PHYSICAL REVIEW A 66, 052103 (2002
Casimir force in absorbing multilayers
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The Casimir effect in a dispersive and absorbing multilayered system is considered adoptimgfthe
vacuum-field pressure point of view to the Casimir force. Using the properties of the macroscopic field
operators appropriate for absorbing systems and a convenient compact form of the Green function for a
multilayer, a straightforward and transparent derivation of the Casimir force in a lossless layer of an otherwise
absorbing multilayer is presented. The resulting expression, in terms of the reflection coefficients of the
surrounding stacks of layers, is of the same form as that obtained by Zhou and Spruch for a purely dispersive
multilayer using thgsurfaceé mode summation methd@®hys. Rev. 462, 297(1995]. Owing to the recursion
relations that the generalized Fresnel coefficients satisfy, this result can be applied to more complex systems
with planar symmetry. This is illustrated by calculating the Casimir force on a dieldatetallic) slab in a
planar cavity with realistic mirrors. Also, a relationship between the Casimir force and energy in two different
layers is established.
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[. INTRODUCTION Strictly speaking, the mode summation method applies only
to purely dispersivélosslesgsystems as only in this case the
Originally, the Casimir effect was predicted as a feature oimode frequencies are real. However, when expressed as an
the electromagnetic field between two neutral ideally con-integral over the imaginary frequency, the final result for the
ducting plates and consisted in the appearance of an attra€asimir energyforce) turns out to be applicable to absorb-
tive force between the plates. The force is due to the changeag systems as well. An indication that this must be so is the
of the zero-point energy of the field in the confined sgdde  fact that the dielectric function is always real on the imagi-
In this special case, however, the Casimir force can also beary axis irrespective of whether the system is absorbing or
viewed as the long-range van der Waals fof2ze4]. It be-  not[4]. Thus, while in their calculation of the Casimir force
comes appreciable in the submicron range and rapidly inin a multilayer Zhou and Sprudi3] assumed a purely dis-
creases in the nanometer range. As such, it may stronglpersive system, Klimchitskayet al.[14] recently considered
affect processing in nanotechnology as well as functioning o similiar but absorbing system.
micromachines and nanomachines and deviéésClearly, On the other hand, being a local approach, the stress ten-
these new developments pose the problem of realistic calcisor method does not necessarily imply a lossless system.
lations of the Casimir force on objects in complex enviro- Since the stress tensor cannot be defined macroscopically for
ments. an absorbing mediuri6], the only necessary assumption is
In contrast to the highly idealized system considered byactually that the region where the vacuum-field pressure is
Casimir[1], Lifshitz [2] calculated the force between two calculated is nonabsorbing, whereas the other parts of the
thick (semi-infinite dielectric slabs by taking into account system may generally be dissipative. Despite this fact, nu-
the dispersion and absorption in the dielectrics as well as theerous papers in the past used the stress tensor method to
temperature effects. In this respect, his theory is far morealculate the Casimir force assuming, at most, a dispersive
realistic and, as the effects of finite conductivity and dissipabut nonabsorbing systefi7]. One of the reasons for that is
tion in the metal can be observed in the recent high-precisionertainly the lack of knowledge of the proper form and prop-
experimentg§6—8], his result for the force at zero tempera- erties of macroscopic field operators aproppriate for an ab-
ture is standardly used when analyzing the Casimir force irsorbing system at that time.
the planar geometr}9,10]. The Lifshitz approach is based  The first calculation of the Casimir force between two
on the calculation of the electromagnetic field due to theabsorbing slabs is due to Kupiszewdki8] who modeled
randomly fluctuating currents in the dielectric slabs and ordielectric atoms as a collection of harmonic oscillators
the subsequent calculation of the Maxwell stress tensor in theoupled to a heat bath that absorbs energy. Only the modes
region inbetween. Owing to its complexity, however, it haspropagating normally to the slabs were considered, so that
never been extended to the calculation of the force betweeihis approach was effectively one dimensiofidD). Describ-
multilayered stacks although the generalization of the finalng the reservoir through a damping constant and the Lange-
result to this configuration is fairly obvious. vin force, and solving for the field operators, Kupiszewska
The Casimir effect in multilayered systems is usually con-obtained for the force between the slabs the same expression
sidered using either the surface mode summation methoih terms of their reflection coefficients as that obtained pre-
[11-14 (see also Refd4,5]) to calculate the change in the viously for an inerf19] or a lossles$20] 1D system, except
electromagnetic field zero-point energy due to the presenceat this time the dielectric function of the slabs was com-
of the dielectric stacks, or the stress tensor mefldotl5] to plex. Recently, this result was rederived using a Green-
calculate directly the vacuum-field pressure on the stackdunction method for quantizing the macroscopic field 1)

1050-2947/2002/66)/0521037)/$20.00 66 052103-1 ©2002 The American Physical Society



M. S. TOMAS PHYSICAL REVIEW A 66, 052103 (2002

absorbing systems in conjuction with a scattering matrix ap- !
proach[21] and was also extended to two identical absorbing €,(W) gj(o)) :
superlattice$22]. Very recently, Esquivel-Sirvert al.dem- I
onstrated an alternative Green-function approach that makes !
the quantization of the field within the slabs unnecessary and !

g, (w)

calculated the Casimir force in an asymmetric configuration z

[23] which was earlier considered only in the lossless case |
[20]. - i

Owing to their complex structure, an explicit calculation g :

|

of the field operators as in Refd8-21 is highly impracti-

cal in the general case of a 3D dissipative inhomogeneous
system. However, as pointed recently by Matld@d] (see
also Ref[21]), using the fluctuation-dissipation theorem and
the linear-response theory, the field correlation functlonswi,[h T andTQab being the corresponding Maxwell stress
needed to calculate the stress tensor can be expressedtln la th I il din the infinit dii i
terms of the(classical Green function for the system. In this €nsors in the muttifayerand in the infinite medignnespec

way, only the knowledge of the Green function is, thereforet'vely‘ In Eq. (2.0), A is the area of the stack and the

actually needed to calculate the Casimir force. Using thi{_) sign applies il >j(I<j). Since the regularized stress

method, Matloob and Falinejad recently considered the caensor vanishes in the outmost layers, we have fior

simir force between two identical absorbing dielectric slabs ' i/ andfj, =fjn,
[25]. Very recently Mocha et al. [26] generalized their ~
Green-function methof23] to three dimensions and calcu- fjo=—1=T2 2.3
lated the Casimir force between two arbitrary slabs. Express- ~
ing the reflection coefficients of the slabs through the generso thatT; ,, coincides with the force per unit area acting on
alized surface impedances, these authors argued that thée left (right) stack of layers bounding the laypr
formal result could be applied to rather general but not chiral Replacing field variables in the classical Maxwell stress
media, also including nonlocal inhomogeneous dissipativéensor[16] by the corresponding Heisenberg operators and
slabs. In Refs[25,26 the space between the slabs was astaking its averageT; ,, in a lossless layej [&](w)=0] is
sumed empty. given by

In this work we calculate the Casimir force in a lossless
dispersive layer of an otherwise absorbing multilayer by em-
ploying the macroscopic field operators as emerge from a
recently developed scheme for quantizing the electromag-

netic field in inhomogeneous dissipative 3D syst¢@8%28  \yhere we have suppressed the argumert) (of the field

and using a convenient Green function for a multilah@d].  operators and the brackets denote the expectation value in
In this way, we obtain a general result for the Casimir forcethe vacuum state of the field. In order to calculate the corre-
in stratified local media. In addition, USing the properties 0f|ation functions that appear in E(Q4), we use the proper-
the genera”zed Fresnel CoeffiCientS, we derive a relationshiﬂes of the macroscopic field Operators appropriate for ab-
between the Casimir force and energy in two different layersorbing system§27]. These operators are decomposed into

and demonstrate the applicability of the theory to more comtheir “annihilation” and “creation” components according to
plex planar systems by calculating the Casimir force on a

diectric slab in a realistic planar cavity.

FIG. 1. Schematic of the system considered. The dashed line
represents the plane where the stress tensor is calculated.

1
Tjz=g _(ED,~E- Dj+BH,~B-Hpic(, (2.4

E(r,t)=f dwE(r,0)e I+ H. c. 2.5
Il. THEORY 0

Consider a multilayered system described by the dielec@nd, with the constitutive relations
tric functione(r,w)=¢'(r,w)+ie"(r,w) defined in a step-
wise fashion, as depicted in Fig. 1. The Casimir force in a
layer corresponds to the net vacuum-field pressure in the
multilayer with respect to the pressure in the infinite layer B(r,w)=H(r,v), (2.6
(medium. Accordingly, the forceF;; on a stack of layers ) .
that separates gth and anlth layer is given by[30] obey the standard macroscopic Maxwell equations. Here

Pn(r,w) and PL(r,w) are the noise polarization operators

Fin :Afl.“i, fin== (TIVZZ_TLU), (2.2 relf'ited to th_e dissipatio_n in the system and obey the commu-
tation rules(in the dyadic form

D(r,w)=¢e(r,w)E(r,0)+4mPy(r,»),

where '~I'j,zz is the zz component of the regularized stress
tensor in thejth layer

n

+ he'"(r,w)o
[Pn(r,o),P\(r,0")]=———T8r-r1")8(0—a'),
= 0 41

Ti.ab=Tjab= Tjan (2.2 (2.7
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wherel is the unit dyadic. Therefore, artgnnihilation field éjsc(r,r’;w):é’j(r,r';w)_é?(r,r/;w) (2.14

operator is related t®y(r,w) via the classical Green func-

tion é(r,r’;w) satisfying is the Green function for the scattered field in ftil layer
and GJ H(r r'sw)= GJ c(r,r’ w)~|—G yy(r r';w) is its par-

2

w2 allel trace.
VXVX—e(r,w)—I-
c

G(rriw)=4mlo(r—r’) A convenient form of éjsc(r,r’;w) for a general
(2.9 multilayer is derived in Refl29]. In the Appendix we quote
this Green function and calculate the expression in the curly

according to brackets of Eq(2.13. Inserting Eq.(A8), we find
. , B R f ] f d2k 5 1-Dglwk)
E(r,w)=— 2 fd r G( w)-Py(r',m). (2.9 izz—— —Re () (277)2 ,SW
As a consequence, all field correlation functions can be ex- _ h (" * 1-Dgj(i&k)
pressed through the Green function in accordance with the - _f dgf dkkqu:zp,s Dgi(i£k) 219
fluctuation-dissipation theorerf81]. In particular, for the
electric-field correlation function we haya7] where §;(w,k) = ijz(w)_kz,

fw? .
(E(r,@)E'(r',0"))=——=ImG(r,I";0)(w-w),
T C

(2.10 andr{l, (o,k) are the reflection coefficients of the right and
left stacks of layers bounding thj¢h layer. The second line
and the magnetic-field correlation function is easily obtainedn Eq. (2.15 has been obtained by converting the integral
from this expression using(r,w)=(—ic/w)VXE(r,w). over the real axis to one along the imaginagy axis in the
Applying the above results to thj¢h layer and taking into  usual way, lettingw =i ¢,
account that () is real andPy(r,») =0 in this region, we

find for the relevant correlation functions in E@.4): Bi(i&K)=ix;(& k) =iVe;(i€)EHc2+K2, (2.17)

qu(w,k)=1—I‘?_(w,k)r?Jr(w,k)eZi'BJdi (2.1

hof= ., - and noting that the integrand is real on the imaginary axis.
<E(r,t)D(r,t)>r€(j)=;fo dwki(@)ImG(r,r;w), We see that the regularized stress tensor is uniform across the
(2.113 layer. Although expected on invariance grounds, this is not a
' trivial result and, as is clear from the derivation in the Ap-
PR = pendix, it is due to cancellation of ttedependent terms in
<B(f,t)H(r,t)>rE(1)=;j do IMGX(r,1;0), the electric and magnetic contributions T, irrespective
0 (2119 of the dielectric properties of the surrounding stacks.
' Knowing the force, the Casimir enerdy in the layer can

wherek;(w) = \ej(w)w/c is the wave vector in the layer, be calculated using

Gj(r,r';w) is the Green-function element forandr’ both 9E
in the layerj, and fi_= —fj+=FJ, (2.19
dd;
GR(r,r';)=VXGi(r,r';w)x V' (2.12

with the condition that;—0 for d;—. From Egs.(2.19

is the corresponding Green-function element for the magand (2.3, we find

netic field. With the above equations inserted in &), the

stress tensof; ,, is expressed entirely in terms of the Green &=hIm j J In Dygj(®,k)
function and its derivatives analogously to Eg.13 below. 277)2

Similarly, by applying Eqs(2.4) and (2.1 to the infinite

mediumj, the stress tensd’r?zzls given by the same expres— h f d¢ dkk 2 IND.(i£k). (2.19
sion with the infinite-medium Green functldBO(r r';w). (277)2 0 al '

Therefore, the regularized stress tenip;Z is expressed as
This equation, as well as that for the forig@mbined Egs.

~ h “do -, < < (2.3) and(2.19], agrees in form with the corresponding re-
Ti,zzzﬂlmJ'O Z{ki(“’)[Gi,zz(r’r;w)_GJ,H(r'r?“’)] sult of Zhou and Spruchi13] derived using the(surface
mode summation method and starting from a simple model
GJBZSZC(r,r,w) GP Do)}, (2.13  of a purely dispersive multilayer. However, in this work the
contributions of all(propagating and evanesceniodes are
where naturally taken into account on an equal footing through the
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Green function. Furthermore, since the Green function em-
ployed refers to a general absorbing multilayer, so do the
obtained results except, of course, for the region where the
Casimir force is calculated.

The Casimir energy and force vary in a stepwise manner
across the multilayer and we end this section by pointing out
a relationship that exists between their values in two differ-
ent layers, say, layefjsandl. Indeed, assuming thatj, for
example, and using recursion relations for the reflection co-
efficients given by Eq(A3a), one may prove that the follow-

ing relation exists between the functions for the layers ) ) ) ) )
[29]: FIG. 2. Adielectric slab in a planar cavity shown schematically.

The arrow indicates the direction of the force on the slab.

Dql(l_r?/qufemﬁjdj):qu(l_rﬁjrﬁJreZiﬁ'd')- . . .
(2.20  and Falinejad25], are obtained letting; =1 andrj, —r9,
wherer? are the reflection coefficients of a symmetrically
Combining this with Eq(2.19), we find that the respective bounded slaljsee Eq.(3.5) below], etc. Specially, the Ca-

Casimir energies are related according to simir force and energy in @ispersive planar cavity formed
by two ideally reflectingconducting slabs are obtained with
oo (= (= rird, =1.
=54+ =+
=&+ (zw)zfo dgfo dkk We also note that these equations correctly reproduce the

corresponding results emerging from the 1D considerations.
1—rﬁj(w:k)rﬂ(w,k)emﬁldw Indeed, taking only thé&=0 contribution in Eq.(2.15, we
w=ié

X . find from the first line in that equation, for example,
a=ps {1—r?“(w,k)r?_(w,k)ez'ﬁidj q P

~ 2h © 1-Di(w)

(221) T];I-’[Z)Z: - ? ReJO dwkj(w) Tjw), (31)
A similar relation is obtained for the forces in two layers, but
the resulting expression is not particularly illuminating un- where D;(w)=D4j(»,0) [Eq. (2.16] is the same for both
lessej=¢,. Such a situation arises, for example, when apolarizations. With a simple algebra, this equation can be
planar object is embedded in a planar cavity. In this case, weewritten as
find
1-|rj-(o)rj+(0)]?
2ikj(w)dj|2 !

1D h * T

ﬁ © 0 E l Tj,ZZ=; 0 d(l)k]((,()) 1
f,=f-,+—J d f dk kg _—
==het o), 96, dKke 2 BGEk)

X[1—rﬁ,,(w,k)rﬁ_(w,k)ezwdj_ 1
1-rfl(w,k)rf (w,k)e? e

-1 (o)1, (0)e
(3.2

which is in accordance with the Casimir force obtained by

several authors for the respective systems they considered

[18-23.
(2.22 Owing to the recursion relations which the generalized
Fresnel coefficients satisfy, the obtained results can be ap-
plied to more complex systems with planar symmetry. As an
application of the theory, we illustrate this by deriving the
l1l. DISCUSSION Casimir force on a dielectric, or a metallic, slétielectric
function ¢, thicknessl) in a cavity (dielectric functione,

Most of the previously obtained results for the Casimir | N . - q
force and energy in a specific planar configuration are recoV€N9thL) with realistic mirrors(reflection coefficients; and

ered from the results derived in the preceding section simpl&g)v as depicted in Fig. 2. The force on the slabf,_
by specifying the corresponding reflection coefficients and~fi- in this configuration can be calculated from £2.22).
material parameters. Thus, for example, the results for théhe functionDy; [Eq. (2.16] is straightforwardly obtained
three-layer &,,3,e,) configuration considered by Lifshitz letting ri_=r{ andr3, =r3 and using Eq(A3a) to deter-
[2] are obtained letting:j=¢3, r?,—>rg1, and rﬁ+—>r§2, mine_ the reﬂectio_n coefficients], . We find (the polariza-
wherer{l are single-interface reflection coefficients given bytion indexq is omitted

Eq. (A4), and the results for the five-layes (,e1,£3,£5,€5)
configuration considered by Zhou and Sprydi3] are ob-
tained lettings;=e3, rj_—r3;,, andr{, —r3,;, where the
three-layer reflection coefficients are obtained from recurren-
cies Eq.(A3). Similarly, the results for the system consisting wherer =r,,=r,; andt=t;,=t,; are Fresnel coefficients
of two identical slabs, recently considered by Matloobfor the slab. This gives

whereg (k) is the perpendicular wave vector in both layers.

t2r g2 Ad2 .
r+ S g2ifdy (3.3

D1=1—I’1 N
1—rr,e?'hd2
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[ (1 e%P% _p e?Bdy)]d IV. SUMMARY

b @
f= ﬁfo d¢ 0 dkqu;p,s[ N =i§’ Using the properties of the macroscopic field operators
© appropriate for dissipative systems and a convenient Green
function for a multilayer, in this work we have obtained gen-
eral results for the Casimir force and energy applicable to
local layered absorbing systems. We have also established a
relationship between the Casimir for¢and energyin two
different layers and, as an application of the theory, calcu-
lated the Casimir force on a dielectric slab in a realistic pla-

N=1—r(r,e?Fd14r,e?'hd2)+ (r2—t2)r,r,e?Aldi+d2)
3.4

where the expression in the brackets is to be calculated for
polarization. Using EqgA3) and(A4), r andt can be further
expressed entirely in terms of the reflection coefficient for

the cavity-slab interfacep=(1—7)/(1+ %) (where 7P nar cavity.
=epBslesf and n°=Bs/p) as ACKNOWLEDGMENTS
1— 2B (1—p?)eifs The author is grateful to D. @aevic for very helpful

=P oeand PRI (3.5 interactions. This work was supported by the Ministry of
P p Science and Technology of the Republic of Croatia under

Note that for a perfectly conducting:{—<) slab, we have Contract No. 0098001.

rP=-r°=1 andt?=0. APPENDIX: GREEN FUNCTION

The forcef, as given by Eq(3.4), may be positive or
negative, depending on the dielectric properties of the slab Denoting the(conservefiwave vector parallel to the sys-
and cavity mirrors as well as on the position of the slab. Ondem surfaces bk = (k, ,k,), we write the wave vector of an
may easily verify that this equation gives the correct resultightward (leftward propagating wave in amth layer as
for the force on a perfectly conducting plate in an emptyKlizkilgli, where
cavity with ideally reflecting walls. Indeed, since in this case

t>=0, leactorizes and Eq(3.4) splits into (%=rr,=rr, Bi=Vki—k>=p/+iB/, B/=0, B/=0. (A1)
=r.l,=
i2=1) With this notation, the Green-function dyadic for the scat-
f=f_(dy)—f_(dy), (3.6) tered field in thejth layer read$29]
- i [ d%k , e'Aidi
where Gr.r'; =—f —ek =
JC( w) o :Bj q;pys u
ﬁ o0 ) S A ~ iat
f,<d>=—f de dkk g X Eqlri et ey (kleg (ke i
ﬂ-z O 0 eZKd_l ~ . ’ . ~
. +ri e (—k)efiz ]+, efizg (k)
- d—g[\/s(i§)§]3 X[&g(—k)e Azt +ri el (—k)elFiz ),
3w2csfo ¢ ey Dgj=1-rird e2 it g=1, ¢=—1,

3.7

is the force on the left mirror of a dispersive ideal cayitf.
Egs.(2.3) and(2.15, with the indexj dropped. The second
line here is obtained upon a partial integration o¢eand
upon calculating th& derivative of the integral ovek (see
Ref.[32]). For the empty cavitye(i &)= 1], the integrals in Wherer?izrﬁ,n(o) are, respectively, the transmission and re-
Eqg. (3.7) become elementary giving the well-known result flection coefficients of the uppeflower) stack of layers
bounding the layer. Clearly, for the outmost layerd,
mhe( 1 1 =n(0), we haverd, =0 andrd_=0. Also, one must let
~ 240 E‘ E ' 3.9 dn(do)_zo since these q'u'antities appear only formally. The
2 71 remaining Fresnel coefficients satisfy

z. =z, z,=d,

j—2z, 0Osz=dj,

. 1 N
0= (£pktkD),  &(l=kxz=h,  (A2)
J

according to which the plate is attracted to the closer cavity t9.9,r9, 6249

mirror. For a partially transmitting plate, the vacuum-field rin=ri+ % (A3a)
fluctuations in regions 1 and 2 of the cavity are no longer 1_r?/ir?/ke i

independent of each other and considerable deviations from _

the above simple result may occur especially for realistic q ) the'Pici _Bi g b
cavity mirrors. Clearly, in this case, in order to explore the ti/i/k_l_rq_rq e2iBjd; _B_ktk/i/i' (A3b)
combined effect of the nearby walls on a plafrsangobject, etk

one must analyze Eq3.4) numerically. and, for a singlé-j interface, reduce to
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— a8 and withp«<s. The trace£ (r,r,w) andG®? i *{r,r;) can
q B ’y”:BJ q q ) . is
=0 ti=Vvy (1+r ), (A4) be easily recognized from these equations and one has, for
Bit viiBi example,

whereyf;=¢;/e; and y;;= 1, respectively.
Performing the derivations indicated in §§.12 and us-

* A _T =t r_ ’r_ i 2
Ki (k)X egj(K) =kjéqe,(K), p'=s, s'=p, (A5) _ b dﬁk[ i [200_¢P, €2t g2k
= i
we find thatG?'sc(r,r’;w) is given by Eq.(A2) multiplied -
by —k? and with eqijfe;,j. Noting that the equal-point _rp, z.ﬁz+]+k_[2r S Q2B s Qi
Green-function dyadics consist only of diagonal elements, I+ i !
we easily find k2
2igiz, 1 2i 3.d; 2iBiz_
.. i dzk[ g e +r, e?hize] Dp'[ZrJP,r]—‘Le Bidi+rP_e?hiz
Gi(r,r;m =—~f k— 2r P e Fif
]C( ) 277'kj2 Bi : I

- - +rP ez‘ﬁi“]]. (A7)
_rJ[3762|ﬁz__rj[)+eZ|Bz+] ]t
T2 . . . .
| s s A2iBdi .S 2Bz while GB i Sqr,r;w)— G2 ~{r,r;») is given by this equation
+nn=—IJ[2r;7_r;,e +r7_e b I A .
DSJ—[ =T & e with p«<s. Adding these two quantities, one finds that the
5 curly bracket term in Eq(2.13 is equal to

: ~~ k :
+re e fir ]+ zzF[ZrJP_r}’Jrez'Bidi
p]

d2k rjpirijFEZiﬁjdj rjsirjs+eZiBjdj
P Q2iBjz_ p a2iBjz o l=—877i . + .
+ry_e?fit+rP e it ], (AB) {1} ™ f (22 D, Dy

and GP*{rr; ) is given by this equation multiplied b’ (A8)
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