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Measurement-based approach to quantum arrival times
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For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at
a specific location. The procedure is based on the emission of a first photon from a two-level system moving
into a laser-illuminated region. The resulting temporal distribution is explicitly calculated for the one-
dimensional case and compared with axiomatically proposed expressions. As a main result we show that by
means of a deconvolution one obtains the well-known quantum-mechanical probability flux of the particle at
the location as a limiting distribution.
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[. INTRODUCTION momentum components may become negative at certain
times[3]. As a way out Leavengt] has proposed, following
An important open problem in quantum theory is thea Bohm trajectory analysis, to use its normalized absolute

guestion of how to formulate the notion of “arrival time” of value.
a particle, such as an atom, at a given location, i.e., the time The difficulties to formulate a quantum arrival-time con-
instant of its first detection there. This is clearly a very physi-cept were posed most prominently by Allcold&, and there
cal question, but when the extension and spreading of thare several attempts to overcome thglsé]. Kijowski [7], in
wave packet is taken into account, a satisfactory formulatiofparticular, obtained a time-of-arrival distribution for free mo-
is far from obvious. The problem of time in quantum me-tion from a set of axioms modeled after the classical case; for
chanics, both for time instants and time durations such a8 general investigation see Werr{@]. The distribution of
dwell time, has received a great deal of theoretical attentioiRef.[7] has been studied, compared to other approaches, and
recently[1,2]. When the translational motion of the particle 9eneralized by some of us for systems subject to interaction
can be treated classically, a full quantum analysis of arrivaPotentials and to multiparticle systerf-14]. S
time is in fact not necessary. This is the case for fast par- NO Procedure how to measure the proposed distributions
ticles, and therefore arrival times are presently measurely@S 9iven, nor is one known today. The gap between experi-

mostly by means of time-of-flight techniques, whose analysi§nent and axiomatically defined quantities has been com-

is carried out in terms of classical mechanics. Problemsmented on and considered to be worrying by Wigner and

. . . - oOthers; for a review see Rdfl]. In this vein, several “toy
though, arise for slow particles for which the finite extent of |\ o0 "o o1 e measurements have been put for-

the wave function and its_ spreading become relevant, such ard by Aharonowet al.[15] (cf. also Refs[1,16]), but these

for coo_led atoms drgppmg out of a trap. Then a quantuny,els do not incorporate the basic irreversibility inherent in
thec_)retlcal point of view is needed. It IS the_refore lmportantany measurement process. Irreversibility has been included
to find out when the ClaSS'C%: appr?X|mat!on|s fa|l aqd tﬁby Halliwell [17] in a model based on a two-level detector in
propose measurement procedures for arrival times In g,y the initial excited level decays due to the presence of

quantum case. Since the theoretical definition of a quanturg,e aricle. However, the model remains somewhat abstract

ar.rlval time is still subject to debate it is necessary to deter-since no connection is made with any specific measuring
mine what exactly such measurement procedures are measgg,—stem

ing and to compare such operational approaches with th

existing, more abgtract qnd axiomatic, 'theorles. . . arrival time of an atom is by quantum optical means. A re-
A simple one-d|men§|onal example is the a”"’?' time atgion of space may be illuminated by a laser and upon enter-
x=0 of a particle described by a wave packet moving 0 thg,; the region an atom will start emitting photons. The first
nght.OThe probability of f|n<_j|ng it still on the left side at time photon emission can be taken as a measure of the arrival
tis J2.dx| ;p(x,_t)|2. Then it would seem natural to assume time of the atom in that region. This approach has been pro-
that the probability of arrival it is given by the decrease in posed by three of us and Bayts], and in a preliminary
dt of this integral, i.e., that the arriyal-time probability den- study of the one-dimensional case a surprisingly good nu-
sity is its negative derivative. Singe+dJ,/dx=0, where merical agreement with Kijowski’s axiomatic distribution
J,, is the usual quantum-mechanical probability current, onavas found in some special examples.
immediately finds that the arrival-time probability density From a fundamental point of view, however, immediate
should be given by, (0t). For an ensemble of classical objections may be raised to this experimental, or operational,
particles the arrival time distribution is also given by the approach. First, depending on the decay rate of the excited
flux, so everything seems to fit nicely. However, the quantumatomic level, the photon emission will not be instantaneous
flux for a wave function formed entirely of positive- but will take some time, thus leading to a delay compared to

€ An experimentally very natural approach to determine the
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some “ideal” arrival time of the atom. Second, the laser 1
takes some time to pump the atom from its ground state to an HAZEﬁw{|2><2| —|1)(1[},
excited state, and therefore this also leads to a delay. Con-

ceivably, the second objection might be overcome by pro- L
gressively increasing the laser intensity, and the first objec- HF=E hwkaﬁ)\akx,
tion by considering shorter lifetimes so that in a theoretical k
limit one would arrive at an ideal quantum arrival time with-
out the above shortcomings. Though this seems attractive at

first sight, it ‘?'065 not work, as will be ShPW” in this paper. i di» being the transition dipole moment between the
The reason is a further difficulty: reflection. Although the states|1) and|2). It is assumed that the laser illuminates a
laser couples only to the internal degrees of the atom, it WI“nahc spacex;=0, say

be seen that there is a nonzero probability for the atom to be Let an atomic statéW(ty)) be prepared at time,. By

reflected from the laser region without ever emitting a pho- : o
. 2“2 means of the quantum jump approdd®] the atomic time
ton. Nevertheless, there is a way out of these difficulties d jump approgd]

) o ; - development until the first-photon detection is given by a
with a surprising result. The idea is to “subtract” the delays b P g y

from the first-photon probability density by means of a de-(nOn Hermitian “conditional” Hamiltonian He,
convolution with an atom at rest. This results in a distribu- | (t))=e M=/ | P (1)), (3)
tion which, for shorter and shorter lifetime of the atomic
level, converges to an unexpected distribution, namely,to with the photon part traced away. In the interaction picture
the quantum-mechanical probability flux. The probability with respect to the internal Hamiltonidr, one has in the
distribution for the first photon is non-negative and the emerusual rotating wave approximation
gence of possible small negative values is due to the decon- " i
volution procedure. This connection opens a way to _n2 i " ik -x _
measure the quantum-mechanical prgk?)pability flux. Hc=p/2m-+ ZQ®(X1){|2><1|e Vi H.C) 2ﬁ7|2><2|’

For simplicity, this paper considers only the one- (4)
dimensional case. The probability density for the emission of . )
the first photon from a moving atom is calculated explicitly Where the Rabi frequenc§locd- EL0 plays the role of a
by means of the quantum jump approdd]. It is shown laser-atom coupling constawith E(,_ ) the laser amplitude
that large laser intensities lead to a large reflection probabilkL IS the laser wave vector, and whefeis the Einstein
|ty This in turn leads to a |arge nonemission probabmty andcoefﬁCient of level 2, i.e., its decay rate or inverse lifetime.
a first-photon probability density not normalized to 1. ThenOne can show that Eq4) includes the Doppler effect, i.e.,
the problem of reflection versus time delay is discussed. Rethe laser driving depends on the atomic velocity through a
ducing the laser intensity leads to a pumping delay. It isfrequency shift. The probabilityN; of no photon detection
shown that trying to reduce the emission delay by shortenin§fom to up to timet is given by[19]
the level lifetime leads in the limit to a free wave packet in N = || Het—0A (o)) |2 ®)
the ground state with no emissions. The delays are then re- t 0 '
moved by a deconvolution, and we discuss for which paramz g the probability densityI(t) for the first-photon detec-
eters the resulting expression is close to its ideal lidit 4, by
For more practical purposes it is also shown that for a certain
domain of parameters, which include those used in Réi, dN;
the nondeconvoluted first-photon probability density gives a M=-—r- (6)
good approximation toJ, and to Kijowski's axiomatic
arrival-time distribution. However, it is also pointed out that  For simplicity, we only consider the corresponding one-
Kijowski’s distribution cannot be obtained in a simple direct dimensional problem, with the laser perpendicular to the

way as an exact limit of our operational approach. atomic motion, so that the Doppler effect plays no role. With
|1)=(}) and|2)=(?) the conditional Hamiltonian becomes,
Il. THE PROBABILITY DENSITY FOR THE in matrix form
FIRST PHOTON N 40 0\ 5 (0 Q
The Hamiltonian of a two-level atom of mass interact- He=p“2m+ 3| o Cig) T 700 q o] @

ing with the quantized electromagnetic fididand a laser
with (classical field E, is, in the usual dipole approximation To obtain the time development of a general wave packet

and in the Schidinger picture, underH . we first solve the eigenvalue equation
<2 ¢ (%)
H= 2 +Hu+He+eD- (E+Ey), (1) HP=ED, where DOO=| yor)  ®
Since forx<O0 there is no laser one obtains fgi" the
where equations
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"2

02
p p= .
2—¢(1)=E¢(1), 2——|ﬁ7/2 dP=Ep@. (9

Hence) is a combination o&'** ande™** with k satis-
fying

E=%2k?2m=E,, (10

while ¢ is a combination o&'9* ande ™' with q satisfy-
ing

E-+ifyl2=h2q%/2m. (1)

We now look for eigenstates dfi. which correspond to a
ground-state plane wave coming in from the left. Theas
well as E must be real, by boundedness, and Xst0 the
eigenstate is of the form

ikx —ikx
e™*+R.e
Rze*iqx

1

V27

with Im q>0 for boundedness, whilR; andR, are reflec-
tion amplitudes yet to be determined. Note that althokEgh

Dy (x)=

), x<0, k>0, (12

=E, is real the complete wave functions will not be orthogo-

nal, in accordance with the non-Hermiticity bf;.

To obtain the form of®,(x) for x>0 we denote by\ . )
and|\ _) the eigenstates of the matrx (_ZW) correspond-
ing to the eigenvalues .. . One easily finds

i
—\/y2—492,

i
Ao=——

27%7 (13
(1 )
|M>_(27\¢/Q : (14

We exclude, for the moment, the limiting cadg =\ _.

Note that/\ .. ) are not orthogonal and have not been normal-

ized. Forx=0, one can writeb, as a superposition ¢ ..)
in the form

k - i — [N = k- ’ =
V27 @ (X)=C |\ )Ye*+ X+ C_|\_)ek-*  x=0

15

From the eigenvalue equatidt .®,=E, ®,, together with
E=%2k?/2m, one obtains fox=0,

K2 =k2—2m\ , /A =k2+im y/245 T im 2 — 4Q2/2%,
(16)

with Imk.>0 for boundedness. From the continuity of
®,(x) atx=0 one gets

1+R=C(1x ) +C(1x_),
Ry=C,(2|N,)+C_(2]\_).

Similar relations result from the continuity ab,(x) at x
=0, yielding
C,=-

2k(q+k_)\_ /D, (17)

PHYSICAL REVIEW 46, 052104 (2002
C_=2k(g+k )\, /D,
R,=k(k_—k,)Q/D,
Ri=[N:(g+ky)(k=k)=A_(g+k-)(k=ky)]/D,
where the common denominatbris given by
D=(k+k_)(q+ki)N;—(k+ki)(g+k)N_. (18

Thus Eq.(15) becomes, in components and fox0,

D(y)= — 2k ik x_ ik_x
K(X)= TwD{(q+k-)7x_e —(qt+k)N €5,
(19
kQ . _
HO00=—=—{(ark e M~ (g kel

The case\ _ =\, is obtained from this by taking limits. For
later purposes we also consider increasingly laggethe
other parameters kept fixed. This leads to

Ai~—i10%2y—0, (20)
A_~—iyl2+iQ%2y——iyl2, (21)
k2 ~k>+imQ%hy, k,—k, (22)

k2 ~Kk2+imylh~im yl#, (23)
q={imy/h}1?, (24)
C_,R;,R,—0, (25)

C,—1. (26)

In this case the state vector far>0 becomes simply the
plane wave with wave numbeék in the ground state. This
means that for increasing there is less and less reflection,
but also less and less absorption, i.e., photon detection, so
that the laser has less and less effect on the atom.

At first sight the occurrence of reflections may seem sur-
prising since the laser only couples to the internal degrees of
the atom and sinckl; only applies to the time development
before the first-photon detection. Physically this can be un-
derstood from the coupling of the atom to the quantized elec-
tromagnetic field. The laser changes the internal state, this in
turn changes the quantized electromagnetic field and its mo-
mentum distribution. This in turn changes the momentum
distribution of the atomic motion. Mathematically the reason
is of course the step function in front of the matrix, similar as
for a square-well potential. The consequences of the nonzero
reflection will be discussed further below.

By decomposing an initial state as a superposition of
eigenfunctions one obtains its conditional time development.
This is easy for an initial ground-state wave pack‘lég’t"))
coming in from the far left side and withty in
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the remote past. Indeed, (k) denotes the momentum am- 0.2
plitude the wave packet would have as a freely moving

ket att=0, th
packet a , then 015 |

W(x,t)= f:dki/f(k)<1>k(x)e*iﬁk2“2m (27) ol

JTT (us™)

describes the conditional time development of a state which
in the remote past behaves like a wave packet in the ground- 0.05
state coming in from the left.

IIl. THE REFLECTION PROBLEM AND THE %5 0 20 30 40 50
NO-DETECTION PROBABILITY t (MS)
. . (1)
From Eq.(5) one obtains, WIthI’Z(g(z)), FIG. 1. Time-of-arrival distributions: flud (solid line, here in-

distinguishable from Kijowski'sIIx) and IT (first photon, dots

Note the delay inll. The initial state is a minimum-uncertainty-
N¢= f dx{| 'r’f(l)(xyt)|2+ | 1,//(2)(x,t)|2}, (28) product Gaussian for the center-of-mass motion of a single cesium
atom in the ground state with(v)=9.0297 cm/s, (x)=
—1.85um, andAx=0.26 um; 1 =0.0999y; all figures are for

and Eq.(6) becomes i 5 i ?
the transition 6P5,— 62S;;, of cesium withy=33.3 MHz.

i IV. DELAYS VERSUS REFLECTIONS AND AN
- _ _pt
I1(t)= fi <l’b(t)|H° HC|¢/(t)>' (29 IDEALIZED DISTRIBUTION

. . . . The approach to quantum arrival times by means of first-
Since H_C_HI: —iyA|2)(2|, the first-photon probability nai0n d%ﬁections c?)ntains a built-in “delay” since an ex-
density is given by cited atom will not emit a photon immediately, due to the
finite decay ratey. This is in addition to the time the photon
e 2 2 takes to reach the detector; the photon travel time, however,
(= yj,xd)q WD, (30 can easily be taken into account, so it will not be considered
here any further.
The probability of no photon detection at all is, figrin the It Seems natural to try to obtain an ideal arrival-time dis-
remote past, tribution by considering faster and faster decay times, i.e.,
taking y— o, at least theoretically. This will not work, how-
x ever. The reason is that for increasimg with all other pa-
1—f dt'TI(t")=N;—w . (31) rameters kept fixed, the driving by the laser becomes less
* efficient so that, in the limity—, the wave packet remains
) 1) i , unaffected, with no excitation and no reflection, as can be
For physical reasons, only'*’ contributes to this, and only ¢aan from Eqs(20)—(26) above. Moreover, if botly and Q)
for x<0. The latter follows from the fact that, for>0, the go to infinity with ¥/ kept fixed, therR,— — 1 and every-

ground-state part will eventually be pumped by the laser tthng is completely reflected without excitati¢20].

the excited state. Sinde= in Eq. (31), only the reflected One might also be tempted to avoid reflection by choos-
part remains, and hence the no-detection probability berng weak driving, 2/ y<1. This, however, would cause a
comes severe delay problem since the laser would take more time to
. pump the atom to the excited state. Hence the first-photon
Nt=oo:J dk|Ry(K)|2|%(K)|2. (32  emission would also take more time. To see how relevant
0 detection delays are, we have compafé@) with the flux

J, and the axiomatic probability distributior(t) of Ki-
As a consequencé](t) is, in general, not normalized to 1. jowski for a Gaussian wave packet. The result is given in
Physically the probability for missing an atom increases withFig. 1. Depending on the parameters, the delay and reflection
Q, the strength of the laser driving. This is also seen mathproblem may be either very relevant or negligible. A detailed
ematically from the expression fd®, in Eq. (17). An ex-  analytic investigation of this question is given in Sec. V.

ample is given in Sec. \(cf. Fig. 4 further below and a A way out of the conflicting problems of reflection
practical approach to bypass this problem is also discussdehissed atorhand increasing delay times for weaker driving
there. is the transition from the “experimentall1(t) to an ideal-

On the other hand, fok—x reflection becomes negli- ized arrival-time distribution, obtained as follows. A two-
gible since thenR;—0. Hence for faster atoms reflection level atom atrest when driven by a resonant laser, has a
does not pose a problem. This will also be exploited fordefinite probability densityV(t) for the detection of the first
practical purposes in Sec. V. photon, given by 21]
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2
W(t) = e yt/2| eS’fIZ

4ISI

e 520 (t) (33

with

1
S=5(y*-40%)"2 (34)

Intuitively, the delay-time mechanism for a moving atom

PHYSICAL REVIEW &6, 052104 (2002

For y—o one has, fro_m Eq<g20) and(26), C, —1 and the
integration of exp—ik, x+ik,x} over x=0 gives i/(k’.
—k,). Hence

i
k’+ —K.

(v
W(v)

_>—f dkdK P(K) gk’ ) Y

XiLZﬂ'&(V——(kz k'?)|. (41)
0?2

ought to be similar to that for an atom at rest. Should it then

not be possible to somehow compensate the del&l(in by

By the ¢ function, v=%4(k—k')(k+k’")/2m. Hence in the

that of the atom at rest and thus arrive, in some limit, at gimit y—o one obtains, by Eqg20)—(24),
delay-free ideal distribution? To achieve this, we assume the

(experimental arrival-time distributionII(t) to be the con-
volution of a hypothetical ideal distributio ;4 with the dis-
tribution W(t) for an atom at rest,

II=II id* W. (35)

The delay inIl is then mainly due to that contained .
The hypothetical ideal distributiobl;; is obtained by a

deconvolution via Fourier transform froiid,y=IT1/W where
f(v)=/fdte"™I(t), etc. From Eqgs.(30) and (27) one

finds
I(v)= fdxf dkf dk’

TKIGDx)

h
(2) o (Lk2_ 2
X by (x)zms(v S (K2=k'?) |, (36)
and from EQ.(33)
~ QO2yI2
W(v)= > 37)
{(iv+y/2)2— SHiv+yl2}
and thus
~1 =1+Civ+Cy(iv)?+Cy(iv)® (39
W(v) ’
where
c=| L+2] e o=l (39)
Pl ) TP e TP 0
In the time domain this gives
ITig(t) =TI(t) + CIT' (t) + C,IT"(t) + C5I1™(t). (40)

In the limit of no reflection, fory—<, the delay problem
pointed out above fofl should be absent fdid ;4. In fact, in
this limit one sees from Eq$20)—(24) and from Eq.(38)
that in 1fV only i »y/Q? remains relevant for large. Fur-
thermore R,—0 for y—o, and sincea'%—0 in Eq.(36)
the integral oveix<0 goes to zero. Similarly the terms in

$P(x) and 2 (x) containinge '*-* and e*"* drop out.

ﬁ(v) 1 _—
\7V(v) pye ZmJ dkdK Y(k) (k') (k+k')2ms
h
X| v— ﬁ(kz—k’z) . (42)
Going to the time domain one finally obtains
l ﬁ T~
Xeiﬁkzt/2mk+k,'&(k/)e—iﬁk’zt/Zm
{l/f(Ot (O —¢ (0D Y(OL)}, (43

2m|

which is the fluxJ,, for the free wave functiony(x,t) atx
=0, i.e., without lasef22].

This is an extremely interesting result sinktgis a natural
candidate for the arrival-time distribution, as pointed out in
the Introduction. We note that,, is normalized to 1 for a
particle which has only positive momentum components.
This is seen for example from E2) for v=0.

The limit in Eqg.(43) means thatl;y can be approximated
by J, for sufficiently largey. Physically, it is important to
determine the parameter ranges for which this approximation
is a good one. For this to be valid a simple sufficient condi-
tion on the parameters can be derived as follows. First one
considers the cas@?/y?*<1 (weak driving and makes the
corresponding approximations Ihy(t). Denoting byAE a
measure of the magnitude of

2
’ o lKE=K2l, (44)
as determined byj(k) and¥(k’), one then considers the
casey>AE/f andAE/%>Q?/y. Then one obtains thal g
is close toJ,,. The inequalities can be written in the form

0% y<AE/h<y. (45)

Thus IIjy can be replaced by, if these inequalities are
satisfied. Even outside this parameter ranhgmay be an
excellent approximation tdl,y, as shown in Fig. 2. The
convergence ofl;y to J,, shows that alsdl;; may contain
small negative values. Since this occurs neithed fanor for
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1
45 [Re(K)[?~ g1 (U ) 2(HQIE)?. (46)
—~ 35 This is small ifE=A(). For strong drivingQ)> v, the re-
‘Tw flection coefficients take a simple form when the endegyf
= the plane wave satisfies
~ 25
:x E>hQ). (47)
|:7 15 Then both states are populated roughly equallyfe0, and
> with Eqg. (47) the reflection coefficients become
l:’ 0.5 1 1
= . 2. 4 2.~ 2
| Ru(K)[P~ 5 (ROIEY, Ry (K[~ G (ROIE)?
-05 ] 5 5 (48)
t ( S) Both coefficients are small if Eq47) holds.
i To quantify the detection delay, let us defing as the

difference between the average time of the first-photon emis-

FIG. 2. Excellent t bet y (fill ircl X o o
G xcellent agreement betwekly (filled circles andJ sion, ()= /. dttI(t), and (t),=/~.dttd, [23]; we

(solid line); deviations fromlIlx (dotted ling and IT (dot-dashed . ; AR .
line). The initial wave packet is a coherent combinatign note that the “average arrival time” a¢=0 evaluated with

=212y, + 4,) of two Gaussian states for the center-of-mass mo-the flux atx=0, (t), coincides with the average of Kijows-

tion of a single cesium atom that become separately minimal uncefi’S distribution [7,1]. For negligible reflectionW(x,t) is,
tainty packetgwith Ax,=Ax,=0.021xm, and average velocities for x<0, nearly the same as the free wave function, and

(v)1=18.96 cm/s, (v),=5.42 cm/s) atx=0 and t=2 us; @  therefore, by a partial integration,
=0.37y. w
rd=<t)n—(t)J=J dtN,” (for negligible reflection,

W, the intuitive ansatz of Eq35) cannot always be fulfilled (49)

with a strictly positive distribution. The reason for this g p(D) ) @) 5 ]

clearly is that the ansatz of a convolution in Eg5) is too ~ WhereN, =Jq (|4 7(x,)[*+ [¢12(x,t)[*)dx. Hence, in the
simple and ought to be replaced by something more sophi&aSe of negligible r_eflect|on the delgy is associated ywth the
ticated. On the other hand, this result gives a handle at th@1UNt of penetration of the wave into the laser region. For
quantum-mechanical probability flux and indicates a metho eak_ and strong driving a straightforward calculation yields
how to measure it. he simple results

The above deconvolution procedure which recovers the Tq~yIQ? (weak driving, (50
guantum-mechanical particle flux essentially works because o
the weak-excitation limit taken allows a clear separation of Tg~2ly (strong driving. (51)

() the time dependence _associated with the mo_tion of _th‘Ft is interesting to note, and physically very reasonable, that
wave packet, and2) the time dependence associated Withyis coincides with the average time between two photon
the internal degrees of freedofexcitation, Rablloscnlatmn, emissions for a two-level atom at rest, driven by a resonant
and decay It seems reasonable that this might be donejaser, as easily seen from E&3). If At denotes the width of
However, the weak-excitation limit implies that the waiting 11(t), then one needsy;<At for the delay to be negligible.
times for the first-scattered photon are of the org?, _If one denotes b the average energy for wave packets
and th(_arefore very Iong. Hence the number tq be measured jfat are sharply peaked in energy or, more generally, as the
essentially to be obtained from the subtraction of two verygp aiest significant energy component, then the above con-

large numbers. Experimentally this is a difficult thing to do yiions for negligible reflection and negligible delay can be
with high accuracy and requires small measurement errorg,,,nmarized as

For practical purposes it is therefore important to know when

delays and reflections can be safely neglected, since then the HIE<ylQ?<At (weak driving, (52)
transition toll,y by deconvolution is not necessary. This is
investigated quantitatively in the following section. #hIE<Q 1<2/y<At (strong driving. (53

Figure 3 shows a striking example for which these conditions
V. PARAMETER RANGES WITH NEGLIGIBLE DELAY are fulfilled. Here the first-phgton d.istrit.)uti_df] _is indistin-
AND REFLECTION guishable fromJ,, and from Kijowski's distribution.
For strong driving the delay due to the time needed for
In the case of weak drivind) <y, the excited state popu- pumping the atom to an excited level is small, but on the
lation is negligible compared to that of the ground stateother hand there is a large probability to miss out the atom
Hence the reflection coefficient for the ground state is thealtogether if the conditiofe>#) is not fulfilled. As a con-
only one that matters in this case, sequence, the first-photon probability dendityt) will not
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on top ofJ,, (dashed ling also showrlI (solid line) andII (filled
circles. The initial Gaussian wave packet is chosen to become
minimal when its center arrives at=0 (in the absence of the lager

to enhance the difference betweebly and J,; (v)
=0.9 cm/s, Ax=0.106 um, Q=3.

FIG. 3. Negligible delay and reflection with EG3): 1T (first
photon, dots and J,, (solid line, here indistinguishable froi )
for initial Gaussian parameters (v)=90.30 cm/s, (x)=
—218.02um, Ax=26.46um; Q=5y.

b_e normalized to 1. Let us then define a normalized distr_ibuin the limit of a very strong or very weak laser and very large
tion TI\(t)=II(t)/fdt'TI(t"). For practical purposes this Einstein decay coefficient of the excited level has turned out
can be amazingly efficient in some parameter domains agot to be true. However, and this is a main theoretical result
Fig. 4 shows. Therdll is far from being normalized to 1, but of the paper, one can subtract the delay by a deconvolution
Ty andJ,, which in this example has no negative parts,jith the first-photon probability density for an atom at rest
coincide beautifu”y. Interestingly, one notices a small diﬁer'and then, Surprisingly, for |arger and |arger Einstein coeffi-
ence to Kijowski's distribution. It might also be possible t0 ¢jent one obtains the guantum-mechanical probability cur-
use the general normalization procedure in terms of operatokgnt J as the limit distribution. This quantity has previously

proposed in Refl24]. been considered on axiomatic grounds as a candidate for the
arrival-time distribution, and the connection Hf(t) with J
VI. CONCLUSIONS indicates a way to measure the quantum mechanical prob-

. . . ability flux. We have also determined parameter domains for
In this paper, we have investigated a proposal to deter-

mine arrival times of quantum-mechanical particles. The proyv hich the deconvoluted expression is alreaqy sufficiently

posal is based on the intuitive idea to illuminate the arrivalClose toJ. Although _the n_on—deconvoluteH_(t) Is not the .

region by a laser and to consider a traveling two-level atomsame_a_s] and the axmrr_latlcally proposed distribution of Ki-
jowski, it can, for experimental purposes, approach the latter

The time of the first-emitted photon is then taken as a meay, "o tiianty closely. Parameter domains for which this
sure for the arrival time. By repeating the experiment on y Y-

obtains a probability densityI(t) for the time of the first “holds have been explicitly determined; this is another main

photon. We have discussed for the one-dimensional case {r?su“ of the paper, more of a practical nature.

vv.haF Wa_lyH(t) can be regqrded as an atomic arrival-time ACKNOWLEDGMENTS
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