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Perturbative approach to non-Markovian stochastic Schralinger equations
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In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-
Markovian stochastic Schdinger equations, for a wide range of memory functions. To illustrate this procedure
numerical results are presented for a classically driven two-level atom immersed in an environment with a
simple memory function. It is observed that as the order of the perturbation is increased the numerical results
for the ensemble average staig(t) approach the exact reduced state found via ImTinisganlarged system
method[Phys. Rev. A50, 3650(1994].
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[. INTRODUCTION For the non-Markovian situation there have been many
attempts at finding solutions to E@L.2). However, some
A common problem in physics is to model open quantumhave the problem that it is hard to ensure the positivity re-
systems. They consist of a small system immersed in a batfuirement orp{t) [8]. A method that does ensure the posi-
(environmenk Due to the large Hilbert space of the bath it is tivity requirement on the reduced state is the non-Markovian
convenient to describe the system by its reduced state. Traochastic Schidinger equationSSE approach[9-16. A

reduced state is defined as non-Markovian SSE generates stochastic pure statgs))
that should satisfy
Preo(t):Trbatt“q,(t»(q,(t)ur (1.0 | |
Pred 1) =EL| (1)) (D[], (1.9
where| W (t)) is the combined system state, found from the © {U) Y
Schralinger equation for the open quantum system. wherez(t) is some noise function which is nonwhite aid

It has been showfil,2] by a projection-operator method denotes the ensemble average a(¢). To solve these non-
that we can write a general master equation for the reduceliarkovian SSEs one has to take into account the past behav-

state as ior of the system and bath, giving rise to a functional deriva-

) . tive in the attempt to derive a SSE. This presents a problem

: e P for most systems an exact solution to the functional de-
t)=——[A),pred )]+ | K(t,S)[L]preds)ds, as Ic Y ;

Predt) ﬁ[ ():pred V)] fo (L)L ]pred ) rivative does not exist. Thus at present an exact non-

1.2 Markovian SSE exists only for simple systems, which can be
R solved exactly via other methods, like the undriven two-level
wherek(t,s)[L] is the “memory time” superoperator. It op- atom (TLA) model. For this and more examples see Refs.

erate on the system operaforand represents how the bath [11,16. S
affects the system. The problem with this equation is that in Recently Yu, Disi, Gisin, and Strun2YDGS) have de-
generaIIC(t,s)[ﬁ] cannot be explicitly evaluated. veloped explicitly a “post-Markovian” perturbation method

The most notable approximation used is the Born-Markoyi© first order that allows solutions for systems that are close
one. This arises when the environmental influences on thi® the Markovian limit[17,1§. In this paper we present a

system are instantaneous. Mathematical consistency requingrturbatlon method that can be carried to arbitrary order and

that this results in a Lindblad master equation, of the form0 IS not limited to _the post-Markovian regime. However, we
3] must place a requirement on the form of the memory func-

tion. This requirement is that the memory function must take
the form

pred)= = LA pred D]+ YD LIpred D), (13 J

L . a’(t—S):E |Gj|ze_Kj|t_SV2_i(wj_Q)(t_s) (16)
whereD[ L] is the superoperator that represent the damping =1
of the system in the bath. It has the form o _ . _

for some finite(and, in practice, relatively small. It should

DIL1prec=Lprede = 3L L preq— 2 pred- L. (1.4 be noted also that we have not proven convergence of our
perturbation theory and this theory is valid only for a zero-
This equation can be solved deterministicd¥ or by the  temperature bath.
stochastic Schidinger approach4—7]. The format of this paper is as follows. In Sec. Il we
present a general outline of the theory of non-Markovian
SSE’s. This is basically a summary of the results of Refs.
*Electronic address: j.gambetta@gu.edu.au [9-12,1@. In Sec. lll our perturbation method is presented.
Electronic address: h.wiseman@gu.edu.au In Sec. IV we outline the Imamdg enlarged system method
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[19,20. In Sec. V we apply our perturbation method to a P R

simple system, a driven TLA, and compare our results for di W (t))=— g[Hint(t)+th(t)]|‘1’(t)>, 2.7
pred(t) with those of the enlarged system method. In Sec. VI

we investigate the YDGS post-Markovian perturbation\yhere the Hamiltonians are

method[17,18. Finally, we conclude with a discussion of

the potential applications of our results in Sec. VII. H,.(t)=UT(t,00AU(t,0) (2.9

Il. NON-MARKOVIAN STOCHASTIC SCHRO DINGER and
EQUATIONS R I I
Vin(t)=ih[Le bl (t) —LTe D)), (2.9
In this section we will present an outline of the theory we
presented if16], which is an extension of D&, Gisin, and where
Strunz(DGY diffusive non-Markovian SSE®9-12] that al-
lows for real-valued noise(t). 0 S i
® bint(t)=§k: grare K. (2.10
A. Underlying dynamics

The non-Markovian SSEs developed in RéB-12,16 Herg Yve haye fmal!y re.strlcted'the form be.to be such
are valid when the dynamics of the open guantum systerH"atL in the interaction picture S|mpIyArotates in the complex
can be described by the total Hamiltonian plane at frequency). That is,L;,(t)=Le '

Hior= |:|sys® 1+1@Hpat V. 2.1 B. Non-Markovian SSE defined

A non-Markovian SSE is a stochastic differential equation
for the system state vectpp,(t)) containing some nonwhite
noisez(t). It has the property that whelay,(t)){(#,(t)| is
averaged over all possibiEt) one obtaing41t). It should
be noted that, for a single.{t), z(t) can take many differ-

Hbath:ﬁz wkélék, (2.2) ent functional forms, and we label these different forms sto-
K chastic unravelingfl6].

R In Ref.[16] we showed that non-Markovian SSEs can be
wherea, and wy are the lowering operator and angular fre- derived from guantum measurement the¢é@MT), where
quency of thekth mode, respectively. This is the standardthe different unravelings correspond to different measure-
model for the electromagnetic field. The interaction Hamil-ments on the bath. The two unravelings we considered were

The system Hamiltonian il <= H+H. The bath is mod-
eled by a collection of harmonic oscillators, so the Hamil-
tonian for the bath is

tonian has the form the “coherent” or DGS[9-12] unraveling and the “quadra-
ture” unraveling. A special case of our quadrature unraveling
V=if(LbT—LTD), (2.3 was published in Ref21].

As in the Markov limit we can definéat least two non-

where we have defined the bath lowering operatbmsb ~ Markovian SSEs, for each unraveling: one fft) chosen

_ 2 ; ; : from an ostensible distributiofa guessed distributiorand
=2,048x. That is, the coupling amplitude of theh mode : P .
to the system ig, . the other for its actual distribution. The former gives a non-

For calculation purposes we define the non-MarkoviarMarkovian SSE linear in the unnormalized staig,(t)),
SSE in an interaction picture. This allows us to move the fasthile the latter gives a non-Markovian SSE nonlinear in the

dynamics placed on the state by the Hamiltoni&t}} and norr‘_nalized Staté'/’Z(t.»' In Ref.[16] we came to t'he con-
Ay P . y . . clusion that the solution of the actual non-Markovian SSE at
Hpamto the operators. The unitary evolution operator for this

P time t gives the state the system will be in if a measurement
transformation is of the bath is performed at that time. Unlike in the Markov
case, linking of the states through time to make a trajectory
turns out to be a convenient fiction. However, it has been

) ) ) ) ] ] . suggested that such trajectories can be given an interpreta-
Thus the combined state in the interaction picture is defineg¢on within a nonstandard QM22,23.

as

U(tio):e—i/ﬁ(|:|“®i+1®l:|baﬂ.)(t—0). (2.4)

1. Coherent unraveling outlined

W (t))=U"(t,0)|¥(t)sep, 2.
) (O (Oser @9 The first unraveling we consider is the coherent unravel-

ing. This unravelling arises when the bath is projected into a

and an arbitrary operatk becomes coherent state. We define the coherent state as

Ain=UT(t,00AU(t,0). (2.6 1 i a
= e lal2 <
a e ny), 2.1
This allows us to write the Schadinger equation as Hax) 1;[ Ko %} V! I 213
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so that =11, [ |a,){ay|d?ay. tion z(t), but rather also upon states for other noise func-

In a measurement we can define an operator for the medons. That is, we cannot stochastically choagg in order
surement process, the noise operator. For this measurementqtgenerate a trajectory independent of other trajectories. In-

must have the coherent basis as its eigenstate, so the no&€ad, all possible trajectories would have to be calculated in
operator is parallel, which in calculation terms amounts to solving the
complete Schrdinger equation Eq(2.7). However, as ex-
- N : - . lained in Refs[11,12,1§ if we can make the ansatz
20)=bu(0e¥=3 gae '™, @12 P 112,19
k
)

~ oy ~
where Q= w,— Q. The noise functioneigenvalue of the 5% (s) [9(0) =1 t,9)| (D)), (2.19
noise operatoris

then we can write a linear non-Markovian SSE as
2(1)=2, geae ', (2.13
K

~ i. A aaiia ~
A0S {THW(U +z* ()L~ L“O’Fz(t)} [,(1)),
where g, are the results of the projection in the coherent (2.20
basis. '
If we assume an ostensible distribution &gras being the
overlap of the coherent state with the vacuum state, that is,
has the form

\here the operator functiondVF,(t) is defined as

2 (O)ﬁz(t):fta(t—sﬂo)fz(t,s)ds. (2.21
A({ak}):<{ok}|{ak}><{ak}|{ok}>:777K87§k: i, :

214 The significance of the superscripts (0) preceding these op-
erators will become apparent in Sec. Ill.

To derive the actualnonlineai non-Markovian SSE we
need to condition the state on a noise function that is equiva-
E[z(t)2* (s)]=alt—s), (2.153 lent to the actual probability distribution,

P({ay}, ) =(P () {a)({ad|P(1)). (2.22

For most systemb¥ (t)) is unknown. Nevertheless, we can

\é)vsqz:]esi:)qz g:gﬁi;ubt%vf }EEEL?;{; a;owznhz\\l/zr?jge%n%\gztthe use a Girsanov transformatidil,16 to relate the actual
: ’ . noise function to the ostensible noise function. In this case,

—s); this function we label the memory function. On a mi-
croscopic level it has the form

where K=X%,. With this ostensible distribution the noise
function has the following correlations:

E[z(t)z(s)]=0, (2.15h

2()=2z,(t)+ fta(t—s)(DSds, (2.23
0

a(t—S)=; |gy/2eOx(t=9), (2.16
wherez,(t) is equivalent to the noise function used in the

Using the above ostensible distribution we can define Hstensible case, satisfying the correlations defined in Egs.

Markovian SSE for the normalized state[i<l,16]
{a| v (V)

|lﬁz(t)>zm-

Taking the time derivative and using BE@.7) we get a linear
differential equation fof,(t)) of the form —(LN)OF () +z* () (L= (L)) || D).

(2.1 I St (0)F o
di| (1)) = _gHint(t)_(L —(LM)OF () +((L

~ =i Lot (2.29
A0 =| A + 2 L foaa—s) 1

6Z* (S) ds T ~
The notation({L), is shorthand for{,(t)|L|,(t)). From
X [P, (1)), (2.19  Eq.(2.20 and Eq.(2.24) if the operator functional”F ,(t)
is known for all time and for each noise functia(t) we can
where 6/ 5z* (s) represents a functional derivative. For a solve the coherent non-Markovian SSE.
derivation of this equation, see Ref40,16. The functional
derivative in this equation stops us from calling this equation 2. Quadrature unraveling outlined

a non-Markovian SSE, as it means thigfy,(t)) does not To obtain a non-Markovian SSE with real noise, it is natu-
depend upon the staté,(t)) at all times for a single func- ral to consider a quadrature noise operator,
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2(t) =bi (Ye'*o'e '+ b (e e, (2.25 AQXYid) =7 K% 2 (D (233

wherebiy(t) is defined in Eq(2.10 and¢ is some arbitrary  \yjith this distribution the correlation for the real-valued noise
phase. The phase defines the measured quadrature: ang,nction is

x-quadrature measurement occurs wheis set to zero, and
the conjugate measurement of nguadrature occurs when E[z(t)z(s)]=B(t—s), (2.39
¢=ml2. Unless otherwise stated we will s¢tto zero.

The measurement basis for the bath measurement ishere the tilde, as before, means an average over the osten-
[{ax}) and must satisfy sible distribution. For this ostensible distribution the differ-

7 ential equation foly,(t)) is
z(t)[{akh) =zt [{a})- (2.2 q t (1))

~ i ~ o~ [t
The problem with this noise function is that in general it is d¢|¢,(t))=| — %Him(t)‘f‘Z(t)L—fo B(t—s)
hard (maybe impossibleto work out a time-independent 0
eigenstate in the interaction picture. However, we can find
this eigenstate if we make the assumptions that for every
modek there exists another mode, which we can labd,
such thatQ_,=—-0Q, and g_,=gy . These assumptions
simply mean that the modes coupled to the system come in - 05 -
symmetric pairs about the frequen@y Without loss of gen- %W/z(t)): A(t,9)[ (1)), (2.39
erality we can take thg,’s to be real, absorbing any phases
in the definitions of the bath operators. With all of thesethe linear non-Markovian SSE is
assumptions we can rewrite E@.25 as

o

o6z(s) ds

X|P(1)), (2.3

wherel,=L+L". Making the ansatz
o

~ i A ~
- o o atlwz(t)>=[—gHim<t>+z(t)L—LX‘O’QZu)}IwZ(t)),
2(t)= >, 29X, cog Q)+ Y sinQt)]. (2.27
k>0 (2.37)
Here we have introduced the two-mode quadrature operatorghere
X=Xz, (2.289 ©Q,0- [ pe-9Va,9ds 239
0

Yo=Yy /N2, 2.28

€= Y- \/_ ( b To derive the actual non-Markovian SSE we need to cal-

where%k and§/k are the quadratures éfd culate the correct noise function. The Girsanov transforma-
tion giving the actual real-valuez(t) is [16]

A= (X iy /2 . (2.29

The measurement basis that satisfies E226) in the
x-quadrature representation is

t ~
z(t)=z,(t)+ JO<|—x>sB(t—S)dS, (2.39

wherez,(t) satisfies the correlations defined in Eg.34).

| H J dx' IXF=x’ xk++x’ — The actual non-Markovian SSE for quadrature unraveling is
= e "k
{qk}> &0 ’_277 \/E L \/E ) P i ) A )
(2.30 dt|wz(t)>= _%Hint(t)_(Lx_<Lx>t)(0)Qz(t)+<(Lx
With this basis and the above noise operator the noise func- R R L
tion for the quadrature measurement is —(L0@Q, (1)) +z(t) (L= (L)) [| (D).
2(t)="3, 2g{X; o Q)+ Yy sinQ)], (2.31 (249
k>0 R
Thus, if (PQ,(t) is known forz(t) and all time then we can
which by definition is real. solve the quadrature non-Markovian SSE.
Furthermore, under the above assumptions the memory
function a(t—s) in Eq. (2.16) reduces to Ill. PERTURBATION METHOD

5 To solve the non-Markovian SSE, and hence fing(t),
,8(t—s)=2kzo |9kl “cod Qy(t=s9)]. (232 for coherent or quadrature unraveling we have to work out

the operator functional)F,(t) and (9Q,(t), respectively.
As in the coherent case we define the ostensible distributiohis has been done exactly only for systems for which an
as the overlap between the vacuum state |[4gg), thatis  analytical solution fop(t) may be found by other means
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[11,12,14 or for systems with a small number of bath modes 5 B

[16]. In this section we propose our perturbation technique A | ,(1))= A (1)), (3.7
for working out these functionals when exact solutions are 8z*(s) 8z*(s)

not possible.

which is called the consistency condition|ifil]. This con-
sistency condition is valid only fot#s; this is because at

The perturbation that we are going to propose is validime t=s the functional derivative is not well defined. Using
only for memory functions of the form Eq. (2.19 we can write the left-hand sid&HS) of the con-
sistency condition as

A. Perturbation approach for coherent unraveling

J
a(t—s)z_El al(t-s), (3.19
=
)

~ _ (0)3 ~
52*(S)|l!/2(t)> [(9»[ fz(tas)]|¢’z(t)>

where dy

aW(t—s)=|G;|2e«lt-sl2gi0i(t=9) 3.1b R ~
(o=l (310 +Of(ts)alg (). (3.8

In principle this is always a valid decomposition for the

memory function as in thel—c« and «;—0 limit this 5

memory function approaches the microscopic memory funcSubstituting Eq(2.20 for 4| ,(t)) gives

tion displayed in Eq(2.16). In Ref.[20] the authors suggest

that in practice most environments can be simulated ith

being quite small. 5
With this expansion for the memory function the func- ot 57*(3)

tional (9F,(t) can be written as

[B0) = 0 OR(1,9)~ 20T (1,9 F()

+2* () OF(t,s)L

(O)ﬁz(t)zz OFM (), (3.2
, —OF (1, 9) LTOR () | [P(1)).

where (3.9

~ H t H ir |

(O)an(t):j aW(t—s)OFf (t,5)ds. 3.3

0 Using Eqgs(2.20 and(2.19 the right-hand sidéRHYS) of the

To calculate these operator functionals we set up a set chon5|stency condition gives

coupled nonlinear differential equations f6PF{)(t). Tak-

ing the time derivative of Eq(3.3) we get i
o P ())y=| — —Hin (D) OF (t,5)+ 2" ()L OF (1,5
5 OF0 (6= a9(0)OF (1.0 57 (9) f (1)) 7 Hin (D714(1,8) + 27 (OL T 4(,9)
o . —LTOF (1) OF (1,5
+f [9,aD(t—s)] OF(t,5)ds AU7T(LS)
0
N o N ~
. ) -L— <°>Fz<t)1|¢z<t>>. (3.10
+f aD(t—9)9,O%,(t,s)ds. (3.9 oz*(s)
0
The first term is easily evaluated using Equating the LHS with the RHS gives

OF (t,t)=L, (3.5

- i~ - n a
as derived in the Appendix. The second term is where ourdVf,(t,s)=— g[Him(t),(o)fz(tys)]+Z*(t)[L.(°)fz(t,S)]
earlier decomposition of(t—s) is used. We chose!)(t
—s) such thatg,a(t—s)xa(t—s). This results in the

second term equaling —[LTOF (1), @F (t,5)]-LT OF (t).

6Z* (S)

—(%Hnj OFD(t). (3.6) (3.1)

The third term involves the partial derivative Supstituting this equation with Eqé3.5) and (3.6) into Eg.
a,[(9%,(t,s)]. To find this we use the fact that (3.4), we get
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A ~ K . ~
HOFD(t)=|G;|’L - E’+|Qj OFD(t)+2* (1)

XIE, OB (0] A, OF(0)]

—[LTOF(), ORP ] LT GFIOW),

(3.12

where WE{-R(t) is our first-order functional. It has the form
~ H t . ~
(1)F§J'k)(t)=JOa(‘)(t—s)(l)fg‘)(t,s)ds, (3.13

where we have used the following ansatz:

OFR (1) =DFM(t,s). (3.19

6Z* (S)

If we knew the form ofME{K(t) then Eq.(3.12 could be
solved numerically.

To find the form of WFU-9(t) we can take the time de-
rivative of Eq.(3.13. Doing this we get

3t(1)f§k)(t15) ==

Kk .
?‘l‘lﬂk

5>

_ UZ (0>,‘:g>(t),(1>f§k>(t,s)}_

Substituting all these terms into E(R.15 gives

(9(1)|:(J k)(t) |G |2[|_ (O)F(k)(t)] +|Q (1)|:(l k)(t)

X[L(l)f:g,k)(t)] _ [ |:T2 (1)|A:§j'l)(t),(o)|§§k)(t)} _
|

where the last term is the second-order functional, which

equals

@FG (1) = j a(t-9)- )(”F("')(t)ds

(3.21

Here we see that we can develop a general way for setting

up annth-order differential equations. Theth-order func-
tional is

PHYSICAL REVIEW A 66, 052105 (2002
&t(l)f:g’k)(t)Z a(j)(O)(l)f§k)(t,t)

t . ~
+f [0, (t—9)]DTW(t,5)ds
0

t ~
+fa,(J)(t_S)O';t(l)fgk)(t,s)ds. (3.19
0

The first term is easy to work out. From E&.12 it follows
that
WER(t, 1) =[L, OFN1)]. (3.16

The second term as before also simply evaluates to

)
FOR(). (3.17

Kj X @
- E +1 QJ
The third term is worked out via a new consistency condi-

tion,

")
gy ———ORM(t) =
'57* (s) O 5%

Substituting Eqs(3.14) and(3.12) into this consistency con-
dition gives

—— o OFM). (3.18

- i~ R A e - - .
“’f&”(t.s)—g[Him(t),(”fgk)(t,s)]+z*(t)[L,“)fgk)(t,s)]—[LQ WD (t,s), OF N (1)

2 k), (3.19

T 0z*(s)

+|Q

RG(0) — - [Ain(0), R0+ 2 (1)

|“_T2| OFEN (1), (WEGH ¢, s)

_|:T2| @EGkD (g,

(3.20

(3.22

where we have used the ansatz

9% - 1)F(k ..... l)(t):(n)fgk ..... I)(t,S).

57*(s) (323

The differential equation for thath-order functional is
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FMEG K D(1) = o0 (0)MF - Dt 1) OFO)(t) affects the system directly, so the further removed
the approximation the more accurate we expect the approxi-
t B . . . . .
- 2 mation to be; andc) in the Markovian limit, only the zero-
+f [aD(t-5)if - D(ts)ds  Maon to be; ando) y
0 is needed.

t To summarize this perturbation method, for environments
i 2 which can be model ER.D, iti ibl in
* f Oa(”(t_s)ﬁt(n)fgk """ ')(t,s)ds per'::urbceititivgesolt?t?oene%rb E/he (foh)e,r;nst ggi?l\ﬁaerlzgv?:rgaSSaE’s.
From these SSEs it is possible to generate a perturbative
(3.24 solution forp,et), which by definition will always be posi-
The first term can always be calculated using the-()th tive. The ”“"_‘ber of co_upled CQmP'?X differential equations
differential equation. The second term is always simple tothat are required for this technique is

calculate ast,a)(t—s)xa)(t—s), and the third term is n_

always calculable by then(=1)th order consistency condi- d?(I"+JI" 4+ D) +d+I=dA -1 +d+J,

tion -

' (3.29

p (=DE k- D) () = PXUREN S CRERRIES! whered is the system dimensiof, is the number of expo-
‘52*(3) z 57* () t z ' nentials required to simulate the memory function, and

(3.25 the order of the perturbation. The first term represents the
number of equations needed to simulate the functional de-
The nth-order perturbation method proposal is to termi-rivative. The next ternd is for thed complex amplitudes of
nate this series by settin@)f:g'k' ---J)(t) equal to an arbi- the system. The final terrd is for the stochastic equations
trary operator. The simplest scheme would be to set this opeeded to generate the noise functigt).
erator to zero, but to keep the theory consistent with the

Markov limit for all orders, we sel(“)ligj'k""")(t) in the B. Perturbation approach for quadrature unraveling
following manner. The zeroth-order perturbation arises when The perturbation method in the quadrature case is essen-
we use the approximation tially the same as in the coherent case, but the memory func-

tion expressed in Eg3.1b is too general. This is because
B ft W)t dsi. the memory function for quadrature unraveling must be con-
- 0“ (t—s)dsL. sistent with the assumptions stated below E26). The
(3.26 most g_eneral memory function that satisfies these require-
ments is
Note that the approximation here is the replacement of

t
OFW) (1 :f aW(t—s)ds
R )

81 8z (s) by 6/5z* (t). The first-order perturbation arises =" pi.cosy_
when we use the approximation Alt=s) 2 BUAL=s), (3.303
. t SOFM(t) where
(1)F§"k)(t)=f aW(t—s)ds *Z A
0 8z* (1) BU-cos\t—5)=2|G;|%e” “ilt"s”2cog Q;(t—9)].
(3.30b

t
= Dt — [ Ok )
foa (t=s)dsL,7F7(0] - (3.27 This presents a problem ag8(:°*5\t—s) is not proportional

to BU-cS\t—g). To get around this we define a new function
and OFEU(t) is calculated via Eq(3.12. The nth-order BV *™t—9) as
perturbation arises when we use the approximation ,B(J"S‘“)(t—s)=2|Gj|2e* cilt=sii2 Sin[Q,(t—s)] (3.31

5([’]*1)[&9( ..... I)(t)
6Z* (1)

and two functionals

~ to.
(”)Fg"k'""')(t):foa(')(t—s)ds

©OQY-cos )= J;BU'C"S’(t—S)az(LS)d& (3.323

(3.29 OQys(t)~ [ g0 -5)dt9ds (3.320
0

and OFW(t), ... (" DEU----R(t) are calculated via Egs. o

(3.12, (3.20, and (3.24. The physical motivations for The functional©@Q,(t) is found by

choosing this type of expansion @& for most systems, the

memory function will decay and thus the dominant term in OO (t)= (0 .cos) ¢ 33
the functional derivative will be the value as-t; (b) only Q) EJ: QL. (3.33
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Taking the time derivative of Eq$3.32a and (3.32h, we
get

dt(o)ng'cos)(t)=,8“'°°S)(t,t)(0)az(t,t)
t ) ~
+fo[&tﬁ("“)(t—S)](O)qz(t,s)ds

t -~
+ f BU-t—s5)d,%q,(t,s)ds,
0

(3.34a
d(OQY*(t)= f 14,8057t —5)]9G,(t,5)ds
0

t L ~
+f 'g(l,sm)(t_s)at(o)qz(t,s)ds.
0
(3.34bh

As in the coherent case it can be shown tiag,(t,t)=L.
The two terms involving the derivatives @f:°°*(t—s) and
BUs"N(t—s) by definition give

t H ~
f B4t —5)Vg,(t,s)ds
0
—_ %(O)Qg,cos)(t) —Q,©@QUsnt),
(3.353
t o ~
f 3Bt —9)Vq,(t,s)ds
0

—_ %(O)ngysin)(t) + 0,005t
(3.35h

The last two terms require finding,(?q,(t,s). As in the
coherent case, this is found by the consistency condition

o -~ 5 -
%520y | VA= prg Al YD), (3.39

yielding

HO(1,5) = = =T An(0), V(.91 + 2L, Va(t.9)]

)
X 6z(s)

©Q1).
(3.37

—[L9Q,(1),Og,t,s)]-L

Substituting these terms into E(.34), we get

PHYSICAL REVIEW A 66, 052105 (2002
o N Ki o a L
dt(O)le ,COS)(t) - 2| Gj |2|_ — E‘(O)Qg VCOS)(t) _ QJ(O)QQ ,Sln)(t)

— TR0, 0Q0 )]
+2(t)[L,©QU-c%)1)]
—[L,0Q,(t),@Qy-cos\t)]

_I:xzk (1)Q§j,k,cos,cos(t), (3.383

A f e Kj P ~
dt(O)ng,sm)(t) — E(O)ng,sm)(t) +Qj(O)Q§J'COS)(t)

— (), OQ0 5]
+2(t)[L,OQY=M(1)]
~[E40Q;(), @RI 1))

_ I:xEk (1)Q§j,k,sin,costt), (3.38b

where

§(O)Q§k,cos)(t)
x5 US
(3.393

g o
(1)Q§J,k,cos,coszt): fOB(J,cos)(t’S)

(0)A (k,cos),
(l)ng,k,sin,costt): ft,B(j‘Sin)(t,S) g QZ (V) ds.
0

8zZ(s)
(3.39h

The higher order functional differential equations are found
in the same manner as in the coherent case, except the form
of B(t—s) results in 2’ as many equations for order

The perturbation expansion is similar for this unraveling,
the only difference being that we havé Bperators to ap-
proximate. The zeroth-order approximation is to set the
zeroth-order functionals to

OQU-cos)t) = f t,B(j'COS)(t,s)dsT_, (3.403
0

OQU-s(t) = f gt g)dsl. (3.408
0

The first-order approximation is to set the four first-order
functionals to

(1)Q§j ,k,cos,cos(t) — Jotlg(j ‘COS)(t,S)dS[ |‘_ ,(O)ng,cos)(t)],
(3.413
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(DQQ ksin.cos ' g.siny © (0)@(k.cos) Comparing with Eq(2.9), for the enlarged system method to
Qe = JOIB THLS)AE L QD be correct we neeﬂint(t):EjGjéj(t)- To Calculaté:j(t) we
(3.41p  use the fact that

- A Kia -
(WQU-Kcos.siny 1) = ftﬁ(j,cos)(t,s)ds[l:’(O)ng,sin)(t)], dic;(t)= —iwjc;(t)— chj(t)_ VK vinj(1), (4.5
0

(3.419 where;m,j(t) is the input field which has a time commutator

. [Vinj (), 75 k(8)1= 6, «8(t—s). For a derivation of equation
(1)Q§j'k'5i“'5i“)(t)=f BU-s(t,s)dg L, @Ok )], Eq. (4.5, see Ref[25]. This can be integrated to give
0

t
(3.419 E:j(t)z \/K—lf efKj(tfs)IZ*iwj(t*S);in'j(S)ds
and we calculate the zeroth-order functionals via B38). 0
+¢j(0)e iv2Tiet, (4.6)
IV. ENLARGED SYSTEM APPROACH
It is not obvious thaE]-ij:]—(t) is the same as in E@2.10.

To test the accuracy of our perturbation method we Comyaowever, the time commutator for the bath operators is

pare our results for the reduced state with the reduced sta

found via the enlarged system method of Imaindd.9,20. [Din(t), B (5) 1€/ 2= a(t—s). (4.7)
An example of how this method is applied to a non-
Markovian system can be found in Rg24]. In terms of the enlarged system, this means that

For those who are not familiar with the enlarged system
method, we provide a short proof that the reduced syste
dynamics are exactly reproduced by the enlarged systerfit
method provided thak(t—s), calledI'(7) in Refs.[19,20,
is of the form :; |G;|2e i+ 9210 0)(t=9)

GG ¢i(1),cl(s)]e' 9

1+Kj

Ce)= 12— Kjlt—sl2-10;(ts) .
a(t—s) 2 Gj|%e : (4.1 ><jtfse+Kj(t,+S,)/2+iwi(t,_s/)é(t/—S')dt,dS/
0Jo

which is the same as E@.J).
The total Hamiltonian for the enlarged system is :2 |Gj|Ze_Kjlt_s‘/z_i(wj_Q)(t_s):a(t—s)’ (4.8
]

Hior= Heyst 712, ¢l Cj+7 > f dowri(w) vj(w) provided a(t—s) has the form depicted in Eq4.1). It
) b should be noted that this result is exact. It is not necessary to
w Py discard initial transients as in the derivation in Ref0].
N> f do\/5=[v/(w)c;—vj(w)cf] Since we have shown that the total Hamiltonian for the
g 2m enlarged system is equivalent to the standard non-
Markovian, then the total staté¥ s.(t)) must be the same.
> [Gric/-Glicl, (4.2)  We can define a reduced stéire the Schrdinger picture for
] the enlarged system a&/s.{t), which has the Markovian
R . o master equation
whereHg,=Hq+H, ¢ is the annihilation operator for the
jth added oscillator, anaj(w) is the Markovian bath opera- dWsg(t) = —
tor with the correlation tse

- Hot+H+42 wjcfc;+in > (GFLc]
J J

[Vj(0), ri(@)]= 8 xd(w—w"). 4.3 —G;L"c)), Weet)

If this is to be the same as E.1), then the first two lines 4.9

of Eq. (4.2 must giveH g+ H . and the final lineV. Go- o o
ing to the same interaction picture as we did in Sec. Il A, thatThe reduced state for the system in fhenteraction picture

is, with respect to the Hamiltoniart$, andHyyp, we get 'S

. A RN pred t) =€ Tre [ W 1) Je ™Mo =Tre [ Wied D)1,
Vi) =i >, [GFLe 1% (1)T—G;LTe'c;(1)]. (4.10
J

(4.9 where the trace is performed over the added oscillators and
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S ol (i)A —iSiwicieit—(i/h)A field (the bath. In the Schrdinger picture with the dipole
W (t _elijch cJt+(|/h)HQtW te iZjwjc;c;t (|/fi)Hnt_ ! . \ ] )
red 1) : seif ) : 4.11) and rotating wave approximatiofRWA), the interaction
Hamiltonian is

This allows us to define a new master equation for the re-
duced stat&V,(t) as V=iﬁ2 (g (}él_gk(}*r;ik)’ (5.4)
K

i o
dWied t)=| = zFinc+ 2 [G] Lefeler™ !

where o is the lowering operator for the TLA. This is the
same form as Eq(2.3) with L=0, so the above non-
—GLTce(wi-Mt w, ) Markovian SSE theory is applicable to this system.

= e If we have a TLA driven by a classical electromagnetic

field the system Hamiltonian for the TLA under the RWA is

+; K DLC;TW,ed 1), (4.12 .
Hey=1 7(% +h g[fre‘ vat+gleloat], (5.5
which can be solved by standard Markovian techniques, for

example quantum trajectorig¢s—7]. where x is the Rabi frequency aneéy, is the driving fre-

guency of the classical field. However, as shown in @dl)

V. NUMERICAL EXAMPLE: THE DRIVEN we can also writddg,sasHo+H(t). If Hy=Q0,/2, then in
TWO-LEVEL ATOM the Q interaction picture we have
In this section we apply our theory to a driven TLA with _Q
a simple non-Markovian memory function Hint(t):ﬁ “o (}z+ﬁ K[(}ei(wd,t—nt)+ oTei(@at =00
2 2 '
(5.6
a(t—s)= %ei(wenvfmafs)ewltfsvz, (5.1)

For our purposes we assurfie= wy,. SO

where wgp,y IS the central frequency of the environmenrt, A A X
represent the exponential decay of the bath memory;eaisd Hin(t) =% 502+ﬁ 20% (5.7
the Markovian limit decay rate. That is, in the—o limit,
a(t—s)=y5(t—s), which is the Markovian limit of the
memory functio{ 16]. We choose an interaction picture suc
that ) = wepy, SO that this memory function simplifies to

h whereA = wy—Q is the detuning.
For the TLA the reduced state can be written in terms of
the real Bloch vector componentgt),y(t),z(t) as

a(t—s)= %eﬂl“s\’% (5.2) pred D) =3[1+x(D oty o, +2(t)a,]. (5.9

which is consistent with the quadrature unraveling assump- B. Enlarged system method

tions. This results im(t—s) = B(t—s). However, before we For the driven TLA with a memory function given by Eq.
appdlylour theory to the TLA let us revise the standard TLA(5_1) the master equation for the enlarged system is
model.
IA.  ix~ YK ~n 4 i
A. The TLA dtWrecKt): - 70-2_ 70-X+ T(O’C_ o C)ereC(t)

The TLA is one of the simplest quantum systems to en-
visage. It consists of two levels, an excited stk of en-
ergy iw and a ground statig) of energyZiwy. We define
the difference in these energies &, and the zero-point
energy is taken to be the midpoint energywe+ wy)/2
=0. This allows us to define a system Hamiltonian as

+ kD[ C]W,ed(1). (5.9

Using y=1, k=1, x=5, andA=3, the reduced state is

shown in Fig. 1. For this simple case it was noted that the
truncation error involved in the enlarged system state method
was negligible. Because of this we use this reduced state for
R w0~ comparison with the ensemble average of the non-Markovian

Hsys:h70z7 (5.3 SSEs.

whereo,=|e)(e| —|g)(g| is one of the spin matrices for the C. Coherent unraveling and the TLA

TLA. Applying coherent non-Markovian SSE theory to the
Since we are dealing with open quantum systems we cordriven TLA, we find that we can rewrite the actual non-
sider the dynamics of a TLA immersed in an electromagnetidVarkovian SSE as
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t
(=2 (0)+ - e‘“”zfoeks/zcg(s)cg (s)ds,
(5.14

wherez} (t) is defined by the correlation

E[zA(t)zx(s)]:¥ewlt*5\/z. (5.15

This is generated by havingj (t) obey the following sto-
chastic differential equation:

0 2 4 6 8 10

dz\(0=—52,0+ 570, (516

FIG. 1. This figure depicts the Bloch vector components of the
reduced state of a driven TLA calculated by the enlarged system
method. In this figure all calculations were done using the initialwith 3 (0) being a Gaussian random varialfeRV) satis-
system statéy(0))=|e) with system parameterg=1, k=1, x fying
=5, andA=3. Time is measured in units of 1.

Ky

E[2,(0)Z}(0)]= " (5.17

B Xs sy e ~t
dt|$z(t)>: —IEO'Z—IEO'X—(O' _<U >t) Fz(t)+<(0' ) ) ) o
Here {(t) is standard complex white noi$26] and satisfies

E[{(1)*(s)]=6(t—s).

1. Zeroth-order approximation

—(oN)OF () + 25 (D) (= (o)) || #D)),

(5.10 For the simple memory functionJ=1, which means
(0)F —(0)() - i i
and the noise function for the TLA becomes F,(t) F.'(t). The zeroth qrder approximation occurs
when we assume the form féPF(t) in Eq. (3.26. From
t . Eq. (5.2 this implies
z(t)=zA(t)+f a(t—s)(o)ds. (5.11
0
OF (t)= %(1—ef“t’2)&, (5.18
To calculate the complex amplitudes for the actual non-
Markovian SSE we apply the system state),(t)) and thus
= Cq(t)|e)+ Cy(t)|g) to Eq.(5.10 and expandVF(t) as
) ) OF, ()= 3 (1-e""?), (5.193
OF ()= mOF (1), (5.12
m
OF ;1 ()=OF, (t)=OF,,t)=0. (5.199

wherem={o,0",0,,1}. This results in
2. First-order approximation

The first-order approximation occurs when we assume a

A
= Cymi% Cet 2 ColCol2= OF 11 ,C3CH? or
form for WEUN(t); by Eqgs.(3.27 and(5.2) this means

+OF ; ,CqlCel?(1+]Cel?)

= Y R (0
-OF, ,C2Ck(1+2|CJ3)+OF, ,Cick, DE()=3(1-e "A[0,OF )], (520
(5133 and thus
A WE,_ (1)=y(1—e “2)OF_ (1), 501
dtce:_iECe_igcg_z*Cgcs ,Z( ) 7( ) Z,z( ) ( a

—OF, ,CelCyl?(1+]|Ce|?) +OF .+ ,CICE|Cy|?
+ (O)Faz ,zcg| Cglz( 1+ 2| Ce|2) - (O)FI ,zcg|Cg|2-
(5.13b

In this equation the noise function is given by

WF, ()=-2(1-e “)OF 1 (1), (521

(1)Fa7‘,z(t):(1)Fz(|’t):O' (5.219

The zero-order functionals are found by applying the TLA

operators to Eq(3.12, giving
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d,OF (1) = %}_ g<0>ﬁz(t)+z*(t)[&,“”ﬁz(t)]

1AL x- .
—I1 EO-Z+ EO'X ,(O)Fz(t)

—[oTOF (1), OF ()] - T (1),
(5.22

Using Eq.(5.12 this gives the following four coupled non-

linear equations:

K .
dt(O)Fa-,z(t) = %1 YK— E(O)Fa,z(t) +1 A(O)Fo',z(t)

—ixOF, At)+2z*()OF, (1)

+OF2 (1), (5.233

K
AOF 1 A1) = = 5OF 1 (O +iXOF ;=1 ACF 1 (1)

+2OF, (O[OF () -OF, )]
—OF 1+ ()OF, (1)

—[(1)F|,Z(t)_(1)Faz,z(t)]' (5.23b

K X X
dt(O)FUZ ,z(t) = E(O)Faz ,z(t) +1 E(O)F(rT,z(t) -1 E(O)Fa,z(t)
—OF, (O[OF, ()~ OF, ,t)]
() OF,+ (1) —3OF1, ()2, (5.2309
K
d(VF (1) == 5OF () —3VF, (1), (5230

which can be solved in parallel with E¢5.13.

3. Second-order approximation

The second-order approximation occurs when we assume
a form for @FU%D(t): by Egs.(3.28 and(5.2) this means

OF ()= (1-e O[5 VF, 1], (5.24

and thus

@F, ()=y(1-e*DF, (1), (5.253

OF, (== 2 (1-e “AWF ;1 (1), (525

@F 1 ,(t)=@F (1,1)=0. (5.250

The zero-order functionals are given by Eq&.239-—
(5.230; however, we now need equations f3?F,(t). The

PHYSICAL REVIEW A 66, 052105 (2002

first-order functionals are found by applying TLA operators
to Eq.(3.20. With a memory function specified by E(.2)
we get

4 V()= 2516, OF (0] K DF (D)
i %&ﬁ ;&X,(l)ﬁz(t) + 2 ([0, D 1)]
—[aTF (1), OF ()] = [oTOF (1), VF(1)]
—oT@FE,(t)ds. (5.26
Using Eq.(5.25 this turns into the four equations
AR, () =3ycOF, (1) —cWF, () +i1ADF, (1)
—ixMF, At +2z5 ()R, (1)

+20F _()DF, (1), (5.27a

dMF 1 (1) == kD 1 () +ixDF, (1) —TADF ;1 (1)
+2WF, (O[OF (1) -OF, )]
+2OF, (O[WF () -MF, 1]
—[(1)Fo’r,z(t)(0)Fa,z(t)
+OF 1 (DR, ()] BF, (1)

+@F, (1], (5.279

YK
dt(l)Fa’Z ,Z(t) = T(O)FUT,Z(t) - K(l)FUZ ,Z(t)

X X
+1 E(I)F(r’r,z(t)_l E(l)Fo,z(t)_(l)F(r,Z(t)

X[OF 1)~ OF,, (0] OF, (1)
X[(l)Flyz(t) - (l)F(rZ,Z(t)]

-z ()WF 1 ,()—3PF, (1), (5.270

dWF (1) =—xDF, () -3®F, (). (5.27d

To illustrate how accurate our perturbation method is, the
difference between the reduced state calculated via the en-
larged system method and via the ensemble average from the
coherent non-Markovian SSE is plotted in Fig. 2. The dotted
line corresponds to the zeroth-, the dashed is the first-, and
the solid is the second-order. It is observed that the perturba-
tion first- and second-order perturbations are a lot more ac-
curate than the zeroth-order perturbation. However, it can be
seen that the second-order perturbation is not necessarily
more accurate than the first-order perturbation. This suggest
that our perturbation method is an asymptotic expansion
rather than a convergent series.
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1

E E K K
SO I diza(t) == 5 Za (D + 5\ &), (5.33
-1 | llllllll | """""""""""" : .................. | ................
05 2 * : 2 " With z,(0) being a GRV satisfying[z,(0)z%(0)]= « /4.
R Sy 5 Here &(t) is standard white noise and satisfies

E[&(t)€*(s)]=o(t—s) [26].

1. Zeroth-order approximation

The situation is greatly simplified with the memory func-
tion in Eq. (5.1), as B(t,s) = BU-cost,5)=Bg0:c°Yt,s), which
t in turn implies (DQ,(t) = QYY) =OQUsiNt).
FIG. 2. This figure depicts the difference between the reduced | N€ Zeroth-order approximation is to set
state calculated from our perturbative coherent non-Markovian SSE

]
-

and the enlarged system method. The dotted line corresponds to the (0)A 0% et
zeroth-, the dashed is the first-, and the solid is the second-order Q(t)= E(l_e )o, (5.39
perturbation. Other details are as in Fig. 1.
D. Quadrature unraveling and the TLA and thus
For quadrature unraveling the actual non-Markovian SSE y
s OQ,AA)=5(1-e"), (5.353
Q) =| =i 5= K= (5= (5300 OQu()
R 2721 IO ©Q,1,()=Q, ,()=Q()=0. (535h
+H((oy= (o) QQu))+2(t)(a— (o)) 2. First-order approximation
The first-order approximation is to set
X| i (1)), (5.28
. . . R y B o
and the noise function for the TLA is DWA,(t) = 5(1_8 <2)[ & O (1)] (5.36
t ~
= + - : .
20-20+ [ pe-sagds 29
Again, as in the coherent case, we can calculate the complex (l)QU,z(t): y(l_e*KtIZ)(O)QUZ’Z(t), (5.37a

amplitude equation by applying the staig,(t))=Cq(t)|e)
+Cy(1)|g) to Eq.(5.28 and expanding”Q,(t) as

OQ(t)=2 mOQ,, (1),

(MQ,, ()= 3 (1-e *?)OQ,: (1), (537
(5.30

MQ,+,(1)=1Q, (t)=0. (5.379

wherem={o,0",0,,1}. This results in a coupled set of dif-

f(%)rential equations forCe(t) and Cy(t) that depend on The zeroth-order functionals are found by applying TLA op-
Qm(t) andz(t). In these equations the real-valued noiseerators to Eq(3.39. With the simple memory function this

is given by

z(t)=z,(t)+ %e*"t’ZJJeKS’Z[Cg(S)C’e‘(s)

+CE(3)Cel9)]ds,

wherez, (t) is found by
~ o

This is generated by

gives

60,1 = L5 — SO0, + 2(0[5,0Q,(1)]

(5.3)

=i %(}z+ )2_((;3( 1(0)Qz(t)

[0, 9Q,(1)DQ,(1)]— o,V Q(1).
(5.32

(5.38
Using Eq.(5.30 this gives
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and via the ensemble average from the quadrature non-
Markovian SSEs for the zerothtdotted and first-order
(dashedl perturbations. As in the coherent case we find that
the first-order perturbation is more accurate than the zeroth-
order one.

VI. POST-MARKOVIAN PERTURBATION

In this section we extend the YDGS post-Markovian per-
turbation[17] to include quadrature unraveling and compare
the post-Markovian method with our perturbation method.

The basic idea behind their perturbation method is to ex-

pand the operator‘é’)fz(t,s) in powers of (—s) around the

FIG. 3. This figure depicts the difference between the reducecboint t=s (this is why it is called the post-Markovian per-
state calculated from our perturbative quadrature non-Markoviagrhatior). That is,

SSE and the enlarged system method. The dotted line corresponds

to the zeroth- and the dashed is the first-order perturbation. Other

details are as in Fig. 1.

K .
d{¥Q, (1) = k= 517Qu (1) +iAQ, 4(1)

—ix9Q,, A)+22()Q, (1)
+0Q2 (1) -29Q,. (H[OQ ()
+0Q, (1)]-0Q,r 1) 0Q, A1)

—[MQ ) +PQ, )], (5.393

K .
d{¥Q,t () == 5Qu1 (1) +ix1VQg, A1)

—iA0Q,1 (1) +29Q, ([VQ (1)
- (O)Qaz ,z(t)] - (O)Qof,z(t)(o)Qu,z(t)

+OQ2; ()-WQ () +1Q, (1),
(5.39h

K X
d”Qq, A1) == 59Q,, A1)+ 59Qu14(1)

~150Q, (1)~ 9Q, ,O[OQ A1)

-0Qq, ()]+©Q,r A1) VQ; ()
+0Q, A)]-2(1)OQ,1 (1)

—3[MQ, () -MQ,t,(1)],  (5.390

40Q 2(1)= = 59Q o)~ IPQ, (1) + IQ1 1),
(5.390

which can be solved in parallel wit@(t) and Cy(t).

O (t,5)=OF (5,5 +[ VT (t,5)];=s](t—5)

+3[7 VT ,(1,9)|=sl(t—9)%+ -, (6.

where (9% ,(s,s)=L. To find the first-order term we simply
evaluate Eq(3.1)) att=s:

KOt eom — 3 [Fin(s) L1 [LTOF(9),[]

~LTL,OF(s)]. (6.2

Thus the functional®F,(t) for this perturbation is given by
R R i~ .
OF (1) =go()L = 01(t) 7 [Hin(1),L]
t ~ ~ ~
—f a(t—s)(t—s)[LTOF (s),L]ds
0

—fta(t—s)(t—s)f_T[li,(O)ﬁz(s)]ds, 6.3
0

where
t
go(t) = foa(t—s)ds, (6.4
t
gl(t)=f0a(t—s)(t—s)ds. (6.5

This equation cannot be solved without the initial condition
d,(¥F,(0). However, if we make the approximation
OF,(s)=fSa(s—u)Ldu, Eq. (6.3 becomes

OF (1) = go(1)E = Ga(1) 7T Aim(0), L1- GO L1,
(6.6)

where

To illustrate how accurate our perturbation method is for
guadrature unraveling, Fig. 3 shows the difference between
the reduced state calculated via the enlarged system method

t (s
gz(t)=f0 fo a(t—s)a(s—u)(t—s)duds (6.7
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YDGS perturbation method is for the environment to be
close to the Markovian regime, one would expect their
method to fail in this regime.

In Ref. [17] YDGS suggest an alternative perturbation

method. The functional operatof®F,(t), which equals

52(t) in their notation, is expanded by the functional expan-
sion

0,(t)=00)t)+ fta(l)(t,v)z(v)dv
0

t

t [t

+f f 0@(t,v1,v5)2(v1)2(v5)dv dvy+ - - -
FIG. 4. This figure shows the difference between the reduced 070

states calculated using the YDGS post-Markovian non-Markovian t t_

SSE method and the enlarged system method, for both coherent +f f OM(t,vy, ... vn2Z(vy)---2(vy)
(dotted ling and quadraturésolid line) unraveling. Other details 0 0

are as in Fig. 1. Xdvg---dog+---. (6.12

which can be solved. The same cquld be done for.the .seconqi—can be shown that one can establish a set of coupled dif-
order terms, but as well as making an approximation folgrential equations for these operators providgd—s) is

0)E& . 0)E& -
©F (s) we would need to approximati®F,(s). For the  given by Eq.(3.1). To truncate this perturbation &™ one

purpose of this paper we will only go to first order. has to assume a val@™* 1. It turns out that for all opera-
To extend the idea to the quadrature case we Taylor ex-

- o o
pand the operatofd,(t,s) in powers of (—s) around the tors O'" other thanO'™’ the only reason the operators

pointt=s. To find the first-order term we simply evaluate c_hange from their initial value 0 at=0 is if the assumed

Eq. (3.37 at t—s. With the approximation ©Q,(s) O is nonzero. This suggest that this method is highly
— [$B(s—u)Ldu we get z dependent on the assumed value @P Y.
—Jo

VII. CONCLUSIONS

NA - i . R aa A
Q) =ho()L ~hy() 7 [Hin(0,L1=ha(DLLL L, In this paper we presented a perturbation method for solv-
(6.8 ing the coherent and quadrature non-Markovian SSEs. This
perturbation method is easily extended to any order and is
where not limited to the post-Markovian regime. However, the en-
vironment is restricted such that it has a correlation function
t satisfying Eq.(3.1). As shown in Ref.[20] most non-
ho(t) = foﬁ(t—s)ds, (6.9  Markovian environments can be simulated via this correla-
tion function with a relatively small. This suggests that this
t perturbation method might be useful for simulating non-
_ _ _ Markovian evolution forp,(t).
h(® fo'B(t S)(t=s)ds, (6.19 One appealing feature of this method is that it provides a
perturbative solution fopt) that is positive by definition.
t (s However, there is another method, namely, Imamsgen-
hz(t)zj f B(t—s)B(s—u)(t—s)duds (6.1 larged system methdd 9,20, which provides a better solu-
0o tion for p.qt). Imamodu’s enlarged system method re-
quires fewer coupled differential equations to solve and the
For the simple TLA system it is easy to generate thesgnly approximation comes in by a truncation of the Hilbert
approximate expressions fdP)F,(t) and ©Q,(t) for all space of the fictitious modes. As one increases the basis size
time; hence we can obtain the solution to the non-Markoviarfor these modes this method will converge to the correct
SSE. To compare the YDGS post-Markovian non-Markoviansolution. By contrast, convergence has not been shown for
SSE method with our perturbation method, we again plot theur method.
difference between the YDGS methoahen 1000 trajecto- This does not mean that our method is useless, as the
ries were usedand the enlarged system method. The resultgprimary interest in our method is not to simulaigt), but
of this are shown in Fig. 4, where it is observed that YDGSto simulate the non-Markovian SSEs. This is interesting as
first-order perturbation has a greater error than our perturban that is interpretation continuous in time of non-Markovian
tion method(Figs. 2 and R This is perhaps not surprising, as SSEs is not clear. In Ref16] we showed that these non-
the system we modeled has=1, which implies that it is Markovian SSEs under standard quantum measurement
very non-Markovian. Since one of the requirements of theheory do not have a continuous measurement interpretation.
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However, Loubenets in Ref$22,23 claimed that she has If s(t;) is less than (ty), which is the only situation we are
developed a framework for continuous quantum measureinterested in, then taking the limit that-t (t;=ty_) this
ments in which non-Markovian SSEs represent the evolutiothecomes
of a system state which is continuously monitored.

Future work on this topic is to look into this question.

Another question that needs answering is whether it is pos- Iim6| Y1) _ ol ¢atn-1)) + Atd|d(tn-1))] (A3)
sible to derive non-Markovian SSEs based on a discrete basis ¢ ; 57*(s) 9Z* (ty_1) At '
such as the photon number. We believe this question and the
previous question will turn out to be related. Finally, there is o
the possible application of our method to strongly non-Discretizing Eq.(2.18 we get
Markovian systems such as atom lag&®| or photon emis-
sion in a photonic band-gap materjaig,29. i
X A Il otn-1)) = THim(tN—l)"'Z’k(tN—l)L_|-Jr
APPENDIX: DERIVATION OF Of (T, T)=L
A N-2
To show that©@f,(t,t)=L we start by discretizing the I~
. L ! . . . X e~ ) ——— tno1))-
functional derivative. We divide the ran8,) into N inter- Jzo a(tn-1 J)az*(tj) [etn-0)
vals of widthAt, so the change itw,(t)) is (Ad)
~ el o _
8 (1)) = . F(S)& (s)ds Substituting this into Eq(A3) and using the fact that the
state at timdy_, depends only on the noise at time less then
N-1 ~ ty_1, We get the limit
Jd t N-1
= > At AbLt)) dz*(t), (A1)
=0 az* (t;) At _
ay() -~
and thus — L t)). (A5)
ey A0}
~ | (ty))
)= —=—= (A2) o -
8Z* () az* (t;)) At Thus by Eq.(2.19 ™f,(t,t)=L.
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