bohmian nonloca

ity is related to the nonfactorizability condition postulated
Bell as a consequence of the locality condition. For the p
poses of the present paper, we went further. We also i
grated the velocities when the magnets are parallel to
direction (ZL ,ZR8 ), and we found the outcome (uZL

,uZ
R8
). By

assigning a value11 to the outcome spin up and21 to the
outcome spin down, we arrive at a GHZ-like contradiction
the type11521 that we shall study in detail in the follow
ing section. This can be done by considering the produc
the outcomes ofZLùZR and ZL8ùZR8 on one side and the
product of the outcomes ofZL8ùZR andZLùZR8 on the other
side. If the outcomes associated with the four experime
were predetermined, these products ought clearly to
equal, but for the choice of initial position considered he
they are, respectively, equal to11 and21, which can be
put in the paradoxical form11521.

It can be shown@12# that when the four directions
(ZL ,ZL8 ,ZR ,ZR8 ) are coplanar and are all separated by ang
of 120°, whileZL8 andZR are parallel, and that the system
two particles is prepared in the singlet state, Bell’s a
Clauser-Horne’s inequalities are violated. It can also
shown that a GHZ-like contradiction occurs only for a fra
tion of the initial positions that differs significantly from
unity. For instance, when the initial coordinates of positi
of the pair are defined as follows: (yL ,zL)(t50)
51023 cm3(A3/2,1/2) and (yR ,zR)(t50)521
31023 cm3(A3/2,1/2), then we shall observe, after int
gration of the Bohmian velocities, the following outcome
(uZL

,d ZR
),(uZ

L8
,d Z

R8
), (uZL

,d Z
R8
), and (uZ

L8
,d ZR

). In this

case, no GHZ contradiction occurs, and the results of lo
measurements do not depend on which measurements
performed in a distant region. These results confirm Hard
analysis, who showed@10# that the degree of violation o
Bell’s and Clauser-Horne’s inequalities is proportional to t
probability of encountering GHZ-like paradoxical situation

Besides, Peres@13# showed that for two particles in th
singlet state, such a paradoxical situation also character
the quantum average values of well-chosen observables.
interpretation of Peres’s paradox in the framework of B
hm’s theory was already studied by Dewdney in Ref.@8#, so
we shall not repeat his work in the present paper. Furth
more, it is impossible to express Peres’s paradox in term
local Stern-Gerlach measurements, only because it invo
nonlocal measurements. Therefore, presently, there is no
plicit formulation of this paradox in terms of Bohmian tra
9-4
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jectories. Nevertheless, such a formulation is possible
principle @8#. It is worth noting that the implications of Bo
hm’s theory regarding nonlocality were already recogniz
by Bohm and Bell, and that the elucidation of certain no-
theorems was qualitatively developed in the past~see, for
instance, Refs.@7,8# and references therein!. Computer simu-
lations of the dynamics inside the Stern-Gerlach devi
~with two particles and parallel magnets only! can be found
in Ref. @8#, as well as a qualitative discussion of their co
nection with Peres’s paradox. The analytical expression
Bohm’s velocities in the general two-particle case~with par-
allel and nonparallel magnets! was given in Ref.@12#, as well
as the connection between Bohmian nonlocality and non
torizability. Nevertheless, the occurrence of a GHZ-like co
tradiction in the two-particle case as well as the expl
study of the topology of the attractor basins for the three-
four-particle cases and their connection to GHZ-like cont
dictions were not, to the knowledge of the authors, publis
elsewhere. This brings us to the following section.

III. MERMIN AND GHZ NO-GO THEOREMS
IN A BOHMIAN DESCRIPTION

The two paradoxes that we shall study in this section
of the following form: for well-chosen local observables a
quantum states, the quantum correlations are such that i
results of the local measurements are fixed in advance an
not depend on the measurements that are performed in
tant regions we come to a contradiction of the type115
21. We showed in the preceding section that in the tw
particle case such a contradiction could occur for we
chosen initial positions. However, after averaging over
initial positions of the particles, for which the contradictio
occurs sometimes but not always, the paradox is expre
by the violation of an inequality in accordance with Hardy
analysis@10#. The novelty of Mermin’s and GHZ paradoxe
@4,5# is that the contradiction does not take the form of t
violation of an inequality but really of an equality. As w
shall now show, the meaning of this result, interpreted
terms of Bohm’s trajectories is that all the initial positio
lead to the same paradoxical situation, and not only som
them, as in the two-particle case.

A. Mermin’s no-go theorem: GHZ-like contradiction
in the three-particle case

In Mermin’s theorem@5#, three particles are prepared in
maximally entangled spin state of the form

uC~r1 ,r2 ,r3 ,t !&5
1

A2
c11~r1 ,t !c12~r2 ,t !c13~r3 ,t !u1&1

^ u1&2^ u1&32
1

A2
c21~r1 ,t !c22

3~r2 ,t !c23~r3 ,t !u2&1^ u2&2^ u2&3 .

~15!

The particles are sent along three coplanar directions s
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rated by an angle of 120°u1& i (u2& i) represents a spin-up
~spin-down! state along the direction of propagation of th
i th particle. Four ‘‘product’’ observables, each of which
associated with a simultaneous spin measurement perfor
on the three particles, are considered:Sx

1Sy
2Sy

3 , Sy
1Sx

2Sy
3 ,

Sy
1Sy

2Sx
3 , and Sx

1Sx
2Sx

3 , where Sx
i represents a Stern

Gerlach mesurement performed on thei th particle with the
magnet parallel to theX direction, which is orthogonal to the
plane of propagation of the particles, andSy

i represents a
Stern-Gerlach mesurement performed on thei th particle with
the magnet parallel to theYi direction, which is orthogona
to the direction of propagation of thei th particle and toX.
The S matrices possess two eigenvalues,11 and21. The
eigenvalue11 corresponds to the outcome spin up an
21 to the outcome spin down.uC(r1 ,r2 ,r3 ,t)& is the simul-
taneous eigenstate of the four product observables for
eigenvalues11,11,11,21. This imposes severe con
straints on the results of l ocal spin measurements. For
stance, without performing the measurement ofSx

1 , we can
deduce what would be the outcome observed during
measurement from the results of the measurements ofSx

2 and
Sx

3 . By an EPR-like reasoning similar to that described
the preceding section, the locality assumption implies t
the outcome of the measurement ofSx

1 must be determined
before the measurement took place and does not depen
which measurement is performed in distant regions on
other particles. A similar reasoning holds for the measu
ment ofSy

1 , Sx
2 , Sy

2 , Sx
3 , andSy

3 . Let us denote asSx
i and

Sy
i the prediction assigned to the measurement ofSx

i andSy
i ;

the prediction11 corresponds to an ‘‘up’’ deflection insid
the Stern-Gerlach device, and21 to a ‘‘down’’ deflection.
The constraints imposed by the properties of the maxim
entangled state in which the particles are prepared can
expressed as follows:

Sx
1Sy

2Sy
3511,

Sy
1Sx

2Sy
3511,

Sy
1Sy

2Sx
3511,

Sx
1Sx

2Sx
3521. ~16!

The product of the three first equations gives

~Sy
1!2~Sy

2!2~Sy
3!2Sx

1Sx
2Sx

3511. ~17!

Sy
i being equal to1 or 21, we get

Sx
1Sx

2Sx
3511, ~18!

which together with the fourth equation leads to a contrad
tion of the type11521. We encountered already such
contradiction in the preceding section, and showed tha
could be explained in terms of the nonlocal properties
Bohmian trajectories. This is also true in the present case
a straightforward generalization of the two-particle case
can be shown that the Bohmian velocities during the m
surement of one spin component alongX, one component
alongY, and another one alongY8 are the following:
9-5
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dx

dt
5

k2

11k2t2 tx

1

1expS bt2

11k2t2

~x1y1y8!

2 D1expS bt2

11k2t2

~x2y2y8!

2 D2expS bt2

11k2t2

~2x2y1y8!

2 D2expS bt2

11k2t2

~2x1y2y8!

2 D
1expS bt2

11k2t2

~x1y1y8!

2 D1expS bt2

11k2t2

~x2y2y8!

2 D1expS bt2

11k2t2

~2x2y1y8!

2 D1expS bt2

11k2t2

~2x1y2y8!

2 D
3H 2k2

11k2t2 at312atJ , ~19!

dy

dt
5

k2

11k2t2 ty1

1expS bt2

11k2t2

~x1y1y8!

2 D2expS bt2

11k2t2

~x2y2y8!

2 D2expS bt2

11k2t2

~2x2y1y8!

2 D1expS bt2

11k2t2

~2x1y2y8!

2 D
1expS bt2

11k2t2

~x1y1y8!

2 D1expS bt2

11k2t2

~x2y2y8!

2 D1expS bt2

11k2t2

~2x2y1y8!

2 D1expS bt2

11k2t2

~2x1y2y8!

2 D
3H 2k2

11k2t2 at312atJ , ~20!

dy8

dt
5

k2

11k2t2 ty8

1

1expS bt2

11k2t2

~x1y1y8!

2 D2expS bt2

11k2t2

~x2y2y8!

2 D1expS bt2

11k2t2

~2x2y1y8!

2 D2expS bt2

11k2t2

~2x1y2y8!

2 D
1expS bt2

11k2t2

~x1y1y8!

2 D1expS bt2

11k2t2

~x2y2y8!

2 D1expS bt2

11k2t2

~2x2y1y8!

2 D1expS bt2

11k2t2

~2x1y2y8!

2 D
3H 2k2

11k2t2at312atJ . ~21!

They possess four attractor basins that correspond to the outcomes (111), (122), (221), and (212). During the
measurement of the fourth observableSx

1Sx
2Sx

3 , the Bohmian trajectories obey

dx1

dt
5

k2

11k2t2 tx1

1

2expS bt2

11k2t2

~2x12x22x3!

2 D2expS bt2

11k2t2

~2x11x21x3!

2 D1expS bt2

11k2t2

~1x12x21x3!

2 D1expS bt2

11k2t2

~1x11x22x3!

2 D
1expS bt2

11k2t2

~2x12x22x3!

2 D1expS bt2

11k2t2

~2x11x21x3!

2 D1expS bt2

11k2t2

~1x12x21x3!

2 D1expS bt2

11k2t2

~1x11x22x3!

2 D
3H 2k2

11k2t2 at312atJ , ~22!

dx2

dt
5

k2

11k2t2 tx2

1

2expS bt2

11k2t2

~2x12x22x3!

2 D1expS bt2

11k2t2

~2x11x21x3!

2 D2expS bt2

11k2t2

~1x12x21x3!

2 D1expS bt2

11k2t2

~1x11x22x3!

2 D
1expS bt2

11k2t2

~2x12x22x3!

2 D1expS bt2

11k2t2

~2x11x21x3!

2 D1expS bt2

11k2t2

~1x12x21x3!

2 D1expS bt2

11k2t2

~1x11x22x3!

2 D
3H 2k2

11k2t2at312atJ , ~23!

dx3

dt
5

k2

11k2t2 tx3

1

2expS bt2

11k2t2

~2x12x22x3!

2 D1expS bt2

11k2t2

~2x11x21x3!

2 D1expS bt2

11k2t2

~1x12x21x3!

2 D2expS bt2

11k2t2

~1x11x22x3!

2 D
1expS bt2

11k2t2

~2x12x22x3!

2 D1expS bt2

11k2t2

~2x11x21x3!

2 D1expS bt2

11k2t2

~1x12x21x3!

2 D1expS bt2

11k2t2

~1x11x22x3!

2 D
3H 2k2

11k2t2 at312atJ . ~24!
052109-6
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They possess four attractor basins that correspond to the
comes (222), (211), (121), and (112). Very
quickly, the Bohmian trajectory will fall into one of thes
basins and follow a nearly classical dynamics. For e
choice of initial position~except for the initial positions tha
belong to the regions that separate two basins, which
regions of negligible weight that correspond to the tails
the Gaussian packets!, the product of the predicted outcome
associated with the observablesSx

1 , Sx
2 , andSx

3 is equal to
11 when we consider their realization during the first thr
experiments and to21 when we consider the last one durin
which they are simultaneously measured.

B. Greenberger, Horne, and Zeilinger’s no-go theorem:
GHZ-like contradiction in the four-particle case

For what concerns the GHZ paradox@4#, we shall first
reformulate it in a simplified form that is closer to Mermin
formulation. Four particles are now prepared in a maxima
entangled spin state of the form

uC~r1 ,r2 ,r3 ,r4 ,t !&

5
1

A2
c11~r1 ,t !c12~r2 ,t !c23~r3 ,t !c24~r4 ,t !u1&1

^ u1&2^ u2&3^ u2&42
1

A2
c21~r1 ,t !c2 2~r2 ,t !

3c13~r3 ,t !c1 4~r4 ,t !u2&1^ u2&2^ u1&3^ u1&4 .

~25!

The particles are sent along four different coplanar directi
andu1& i (u2& i) represents a spin-up~spin-down! state along
the direction of propagation of thei th particle. Four product
observables, each of which is associated with simultane
spin measurements performed on the four particles, are
sidered: Sx

1Sx
2Sx

3Sx
4 , Sy

1Sx
2Sy

3Sx
4 , Sy

1Sx
2Sx

3Sy
4 , and

Sx
1Sx

2Sy
3Sy

4 , whereSx
i represents a Stern-Gerlach mesu

ment performed on thei th particle with the magnet paralle
to theX direction, which is orthogonal to the plane of prop
gation of the particles, andSy

i represents a Stern-Gerlac
measurement performed on thei th particle with the magne
parallel to theY direction, which is orthogonal to the direc
tion of propagation of the i th particle and to X.
uC(r1 ,r2 ,r3 ,r4 ,t)& is the simultaneous eigenstate of the fo
product observables for the eigenvalues21,21,21,11. As
before, this imposes severe constraints on the results of l
spin measurements. By performing an EPR-like reason
similar to the previous ones, the assumption of locality i
plies that these results must be determined before the m
surements take place and may not depend on which mea
ment is performed in distant regions on the other partic
Let us denote bySx

i and Sy
i the prediction assigned to th

measurement ofSx
i andSy

i ; the prediction11 corresponds
to an up deflection inside the Stern-Gerlach device, a
21 to a down deflection. These constraints are expresse
follows:
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Sx
1Sx

2Sx
3Sx

4521,

Sy
1Sx

2Sy
3Sx

4521,

Sy
1Sx

2Sx
3Sy

4521,

Sx
1Sx

2Sy
3Sy

4511. ~26!

The product of the three last equations gives

Sx
1Sx

2Sx
3Sx

4511, ~27!

which together with the first equation leads to a contradict
of the type11521. The analysis of Bohm’s trajectories
similar to the two- and three-particle cases, so that we s
not repeat it entirely here. For instance, during the meas
ment ofSx

1Sx
2Sx

3Sx
4 we get that the velocity of the first par

ticle obeys the following equation:

dx1

dt
5

k2

11k2t2 tx11H 2sinhF bt2

11k2t2 ~2x12x22x31x4!G
2sinhF bt2

11k2t2~2x11x21x31x4!G1sinhF bt2

11k2t2

3~1x12x21x31x4!G1sinhF bt2

11k2t2 ~1x11x2

2x31x4!G J Y H 1coshF bt2

11k2t2~2x12x22x3

1x4!G1coshF bt2

11k2t2 ~2x11x21x31x4!G
1coshF bt2

11k2t2 ~1x12x21x31x4!G
1coshF bt2

11k2t2 ~1x11x22x31x4!G J
3H 2k2

11k2t2at312atJ . ~28!

Similar equations are associated with the other velocities
to the other measurements. Only the factor that contains
ponential terms changes from equation to equation. It is e
to guess the form of this factor because it obeys the follo
ing simple rules. To each outcome corresponds, at the
merator and at the denominator as well, a product of ex
nential factors of the form

expF S bt2

11k2t2

~6x16x26x36x4!

2 D G ,
wherexi represents the projection on the axis parallel to
local i th magnet. The sign ofxi in the exponent represent
the spin value asymptotically reached during the local m
surement. The weight of this product is equal, at the nume
tor and at the denominator as well, to the probability of fin
ing the corresponding outcome. When the sign ofxi in the
9-7
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exponent is negative, the whole product will also be ne
tively weighted at the numerator when we consider the eq
tion of evolution ofxi . Otherwise, and also at the denom
nator, the products will have a positive weight. This can
checked directly in the previous equation and is also true
the two- and three-particle cases.

As in the three-particle case treated in the preceding
tion, the integration of the velocities leads to a paradoxi
situation for any value of the initial position~excepted for
some positions that belong to a region of negligible weigh!.

IV. CONCLUSIONS

In conclusion, we showed in this paper how the elucid
tion of several paradoxical situations related to the ques
of nonlocality can be realized in the framework of Bohm
interpretation and is finally reduced to the study of the top
ogy of attractor basins of the Bohmian dynamics. One co
object that this explanation is obvious, being given that
satisfying relativistically covariant formulation of Bohm
interpretation exists for situations in which more than o
~entangled! particles are involved. This criticism is valid: i
the present approach, we systematically considered
Schrödinger equation, in which a unique time appears, si
lar to the Newtonian, absolute, time. Now, a theorem
Hardy @14# shows the impossibility to build a Lorentz invar
ant realistic theory that would mimic the predictions of qua
tum mechanics. In order to preserve realism it is theref
necessary to reintroduce a kind of absolute or etheric ti
attached to an absolute or special frame of reference, w
answers the previous criticism. The interesting question
then: Could the Bohmian interpretation help us to conce
an experiment that would reveal the existence of this qu
tum ether. The original Bohmian interpretation is tooad hoc
to allow for such a possibility, but slightly modified version
of the interpretation~in which the randomization of the hid
den variable, here the position of the particle, according
the c2 distribution is not guaranteed for all times! would
allow us to conceive such experiments@15#. A realistic inter-
pretation in the manner of would then open the door to
conception of a quantum version of the Michelson-Morl
experiment.

APPENDIX A: BOHM’S SOLUTION FOR THE PASSAGE
OF ONE SPIN-„1Õ2… PARTICLE THROUGH

A STERN-GERLACH DEVICE

Let us describe the wave function of a spin-~1/2! particle
as superposition of a spin-up and spin-down compone
along the directionZ of the magnetic field of the Stern
Gerlach device:C(r ,t)5c1(r ,t)u1&1c2(r ,t)u2&. The
Pauli-Schro¨dinger equation describes the evolution of th
wave function in the presence of an external magnetic fi
B:

i\] tC~r ,t !52
\2

2m
DC~r ,t !2mB•SC~r ,t !, ~A1!

whereS represents the Pauli matrices andm is the gyromag-
netic coupling constant of the~neutral! particle. In a Stern-
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Gerlach device, the field is always parallel to theZ direction,
and its gradient is constant (Bx5By50 andBz5a01a1z).
Then, the evolutions of the two spin components decou
and we get

i\] tc6~r ,t !52
\2

2m
Dc6~r ,t !7m~a01a1z!c6~r ,t !.

~A2!

When the incoming wave packet is initially Gaussian shap
this equation is separable in Cartesian coordinates, and
find

i\] tc6
x ~x,t !52

\2

2m
]x

2c6
x ~x,t !,

i\] tc6
y ~y,t !52

\2

2m
]y

2c6
y ~y,t !,

i\] tc6
z ~z,t !52

\2

2m
]z

2c6
z ~z,t !7m~a01a1z!c6

z ~z,t !.

~A3!

The two first equations correspond to a free propagation,
in the case of an initial Gaussian wave packet, their solut
is well known and given in many standard textbooks
quantum mechanics, so we shall not discuss how we ob
their contribution to the solution. The third equation is le
common. We shall show, following Bohm himself@11#, how
to solve it. Let us try to find a generalized plane-wave so
tion of the form c6

z (z,t)5 f 6(z,t)exp@i(kz2\k2t/2m)#.
Then,f fulfills

i\] t f 6
z ~z,t !52

\2

2m
~]z

262ik]z! f 6
z ~z,t !

7m~a01a1z! f 6
z ~z,t !. ~A4!

If we could neglect the derivatives, we would havef 6
z (z,t)

5exp@6i(mt/\)(a01a1z)#, but then the derivatives are no
zero but yield \2/2m@6kt(2a1m/\)1(a1mt/\)2#. This
term depends on time only, so that we can compensate
multiplying the postulated value of f by exp„i @
7(a1m/2m)kt22(m2a1

2/6m\)t3#). We find, thus, the exac
solution:

c6
z ~z,t !5expF i S kz2\k2t/2m6

mt

\
~a01a1z!7

a1m

2m
kt2

2
m2a1

2

6m\
t3D G . ~A5!

When t50, this wave is plane:c6
z (z,0)5exp(ikz). Thanks

to the linearity of the Schro¨dinger equation, the general so
lution is a superposition of these generalized plane wa
with as the weight the Fourier components at time zero as
weight. The initial packet being Gaussian shaped, we ha
9-8
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c6
z ~z,t50!5A 1

~2Apdr 0!
expS 2z2

4dr 0
2D .

Its Fourier transform is easily obtained thanks to the w
known formula
05210
-

E
vPR

dv exp~2av21bv !5Ap

a
expS b2

4aD .

It givesAdr 0 /Apexp(2dr0
2 k2).

The wave function at timet is thus
c6
z ~z,t !5

1

A2p
E dk expF i S kz2\k2t/2m6

mt

\
~a01a1z!7

a1m

2m
kt22

m2a1
2

6m\
t3D GAdr 0

Ap
exp~2dr 0

2k2!. ~A6!

We can let go out of the integral the terms independent ofk, and reorder the other ones:

c6
z ~z,t !5

A2dr 0

2Ap3/2
expS 6

mt

\
~a01a1z!2

m2a1
2

6m\
t3D E dk expF2k2~dr 0

21 i\t/2m!1 ikS z7
a1m

2m
t2D G . ~A7!

We get

c6
z ~z,t !5A 1

2Ap
S dr 01 i

\t

2mdr 0
D expF6

mt

\
~a01a1z!2

m2a1
2

6m\
t3Gexp2

S z7
a1m

2m
t2D 2

4~dr 0
21 i\t/2m!

. ~A8!

Using the equalities

1

dr 0
21 i\t/2m

5
~dr 0

22 i\t/2m!

~dr 0
41\2t2/4m2!

,

A 1

2Ap
S dr 01 i

\t

2mdr 0
D 5A 1

2ApAS dr 0
21

\2t2

4m2dr 0
2D

expS 2 i arccos
dr 0

AS dr 0
2 1

\2t2

4m2dr 0
2D D ,

and

dr t
25dr 0

2S 11
\2t2

4m2dr 0
4D ,

we get the contribution ofc6
z (z,t) to the wave function:

c6
z ~z,t !5

1

~2Apdr t!
1/2

expS 2
~z7a1mt2/2m!2

4d2r t
DexpF i S \t~z7a1mt2/2m!2

2md2r 04dr t
2 2

arccosS dr 0

dr t
D

2
6

mt

\
~a01a1z!2

m2a1
2

6m\
t3D G .

~A9!

Notice thatc6
y (y,t) is obtained in exactly the same way, with the requirement thata05a150.

In conclusion,
9-9
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c6~r ,t !5
1

~2Apdr t!
3/2

expS 2
~x2v0t !2

4dr t
2 DexpF i S \t~x2v0t !2

2md2r 04dr t
2 1k0x2

\k0
2t

2m
2

arccosS dr 0

dr t
D

2
D G

3expS 2
y2

4dr t
2DexpF i S \ty2

2md2r 04dr t
2 2

arccosS dr 0

dr t
D

2
D GexpS 2

~z7a1mt2/2m!2

4d2r t
D

3expF i S \t~z7a1mt2/2m!2

2md2r 04dr t
2 2

arccosS dr 0

dr t
D

2
D GexpS 6

mt

\
~a01a1z!2

m2a1
2

6m\
t3D , ~A10!
up
he

u-
h

e
un
h

il-
t

c

in

le

ing

n

s-
s
of 1

the

e
he

i-
,

gen-
an
with dr t
25dr 0

2(11\2t2/4m2dr 0
4). The interpretation of this

solution, which appeared originally in Ref.@11#, is straight-
forward: the wave packet of the particles with spin
~down! diffuses under the influence of the free part of t
Schrödinger evolution~the Laplacian term! and is simulta-
neously uniformly accelerated upwards~downwards!. It
‘‘feels’’ effectively a potential due to the gyromagnetic co
pling, which varies linearly inz, and the changes of sign wit
the z spin.

After a time t, the particles leave the Stern-Gerlach d
vice, and the Gaussian packets move freely, diffusing aro
centers that conserve the velocity that they possessed w
leaving the magnets. The dependence inz is thus, up to ir-
relevant global phases,

expS 2
~z7a1mtt/m6a1mt2/2m!2

4dr t
2 D

3expF i S \t~z7a1mtt/m6a1mt2/2m!2

2md2r 04dr t
2

6a1mt/m~z7a1mt2/2m!G , ~A11!

while the dependence inx andy is the same as before.
In a typical single Stern-Gerlach experiment involving s

ver atoms. the mass of the incoming atom is equal
1.8010222 g, the gyromagnetic coupling constantm is equal
to 9.27310221 g cm2 s22 G21, the gradient of the magneti
field along theZ axis is equal to 104 G cm21, the length of
the magnet is equal to 10 cm, the velocity of the incom
particle along theX axis is equal to 104 cm s21, the time of
flight through the magnett is equal to 1023 s, \ is equal to
1.05310227 erg s, the spreading of the incoming partic
dr 0 is equal to 1023 cm. Then,

k5
\

2md2r 0
52.91 s21, ~A12!

a5a1m/2m52.583105 cm s22, ~A13!

b5a1m/mdr 0
255.1531011 cm21 s22. ~A14!
05210
-
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The heights of the centers of the outgoing bundles mov
upwords and downwards after the timet are equal to
6at2560.258 cm. Their Z velocities are 62a t5
65.15 m s21. The spreading is then, taking the diffusio
into account, dr 0A11k2t251023A11(2.9131023)2 cm
('1023 cm), which is very small in comparison to the di
tance between the bundles~0.515 cm!, so that these bundle
are clearly separated. If we place a screen at a distance
m from the magnet, it is reached after 1022 s, and the spots
are separated by a distance of the order of 11 cm, while
extent of a single spot is still of the order of 1023 cm.

APPENDIX B: THE TWO-PARTICLE CASE

The Pauli-Schro¨dinger equation allows us to describe th
evolution of the wave function inside the magnets of t
devices:

i\] tC~rL ,rR ,t !52
\2

2m
~DL1DR!C~rL ,rR ,t !1~mBL•SL

1mBR•SR!C~rL ,rR ,t !, ~B1!

with

DL~DR!@c6L~rL ,t !c68R~rR ,t !u6&L ^ u68&R]

5@DLc6L~rL ,t !#c68R~rR ,t !u6&L ^ u68&R@c6L~rL ,t !

3~DRc68R~rR ,t !!u6&L ^ u68&R), ~B2!

whereDL/R is the Laplacian operator in the left/right coord
nates,BL/R is the magnetic field in the left/right regions
while the components ofSL/R are theS matrices of Pauli.
When the magnetic fields are parallel to theZ axes, only the
third S matrices appear, which are defined by

SL(R)
3 c6L~rL ,t !c68R~rR ,t !u6&L ^ u68&R

56~68!c6L~rL ,t !c68R~rR ,t !u6&L ^ u68&R .

~B3!

Then, it is easy to check that the Pauli-Schro¨dinger equation
is separable into the six spatial coordinates and that the
eral solution, when the wave packet is initially Gaussian, c
9-10
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be expressed in terms of the solutions associated with
single-particle case that we obtained in the preceding ap
dix.

Let us now derive the conservation equation associa
with this evolution law. We can write it in the form

i\] tC~r ,t !52
\2

2m
DC~r ,t !1mB•SC~r ,t !, ~B4!

where the Laplacian is a six-dimensional Laplacian, the m
netic field a six-dimensional field. It is worth noting thatS is
a self-adjoint operator on the spin space~isomorph toC4).
The adjoint~transposed conjugate! of the previous equation
is

2 i\] tC
†~r ,t !52

\2

2m
DC†~r ,t !1C†~r ,t !mB•S,

~B5!

where we used the fact thatS5S†. Let us now multiply the
equation of evolution byC†, its adjoint equation byC, and
take their difference, we get

i\] tC
†~r ,t !C~r ,t !52

\2

2m
C†~r ,t !@DC~r ,t !#

2@DC†~r ,t !#C~r ,t !. ~B6!
r,

r,
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We can rewrite the second member of the last equatio
the six dimensional divergency of a six dimensional flux:

C†~r ,t !@DC~r ,t !#2@DC†~r ,t !#C~r ,t !

5div@C†~r ,t !•gradC~r ,t !2gradC†~r ,t !•C~r ,t !#.

~B7!

Now, C†(r ,t)•gradC(r ,t) is the complex conjugate o
gradC†(r ,t)•C(r ,t) so that we obtain the equation of con
servation] tr5div(J), where

r5C†~r ,t !C~r ,t ! ~B8!

or, in another notation,

r~rL ,rR ,t !5^C~rL ,rR,t)uC~rL ,rR,t)& ~B9!

and

J5~\/m!Im@C†~r ,t !gradC~r ,t !#, ~B10!

where Im(z) is the imaginary part ofz.
The three- and four-particle cases can be treated in a s

lar way.
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