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Measurement-based approach to quantum arrival times
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For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at
a specific location. The procedure is based on the emission of a first photon from a two-level system moving
into a laser-illuminated region. The resulting temporal distribution is explicitly calculated for the one-
dimensional case and compared with axiomatically proposed expressions. As a main result we show that by
means of a deconvolution one obtains the well-known quantum-mechanical probability flux of the particle at
the location as a limiting distribution.
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I. INTRODUCTION

An important open problem in quantum theory is t
question of how to formulate the notion of ‘‘arrival time’’ o
a particle, such as an atom, at a given location, i.e., the t
instant of its first detection there. This is clearly a very phy
cal question, but when the extension and spreading of
wave packet is taken into account, a satisfactory formula
is far from obvious. The problem of time in quantum m
chanics, both for time instants and time durations such
dwell time, has received a great deal of theoretical atten
recently@1,2#. When the translational motion of the partic
can be treated classically, a full quantum analysis of arr
time is in fact not necessary. This is the case for fast p
ticles, and therefore arrival times are presently measu
mostly by means of time-of-flight techniques, whose analy
is carried out in terms of classical mechanics. Proble
though, arise for slow particles for which the finite extent
the wave function and its spreading become relevant, suc
for cooled atoms dropping out of a trap. Then a quant
theoretical point of view is needed. It is therefore importa
to find out when the classical approximations fail and
propose measurement procedures for arrival times in
quantum case. Since the theoretical definition of a quan
arrival time is still subject to debate it is necessary to de
mine what exactly such measurement procedures are me
ing and to compare such operational approaches with
existing, more abstract and axiomatic, theories.

A simple one-dimensional example is the arrival time
x50 of a particle described by a wave packet moving to
right. The probability of finding it still on the left side at tim
t is *2`

0 dxuc(x,t)u2. Then it would seem natural to assum
that the probability of arrival indt is given by the decrease i
dt of this integral, i.e., that the arrival-time probability de
sity is its negative derivative. Sinceṙ1dJc /dx50, where
Jc is the usual quantum-mechanical probability current, o
immediately finds that the arrival-time probability dens
should be given byJc(0,t). For an ensemble of classica
particles the arrival time distribution is also given by t
flux, so everything seems to fit nicely. However, the quant
flux for a wave function formed entirely of positive
1050-2947/2002/66~5!/052104~8!/$20.00 66 0521
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momentum components may become negative at cer
times@3#. As a way out Leavens@4# has proposed, following
a Bohm trajectory analysis, to use its normalized abso
value.

The difficulties to formulate a quantum arrival-time co
cept were posed most prominently by Allcock@5#, and there
are several attempts to overcome these@1,6#. Kijowski @7#, in
particular, obtained a time-of-arrival distribution for free m
tion from a set of axioms modeled after the classical case;
a general investigation see Werner@8#. The distribution of
Ref. @7# has been studied, compared to other approaches,
generalized by some of us for systems subject to interac
potentials and to multiparticle systems@9–14#.

No procedure how to measure the proposed distributi
was given, nor is one known today. The gap between exp
ment and axiomatically defined quantities has been co
mented on and considered to be worrying by Wigner a
others; for a review see Ref.@1#. In this vein, several ‘‘toy
models’’ for arrival-time measurements have been put f
ward by Aharonovet al. @15# ~cf. also Refs.@1,16#!, but these
models do not incorporate the basic irreversibility inheren
any measurement process. Irreversibility has been inclu
by Halliwell @17# in a model based on a two-level detector
which the initial excited level decays due to the presence
the particle. However, the model remains somewhat abst
since no connection is made with any specific measur
system.

An experimentally very natural approach to determine
arrival time of an atom is by quantum optical means. A
gion of space may be illuminated by a laser and upon en
ing the region an atom will start emitting photons. The fi
photon emission can be taken as a measure of the ar
time of the atom in that region. This approach has been p
posed by three of us and Baute@18#, and in a preliminary
study of the one-dimensional case a surprisingly good
merical agreement with Kijowski’s axiomatic distributio
was found in some special examples.

From a fundamental point of view, however, immedia
objections may be raised to this experimental, or operatio
approach. First, depending on the decay rate of the exc
atomic level, the photon emission will not be instantaneo
but will take some time, thus leading to a delay compared
©2002 The American Physical Society04-1
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DAMBORENEA et al. PHYSICAL REVIEW A 66, 052104 ~2002!
some ‘‘ideal’’ arrival time of the atom. Second, the las
takes some time to pump the atom from its ground state to
excited state, and therefore this also leads to a delay. C
ceivably, the second objection might be overcome by p
gressively increasing the laser intensity, and the first ob
tion by considering shorter lifetimes so that in a theoreti
limit one would arrive at an ideal quantum arrival time wit
out the above shortcomings. Though this seems attractiv
first sight, it does not work, as will be shown in this pap
The reason is a further difficulty: reflection. Although th
laser couples only to the internal degrees of the atom, it
be seen that there is a nonzero probability for the atom to
reflected from the laser region without ever emitting a ph
ton. Nevertheless, there is a way out of these difficulti
with a surprising result. The idea is to ‘‘subtract’’ the dela
from the first-photon probability density by means of a d
convolution with an atom at rest. This results in a distrib
tion which, for shorter and shorter lifetime of the atom
level, converges to an unexpected distribution, namely, toJc
the quantum-mechanical probability flux. The probabil
distribution for the first photon is non-negative and the em
gence of possible small negative values is due to the de
volution procedure. This connection toJc opens a way to
measure the quantum-mechanical probability flux.

For simplicity, this paper considers only the on
dimensional case. The probability density for the emission
the first photon from a moving atom is calculated explici
by means of the quantum jump approach@19#. It is shown
that large laser intensities lead to a large reflection proba
ity. This in turn leads to a large nonemission probability a
a first-photon probability density not normalized to 1. Th
the problem of reflection versus time delay is discussed.
ducing the laser intensity leads to a pumping delay. It
shown that trying to reduce the emission delay by shorten
the level lifetime leads in the limit to a free wave packet
the ground state with no emissions. The delays are then
moved by a deconvolution, and we discuss for which para
eters the resulting expression is close to its ideal limitJc .
For more practical purposes it is also shown that for a cer
domain of parameters, which include those used in Ref.@18#,
the nondeconvoluted first-photon probability density give
good approximation toJc and to Kijowski’s axiomatic
arrival-time distribution. However, it is also pointed out th
Kijowski’s distribution cannot be obtained in a simple dire
way as an exact limit of our operational approach.

II. THE PROBABILITY DENSITY FOR THE
FIRST PHOTON

The Hamiltonian of a two-level atom of massm, interact-
ing with the quantized electromagnetic fieldE and a laser
with ~classical! field EL is, in the usual dipole approximatio
and in the Schro¨dinger picture,

H5
p̂2

2m
1HA1HF1eD•~E1EL!, ~1!

where
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HA5
1

2
\v$u2&^2u2u1&^1u%,

HF5(
kl

\vkâkl
† âkl,

D5d12u1&^2u1H.c., ~2!

with d12 being the transition dipole moment between t
statesu1& and u2&. It is assumed that the laser illuminates
half space,x1>0, say.

Let an atomic stateuC(t0)& be prepared at timet0. By
means of the quantum jump approach@19# the atomic time
development until the first-photon detection is given by
~non-Hermitian! ‘‘conditional’’ Hamiltonian Hc ,

uC~ t !&5e2 iH c(t2t0)/\uC~ t0!&, ~3!

with the photon part traced away. In the interaction pictu
with respect to the internal HamiltonianHA one has in the
usual rotating wave approximation

Hc5p̂2/2m1
\

2
VQ~ x̂1!$u2&^1ueikL• x̂1H.c.%2

i

2
\gu2&^2u,

~4!

where the Rabi frequencyV}d•EL
(0) plays the role of a

laser-atom coupling constant~with EL
(0) the laser amplitude!,

kL is the laser wave vector, and whereg is the Einstein
coefficient of level 2, i.e., its decay rate or inverse lifetim
One can show that Eq.~4! includes the Doppler effect, i.e.
the laser driving depends on the atomic velocity throug
frequency shift. The probabilityNt of no photon detection
from t0 up to timet is given by@19#

Nt5uue2 iH c(t2t0)/\uc~ t0!&uu2, ~5!

and the probability densityP(t) for the first-photon detec-
tion by

P~ t !52
dNt

dt
. ~6!

For simplicity, we only consider the corresponding on
dimensional problem, with the laser perpendicular to
atomic motion, so that the Doppler effect plays no role. W
u1&[( 0

1) andu2&[( 1
0) the conditional Hamiltonian becomes

in matrix form

Hc5 p̂2/2m1
\

2 S 0 0

0 2 ig D 1
\

2
Q~ x̂!S 0 V

V 0 D . ~7!

To obtain the time development of a general wave pac
underH c we first solve the eigenvalue equation

H cF5EF, where F~x![S f (1)~x!

f (2)~x!
D . ~8!

Since for x,0 there is no laser one obtains forf ( i ) the
equations
4-2
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p̂2

2m
f (1)5Ef (1), S p̂2

2m
2 i\g/2Df (2)5Ef (2). ~9!

Hencef (1) is a combination ofeikx ande2 ikx with k satis-
fying

E5\2k2/2m[Ek , ~10!

while f (2) is a combination ofeiqx ande2 iqx with q satisfy-
ing

E1 i\g/25\2q2/2m. ~11!

We now look for eigenstates ofHc which correspond to a
ground-state plane wave coming in from the left. Thenk as
well as E must be real, by boundedness, and forx<0 the
eigenstate is of the form

Fk~x!5
1

A2p
S eikx1R1e2 ikx

R2e2 iqx D , x<0, k.0, ~12!

with Im q.0 for boundedness, whileR1 andR2 are reflec-
tion amplitudes yet to be determined. Note that althoughE
5Ek is real the complete wave functions will not be orthog
nal, in accordance with the non-Hermiticity ofHc .

To obtain the form ofFk(x) for x.0 we denote byul1&
andul2& the eigenstates of the matrix1

2 (V
0

2 ig
V ) correspond-

ing to the eigenvaluesl6 . One easily finds

l652
i

4
g6

i

4
Ag224V2, ~13!

ul6&5S 1

2l6 /V D . ~14!

We exclude, for the moment, the limiting casel15l2 .
Note thatul6& are not orthogonal and have not been norm
ized. Forx>0, one can writeFk as a superposition oful6&
in the form

A2pFk~x!5C1ul1&eik1x1C2ul2&eik2x, x>0.
~15!

From the eigenvalue equationHcFk5EkFk , together with
Ek5\2k2/2m, one obtains forx>0,

k6
2 5k222ml6 /\5k21 im g/2\7 im Ag224V2/2\,

~16!

with Im k6.0 for boundedness. From the continuity
Fk(x) at x50 one gets

11R15C1^1ul1&1C2^1ul2&,

R25C1^2ul1&1C2^2ul2&.

Similar relations result from the continuity ofFk8(x) at x
50, yielding

C1522k~q1k2!l2 /D, ~17!
05210
-

l-

C252k~q1k1!l1 /D,

R25k~k22k1!V/D,

R15@l1~q1k1!~k2k2!2l2~q1k2!~k2k1!#/D,

where the common denominatorD is given by

D5~k1k2!~q1k1!l12~k1k1!~q1k2!l2 . ~18!

Thus Eq.~15! becomes, in components and forx>0,

fk
(1)~x!52

2k

A2pD
$~q1k2!l2eik1x2~q1k1!l1eik2x%,

~19!

fk
(2)~x!5

kV

A2pD
$~q1k2!eik1x2~q1k1!eik2x%.

The casel25l1 is obtained from this by taking limits. Fo
later purposes we also consider increasingly largeg, the
other parameters kept fixed. This leads to

l1'2 iV2/2g→0, ~20!

l2'2 ig/21 iV2/2g→2 ig/2, ~21!

k1
2 'k21 im V2/\g, k1→k, ~22!

k2
2 'k21 img/\' im g/\, ~23!

q'$ img/\%1/2, ~24!

C2 ,R1 ,R2→0, ~25!

C1→1. ~26!

In this case the state vector forx.0 becomes simply the
plane wave with wave numberk in the ground state. This
means that for increasingg there is less and less reflectio
but also less and less absorption, i.e., photon detection
that the laser has less and less effect on the atom.

At first sight the occurrence of reflections may seem s
prising since the laser only couples to the internal degree
the atom and sinceHc only applies to the time developmen
before the first-photon detection. Physically this can be
derstood from the coupling of the atom to the quantized e
tromagnetic field. The laser changes the internal state, th
turn changes the quantized electromagnetic field and its
mentum distribution. This in turn changes the moment
distribution of the atomic motion. Mathematically the reas
is of course the step function in front of the matrix, similar
for a square-well potential. The consequences of the non
reflection will be discussed further below.

By decomposing an initial state as a superposition
eigenfunctions one obtains its conditional time developme
This is easy for an initial ground-state wave packet (0

c(x,t0))
coming in from the far left side and witht0 in
4-3
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DAMBORENEA et al. PHYSICAL REVIEW A 66, 052104 ~2002!
the remote past. Indeed, ifc̃(k) denotes the momentum am
plitude the wave packet would have as a freely mov
packet att50, then

C~x,t !5E
0

`

dkc̃~k!Fk~x!e2 i\k2t/2m ~27!

describes the conditional time development of a state wh
in the remote past behaves like a wave packet in the grou
state coming in from the left.

III. THE REFLECTION PROBLEM AND THE
NO-DETECTION PROBABILITY

From Eq.~5! one obtains, withC5(c(2)
c(1)

),

Nt5E dx$uc (1)~x,t !u21uc (2)~x,t !u2%, ~28!

and Eq.~6! becomes

P~ t !5
i

\
^c~ t !uHc2Hc

†uc~ t !&. ~29!

Since Hc2Hc
†52 ig\u2&^2u, the first-photon probability

density is given by

P~ t !5gE
2`

`

dxuc (2)~x,t !u2. ~30!

The probability of no photon detection at all is, fort0 in the
remote past,

12E
2`

`

dt8P~ t8!5Nt5` . ~31!

For physical reasons, onlyc (1) contributes to this, and only
for x,0. The latter follows from the fact that, forx.0, the
ground-state part will eventually be pumped by the lase
the excited state. Sincet5` in Eq. ~31!, only the reflected
part remains, and hence the no-detection probability
comes

Nt5`5E
0

`

dk uR1~k!u2uc̃~k!u2. ~32!

As a consequence,P(t) is, in general, not normalized to 1
Physically the probability for missing an atom increases w
V, the strength of the laser driving. This is also seen ma
ematically from the expression forR1 in Eq. ~17!. An ex-
ample is given in Sec. V~cf. Fig. 4 further below! and a
practical approach to bypass this problem is also discus
there.

On the other hand, fork→` reflection becomes negli
gible since thenRi→0. Hence for faster atoms reflectio
does not pose a problem. This will also be exploited
practical purposes in Sec. V.
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IV. DELAYS VERSUS REFLECTIONS AND AN
IDEALIZED DISTRIBUTION

The approach to quantum arrival times by means of fi
photon detections contains a built-in ‘‘delay’’ since an e
cited atom will not emit a photon immediately, due to th
finite decay rateg. This is in addition to the time the photo
takes to reach the detector; the photon travel time, howe
can easily be taken into account, so it will not be conside
here any further.

It seems natural to try to obtain an ideal arrival-time d
tribution by considering faster and faster decay times, i
takingg→`, at least theoretically. This will not work, how
ever. The reason is that for increasingg, with all other pa-
rameters kept fixed, the driving by the laser becomes
efficient so that, in the limitg→`, the wave packet remain
unaffected, with no excitation and no reflection, as can
seen from Eqs.~20!–~26! above. Moreover, if bothg andV
go to infinity with g/V kept fixed, thenR1→21 and every-
thing is completely reflected without excitation@20#.

One might also be tempted to avoid reflection by cho
ing weak driving,V/g!1. This, however, would cause
severe delay problem since the laser would take more tim
pump the atom to the excited state. Hence the first-pho
emission would also take more time. To see how relev
detection delays are, we have comparedP(t) with the flux
Jc and the axiomatic probability distributionPK(t) of Ki-
jowski for a Gaussian wave packet. The result is given
Fig. 1. Depending on the parameters, the delay and reflec
problem may be either very relevant or negligible. A detail
analytic investigation of this question is given in Sec. V.

A way out of the conflicting problems of reflectio
~missed atom! and increasing delay times for weaker drivin
is the transition from the ‘‘experimental’’P(t) to an ideal-
ized arrival-time distribution, obtained as follows. A two
level atom atrest, when driven by a resonant laser, has
definite probability densityW(t) for the detection of the first
photon, given by@21#

FIG. 1. Time-of-arrival distributions: fluxJ ~solid line, here in-
distinguishable from Kijowski’sPK) and P ~first photon, dots!.
Note the delay inP. The initial state is a minimum-uncertainty
product Gaussian for the center-of-mass motion of a single ces
atom in the ground state with^v&59.0297 cm/s, ^x&5
21.85mm, andDx50.26mm; V50.0999g; all figures are for
the transition 62P3/2262S1/2 of cesium withg533.3 MHz.
4-4
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W~ t !5
gV2

4uSu2
e2gt/2ueSt/22e2St/2u2Q~ t !, ~33!

with

S5
1

2
~g224V2!1/2. ~34!

Intuitively, the delay-time mechanism for a moving ato
ought to be similar to that for an atom at rest. Should it th
not be possible to somehow compensate the delay inP(t) by
that of the atom at rest and thus arrive, in some limit, a
delay-free ideal distribution? To achieve this, we assume
~experimental! arrival-time distributionP(t) to be the con-
volution of a hypothetical ideal distributionP id with the dis-
tribution W(t) for an atom at rest,

P5P id* W. ~35!

The delay inP is then mainly due to that contained inW.
The hypothetical ideal distributionP id is obtained by a

deconvolution via Fourier transform fromP̃ id5P̃/W̃ where
P̃(n)5*dte2 intP(t), etc. From Eqs.~30! and ~27! one
finds

P̃~n!5gE dxE dkE dk8c̃~k!̄c̃~k8!fk
(2)~x!̄

3fk8
(2)

~x!2pdS n2
\

2m
~k22k82! D , ~36!

and from Eq.~33!

W̃~n!5
V2g/2

$~ in1g/2!22S2%$ in1g/2%
, ~37!

and thus

1

W̃~n!
511C1in1C2~ in!21C3~ in!3, ~38!

where

C15S g

V2
1

2

g D , C25
3

V2
, C35

2

gV2
. ~39!

In the time domain this gives

P id~ t !5P~ t !1C1P8~ t !1C2P9~ t !1C3P-~ t !. ~40!

In the limit of no reflection, forg→`, the delay problem
pointed out above forP should be absent forP id . In fact, in
this limit one sees from Eqs.~20!–~24! and from Eq.~38!

that in 1/W̃ only ing/V2 remains relevant for largeg. Fur-
thermore,R2→0 for g→`, and sincee2 iqx→0 in Eq. ~36!
the integral overx<0 goes to zero. Similarly the terms i

fk
(2)(x) and fk8

(2)(x) containinge2 i k̄2x and eik28 x drop out.
05210
n

a
e

For g→` one has, from Eqs.~20! and~26!, C1→1 and the
integration of exp$2ik̄1x1ik18 x% over x>0 gives i /(k18

2 k̄1). Hence

P̃~n!

W̃~n!
→4g

2pE dkdk8c̃~k!̄c̃~k8!
l̄1l1

V2

i

k18 2 k̄1

3
ing

V2
2pdS n2

\

2m
~k22k82! D . ~41!

By the d function, n5\(k2k8)(k1k8)/2m. Hence in the
limit g→` one obtains, by Eqs.~20!–~24!,

P̃~n!

W̃~n!
→ 1

2p

\

2mE dkdk8c̃~k!̄c̃~k8!~k1k8!2pd

3S n2
\

2m
~k22k82! D . ~42!

Going to the time domain one finally obtains

P id~ t !→ 1

2p

\

mE dkdk8c̃~k!̄

3ei\k2t/2m
k1k8

2
c̃~k8!e2 i\k82t/2m

5
\

2mi
$c~0,t !̄c8~0,t !2c8~0,t !̄c~0,t !%, ~43!

which is the fluxJc for the free wave functionc(x,t) at x
50, i.e., without laser@22#.

This is an extremely interesting result sinceJc is a natural
candidate for the arrival-time distribution, as pointed out
the Introduction. We note thatJc is normalized to 1 for a
particle which has only positive momentum componen
This is seen for example from Eq.~42! for n50.

The limit in Eq.~43! means thatP id can be approximated
by Jc for sufficiently largeg. Physically, it is important to
determine the parameter ranges for which this approxima
is a good one. For this to be valid a simple sufficient con
tion on the parameters can be derived as follows. First
considers the caseV2/g2!1 ~weak driving! and makes the
corresponding approximations inP id(t). Denoting byDE a
measure of the magnitude of

\2

2m
uk22k82u, ~44!

as determined byc̃(k) and c̃(k8), one then considers th
caseg@DE/\ andDE/\@V2/g. Then one obtains thatP id
is close toJc . The inequalities can be written in the form

V2/g!DE/\!g. ~45!

Thus P id can be replaced byJc if these inequalities are
satisfied. Even outside this parameter range,Jc may be an
excellent approximation toP id , as shown in Fig. 2. The
convergence ofP id to Jc shows that alsoP id may contain
small negative values. Since this occurs neither forP nor for
4-5
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DAMBORENEA et al. PHYSICAL REVIEW A 66, 052104 ~2002!
W, the intuitive ansatz of Eq.~35! cannot always be fulfilled
with a strictly positive distribution. The reason for th
clearly is that the ansatz of a convolution in Eq.~35! is too
simple and ought to be replaced by something more sop
ticated. On the other hand, this result gives a handle at
quantum-mechanical probability flux and indicates a meth
how to measure it.

The above deconvolution procedure which recovers
quantum-mechanical particle flux essentially works beca
the weak-excitation limit taken allows a clear separation
~1! the time dependence associated with the motion of
wave packet, and~2! the time dependence associated w
the internal degrees of freedom~excitation, Rabi oscillation,
and decay!. It seems reasonable that this might be do
However, the weak-excitation limit implies that the waitin
times for the first-scattered photon are of the orderg/V2,
and therefore very long. Hence the number to be measur
essentially to be obtained from the subtraction of two v
large numbers. Experimentally this is a difficult thing to d
with high accuracy and requires small measurement err
For practical purposes it is therefore important to know wh
delays and reflections can be safely neglected, since the
transition toP id by deconvolution is not necessary. This
investigated quantitatively in the following section.

V. PARAMETER RANGES WITH NEGLIGIBLE DELAY
AND REFLECTION

In the case of weak driving,V!g, the excited state popu
lation is negligible compared to that of the ground sta
Hence the reflection coefficient for the ground state is
only one that matters in this case,

FIG. 2. Excellent agreement betweenP id ~filled circles! and J
~solid line!; deviations fromPK ~dotted line! and P ~dot-dashed
line!. The initial wave packet is a coherent combinationc
5221/2(c11c2) of two Gaussian states for the center-of-mass m
tion of a single cesium atom that become separately minimal un
tainty packets~with Dx15Dx250.021mm, and average velocitie
^v&1518.96 cm/s, ^v&255.42 cm/s) atx50 and t52 ms; V
50.37g.
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uR1~k!u2'
1

64
~V/g!2~\V/E!2. ~46!

This is small if E*\V. For strong driving,V@g, the re-
flection coefficients take a simple form when the energyE of
the plane wave satisfies

E@\V. ~47!

Then both states are populated roughly equally forx.0, and
with Eq. ~47! the reflection coefficients become

uR1~k!u2'
1

322
~\V/E!4, uR2~k!u2'

1

64
~\V/E!2.

~48!

Both coefficients are small if Eq.~47! holds.
To quantify the detection delay, let us definetd as the

difference between the average time of the first-photon em
sion, ^t&P5*2`

` dt tP(t), and ^t&J5*2`
` dt tJc @23#; we

note that the ‘‘average arrival time’’ atx50 evaluated with
the flux atx50, ^t&J coincides with the average of Kijows
ki’s distribution @7,1#. For negligible reflection,C(x,t) is,
for x,0, nearly the same as the free wave function, a
therefore, by a partial integration,

td5^t&P2^t&J5E
2`

`

dtNt
1 ~ for negligible reflection!,

~49!

whereNt
15*0

`(uc (1)(x,t)u21uc (2)(x,t)u2)dx. Hence, in the
case of negligible reflection the delay is associated with
amount of penetration of the wave into the laser region.
weak and strong driving a straightforward calculation yie
the simple results

td'g/V2 ~weak driving!, ~50!

td'2/g ~strong driving!. ~51!

It is interesting to note, and physically very reasonable, t
this coincides with the average time between two pho
emissions for a two-level atom at rest, driven by a reson
laser, as easily seen from Eq.~33!. If Dt denotes the width of
P(t), then one needstd!Dt for the delay to be negligible

If one denotes byẼ the average energy for wave packe
that are sharply peaked in energy or, more generally, as
smallest significant energy component, then the above c
ditions for negligible reflection and negligible delay can
summarized as

\/Ẽ&g/V2!Dt ~weak driving!, ~52!

\/Ẽ!V21!2/g!Dt ~strong driving!. ~53!

Figure 3 shows a striking example for which these conditio
are fulfilled. Here the first-photon distributionP is indistin-
guishable fromJc and from Kijowski’s distribution.

For strong driving the delay due to the time needed
pumping the atom to an excited level is small, but on t
other hand there is a large probability to miss out the at
altogether if the conditionE@\V is not fulfilled. As a con-
sequence, the first-photon probability densityP(t) will not

-
r-
4-6
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MEASUREMENT-BASED APPROACH TO QUANTUM . . . PHYSICAL REVIEW A66, 052104 ~2002!
be normalized to 1. Let us then define a normalized distri
tion PN(t)5P(t)/*dt8P(t8). For practical purposes thi
can be amazingly efficient in some parameter domains
Fig. 4 shows. There,P is far from being normalized to 1, bu
PN and Jc , which in this example has no negative par
coincide beautifully. Interestingly, one notices a small diffe
ence to Kijowski’s distribution. It might also be possible
use the general normalization procedure in terms of opera
proposed in Ref.@24#.

VI. CONCLUSIONS

In this paper, we have investigated a proposal to de
mine arrival times of quantum-mechanical particles. The p
posal is based on the intuitive idea to illuminate the arri
region by a laser and to consider a traveling two-level ato
The time of the first-emitted photon is then taken as a m
sure for the arrival time. By repeating the experiment o
obtains a probability densityP(t) for the time of the first
photon. We have discussed for the one-dimensional cas
what way P(t) can be regarded as an atomic arrival-tim
distribution. Restrictions arise from reflections and dela
Reflections originate from the interaction with the laser a
delays from the time needed for the pumping and the ens
photon emission. The natural idea that an ideal or an axi
atically proposed distribution might be obtained fromP(t)

FIG. 3. Negligible delay and reflection with Eq.~53!: P ~first
photon, dots! and Jc ~solid line, here indistinguishable fromPK)
for initial Gaussian parameters ^v&590.30 cm/s, ^x&5
2218.02mm, Dx526.46mm; V55g.
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in the limit of a very strong or very weak laser and very lar
Einstein decay coefficient of the excited level has turned
not to be true. However, and this is a main theoretical re
of the paper, one can subtract the delay by a deconvolu
with the first-photon probability density for an atom at re
and then, surprisingly, for larger and larger Einstein coe
cient one obtains the quantum-mechanical probability c
rentJ as the limit distribution. This quantityJ has previously
been considered on axiomatic grounds as a candidate fo
arrival-time distribution, and the connection ofP(t) with J
indicates a way to measure the quantum mechanical p
ability flux. We have also determined parameter domains
which the deconvoluted expression is already sufficien
close toJ. Although the non-deconvolutedP(t) is not the
same asJ and the axiomatically proposed distribution of K
jowski, it can, for experimental purposes, approach the la
two sufficiently closely. Parameter domains for which th
holds have been explicitly determined; this is another m
result of the paper, more of a practical nature.
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