
PHYSICAL REVIEW A 66, 052105 ~2002!
Perturbative approach to non-Markovian stochastic Schrödinger equations
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In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-
Markovian stochastic Schro¨dinger equations, for a wide range of memory functions. To illustrate this procedure
numerical results are presented for a classically driven two-level atom immersed in an environment with a
simple memory function. It is observed that as the order of the perturbation is increased the numerical results

for the ensemble average stater red(t) approach the exact reduced state found via Imamogl̄u8s enlarged system
method@Phys. Rev. A50, 3650~1994!#.
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I. INTRODUCTION

A common problem in physics is to model open quant
systems. They consist of a small system immersed in a
~environment!. Due to the large Hilbert space of the bath it
convenient to describe the system by its reduced state.
reduced state is defined as

r red~ t !5Trbath@ uC~ t !&^C~ t !u#, ~1.1!

whereuC(t)& is the combined system state, found from t
Schrödinger equation for the open quantum system.

It has been shown@1,2# by a projection-operator metho
that we can write a general master equation for the redu
state as

ṙ red~ t !52
i

\
@Ĥ~ t !,r red~ t !#1E

0

t

K~ t,s!@ L̂#r red~s!ds,

~1.2!

whereK(t,s)@ L̂# is the ‘‘memory time’’ superoperator. It op
erate on the system operatorL̂ and represents how the ba
affects the system. The problem with this equation is tha
generalK(t,s)@ L̂# cannot be explicitly evaluated.

The most notable approximation used is the Born-Mark
one. This arises when the environmental influences on
system are instantaneous. Mathematical consistency req
that this results in a Lindblad master equation, of the fo
@3#

ṙ red~ t !52
i

\
@Ĥ~ t !,r red~ t !#1gD@ L̂#r red~ t !, ~1.3!

whereD@ L̂# is the superoperator that represent the damp
of the system in the bath. It has the form

D@ L̂#r red5L̂r redL̂
†2 1

2 L̂†L̂r red2
1
2 r redL̂

†L̂. ~1.4!

This equation can be solved deterministically@4# or by the
stochastic Schro¨dinger approach@4–7#.

*Electronic address: j.gambetta@gu.edu.au
†Electronic address: h.wiseman@gu.edu.au
1050-2947/2002/66~5!/052105~16!/$20.00 66 0521
th

he

ed

n

v
e

res

g

For the non-Markovian situation there have been ma
attempts at finding solutions to Eq.~1.2!. However, some
have the problem that it is hard to ensure the positivity
quirement onr red(t) @8#. A method that does ensure the pos
tivity requirement on the reduced state is the non-Markov
stochastic Schro¨dinger equation~SSE! approach@9–16#. A
non-Markovian SSE generates stochastic pure statesucz(t)&
that should satisfy

r red~ t !5E@ ucz~ t !&^cz~ t !u#, ~1.5!

wherez(t) is some noise function which is nonwhite andE
denotes the ensemble average overz(t). To solve these non-
Markovian SSEs one has to take into account the past be
ior of the system and bath, giving rise to a functional deriv
tive in the attempt to derive a SSE. This presents a prob
as for most systems an exact solution to the functional
rivative does not exist. Thus at present an exact n
Markovian SSE exists only for simple systems, which can
solved exactly via other methods, like the undriven two-le
atom ~TLA ! model. For this and more examples see Re
@11,16#.

Recently Yu, Diósi, Gisin, and Strunz~YDGS! have de-
veloped explicitly a ‘‘post-Markovian’’ perturbation metho
to first order that allows solutions for systems that are cl
to the Markovian limit@17,18#. In this paper we present
perturbation method that can be carried to arbitrary order
so is not limited to the post-Markovian regime. However, w
must place a requirement on the form of the memory fu
tion. This requirement is that the memory function must ta
the form

a~ t2s!5(
j 51

J

uGj u2e2k j ut2su/22 i (v j 2V)(t2s) ~1.6!

for some finite~and, in practice, relatively small! J. It should
be noted also that we have not proven convergence of
perturbation theory and this theory is valid only for a zer
temperature bath.

The format of this paper is as follows. In Sec. II w
present a general outline of the theory of non-Markov
SSE’s. This is basically a summary of the results of Re
@9–12,16#. In Sec. III our perturbation method is presente
In Sec. IV we outline the Imamogl̄u enlarged system metho
©2002 The American Physical Society05-1
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@19,20#. In Sec. V we apply our perturbation method to
simple system, a driven TLA, and compare our results
r red(t) with those of the enlarged system method. In Sec.
we investigate the YDGS post-Markovian perturbati
method@17,18#. Finally, we conclude with a discussion o
the potential applications of our results in Sec. VII.

II. NON-MARKOVIAN STOCHASTIC SCHRO ¨ DINGER
EQUATIONS

In this section we will present an outline of the theory w
presented in@16#, which is an extension of Dio´si, Gisin, and
Strunz~DGS! diffusive non-Markovian SSEs@9–12# that al-
lows for real-valued noisez(t).

A. Underlying dynamics

The non-Markovian SSEs developed in Refs.@9–12,16#
are valid when the dynamics of the open quantum sys
can be described by the total Hamiltonian

Ĥ tot5Ĥsyŝ 1̂11̂^ Ĥbath1V̂. ~2.1!

The system Hamiltonian isĤsys5ĤV1Ĥ. The bath is mod-
eled by a collection of harmonic oscillators, so the Ham
tonian for the bath is

Ĥbath5\(
k

vkâk
†âk , ~2.2!

whereâk andvk are the lowering operator and angular fr
quency of thekth mode, respectively. This is the standa
model for the electromagnetic field. The interaction Ham
tonian has the form

V̂5 i\~ L̂b̂†2L̂†b̂!, ~2.3!

where we have defined the bath lowering operatorsb̂ as b̂

5(kgkâk . That is, the coupling amplitude of thekth mode
to the system isgk .

For calculation purposes we define the non-Markov
SSE in an interaction picture. This allows us to move the f
dynamics placed on the state by the HamiltoniansĤV and
Ĥbath to the operators. The unitary evolution operator for t
transformation is

U~ t,0!5e2 i /\(ĤV ^ 1̂11̂^ Ĥbath)(t20). ~2.4!

Thus the combined state in the interaction picture is defi
as

uC~ t !&5U†~ t,0!uC~ t !Sch&, ~2.5!

and an arbitrary operatorÂ becomes

Âint5U†~ t,0!ÂU~ t,0!. ~2.6!

This allows us to write the Schro¨dinger equation as
05210
r
I

m

-

-

n
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s

d

dtuC~ t !&52
i

\
@Ĥ int~ t !1V̂int~ t !#uC~ t !&, ~2.7!

where the Hamiltonians are

Ĥ int~ t !5U†~ t,0!ĤU~ t,0! ~2.8!

and

V̂int~ t !5 i\@ L̂e2 iVtb̂int
† ~ t !2L̂†eiVtb̂int~ t !#, ~2.9!

where

b̂int~ t !5(
k

gkâke
2 ivkt. ~2.10!

Here we have finally restricted the form ofĤV to be such
that L̂ in the interaction picture simply rotates in the compl
plane at frequencyV. That is,L̂ int(t)5L̂e2 iVt.

B. Non-Markovian SSE defined

A non-Markovian SSE is a stochastic differential equati
for the system state vectorucz(t)& containing some nonwhite
noise z(t). It has the property that whenucz(t)&^cz(t)u is
averaged over all possiblez(t) one obtainsr red~t!. It should
be noted that, for a singler red(t), z(t) can take many differ-
ent functional forms, and we label these different forms s
chastic unravelings@16#.

In Ref. @16# we showed that non-Markovian SSEs can
derived from quantum measurement theory~QMT!, where
the different unravelings correspond to different measu
ments on the bath. The two unravelings we considered w
the ‘‘coherent’’ or DGS@9–12# unraveling and the ‘‘quadra
ture’’ unraveling. A special case of our quadrature unravel
was published in Ref.@21#.

As in the Markov limit we can define~at least! two non-
Markovian SSEs, for each unraveling: one forz(t) chosen
from an ostensible distribution~a guessed distribution! and
the other for its actual distribution. The former gives a no
Markovian SSE linear in the unnormalized stateuc̃z(t)&,
while the latter gives a non-Markovian SSE nonlinear in t
normalized stateucz(t)&. In Ref. @16# we came to the con-
clusion that the solution of the actual non-Markovian SSE
time t gives the state the system will be in if a measurem
of the bath is performed at that time. Unlike in the Marko
case, linking of the states through time to make a traject
turns out to be a convenient fiction. However, it has be
suggested that such trajectories can be given an interp
tion within a nonstandard QMT@22,23#.

1. Coherent unraveling outlined

The first unraveling we consider is the coherent unrav
ing. This unravelling arises when the bath is projected int
coherent state. We define the coherent state as

u$ak%&5)
k

1

Ap
e2uaku2/2(

nk

ak
nk

Ank!
unk&, ~2.11!
5-2
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PERTURBATIVE APPROACH TO NON-MARKOVIAN . . . PHYSICAL REVIEW A66, 052105 ~2002!
so that 1ˆ 5)k* uak&^akud2ak .
In a measurement we can define an operator for the m

surement process, the noise operator. For this measurem
must have the coherent basis as its eigenstate, so the
operator is

ẑ~ t !5b̂int~ t !eiVt5(
k

gkâke
2 iVkt, ~2.12!

where Vk5vk2V. The noise function~eigenvalue of the
noise operator! is

z~ t !5(
k

gkake
2 iVkt, ~2.13!

where ak are the results of the projection in the cohere
basis.

If we assume an ostensible distribution forak as being the
overlap of the coherent state with the vacuum state, that
has the form

L~$ak%!5^$0k%u$ak%&^$ak%u$0k%&5p2Ke2(
k

uaku2,

~2.14!

where K5(k . With this ostensible distribution the nois
function has the following correlations:

Ẽ@z~ t !z* ~s!#5a~ t2s!, ~2.15a!

Ẽ@z~ t !z~s!#50, ~2.15b!

where the tilde above theE refers to an average over th
ostensible distribution. In Eq.~2.15a! we have defineda(t
2s); this function we label the memory function. On a m
croscopic level it has the form

a~ t2s!5(
k

ugku2e2 iVk(t2s). ~2.16!

Using the above ostensible distribution we can defin
linear conditional system state as

uc̃z~ t !&5
^$ak%uC~ t !&

AL~$ak%!
. ~2.17!

Taking the time derivative and using Eq.~2.7! we get a linear
differential equation foruc̃z(t)& of the form

] tuc̃z~ t !&5F2 i

\
Ĥ int~ t !1z* ~ t !L̂2L̂†E

0

t

a~ t2s!
d

dz* ~s!
dsG

3uc̃z~ t !&, ~2.18!

where d/dz* (s) represents a functional derivative. For
derivation of this equation, see Refs.@10,16#. The functional
derivative in this equation stops us from calling this equat
a non-Markovian SSE, as it means that] tuc̃z(t)& does not
depend upon the stateuc̃z(t)& at all times for a single func-
05210
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tion z(t), but rather also upon states for other noise fun
tions. That is, we cannot stochastically choosez(t) in order
to generate a trajectory independent of other trajectories
stead, all possible trajectories would have to be calculate
parallel, which in calculation terms amounts to solving t
complete Schro¨dinger equation Eq.~2.7!. However, as ex-
plained in Refs.@11,12,16# if we can make the ansatz

d

dz* ~s!
uc̃z~ t !&5 (0) f̂ z~ t,s!uc̃z~ t !&, ~2.19!

then we can write a linear non-Markovian SSE as

] tuc̃z~ t !&5F2 i

\
Ĥ int~ t !1z* ~ t !L̂2L̂†(0)F̂z~ t !G uc̃z~ t !&,

~2.20!

where the operator functional(0)F̂z(t) is defined as

(0)F̂z~ t !5E
0

t

a~ t2s!(0) f̂ z~ t,s!ds. ~2.21!

The significance of the superscripts (0) preceding these
erators will become apparent in Sec. III.

To derive the actual~nonlinear! non-Markovian SSE we
need to condition the state on a noise function that is equ
lent to the actual probability distribution,

P~$ak%,t !5^C~ t !u$ak%&^$ak%uC~ t !&. ~2.22!

For most systemsuC(t)& is unknown. Nevertheless, we ca
use a Girsanov transformation@11,16# to relate the actua
noise function to the ostensible noise function. In this ca

z~ t !5zL~ t !1E
0

t

a~ t2s!^L̂&sds, ~2.23!

wherezL(t) is equivalent to the noise function used in th
ostensible case, satisfying the correlations defined in E
~2.15a! and ~2.15b!. With the correctz(t) the actual non-
Markovian SSE for the normalized state is@11,16#

dtucz~ t !&5F2
i

\
Ĥ int~ t !2~ L̂†2^L̂†& t!

(0)F̂z~ t !1^~ L̂†

2^L̂†& t!
(0)F̂z~ t !& t1z* ~ t !~ L̂2^L̂& t!G ucz~ t !&.

~2.24!

The notation^L̂& t is shorthand for̂ cz(t)uL̂ucz(t)&. From
Eq. ~2.20! and Eq.~2.24! if the operator functional(0)F̂z(t)
is known for all time and for each noise functionz(t) we can
solve the coherent non-Markovian SSE.

2. Quadrature unraveling outlined

To obtain a non-Markovian SSE with real noise, it is na
ral to consider a quadrature noise operator,
5-3
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ẑ~ t !5b̂int ~ t !eiv0te2 if1b̂int
† ~ t !e2 iv0teif, ~2.25!

whereb̂int(t) is defined in Eq.~2.10! andf is some arbitrary
phase. The phasef defines the measured quadrature:
x-quadrature measurement occurs whenf is set to zero, and
the conjugate measurement of they quadrature occurs whe
f5p/2. Unless otherwise stated we will setf to zero.

The measurement basis for the bath measuremen
u$qk%& and must satisfy

ẑ~ t !u$qk%&5z~ t !u$qk%&. ~2.26!

The problem with this noise function is that in general it
hard ~maybe impossible! to work out a time-independen
eigenstate in the interaction picture. However, we can fi
this eigenstate if we make the assumptions that for ev
modek there exists another mode, which we can label2k,
such thatV2k52Vk and g2k5gk* . These assumption
simply mean that the modes coupled to the system com
symmetric pairs about the frequencyV. Without loss of gen-
erality we can take thegk’s to be real, absorbing any phas
in the definitions of the bath operators. With all of the
assumptions we can rewrite Eq.~2.25! as

ẑ~ t !5 (
k.0

2gk@X̂k
1cos~Vkt !1Ŷk

2sin~Vkt !#. ~2.27!

Here we have introduced the two-mode quadrature opera

X̂k
65~ x̂k6 x̂2k!/A2 , ~2.28a!

Ŷk
65~ ŷk6 ŷ2k!/A2 , ~2.28b!

wherex̂k and ŷk are the quadratures ofâk :

âk5~ x̂k1 i ŷ k!/A2 . ~2.29!

The measurement basis that satisfies Eq.~2.26! in the
x-quadrature representation is

u$qk%&5)
k.0

E dx8

A2p
UXk

12x8

A2
L

2k

UXk
11x8

A2
L

k

eiYk
2x8.

~2.30!

With this basis and the above noise operator the noise fu
tion for the quadrature measurement is

z~ t !5 (
k.0

2gk@Xk
1cos~Vkt !1Yk

2sin~Vkt !#, ~2.31!

which by definition is real.
Furthermore, under the above assumptions the mem

function a(t2s) in Eq. ~2.16! reduces to

b~ t2s!52(
k.0

ugku2cos@Vk~ t2s!#. ~2.32!

As in the coherent case we define the ostensible distribu
as the overlap between the vacuum state andu$qk%&, that is
05210
n
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L~$Xk ,Yk%!5p2K/2e2(
k.0

(Xk
121Yk

22). ~2.33!

With this distribution the correlation for the real-valued noi
function is

Ẽ@z~ t !z~s!#5b~ t2s!, ~2.34!

where the tilde, as before, means an average over the o
sible distribution. For this ostensible distribution the diffe
ential equation foruc̃z(t)& is

] tuc̃z~ t !&5F2
i

\
Ĥ int~ t !1z~ t !L̂2L̂xE

0

t

b~ t2s!
d

dz~s!
dsG

3uc̃z~ t !&, ~2.35!

whereL̂x5L̂1L̂†. Making the ansatz

d

dz~s!
uc̃z~ t !&5 (0)q̂z~ t,s!uc̃z~ t !&, ~2.36!

the linear non-Markovian SSE is

] tuc̃z~ t !&5F2
i

\
Ĥ int~ t !1z~ t !L̂2L̂x

(0)Q̂z~ t !G uc̃z~ t !&,

~2.37!

where

(0)Q̂z~ t !5E
0

t

b~ t2s!(0)q̂z~ t,s!ds. ~2.38!

To derive the actual non-Markovian SSE we need to c
culate the correct noise function. The Girsanov transform
tion giving the actual real-valuedz(t) is @16#

z~ t !5zL~ t !1E
0

t

^L̂x&sb~ t2s!ds, ~2.39!

wherezL(t) satisfies the correlations defined in Eq.~2.34!.
The actual non-Markovian SSE for quadrature unraveling

dtucz~ t !&5F2
i

\
Ĥ int~ t !2~ L̂x2^L̂x& t!

(0)Q̂z~ t !1^~ L̂x

2^L̂x& t!
(0)Q̂z~ t !& t1z~ t !~ L̂2^L̂& t!G ucz~ t !&.

~2.40!

Thus, if (0)Q̂z(t) is known forz(t) and all time then we can
solve the quadrature non-Markovian SSE.

III. PERTURBATION METHOD

To solve the non-Markovian SSE, and hence findr red(t),
for coherent or quadrature unraveling we have to work
the operator functionals(0)F̂z(t) and (0)Q̂z(t), respectively.
This has been done exactly only for systems for which
analytical solution forr red(t) may be found by other mean
5-4
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@11,12,14# or for systems with a small number of bath mod
@16#. In this section we propose our perturbation techniq
for working out these functionals when exact solutions
not possible.

A. Perturbation approach for coherent unraveling

The perturbation that we are going to propose is va
only for memory functions of the form

a~ t2s!5(
j 51

J

a ( j )~ t2s!, ~3.1a!

where

a ( j )~ t2s!5uGj u2e2k j ut2su/2e2 iV j (t2s). ~3.1b!

In principle this is always a valid decomposition for th
memory function as in theJ→` and k j→0 limit this
memory function approaches the microscopic memory fu
tion displayed in Eq.~2.16!. In Ref. @20# the authors sugges
that in practice most environments can be simulated witJ
being quite small.

With this expansion for the memory function the fun
tional (0)F̂z(t) can be written as

(0)F̂z~ t !5(
j

(0)F̂z
( j )~ t !, ~3.2!

where

(0)F̂z
( j )~ t !5E

0

t

a ( j )~ t2s!(0) f̂ z~ t,s!ds. ~3.3!

To calculate these operator functionals we set up a se
coupled nonlinear differential equations for(0)F̂z

( j )(t). Tak-
ing the time derivative of Eq.~3.3! we get

] t
(0)F̂z

( j )~ t !5a ( j )~0!(0) f̂ z~ t,t !

1E
0

t

@] ta
( j )~ t2s!# (0) f̂ z~ t,s!ds

1E
0

t

a ( j )~ t2s!] t
(0) f̂ z~ t,s!ds. ~3.4!

The first term is easily evaluated using

(0) f̂ z~ t,t !5L̂, ~3.5!

as derived in the Appendix. The second term is where
earlier decomposition ofa(t2s) is used. We chosea ( j )(t
2s) such that] ta

( j )(t2s)}a ( j )(t2s). This results in the
second term equaling

2S k j

2
1 iV j D (0)F̂z

( j )~ t !. ~3.6!

The third term involves the partial derivativ
] t@

(0) f̂ z(t,s)#. To find this we use the fact that
05210
e
e

d

-

of

r

] t

d

dz* ~s!
uc̃z~ t !&5

d

dz* ~s!
] tuc̃z~ t !&, ~3.7!

which is called the consistency condition in@11#. This con-
sistency condition is valid only fortÞs; this is because a
time t5s the functional derivative is not well defined. Usin
Eq. ~2.19! we can write the left-hand side~LHS! of the con-
sistency condition as

] t

d

dz* ~s!
uc̃z~ t !&5@] t

(0) f̂ z~ t,s!#uc̃z~ t !&

1 (0) f̂ z~ t,s!] tuc̃z~ t !&. ~3.8!

Substituting Eq.~2.20! for ] tuc̃z(t)& gives

] t

d

dz* ~s!
uc̃z~ t !&5F] t

(0) f̂ z~ t,s!2
i

\
(0) f̂ z~ t,s!Ĥ int~ t !

1z* ~ t !(0) f̂ z~ t,s!L̂

2 (0) f̂ z~ t,s!L̂†(0)F̂z~ t !G uc̃z~ t !&.

~3.9!

Using Eqs.~2.20! and~2.19! the right-hand side~RHS! of the
consistency condition gives

d

dz* ~s!
] tuc̃z~ t !&5F2

i

\
Ĥ int ~ t !(0) f̂ z~ t,s!1z* ~ t !L̂ (0) f̂ z~ t,s!

2L̂†(0)F̂z~ t !(0) f̂ z~ t,s!

2L̂†
d

dz* ~s!
(0)F̂z~ t !G uc̃z~ t !&. ~3.10!

Equating the LHS with the RHS gives

] t
(0) f̂ z~ t,s!52

i

\
@Ĥ int~ t !,(0) f̂ z~ t,s!#1z* ~ t !@ L̂,(0) f̂ z~ t,s!#

2@ L̂†(0)F̂z~ t !,(0) f̂ z~ t,s!#2L̂†
d

dz* ~s!
(0)F̂z~ t !.

~3.11!

Substituting this equation with Eqs.~3.5! and ~3.6! into Eq.
~3.4!, we get
5-5
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] t
(0)F̂z

( j )~ t !5uGj u2L̂2S k j

2
1 iV j D (0)F̂z

( j )~ t !1z* ~ t !

3@ L̂,(0)F̂z
( j )~ t !#2

i

\
@Ĥ int~ t !,(0)F̂z

( j )~ t !#

2@ L̂†(0)F̂z~ t !,(0)F̂z
( j )~ t !#2L̂†(

k

(1)F̂z
( j ,k)~ t !,

~3.12!

where(1)F̂z
( j ,k)(t) is our first-order functional. It has the form

(1)F̂z
( j ,k)~ t !5E

0

t

a ( j )~ t2s!(1) f̂ z
(k)~ t,s!ds, ~3.13!

where we have used the following ansatz:

d

dz* ~s!
(0)F̂z

(k)~ t !5 (1) f̂ z
(k)~ t,s!. ~3.14!

If we knew the form of(1)F̂z
( j ,k)(t) then Eq.~3.12! could be

solved numerically.
To find the form of (1)F̂z

( j ,k)(t) we can take the time de
rivative of Eq.~3.13!. Doing this we get
ic

ttin

05210
] t
(1)F̂z

( j ,k)~ t !5a ( j )~0!(1) f̂ z
(k)~ t,t !

1E
0

t

@] ta
( j )~ t2s!# (1) f̂ z

(k)~ t,s!ds

1E
0

t

a ( j )~ t2s!] t
(1) f̂ z

(k)~ t,s!ds. ~3.15!

The first term is easy to work out. From Eq.~3.12! it follows
that

(1) f̂ z
(k)~ t,t !5@ L̂,(0)F̂z

(k)~ t !#. ~3.16!

The second term as before also simply evaluates to

2S k j

2
1 iV j D (1)

F̂z
( j ,k)~ t !. ~3.17!

The third term is worked out via a new consistency con
tion,

] t

d

dz* ~s!
(0)F̂z

(k)~ t !5
d

dz* ~s!
] t

(0)F̂z
(k)~ t !. ~3.18!

Substituting Eqs.~3.14! and~3.12! into this consistency con
dition gives
] t
(1) f̂ z

(k)~ t,s!52S kk

2
1 iVkD (1)f̂ z

(k)~ t,s!2
i

\
@Ĥ int~ t !,(1) f̂ z

(k)~ t,s!#1z* ~ t !@ L̂,(1) f̂ z
(k)~ t,s!#2F L̂†(

l

(1) f̂ z
( l )~ t,s!,(0)F̂z

(k)~ t !G
2F L̂†(

l

(0)F̂z
( l )~ t !,(1) f̂ z

(k)~ t,s!G2L̂†(
l

d

dz* ~s!
(1)F̂z

(k,l )~ t !. ~3.19!

Substituting all these terms into Eq.~3.15! gives

] t
(1)F̂z

( j ,k)~ t !5uGj u2@ L̂,(0)F̂z
(k)~ t !#2S k j

2
1 iV j D (1)F̂z

( j ,k)~ t !2S kk

2
1 iVkD (1)F̂z

( j ,k)~ t !2
i

\
@Ĥ int~ t !,(1)F̂z

( j ,k)~ t !#1z* ~ t !

3@ L̂,(1)F̂z
( j ,k)~ t !#2F L̂†(

l

(1)F̂z
( j ,l )~ t !,(0)F̂z

(k)~ t !G2F L̂†(
l

(0)F̂z
( l )~ t !,(1)F̂z

( j ,k)~ t,s!G2L̂†(
l

(2)F̂z
( j ,k,l )~ t !,

~3.20!
where the last term is the second-order functional, wh
equals

(2)F̂z
( j ,k,l )~ t !5E

0

t

a ( j )~ t2s!
d

dz* ~s!
(1)F̂z

(k,l )~ t !ds.

~3.21!

Here we see that we can develop a general way for se
up annth-order differential equations. Thenth-order func-
tional is
h

g

(n)F̂z
( j ,k, . . . ,l )~ t !5E

0

t

a ( j )~ t2s!(n) f̂ z
(k, . . . ,l )~ t,s!ds,

~3.22!

where we have used the ansatz

d

dz* ~s!
(n21)F̂z

(k, . . . ,l )~ t !5 (n) f̂ z
(k, . . . ,l )~ t,s!. ~3.23!

The differential equation for thenth-order functional is
5-6



t

i-

i

o
th

e

o
s

.

in

ed
oxi-

nts

’s.
tive

ns

the
de-

s

sen-
nc-
e
on-

ire-

n

PERTURBATIVE APPROACH TO NON-MARKOVIAN . . . PHYSICAL REVIEW A66, 052105 ~2002!
] t
(n)F̂z

( j ,k, . . . ,l )~ t !5a ( j )~0!(n) f̂ z
(k, . . . ,l )~ t,t !

1E
0

t

@] ta
( j )~ t2s!# (n) f̂ z

(k, . . . ,l )~ t,s!ds

1E
0

t

a ( j )~ t2s!] t
(n) f̂ z

(k, . . . ,l )~ t,s!ds.

~3.24!

The first term can always be calculated using the (n21)th
differential equation. The second term is always simple
calculate as] ta

( j )(t2s)}a ( j )(t2s), and the third term is
always calculable by the (n21)th order consistency cond
tion

] t

d

dz* ~s!
(n21)F̂z

(k, . . . ,l )~ t !5
d

dz* ~s!
] t

(n21)F̂z
(k, . . . ,l )~ t !.

~3.25!

The nth-order perturbation method proposal is to term
nate this series by setting(n)F̂z

( j ,k, . . . ,l )(t) equal to an arbi-
trary operator. The simplest scheme would be to set this
erator to zero, but to keep the theory consistent with
Markov limit for all orders, we set(n)F̂z

( j ,k, . . . ,l )(t) in the
following manner. The zeroth-order perturbation arises wh
we use the approximation

(0)F̂z
( j )~ t !.E

0

t

a ( j )~ t2s!ds
d

dz* ~ t !
5E

0

t

a ( j )~ t2s!dsL̂.

~3.26!

Note that the approximation here is the replacement
d/dz* (s) by d/dz* (t). The first-order perturbation arise
when we use the approximation

(1)F̂z
( j ,k)~ t !.E

0

t

a ( j )~ t2s!ds
d (0)F̂z

(k)~ t !

dz* ~ t !

5E
0

t

a ( j )~ t2s!ds@ L̂,(0)F̂z
(k)~ t !# ~3.27!

and (0)F̂z
( j )(t) is calculated via Eq.~3.12!. The nth-order

perturbation arises when we use the approximation

(n)F̂z
( j ,k, . . . ,l )~ t !.E

0

t

a ( j )~ t2s!ds
d (n21)F̂z

(k, . . . ,l )~ t !

dz* ~ t !

5E
0

t

a ( j )~ t2s!ds@ L̂,(n21)F̂z
(k, . . . ,l )~ t !#

~3.28!

and (0)F̂z
( j )(t), . . . ,(n21)F̂z

( j , . . . ,k)(t) are calculated via Eqs
~3.12!, ~3.20!, and ~3.24!. The physical motivations for
choosing this type of expansion are~a! for most systems, the
memory function will decay and thus the dominant term
the functional derivative will be the value ass→t; ~b! only
05210
o

-

p-
e

n

f

(0)F̂z
( j )(t) affects the system directly, so the further remov

the approximation the more accurate we expect the appr
mation to be; and~c! in the Markovian limit, only the zero-
order term is needed.

To summarize this perturbation method, for environme
which can be modeled by Eq.~3.1!, it is possible to obtain a
perturbative solution for the coherent non-Markovian SSE
From these SSEs it is possible to generate a perturba
solution forr red(t), which by definition will always be posi-
tive. The number of coupled complex differential equatio
that are required for this technique is

d2~Jn1Jn211•••1J!1d1J5d2J
Jn21

J21
1d1J,

~3.29!

whered is the system dimension,J is the number of expo-
nentials required to simulate the memory function, andn is
the order of the perturbation. The first term represents
number of equations needed to simulate the functional
rivative. The next termd is for thed complex amplitudes of
the system. The final termJ is for the stochastic equation
needed to generate the noise functionz(t).

B. Perturbation approach for quadrature unraveling

The perturbation method in the quadrature case is es
tially the same as in the coherent case, but the memory fu
tion expressed in Eq.~3.1b! is too general. This is becaus
the memory function for quadrature unraveling must be c
sistent with the assumptions stated below Eq.~2.26!. The
most general memory function that satisfies these requ
ments is

b~ t2s!5(
j

8 b ( j ,cos)~ t2s!, ~3.30a!

where

b ( j ,cos)~ t2s!52uGj u2e2k j ut2su/2 cos@V j~ t2s!#.
~3.30b!

This presents a problem as] tb
( j ,cos)(t2s) is not proportional

to b ( j ,cos)(t2s). To get around this we define a new functio
b ( j ,sin)(t2s) as

b ( j ,sin)~ t2s!52uGj u2e2k j ut2su/2 sin@V j~ t2s!# ~3.31!

and two functionals

(0)Q̂z
( j ,cos)~ t !5E

0

t

b ( j ,cos)~ t2s!q̂z~ t,s!ds, ~3.32a!

(0)Q̂z
( j ,sin)~ t !5E

0

t

b ( j ,sin)~ t2s!q̂z~ t,s!ds. ~3.32b!

The functional(0)Q̂z(t) is found by

(0)Q̂z~ t !5(
j

(0)Q̂z
( j ,cos)~ t !. ~3.33!
5-7
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Taking the time derivative of Eqs.~3.32a! and ~3.32b!, we
get

dt
(0)Q̂z

( j ,cos)~ t !5b ( j ,cos)~ t,t !(0)q̂z~ t,t !

1E
0

t

@] tb
( j ,cos)~ t2s!# (0)q̂z~ t,s!ds

1E
0

t

b ( j ,cos)~ t2s!] t
(0)q̂z~ t,s!ds,

~3.34a!

dt
(0)Q̂z

( j ,sin)~ t !5E
0

t

@] tb
( j ,sin)~ t2s!# (0)q̂z~ t,s!ds

1E
0

t

b ( j ,sin)~ t2s!] t
(0)q̂z~ t,s!ds.

~3.34b!

As in the coherent case it can be shown that(0)q̂z(t,t)5L̂.
The two terms involving the derivatives ofb ( j ,cos)(t2s) and
b ( j ,sin)(t2s) by definition give

E
0

t

] tb
( j ,cos)~ t2s!(0)q̂z~ t,s!ds

52
k j

2
(0)Q̂z

( j ,cos)~ t !2V j
(0)Q̂z

( j ,sin)~ t !,

~3.35a!

E
0

t

] tb
( j ,sin)~ t2s!(0)q̂z~ t,s!ds

52
k j

2
(0)Q̂z

( j ,sin)~ t !1V j
(0)Q̂z

( j ,cos)~ t !.

~3.35b!

The last two terms require finding] t
(0)q̂z(t,s). As in the

coherent case, this is found by the consistency condition

] t

d

dz~s!
uc̃z~ t !&5

d

dz~s!
] tuc̃z~ t !&, ~3.36!

yielding

] t
(0)q̂z~ t,s!52

i

\
@Ĥ int~ t !,(0)q̂z~ t,s!#1z~ t !@ L̂,(0)q̂z~ t,s!#

2@ L̂x
(0)Q̂z~ t !,(0)q̂z~ t,s!#2L̂x

d

dz~s!
(0)Q̂z~ t !.

~3.37!

Substituting these terms into Eq.~3.34!, we get
05210
dt
(0)Q̂z

( j ,cos)~ t !52uGj u2L̂2
k j

2
(0)Q̂z

( j ,cos)~ t !2V j
(0)Q̂z

( j ,sin)~ t !

2
i

\
@Ĥ int~ t !,(0)Q̂z

( j ,cos)~ t !#

1z~ t !@ L̂,(0)Q̂z
( j ,cos)~ t !#

2@ L̂x
(0)Q̂z~ t !,(0)Q̂z

( j ,cos)~ t !#

2L̂x(
k

(1)Q̂z
( j ,k,cos,cos)~ t !, ~3.38a!

dt
(0)Q̂z

( j ,sin)~ t !52
k j

2
(0)Q̂z

( j ,sin)~ t !1V j
(0)Q̂z

( j ,cos)~ t !

2
i

\
@Ĥ int~ t !,(0)Q̂z

( j ,sin)~ t !#

1z~ t !@ L̂,(0)Q̂z
( j ,sin)~ t !#

2@ L̂x
(0)Q̂z~ t !,(0)(0)Q̂z

( j ,sin)~ t !#

2L̂x(
k

(1)Q̂z
( j ,k,sin,cos)~ t !, ~3.38b!

where

(1)Q̂z
( j ,k,cos,cos)~ t !5E

0

t

b ( j ,cos)~ t,s!
d (0)Q̂z

(k,cos)~ t !

dz~s!
ds,

~3.39a!

(1)Q̂z
( j ,k,sin,cos)~ t !5E

0

t

b ( j ,sin)~ t,s!
d (0)Q̂z

(k,cos)~ t !

dz~s!
ds.

~3.39b!

The higher order functional differential equations are fou
in the same manner as in the coherent case, except the
of b(t2s) results in 2n as many equations for ordern.

The perturbation expansion is similar for this unravelin
the only difference being that we have 2n operators to ap-
proximate. The zeroth-order approximation is to set
zeroth-order functionals to

(0)Q̂z
( j ,cos)~ t !5E

0

t

b ( j ,cos)~ t,s!dsL̂, ~3.40a!

(0)Q̂z
( j ,sin)~ t !5E

0

t

b ( j ,sin)~ t,s!dsL̂. ~3.40b!

The first-order approximation is to set the four first-ord
functionals to

(1)Q̂z
( j ,k,cos,cos)~ t !5E

0

t

b ( j ,cos)~ t,s!ds@ L̂,(0)Q̂z
(k,cos)~ t !#,

~3.41a!
5-8
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(1)Q̂z
( j ,k,sin,cos)~ t !5E

0

t

b ( j ,sin)~ t,s!ds@ L̂,(0)Q̂z
(k,cos)~ t !#,

~3.41b!

(1)Q̂z
( j ,k,cos,sin)~ t !5E

0

t

b ( j ,cos)~ t,s!ds@ L̂,(0)Q̂z
(k,sin)~ t !#,

~3.41c!

(1)Q̂z
( j ,k,sin,sin)~ t !5E

0

t

b ( j ,sin)~ t,s!ds@ L̂,(0)Q̂z
(k,sin)~ t !#,

~3.41d!

and we calculate the zeroth-order functionals via Eq.~3.38!.

IV. ENLARGED SYSTEM APPROACH

To test the accuracy of our perturbation method we co
pare our results for the reduced state with the reduced s
found via the enlarged system method of Imamogl̄u @19,20#.
An example of how this method is applied to a no
Markovian system can be found in Ref.@24#.

For those who are not familiar with the enlarged syst
method, we provide a short proof that the reduced sys
dynamics are exactly reproduced by the enlarged sys
method provided thata(t2s), calledG(t) in Refs.@19,20#,
is of the form

a~ t2s!5(
j

uGj u2e2k j ut2su/22 iV j (t2s), ~4.1!

which is the same as Eq.~3.1!.
The total Hamiltonian for the enlarged system is

Ĥ tot5Ĥsys1\(
j

v j ĉ j
†ĉ j1\(

j
E

2`

`

dvvn̂ j~v!†n̂ j~v!

1 i\(
j
E

2`

`

dvA k j

2p
@n̂ j

†~v!ĉ j2 n̂ j~v!ĉ j
†#

1 i\(
j

@Gj* L̂ ĉ j
†2GjL̂

†ĉ j #, ~4.2!

whereĤsys5ĤV1Ĥ, ĉ j is the annihilation operator for th
j th added oscillator, andn̂ j (v) is the Markovian bath opera
tor with the correlation

@ n̂ j~v!,n̂k
†~v!#5d j ,kd~v2v8!. ~4.3!

If this is to be the same as Eq.~2.1!, then the first two lines
of Eq. ~4.2! must giveĤsys1Ĥbath and the final lineV̂. Go-
ing to the same interaction picture as we did in Sec. II A, t
is, with respect to the HamiltoniansĤV and Ĥbath, we get

V̂int~ t !5 i\(
j

@Gj* L̂e2 iVtĉ j~ t !†2GjL̂
†eiVtĉ j~ t !#.

~4.4!
05210
-
te
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Comparing with Eq.~2.9!, for the enlarged system method
be correct we needb̂int(t)5( jGj ĉ j (t). To calculateĉ j (t) we
use the fact that

dtĉj~ t !52 iv j ĉ j~ t !2
k j

2
ĉ j~ t !2Ak j n̂ in, j~ t !, ~4.5!

wheren̂ in, j (t) is the input field which has a time commutat

@ n̂ in, j (t),n̂ in,k
† (s)#5d j ,kd(t2s). For a derivation of equation

Eq. ~4.5!, see Ref.@25#. This can be integrated to give

ĉ j~ t !5Ak j E
0

t

e2k j (t2s)/22 iv j (t2s)n̂ in, j~s!ds

1 ĉ j~0!e2k j t/22 iv j t. ~4.6!

It is not obvious that( jGj ĉ j (t) is the same as in Eq.~2.10!.
However, the time commutator for the bath operators is

@ b̂int~ t !,b̂int
† ~s!#eiV(t2s)5a~ t2s!. ~4.7!

In terms of the enlarged system, this means that

(
j ,k

GjGk* @ ĉ j~ t !,ĉk
†~s!#eiV(t2s)

5(
j

uGj u2e2k j (t1s)/22 i (v j 2V)(t2s)F11k j

3E
0

tE
0

s

e1k j (t81s8)/21 iv j (t82s8)d~ t82s8!dt8ds8G
5(

j
uGj u2e2k j ut2su/22 i (v j 2V)(t2s)5a~ t2s!, ~4.8!

provided a(t2s) has the form depicted in Eq.~4.1!. It
should be noted that this result is exact. It is not necessar
discard initial transients as in the derivation in Ref.@20#.

Since we have shown that the total Hamiltonian for t
enlarged system is equivalent to the standard n
Markovian, then the total statesuCSch(t)& must be the same
We can define a reduced state~in the Schro¨dinger picture! for
the enlarged system asWSch(t), which has the Markovian
master equation

dtWSch~ t !52
i

\ F ĤV1Ĥ1\(
j

v j ĉ j
†ĉ j1 i\(

j
~Gj* L̂ ĉ j

†

2GjL̂
†ĉ j !,WSch~ t !G1(

j
k jD@ ĉ j #WSch~ t !.

~4.9!

The reduced state for the system in theV interaction picture
is

r red~ t !5ei /\ĤVtTrenl@WSch~ t !#e2 i /\ĤVt5Trenl@Wred~ t !#,
~4.10!

where the trace is performed over the added oscillators
5-9



re

fo

h

ch

m

LA

en

e

o
et

e

tic
is

of

.

s
the
hod

for
ian

e
n-

JAY GAMBETTA AND H. M. WISEMAN PHYSICAL REVIEW A 66, 052105 ~2002!
Wred~ t !5ei ( jv j ĉ j
†ĉ j t1~ i /\!ĤVtWSch~ t !e2 i ( jv j ĉ j

†ĉ j t2~ i /\!ĤVt.
~4.11!

This allows us to define a new master equation for the
duced stateWred(t) as

dtWred~ t !5F2
i

\
Ĥ int1(

j
@Gj* L̂ ĉ j

†ei (v j 2V)t

2GjL̂
†ĉ je

2 i (v j 2V)t#,Wred~ t !G
1(

j
k jD@ ĉ j #Wred~ t !, ~4.12!

which can be solved by standard Markovian techniques,
example quantum trajectories@5–7#.

V. NUMERICAL EXAMPLE: THE DRIVEN
TWO-LEVEL ATOM

In this section we apply our theory to a driven TLA wit
a simple non-Markovian memory function

a~ t2s!5
gk

4
ei (venv2V)(t2s)e2kut2su/2, ~5.1!

where venv is the central frequency of the environment,k
represent the exponential decay of the bath memory, andg is
the Markovian limit decay rate. That is, in thek→` limit,
a(t2s)5gd(t2s), which is the Markovian limit of the
memory function@16#. We choose an interaction picture su
that V5venv, so that this memory function simplifies to

a~ t2s!5
gk

4
e2kut2su/2, ~5.2!

which is consistent with the quadrature unraveling assu
tions. This results ina(t2s)5b(t2s). However, before we
apply our theory to the TLA let us revise the standard T
model.

A. The TLA

The TLA is one of the simplest quantum systems to
visage. It consists of two levels, an excited stateue& of en-
ergy \ve and a ground stateug& of energy\vg . We define
the difference in these energies as\v0 and the zero-point
energy is taken to be the midpoint energy\(ve1vg)/2
50. This allows us to define a system Hamiltonian as

Ĥsys5\
v0

2
ŝz, ~5.3!

whereŝz5ue&^eu2ug&^gu is one of the spin matrices for th
TLA.

Since we are dealing with open quantum systems we c
sider the dynamics of a TLA immersed in an electromagn
05210
-

r

p-

-

n-
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field ~the bath!. In the Schro¨dinger picture with the dipole
and rotating wave approximation~RWA!, the interaction
Hamiltonian is

V̂5 i\(
k

~gk* ŝâk
†2gkŝ

†âk!, ~5.4!

where ŝ is the lowering operator for the TLA. This is th
same form as Eq.~2.3! with L̂5ŝ, so the above non-
Markovian SSE theory is applicable to this system.

If we have a TLA driven by a classical electromagne
field the system Hamiltonian for the TLA under the RWA

Ĥsys5\
v0

2
ŝz1\

x

2
@ŝeivdrt1ŝ†e2 ivdrt#, ~5.5!

where x is the Rabi frequency andvdr is the driving fre-
quency of the classical field. However, as shown in Eq.~2.1!
we can also writeĤsys asĤV1Ĥ(t). If ĤV5Vŝz/2, then in
the V interaction picture we have

Ĥ int~ t !5\
v02V

2
ŝz1\

x

2
@ŝei (vdrt2Vt)1ŝ†e2 i (vdrt2Vt)#.

~5.6!

For our purposes we assumeV5vdr . So

Ĥ int~ t !5\
D

2
ŝz1\

x

2
ŝx , ~5.7!

whereD5v02V is the detuning.
For the TLA the reduced state can be written in terms

the real Bloch vector componentsx(t),y(t),z(t) as

r red~ t !5 1
2 @ Î 1x~ t !ŝx1y~ t !ŝy1z~ t !ŝz#. ~5.8!

B. Enlarged system method

For the driven TLA with a memory function given by Eq
~5.1! the master equation for the enlarged system is

dtWred~ t !5F2
iD

2
ŝz2

ix

2
ŝx1

gk

4
~ ŝ ĉ2ŝ†ĉ!,Wred~ t !G

1kD@ ĉ#Wred~ t !. ~5.9!

Using g51, k51, x55, andD53, the reduced state i
shown in Fig. 1. For this simple case it was noted that
truncation error involved in the enlarged system state met
was negligible. Because of this we use this reduced state
comparison with the ensemble average of the non-Markov
SSEs.

C. Coherent unraveling and the TLA

Applying coherent non-Markovian SSE theory to th
driven TLA, we find that we can rewrite the actual no
Markovian SSE as
5-10
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dtucz~ t !&5F2 i
D

2
ŝz2 i

x

2
ŝx2~ ŝ†2^ŝ†& t!

(0)F̂z~ t !1^~ ŝ†

2^ŝ†& t!
(0)F̂z~ t !& t1z* ~ t !~ ŝ2^ŝ& t!G ucz~ t !&,

~5.10!

and the noise function for the TLA becomes

z~ t !5zL~ t !1E
0

t

a~ t2s!^ŝ&sds. ~5.11!

To calculate the complex amplitudes for the actual n
Markovian SSE we apply the system stateucz(t)&
5Ce(t)ue&1Cg(t)ug& to Eq. ~5.10! and expand(0)F̂z(t) as

(0)F̂z~ t !5(
m

m̂(0)Fm,z~ t !, ~5.12!

wherem5$s,s†,sz ,I %. This results in

dtCg5 i
D

2
Cg2 i

x

2
Ce1z* CeuCeu22 (0)Fs†,zCg

3Ce*
2

1 (0)Fs,zCguCeu2~11uCeu2!

2 (0)Fsz ,zCg
2Ce* ~112uCeu2!1 (0)FI ,zCg

2Ce* ,

~5.13a!

dtCe52 i
D

2
Ce2 i

x

2
Cg2z* Ce

2Cg*

2 (0)Fs,zCeuCgu2~11uCeu2!1 (0)Fs†,zCg
2Ce* uCgu2

1 (0)Fsz ,zCguCgu2~112uCeu2!2 (0)FI ,zCguCgu2.

~5.13b!

In this equation the noise function is given by

FIG. 1. This figure depicts the Bloch vector components of
reduced state of a driven TLA calculated by the enlarged sys
method. In this figure all calculations were done using the ini
system stateuc(0)&5ue& with system parametersg51, k51, x
55, andD53. Time is measured in units ofg21.
05210
-

z* ~ t !5zL* ~ t !1
gk

4
e2kt/2E

0

t

eks/2Cg~s!Ce* ~s!ds,

~5.14!

wherezL* (t) is defined by the correlation

Ẽ@zL~ t !zL* ~s!#5
gk

4
e2kut2su/2. ~5.15!

This is generated by havingzL* (t) obey the following sto-
chastic differential equation:

dtzL~ t !52
k

2
zL~ t !1

k

2
Ag z~ t !, ~5.16!

with zL* (0) being a Gaussian random variable~GRV! satis-
fying

E@zL~0!zL* ~0!#5
kg

4
. ~5.17!

Herez(t) is standard complex white noise@26# and satisfies
E@z(t)z* (s)#5d(t2s).

1. Zeroth-order approximation

For the simple memory function,J51, which means
(0)F̂z(t)5 (0)F̂z

( j )(t). The zeroth-order approximation occu

when we assume the form for(0)F̂z(t) in Eq. ~3.26!. From
Eq. ~5.2! this implies

(0)F̂z~ t !5
g

2
~12e2kt/2!ŝ, ~5.18!

and thus

(0)Fs,z~ t !5
g

2
~12e2kt/2!, ~5.19a!

(0)Fs†,z~ t !5 (0)Fsz ,z~ t !5 (0)Fz~ I ,t !50. ~5.19b!

2. First-order approximation

The first-order approximation occurs when we assum
form for (1)F̂z

( j ,k)(t); by Eqs.~3.27! and ~5.2! this means

(1)F̂z~ t !5
g

2
~12e2kt/2!@ŝ,(0)F̂z~ t !#, ~5.20!

and thus

(1)Fs,z~ t !5g~12e2kt/2!(0)Fsz ,z~ t !, ~5.21a!

(1)Fsz ,z~ t !52
g

2
~12e2kt/2!(0)Fs†,z~ t !, ~5.21b!

(1)Fs†,z~ t !5 (1)Fz~ I ,t !50. ~5.21c!

The zero-order functionals are found by applying the TL
operators to Eq.~3.12!, giving

e
m
l

5-11
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dt
(0)F̂z~ t !5

gk

4
ŝ2

k

2
(0)F̂z~ t !1z* ~ t !@ŝ,(0)F̂z~ t !#

2 i FD2 ŝz1
x

2
ŝx ,(0)F̂z~ t !G

2@ŝ†(0)F̂z~ t !,(0)F̂z~ t !#2ŝ†(1)F̂z~ t !.

~5.22!

Using Eq.~5.12! this gives the following four coupled non
linear equations:

dt
(0)Fs,z~ t !5 1

4 gk2
k

2
(0)Fs,z~ t !1 iD (0)Fs,z~ t !

2 ix (0)Fsz ,z~ t !12z* ~ t !(0)Fsz ,z~ t !

1 (0)Fs,z
2 ~ t !, ~5.23a!

dt
(0)Fs†,z~ t !52

k

2
(0)Fs†,z~ t !1 ix (0)Fsz ,z~ t !2 iD (0)Fs†,z~ t !

12(0)Fsz ,z~ t !@ (0)FI ,z~ t !2 (0)Fsz ,z~ t !#

2 (0)Fs†,z~ t !(0)Fs,z~ t !

2@ (1)FI ,z~ t !2 (1)Fsz ,z~ t !#, ~5.23b!

dt
(0)Fsz ,z~ t !52

k

2
(0)Fsz ,z~ t !1 i

x

2
(0)Fs†,z~ t !2 i

x

2
(0)Fs,z~ t !

2 (0)Fs,z~ t !@ (0)FI ,z~ t !2 (0)Fsz ,z~ t !#

2z* ~ t !(0)Fs†,z~ t !2 1
2

(0)F1s,z~ t !/2, ~5.23c!

dt
(0)FI ,z~ t !52

k

2
(0)FI ,z~ t !2 1

2
(1)Fs,z~ t !, ~5.23d!

which can be solved in parallel with Eq.~5.13!.

3. Second-order approximation

The second-order approximation occurs when we ass
a form for (2)F̂z

( j ,k,l )(t); by Eqs.~3.28! and~5.2! this means

(2)F̂z~ t !5
g

2
~12e2kt/2!@ŝ,(1)F̂z~ t !#, ~5.24!

and thus

(2)Fs,z~ t !5g~12e2kt/2!(1)Fsz ,z~ t !, ~5.25a!

(2)Fsz ,z~ t !52
g

2
~12e2kt/2!(1)Fs†,z~ t !, ~5.25b!

(2)Fs†,z~ t !5 (2)Fz~ I ,t !50. ~5.25c!

The zero-order functionals are given by Eqs.~5.23a!–
~5.23d!; however, we now need equations for(1)F̂z(t). The
05210
e

first-order functionals are found by applying TLA operato
to Eq.~3.20!. With a memory function specified by Eq.~5.2!
we get

dt
(1)F̂z~ t !5

gk

4
@ŝ,(0)F̂z~ t !#2k (1)F̂z~ t !

2 i FD2 ŝz1
x

2
ŝx ,(1)F̂z~ t !G1z* ~ t !@ŝ,(1)F̂z~ t !#

2@ŝ†(1)F̂z~ t !,(0)F̂z~ t !#2@ŝ†(0)F̂z~ t !,(1)F̂z~ t !#

2ŝ†(2)F̂z~ t !ds. ~5.26!

Using Eq.~5.25! this turns into the four equations

dt
(1)Fs,z~ t !5 1

2 gk (0)Fsz ,z~ t !2k (1)Fs,z~ t !1 iD (1)Fs,z~ t !

2 ix (1)Fsz ,z~ t !12z* ~ t !(1)Fsz ,z~ t !

12(0)Fs,z~ t !(1)Fs,z~ t !, ~5.27a!

dt
(1)Fs†,z~ t !52k (1)Fs†,z~ t !1 ix (1)Fsz ,z~ t !2 iD (1)Fs†,z~ t !

12(1)Fsz ,z~ t !@ (0)FI ,z~ t !2 (0)Fsz ,z~ t !#

12(0)Fsz ,z~ t !@ (1)FI ,z~ t !2 (1)Fsz ,z~ t !#

2@ (1)Fs†,z~ t !(0)Fs,z~ t !

1 (0)Fs†,z~ t !(1)Fs,z~ t !#2 (2)FI ,z~ t !

1 (2)Fsz ,z~ t !], ~5.27b!

dt
(1)Fsz ,z~ t !52

gk

4
(0)Fs†,z~ t !2k (1)Fsz ,z~ t !

1 i
x

2
(1)Fs†,z~ t !2 i

x

2
(1)Fs,z~ t !2 (1)Fs,z~ t !

3@ (0)FI ,z~ t !2 (0)Fsz ,z~ t !#2 (0)Fs,z~ t !

3@ (1)FI ,z~ t !2 (1)Fsz ,z~ t !#

2z* ~ t !(1)Fs†,z~ t !2 1
2

(2)Fs,z~ t !, ~5.27c!

dt
(1)FI ,z~ t !52k (1)FI ,z~ t !2 1

2
(2)Fs,z~ t !. ~5.27d!

To illustrate how accurate our perturbation method is,
difference between the reduced state calculated via the
larged system method and via the ensemble average from
coherent non-Markovian SSE is plotted in Fig. 2. The dot
line corresponds to the zeroth-, the dashed is the first-,
the solid is the second-order. It is observed that the pertu
tion first- and second-order perturbations are a lot more
curate than the zeroth-order perturbation. However, it can
seen that the second-order perturbation is not necess
more accurate than the first-order perturbation. This sug
that our perturbation method is an asymptotic expans
rather than a convergent series.
5-12
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D. Quadrature unraveling and the TLA

For quadrature unraveling the actual non-Markovian S
is

dtucz~ t !&5F2 i
D

2
ŝz2 i

x

2
ŝx2~ ŝx2^ŝx& t!

(0)Q̂z~ t !

1^~ ŝx2^ŝx& t!
(0)Q̂z~ t !& t1z~ t !~ ŝ2^ŝ& t!G

3ucz~ t !&, ~5.28!

and the noise function for the TLA is

z~ t !5zL~ t !1E
0

t

b~ t2s!^ŝx&sds. ~5.29!

Again, as in the coherent case, we can calculate the com
amplitude equation by applying the stateucz(t)&5Ce(t)ue&
1Cg(t)ug& to Eq. ~5.28! and expanding(0)Q̂z(t) as

(0)Q̂z~ t !5(
m

m̂(0)Qm,z~ t !, ~5.30!

wherem5$s,s†,sz ,I %. This results in a coupled set of dif
ferential equations forCe(t) and Cg(t) that depend on
(0)Qm,z(t) andz(t). In these equations the real-valued no
is given by

z~ t !5zL~ t !1
gk

4
e2kt/2E

0

t

eks/2@Cg~s!Ce* ~s!

1Cg* ~s!Ce~s!#ds, ~5.31!

wherezL(t) is found by

Ẽ@zL~ t !zL~s!#5
gk

4
e2kut2su/2. ~5.32!

This is generated by

FIG. 2. This figure depicts the difference between the redu
state calculated from our perturbative coherent non-Markovian S
and the enlarged system method. The dotted line corresponds t
zeroth-, the dashed is the first-, and the solid is the second-o
perturbation. Other details are as in Fig. 1.
05210
E

ex

dtzL~ t !52
k

2
zL~ t !1

k

2
Ag j~ t !, ~5.33!

with zL(0) being a GRV satisfyingE@zL(0)zL* (0)#5kg/4.
Here j(t) is standard white noise and satisfi
E@j(t)j* (s)#5d(t2s) @26#.

1. Zeroth-order approximation

The situation is greatly simplified with the memory fun
tion in Eq. ~5.1!, as b(t,s)5b ( j ,cos)(t,s)5b(j,cos)(t,s), which
in turn implies (0)Q̂z(t)5 (0)Q̂z

( j ,cos)(t)5(0)Q̂z
(j,sin)(t).

The zeroth-order approximation is to set

(0)Q̂z~ t !5
g

2
~12e2kt/2!ŝ, ~5.34!

and thus

(0)Qs,z~ t !5
g

2
~12e2kt/2!, ~5.35a!

(0)Qs†,z~ t !5 (0)Qsz ,z~ t !5 (0)QI ,z~ t !50. ~5.35b!

2. First-order approximation

The first-order approximation is to set

(1)Q̂z~ t !5
g

2
~12e2kt/2!@ŝ,(0)Q̂z~ t !# ~5.36!

and thus

(1)Qs,z~ t !5g~12e2kt/2!(0)Qsz ,z~ t !, ~5.37a!

(1)Qsz ,z~ t !52
g

2
~12e2kt/2!(0)Qs†,z~ t !, ~5.37b!

(1)Qs†,z~ t !5 (1)QI ,z~ t !50. ~5.37c!

The zeroth-order functionals are found by applying TLA o
erators to Eq.~3.38!. With the simple memory function this
gives

dt
(0)Q̂z~ t !5

gk

4
ŝ2

k

2
(0)Q̂z~ t !1z~ t !@ŝ,(0)Q̂z~ t !#

2 i FD2 ŝz1
x

2
ŝx ,(0)Q̂z~ t !G

2@ŝx
(0)Q̂z~ t !(0)Q̂z~ t !#2ŝx

(1)Q̂z~ t !.

~5.38!

Using Eq.~5.30! this gives

d
E
the
er
5-13
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dt
(0)Qs,z~ t !5 1

4 gk2
k

2
(0)Qs,z~ t !1 iD (0)Qs,z~ t !

2 ix (0)Qsz ,z~ t !12z~ t !(0)Qsz ,z~ t !

1 (0)Qs,z
2 ~ t !22(0)Qsz ,z~ t !@ (0)QI ,z~ t !

1 (0)Qsz ,z~ t !#2 (0)Qs†,z~ t !(0)Qs,z~ t !

2@ (1)QI ,z~ t !1 (1)Qsz ,z~ t !#, ~5.39a!

dt
(0)Qs†,z~ t !52

k

2
(0)Qs†,z~ t !1 ix (0)Qsz ,z~ t !

2 iD (0)Qs†,z~ t !12(0)Qsz ,z~ t !@ (0)QI ,z~ t !

2 (0)Qsz ,z~ t !#2 (0)Qs†,z~ t !(0)Qs,z~ t !

1 (0)Qs†,z
2

~ t !2 (1)QI ,z~ t !1 (1)Qsz ,z~ t !,

~5.39b!

dt
(0)Qsz ,z~ t !52

k

2
(0)Qsz ,z~ t !1 i

x

2
(0)Qs†,z~ t !

2 i
x

2
(0)Qs,z~ t !2 (0)Qs,z~ t !@ (0)QI ,z~ t !

2 (0)Qsz ,z~ t !#1 (0)Qs†,z~ t !@ (0)QI ,z~ t !

1 (0)Qsz ,z~ t !#2z~ t !(0)Qs†,z~ t !

2 1
2 @ (1)Qs,z~ t !2 (1)Qs†,z~ t !#, ~5.39c!

dt
(0)QI ,z~ t !52

k

2
(0)QI ,z~ t !2 1

2 @ (1)Qs,z~ t !1 (1)Qs†,z~ t !,

~5.39d!

which can be solved in parallel withCe(t) andCg(t).
To illustrate how accurate our perturbation method is

quadrature unraveling, Fig. 3 shows the difference betw
the reduced state calculated via the enlarged system me

FIG. 3. This figure depicts the difference between the redu
state calculated from our perturbative quadrature non-Markov
SSE and the enlarged system method. The dotted line corresp
to the zeroth- and the dashed is the first-order perturbation. O
details are as in Fig. 1.
05210
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and via the ensemble average from the quadrature n
Markovian SSEs for the zeroth-~dotted! and first-order
~dashed! perturbations. As in the coherent case we find t
the first-order perturbation is more accurate than the zer
order one.

VI. POST-MARKOVIAN PERTURBATION

In this section we extend the YDGS post-Markovian p
turbation@17# to include quadrature unraveling and compa
the post-Markovian method with our perturbation method

The basic idea behind their perturbation method is to
pand the operators(0) f̂ z(t,s) in powers of (t2s) around the
point t5s ~this is why it is called the post-Markovian pe
turbation!. That is,

(0) f̂ z~ t,s!5 (0) f̂ z~s,s!1@] t
(0) f̂ z~ t,s!u t5s#~ t2s!

1 1
2 @] t

2(0) f̂ z~ t,s!u t5s#~ t2s!21•••, ~6.1!

where (0) f̂ z(s,s)5L̂. To find the first-order term we simply
evaluate Eq.~3.11! at t5s:

] t
(0) f̂ z~ t,s!u t5s52

i

\
@Ĥ int~s!,L̂#2@ L̂†(0)F̂z~s!,L̂#

2L̂†@ L̂,(0)F̂z~s!#. ~6.2!

Thus the functional(0)F̂z(t) for this perturbation is given by

(0)F̂z~ t !5g0~ t !L̂2g1~ t !
i

\
@Ĥ int~ t !,L̂#

2E
0

t

a~ t2s!~ t2s!@ L̂†(0)F̂z~s!,L̂#ds

2E
0

t

a~ t2s!~ t2s!L̂†@ L̂,(0)F̂z~s!#ds, ~6.3!

where

g0~ t !5E
0

t

a~ t2s!ds, ~6.4!

g1~ t !5E
0

t

a~ t2s!~ t2s!ds. ~6.5!

This equation cannot be solved without the initial conditi
dt

(0)F̂z(0). However, if we make the approximatio
(0)F̂z(s)5*0

sa(s2u)L̂du, Eq. ~6.3! becomes

(0)F̂z~ t !5g0~ t !L̂2g1~ t !
i

\
@Ĥ int~ t !,L̂#2g2~ t !@ L̂†L̂,L̂#,

~6.6!

where

g2~ t !5E
0

tE
0

s

a~ t2s!a~s2u!~ t2s!duds, ~6.7!

d
n
ds
er
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which can be solved. The same could be done for the sec
order terms, but as well as making an approximation
(0)F̂z(s) we would need to approximateds

(0)F̂z(s). For the
purpose of this paper we will only go to first order.

To extend the idea to the quadrature case we Taylor
pand the operator(0)q̂z(t,s) in powers of (t2s) around the
point t5s. To find the first-order term we simply evalua
Eq. ~3.37! at t5s. With the approximation (0)Q̂z(s)
5*0

sb(s2u)L̂du we get

(0)Q̂z~ t !5h0~ t !L̂2h1~ t !
i

\
@Ĥ int~ t !,L̂#2h2~ t !@ L̂xL̂,L̂#,

~6.8!

where

h0~ t !5E
0

t

b~ t2s!ds, ~6.9!

h1~ t !5E
0

t

b~ t2s!~ t2s!ds, ~6.10!

h2~ t !5E
0

tE
0

s

b~ t2s!b~s2u!~ t2s!duds. ~6.11!

For the simple TLA system it is easy to generate th
approximate expressions for(0)F̂z(t) and (0)Q̂z(t) for all
time; hence we can obtain the solution to the non-Markov
SSE. To compare the YDGS post-Markovian non-Markov
SSE method with our perturbation method, we again plot
difference between the YDGS method~when 1000 trajecto-
ries were used! and the enlarged system method. The res
of this are shown in Fig. 4, where it is observed that YDG
first-order perturbation has a greater error than our pertu
tion method~Figs. 2 and 3!. This is perhaps not surprising, a
the system we modeled hask51, which implies that it is
very non-Markovian. Since one of the requirements of

FIG. 4. This figure shows the difference between the redu
states calculated using the YDGS post-Markovian non-Markov
SSE method and the enlarged system method, for both cohe
~dotted line! and quadrature~solid line! unraveling. Other details
are as in Fig. 1.
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YDGS perturbation method is for the environment to
close to the Markovian regime, one would expect th
method to fail in this regime.

In Ref. @17# YDGS suggest an alternative perturbatio
method. The functional operator(0)F̂z(t), which equals
Ōz(t) in their notation, is expanded by the functional expa
sion

Ōz~ t !5Ō(0)~ t !1E
0

t

Ō(1)~ t,v !z~v !dv

1E
0

tE
0

t

Ō(2)~ t,v1 ,v2!z~v1!z~v2!dv1dv21•••

1E
0

t

•••E
0

t

Ō(n)~ t,v1 , . . . ,vn!z~v1!•••z~vn!

3dv1•••dvn1••• . ~6.12!

It can be shown that one can establish a set of coupled
ferential equations for these operators provideda(t2s) is
given by Eq.~3.1!. To truncate this perturbation atŌ(n) one
has to assume a valueŌ(n11). It turns out that for all opera-
tors Ō(n) other than Ō(0) the only reason the operator
change from their initial value 0 att50 is if the assumed
Ō(n11) is nonzero. This suggest that this method is high
dependent on the assumed value forŌ(n11).

VII. CONCLUSIONS

In this paper we presented a perturbation method for s
ing the coherent and quadrature non-Markovian SSEs. T
perturbation method is easily extended to any order an
not limited to the post-Markovian regime. However, the e
vironment is restricted such that it has a correlation funct
satisfying Eq. ~3.1!. As shown in Ref. @20# most non-
Markovian environments can be simulated via this corre
tion function with a relatively smallJ. This suggests that this
perturbation method might be useful for simulating no
Markovian evolution forr red(t).

One appealing feature of this method is that it provide
perturbative solution forr red(t) that is positive by definition.
However, there is another method, namely, Imamogl̄u’s en-
larged system method@19,20#, which provides a better solu
tion for r red(t). Imamoḡlu’s enlarged system method re
quires fewer coupled differential equations to solve and
only approximation comes in by a truncation of the Hilbe
space of the fictitious modes. As one increases the basis
for these modes this method will converge to the corr
solution. By contrast, convergence has not been shown
our method.

This does not mean that our method is useless, as
primary interest in our method is not to simulater red(t), but
to simulate the non-Markovian SSEs. This is interesting
an that is interpretation continuous in time of non-Markovi
SSEs is not clear. In Ref.@16# we showed that these non
Markovian SSEs under standard quantum measurem
theory do not have a continuous measurement interpreta
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However, Loubenets in Refs.@22,23# claimed that she ha
developed a framework for continuous quantum meas
ments in which non-Markovian SSEs represent the evolu
of a system state which is continuously monitored.

Future work on this topic is to look into this questio
Another question that needs answering is whether it is p
sible to derive non-Markovian SSEs based on a discrete b
such as the photon number. We believe this question and
previous question will turn out to be related. Finally, there
the possible application of our method to strongly no
Markovian systems such as atom lasers@27# or photon emis-
sion in a photonic band-gap material@28,29#.

APPENDIX: DERIVATION OF „0… f̂ z„T,T…ÄL̂

To show that (0) f̂ z(t,t)5L̂ we start by discretizing the
functional derivative. We divide the range@0,t) into N inter-
vals of widthDt, so the change inuc̃z(t)& is

duc̃z~ t !&5E
0

t duc̃z~ t !&

dz* ~s!
dz* ~s!ds

5 (
i 50

N21

DtF ]uc̃z(tN)&

]z* (t i)Dt
G dz* ~ t i !, ~A1!

and thus

d

dz* ~s!
uc̃z~ t !&5

]uc̃z~ tN!&

]z* ~ t i !Dt
. ~A2!
p

05210
e-
n

s-
sis
he

-

If s (t i) is less thant (tN), which is the only situation we are
interested in, then taking the limit thats→t (t i5tN21) this
becomes

lim
s→t

duc̃z~ t !&

dz* ~s!
5

]@ uc̃z~ tN21!&1Dt] tuc̃z~ tN21!&]

]z* ~ tN21!Dt
. ~A3!

Discretizing Eq.~2.18! we get

] tuc̃z~ tN21!&5F2 i

\
Ĥ int~ tN21!1z* ~ tN21!L̂2L̂†

3 (
j 50

N22

a~ tN212t j !
]

]z* ~ t j !
G uc̃z~ tN21!&.

~A4!

Substituting this into Eq.~A3! and using the fact that the
state at timetN21 depends only on the noise at time less th
tN21, we get the limit

duc̃z~ t !&

dz* ~ t !
→L̂uc̃z~ t !&. ~A5!

Thus by Eq.~2.19! (0) f̂ z(t,t)5L̂.
s,
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