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Casimir force in absorbing multilayers

M. S. Tomasˇ
Rudjer Bosˇković Institute, P.O. Box 180, 10002 Zagreb, Croatia

~Received 24 July 2002; published 14 November 2002!

The Casimir effect in a dispersive and absorbing multilayered system is considered adopting the~net!
vacuum-field pressure point of view to the Casimir force. Using the properties of the macroscopic field
operators appropriate for absorbing systems and a convenient compact form of the Green function for a
multilayer, a straightforward and transparent derivation of the Casimir force in a lossless layer of an otherwise
absorbing multilayer is presented. The resulting expression, in terms of the reflection coefficients of the
surrounding stacks of layers, is of the same form as that obtained by Zhou and Spruch for a purely dispersive
multilayer using the~surface! mode summation method@Phys. Rev. A52, 297~1995!#. Owing to the recursion
relations that the generalized Fresnel coefficients satisfy, this result can be applied to more complex systems
with planar symmetry. This is illustrated by calculating the Casimir force on a dielectric~metallic! slab in a
planar cavity with realistic mirrors. Also, a relationship between the Casimir force and energy in two different
layers is established.

DOI: 10.1103/PhysRevA.66.052103 PACS number~s!: 12.20.Ds, 42.60.Da
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I. INTRODUCTION

Originally, the Casimir effect was predicted as a feature
the electromagnetic field between two neutral ideally c
ducting plates and consisted in the appearance of an at
tive force between the plates. The force is due to the cha
of the zero-point energy of the field in the confined space@1#.
In this special case, however, the Casimir force can also
viewed as the long-range van der Waals force@2–4#. It be-
comes appreciable in the submicron range and rapidly
creases in the nanometer range. As such, it may stro
affect processing in nanotechnology as well as functioning
micromachines and nanomachines and devices@5#. Clearly,
these new developments pose the problem of realistic ca
lations of the Casimir force on objects in complex envir
ments.

In contrast to the highly idealized system considered
Casimir @1#, Lifshitz @2# calculated the force between tw
thick ~semi-infinite! dielectric slabs by taking into accoun
the dispersion and absorption in the dielectrics as well as
temperature effects. In this respect, his theory is far m
realistic and, as the effects of finite conductivity and dissi
tion in the metal can be observed in the recent high-precis
experiments@6–8#, his result for the force at zero temper
ture is standardly used when analyzing the Casimir force
the planar geometry@9,10#. The Lifshitz approach is base
on the calculation of the electromagnetic field due to
randomly fluctuating currents in the dielectric slabs and
the subsequent calculation of the Maxwell stress tensor in
region inbetween. Owing to its complexity, however, it h
never been extended to the calculation of the force betw
multilayered stacks although the generalization of the fi
result to this configuration is fairly obvious.

The Casimir effect in multilayered systems is usually co
sidered using either the surface mode summation me
@11–14# ~see also Refs.@4,5#! to calculate the change in th
electromagnetic field zero-point energy due to the prese
of the dielectric stacks, or the stress tensor method@3,15# to
calculate directly the vacuum-field pressure on the sta
1050-2947/2002/66~5!/052103~7!/$20.00 66 0521
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Strictly speaking, the mode summation method applies o
to purely dispersive~lossless! systems as only in this case th
mode frequencies are real. However, when expressed a
integral over the imaginary frequency, the final result for t
Casimir energy~force! turns out to be applicable to absorb
ing systems as well. An indication that this must be so is
fact that the dielectric function is always real on the ima
nary axis irrespective of whether the system is absorbing
not @4#. Thus, while in their calculation of the Casimir forc
in a multilayer Zhou and Spruch@13# assumed a purely dis
persive system, Klimchitskayaet al. @14# recently considered
a similiar but absorbing system.

On the other hand, being a local approach, the stress
sor method does not necessarily imply a lossless sys
Since the stress tensor cannot be defined macroscopicall
an absorbing medium@16#, the only necessary assumption
actually that the region where the vacuum-field pressur
calculated is nonabsorbing, whereas the other parts of
system may generally be dissipative. Despite this fact,
merous papers in the past used the stress tensor meth
calculate the Casimir force assuming, at most, a disper
but nonabsorbing system@17#. One of the reasons for that i
certainly the lack of knowledge of the proper form and pro
erties of macroscopic field operators aproppriate for an
sorbing system at that time.

The first calculation of the Casimir force between tw
absorbing slabs is due to Kupiszewska@18# who modeled
dielectric atoms as a collection of harmonic oscillato
coupled to a heat bath that absorbs energy. Only the mo
propagating normally to the slabs were considered, so
this approach was effectively one dimensional~1D!. Describ-
ing the reservoir through a damping constant and the Lan
vin force, and solving for the field operators, Kupiszews
obtained for the force between the slabs the same expres
in terms of their reflection coefficients as that obtained p
viously for an inert@19# or a lossless@20# 1D system, except
that this time the dielectric function of the slabs was co
plex. Recently, this result was rederived using a Gre
function method for quantizing the macroscopic field in~1D!
©2002 The American Physical Society03-1
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absorbing systems in conjuction with a scattering matrix
proach@21# and was also extended to two identical absorb
superlattices@22#. Very recently, Esquivel-Sirventet al.dem-
onstrated an alternative Green-function approach that m
the quantization of the field within the slabs unnecessary
calculated the Casimir force in an asymmetric configurat
@23# which was earlier considered only in the lossless c
@20#.

Owing to their complex structure, an explicit calculatio
of the field operators as in Refs.@18–21# is highly impracti-
cal in the general case of a 3D dissipative inhomogene
system. However, as pointed recently by Matloob@24# ~see
also Ref.@21#!, using the fluctuation-dissipation theorem a
the linear-response theory, the field correlation functio
needed to calculate the stress tensor can be express
terms of the~classical! Green function for the system. In thi
way, only the knowledge of the Green function is, therefo
actually needed to calculate the Casimir force. Using t
method, Matloob and Falinejad recently considered the
simir force between two identical absorbing dielectric sla
@25#. Very recently Mocha´n et al. @26# generalized their
Green-function method@23# to three dimensions and calcu
lated the Casimir force between two arbitrary slabs. Expre
ing the reflection coefficients of the slabs through the gen
alized surface impedances, these authors argued that
formal result could be applied to rather general but not ch
media, also including nonlocal inhomogeneous dissipa
slabs. In Refs.@25,26# the space between the slabs was
sumed empty.

In this work we calculate the Casimir force in a lossle
dispersive layer of an otherwise absorbing multilayer by e
ploying the macroscopic field operators as emerge from
recently developed scheme for quantizing the electrom
netic field in inhomogeneous dissipative 3D systems@27,28#
and using a convenient Green function for a multilayer@29#.
In this way, we obtain a general result for the Casimir for
in stratified local media. In addition, using the properties
the generalized Fresnel coefficients, we derive a relation
between the Casimir force and energy in two different lay
and demonstrate the applicability of the theory to more co
plex planar systems by calculating the Casimir force o
diectric slab in a realistic planar cavity.

II. THEORY

Consider a multilayered system described by the die
tric function «(r ,v)5«8(r ,v)1 i«9(r ,v) defined in a step-
wise fashion, as depicted in Fig. 1. The Casimir force in
layer corresponds to the net vacuum-field pressure in
multilayer with respect to the pressure in the infinite lay
~medium!. Accordingly, the forceFj / l on a stack of layers
that separates aj th and anl th layer is given by@30#

Fj / l5A f j / l ẑ, f j / l56~ T̃l ,zz2T̃j ,zz!, ~2.1!

where T̃j ,zz is the zz component of the regularized stre
tensor in thej th layer

T̃j ,ab5Tj ,ab2Tj ,ab
0 , ~2.2!
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with Tj ,ab andTj ,ab
0 being the corresponding Maxwell stres

tensors in the multilayer and in the infinite mediumj, respec-
tively. In Eq. ~2.1!, A is the area of the stack and the1
(2) sign applies ifl . j ( l , j ). Since the regularized stres
tensor vanishes in the outmost layers, we have forf j 2
[ f j /0 and f j 1[ f j /n ,

f j 252 f j 15T̃j ,zz, ~2.3!

so thatT̃j ,zz coincides with the force per unit area acting o
the left ~right! stack of layers bounding the layerj.

Replacing field variables in the classical Maxwell stre
tensor@16# by the corresponding Heisenberg operators a
taking its average,Tj ,zz in a lossless layerj @« j9(v)50# is
given by

Tj ,zz5
1

8p
^EzDz2Ei•Di1BzHz2Bi•Hi& rP( j ) , ~2.4!

where we have suppressed the argument (r ,t) of the field
operators and the brackets denote the expectation valu
the vacuum state of the field. In order to calculate the co
lation functions that appear in Eq.~2.4!, we use the proper-
ties of the macroscopic field operators appropriate for
sorbing systems@27#. These operators are decomposed in
their ‘‘annihilation’’ and ‘‘creation’’ components according t

E~r ,t !5E
0

`

dvE~r ,v!e2 ivt1H. c. ~2.5!

and, with the constitutive relations

D~r ,v!5«~r ,v!E~r ,v!14pPN~r ,v!,

B~r ,v!5H~r ,v!, ~2.6!

obey the standard macroscopic Maxwell equations. H
PN(r ,v) and PN

† (r ,v) are the noise polarization operato
related to the dissipation in the system and obey the com
tation rules~in the dyadic form!

@PN~r ,v!,PN
† ~r 8,v8!#5

\«9~r ,v!

4p2
IId~r2r 8!d~v2v8!,

~2.7!

FIG. 1. Schematic of the system considered. The dashed
represents the plane where the stress tensor is calculated.
3-2
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whereII is the unit dyadic. Therefore, any~annihilation! field
operator is related toPN(r ,v) via the classical Green func
tion GI (r ,r 8;v) satisfying

F“3“32«~r ,v!
v2

c2
II•GGI~r ,r 8;v!54p IId~r2r 8!

~2.8!

according to

E~r ,v!5
v2

c2 E d3r 8GI~r ,r 8;v!•PN~r 8,v!. ~2.9!

As a consequence, all field correlation functions can be
pressed through the Green function in accordance with
fluctuation-dissipation theorem@31#. In particular, for the
electric-field correlation function we have@27#

^E~r ,v!E†~r 8,v8!&5
\

p

v2

c2
Im GI~r ,r 8;v!d~v2v8!,

~2.10!

and the magnetic-field correlation function is easily obtain
from this expression usingB(r ,v)5(2 ic/v)“3E(r ,v).

Applying the above results to thej th layer and taking into
account that« j (v) is real andPN(r ,v)50 in this region, we
find for the relevant correlation functions in Eq.~2.4!:

^E~r ,t !D~r ,t !& rP( j )5
\

pE0

`

dv k̃ j
2~v!Im GI j~r ,r ;v!,

~2.11a!

^B~r ,t !H~r ,t !& rP( j )5
\

pE0

`

dv ImGI j
B~r ,r ;v!,

~2.11b!

where k̃ j (v)5A« j (v)v/c is the wave vector in the layer
GI j (r ,r 8;v) is the Green-function element forr and r 8 both
in the layerj, and

GI j
B~r ,r 8;v!5“3GI j~r ,r 8;v!3“

Q 8 ~2.12!

is the corresponding Green-function element for the m
netic field. With the above equations inserted in Eq.~2.4!, the
stress tensorTj ,zz is expressed entirely in terms of the Gre
function and its derivatives analogously to Eq.~2.13! below.
Similarly, by applying Eqs.~2.4! and ~2.11! to the infinite
mediumj, the stress tensorTj ,zz

0 is given by the same expres
sion with the infinite-medium Green functionGI j

0(r ,r 8;v).
Therefore, the regularized stress tensorT̃j ,zz is expressed as

T̃j ,zz5
\

4p
ImE

0

`dv

2p
$k̃ j

2~v!@Gj ,zz
sc ~r ,r ;v!2Gj ,i

sc ~r ,r ;v!#

1Gj ,zz
B,sc~r ,r ;v!2Gj ,i

B,sc~r ,r ;v!%, ~2.13!

where
05210
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GI j
sc~r ,r 8;v!5GI j~r ,r 8;v!2GI j

0~r ,r 8;v! ~2.14!

is the Green function for the scattered field in thej th layer
and Gj ,i

sc (r ,r 8;v)5Gj ,xx
sc (r ,r 8;v)1Gj ,yy

sc (r ,r 8;v) is its par-
allel trace.

A convenient form of GI j
sc(r ,r 8;v) for a general

multilayer is derived in Ref.@29#. In the Appendix we quote
this Green function and calculate the expression in the c
brackets of Eq.~2.13!. Inserting Eq.~A8!, we find

T̃j ,zz52
\

p
ReE

0

`

dvE d2k

~2p!2
b j (

q5p,s

12Dq j~v,k!

Dq j~v,k!

5
\

2p2E0

`

djE
0

`

dkkk j (
q5p,s

12Dq j~ i j,k!

Dq j~ i j,k!
, ~2.15!

whereb j (v,k)5Ak̃ j
2(v)2k2,

Dq j~v,k!512r j 2
q ~v,k!r j 1

q ~v,k!e2ib j dj ~2.16!

and r j 6
q (v,k) are the reflection coefficients of the right an

left stacks of layers bounding thej th layer. The second line
in Eq. ~2.15! has been obtained by converting the integ
over the realv axis to one along the imaginaryv axis in the
usual way, lettingv5 i j,

b j~ i j,k![ ik j~j,k!5 iA« j~ i j!j2/c21k2, ~2.17!

and noting that the integrand is real on the imaginary a
We see that the regularized stress tensor is uniform acros
layer. Although expected on invariance grounds, this is no
trivial result and, as is clear from the derivation in the A
pendix, it is due to cancellation of thez-dependent terms in
the electric and magnetic contributions toT̃j ,zz irrespective
of the dielectric properties of the surrounding stacks.

Knowing the force, the Casimir energyEj in the layer can
be calculated using

f j 252 f j 15
]Ej

]dj
, ~2.18!

with the condition thatEj→0 for dj→`. From Eqs.~2.15!
and ~2.3!, we find

Ej5\Im E
0

`dv

2pE d2k

~2p!2 (
q5p,s

ln Dq j~v,k!

5
\

~2p!2E0

`

djE
0

`

dkk (
q5p,s

ln Dq j~ i j,k!. ~2.19!

This equation, as well as that for the force@combined Eqs.
~2.3! and ~2.15!#, agrees in form with the corresponding r
sult of Zhou and Spruch@13# derived using the~surface!
mode summation method and starting from a simple mo
of a purely dispersive multilayer. However, in this work th
contributions of all~propagating and evanescent! modes are
naturally taken into account on an equal footing through
3-3
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Green function. Furthermore, since the Green function e
ployed refers to a general absorbing multilayer, so do
obtained results except, of course, for the region where
Casimir force is calculated.

The Casimir energy and force vary in a stepwise man
across the multilayer and we end this section by pointing
a relationship that exists between their values in two diff
ent layers, say, layersj andl. Indeed, assuming thatl . j , for
example, and using recursion relations for the reflection
efficients given by Eq.~A3a!, one may prove that the follow
ing relation exists between theD functions for the layers
@29#:

Dql~12r j / l
q r j 2

q e2ib j dj !5Dq j~12r l / j
q r l 1

q e2ib l dl !.
~2.20!

Combining this with Eq.~2.19!, we find that the respective
Casimir energies are related according to

El5Ej1
\

~2p!2E0

`

djE
0

`

dkk

3 (
q5p,s

lnF 12r l / j
q ~v,k!r l 1

q ~v,k!e2ib l dl

12r j / l
q ~v,k!r j 2

q ~v,k!e2ib j dj
G

v5 i j

.

~2.21!

A similar relation is obtained for the forces in two layers, b
the resulting expression is not particularly illuminating u
less « j5« l . Such a situation arises, for example, when
planar object is embedded in a planar cavity. In this case
find

f l 25 f j 21
\

2p2E0

`

djE
0

`

dkkk (
q5p,s

1

Dq j~ i j,k!

3F12r j / l
q ~v,k!r j 2

q ~v,k!e2ibdj

12r l / j
q ~v,k!r l 1

q ~v,k!e2ibdl
21G

v5 i j

,

~2.22!

whereb (k) is the perpendicular wave vector in both laye

III. DISCUSSION

Most of the previously obtained results for the Casim
force and energy in a specific planar configuration are rec
ered from the results derived in the preceding section sim
by specifying the corresponding reflection coefficients a
material parameters. Thus, for example, the results for
three-layer («1 ,«3 ,«2) configuration considered by Lifshit
@2# are obtained letting« j5«3 , r j 2

q →r 31
q , and r j 1

q →r 32
q ,

wherer i j
q are single-interface reflection coefficients given

Eq. ~A4!, and the results for the five-layer («4 ,«1 ,«3 ,«2 ,«5)
configuration considered by Zhou and Spruch@13# are ob-
tained letting« j5«3 , r j 2

q →r 314
q , andr j 1

q →r 325
q , where the

three-layer reflection coefficients are obtained from recurr
cies Eq.~A3!. Similarly, the results for the system consistin
of two identical slabs, recently considered by Matlo
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and Falinejad@25#, are obtained letting« j51 andr j 6
q →r q,

where r q are the reflection coefficients of a symmetrica
bounded slab@see Eq.~3.5! below#, etc. Specially, the Ca-
simir force and energy in a~dispersive! planar cavity formed
by two ideally reflecting~conducting! slabs are obtained with
r j 2

q r j 1
q 51.

We also note that these equations correctly reproduce
corresponding results emerging from the 1D consideratio
Indeed, taking only thek50 contribution in Eq.~2.15!, we
find from the first line in that equation, for example,

T̃j ,zz
1D 52

2\

p
ReE

0

`

dv k̃ j~v!
12D j~v!

D j~v!
, ~3.1!

where D j (v)[Dq j(v,0) @Eq. ~2.16!# is the same for both
polarizations. With a simple algebra, this equation can
rewritten as

T̃j ,zz
1D 5

\

pE0

`

dv k̃ j~v!F12
12ur j 2~v!r j 1~v!u2

u12r j 2~v!r j 1~v!e2i k̃ j (v)dj u2
G ,

~3.2!

which is in accordance with the Casimir force obtained
several authors for the respective systems they consid
@18–23#.

Owing to the recursion relations which the generaliz
Fresnel coefficients satisfy, the obtained results can be
plied to more complex systems with planar symmetry. As
application of the theory, we illustrate this by deriving th
Casimir force on a dielectric, or a metallic, slab~dielectric
function «s , thicknessl ) in a cavity ~dielectric function«,
lengthL! with realistic mirrors~reflection coefficientsr 1

q and
r 2

q), as depicted in Fig. 2. The force on the slabf 5 f 22

2f12 in this configuration can be calculated from Eq.~2.22!.
The functionDq1 @Eq. ~2.16!# is straightforwardly obtained
letting r 12

q 5r 1
q and r 21

q 5r 2
q and using Eq.~A3a! to deter-

mine the reflection coefficientsr 11
q . We find ~the polariza-

tion indexq is omitted!

D1512r 1S r 1
t2r 2e2ibd2

12rr 2e2ibd2
D e2ibd1, ~3.3!

wherer 5r 1/25r 2/1 and t5t1/25t2/1 are Fresnel coefficients
for the slab. This gives

FIG. 2. A dielectric slab in a planar cavity shown schematica
The arrow indicates the direction of the force on the slab.
3-4
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f 5
\

2p2E0

`

djE
0

`

dkkk (
q5p,s

F r ~r 2e2ibd22r 1e2ibd1!

N G
v5 i j

q

,

N512r ~r 1e2ibd11r 2e2ibd2!1~r 22t2!r 1r 2e2ib(d11d2),
~3.4!

where the expression in the brackets is to be calculated fq
polarization. Using Eqs.~A3! and~A4!, r andt can be further
expressed entirely in terms of the reflection coefficient
the cavity-slab interfacer5(12h)/(11h) ~where hp

5«bs /«sb andhs5bs /b) as

r 5r
12e2ibsl

12r2e2ibsl
, t5

~12r2!eibsl

12r2e2ibsl
. ~3.5!

Note that for a perfectly conducting («s→`) slab, we have
r p52r s51 andtq50.

The force f, as given by Eq.~3.4!, may be positive or
negative, depending on the dielectric properties of the s
and cavity mirrors as well as on the position of the slab. O
may easily verify that this equation gives the correct res
for the force on a perfectly conducting plate in an emp
cavity with ideally reflecting walls. Indeed, since in this ca
t250, N factorizes and Eq.~3.4! splits into (r 25rr 15rr 2
5r 1r 251)

f 5 f 2~d2!2 f 2~d1!, ~3.6!

where

f 2~d!5
\

p2E0

`

djE
0

`

dkk
k

e2kd21

5
\

3p2c3E0

`

djj

d

dj
@A«~ i j!j#3

e2A«( i j)jd/c21
~3.7!

is the force on the left mirror of a dispersive ideal cavity@cf.
Eqs.~2.3! and~2.15!, with the indexj dropped#. The second
line here is obtained upon a partial integration overj and
upon calculating thej derivative of the integral overk ~see
Ref. @32#!. For the empty cavity@«( i j)51#, the integrals in
Eq. ~3.7! become elementary giving the well-known resul

f 5
p2\c

240 S 1

d2
4

2
1

d1
4D , ~3.8!

according to which the plate is attracted to the closer ca
mirror. For a partially transmitting plate, the vacuum-fie
fluctuations in regions 1 and 2 of the cavity are no long
independent of each other and considerable deviations f
the above simple result may occur especially for realis
cavity mirrors. Clearly, in this case, in order to explore t
combined effect of the nearby walls on a planar~nano!object,
one must analyze Eq.~3.4! numerically.
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r

b
e
lt

y

r
m
c

IV. SUMMARY

Using the properties of the macroscopic field operat
appropriate for dissipative systems and a convenient Gr
function for a multilayer, in this work we have obtained ge
eral results for the Casimir force and energy applicable
local layered absorbing systems. We have also establish
relationship between the Casimir force~and energy! in two
different layers and, as an application of the theory, cal
lated the Casimir force on a dielectric slab in a realistic p
nar cavity.
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APPENDIX: GREEN FUNCTION

Denoting the~conserved! wave vector parallel to the sys
tem surfaces byk5(kx ,ky), we write the wave vector of an
rightward ~leftward! propagating wave in anl th layer as
K l

65k6b l ẑ, where

b l5Ak̃l
22k25b l81 ib l9 , b l8>0, b l9>0. ~A1!

With this notation, the Green-function dyadic for the sc
tered field in thej th layer reads@29#

GI j
sc~r ,r 8;v!5

i

2pE d2k

b j
eik•(r i2r i8) (

q5p,s

eib j dj

Dq j

3jq$r j 2
q eib j z2êq j

1 ~k!@ êq j
1 ~2k!e2 ib j z18

1r j 1
q êq j

2 ~2k!eib j z18 #1r j 1
q eib j z1êq j

2 ~k!

3@ êq j
2 ~2k!e2 ib j z28 1r j 2

q êq j
1 ~2k!eib j z28 #%,

Dq j512r j 2
q r j 1

q e2ib j dj , jp51, js521,

z2[z, z1[dj2z, 0<z<dj ,

êp j
7 ~k!5

1

k̃ j

~6b j k̂1kẑ!, ês j
7~k!5 k̂3 ẑ[n̂, ~A2!

wherer j 6
q [r j /n(0)

q are, respectively, the transmission and
flection coefficients of the upper~lower! stack of layers
bounding the layerj. Clearly, for the outmost layers,l
5n(0), we have r n1

q 50 and r 02
q 50. Also, one must let

dn(d0)50 since these quantities appear only formally. T
remaining Fresnel coefficients satisfy

r i / j /k
q 5r i / j

q 1
t i / j
q t j / i

q r j /k
q e2ib j dj

12r j / i
q r j /k

q e2ib j dj
, ~A3a!

t i / j /k
q 5

t i / j
q t j /k

q eib j dj

12r j / i
q r j /k

q e2ib j dj
5

b i

bk
tk/ j / i
q , ~A3b!

and, for a singlei -j interface, reduce to
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r i j
q 5

b i2g i j
q b j

b i1g i j
q b j

, t i j
q 5Ag i j

q ~11r i j
q !, ~A4!

whereg i j
p 5« i /« j andg i j

s 51, respectively.
Performing the derivations indicated in Eq.~2.12! and us-

ing

K j
6~k!3êq j

6 ~k!5 k̃ jjqêq8 j
6

~k!, p85s, s85p, ~A5!

we find thatGI j
B,sc(r ,r 8;v) is given by Eq.~A2! multiplied

by 2 k̃ j
2 and with êq j

6→êq8 j
6 . Noting that the equal-poin

Green-function dyadics consist only of diagonal elemen
we easily find

GI j
sc~r ,r ;v!5

i

2p k̃ j
2E d2k

b j
H k̂k̂

b j
2

Dp j
@2r j 2

p r j 1
p e2ib j dj

2r j 2
p e2ibz22r j 1

p e2ibz1#

1n̂n̂
k̃ j

2

Ds j
@2r j 2

s r j 1
s e2ib j dj1r j 2

s e2ib j z2

1r j 1
s e2ib j z1#1 ẑẑ

k2

Dp j
@2r j 2

p r j 1
p e2ib j dj

1r j 2
p e2ib j z21r j 1

p e2ib j z1#J , ~A6!

andGI j
B,sc(r ,r ;v) is given by this equation multiplied byk̃ j

2

s.

to

siv
L.

e

s

o,

05210
s,

and withp↔s. The tracesGj ,i
sc (r ,r ;v) andGj ,i

B,sc(r ,r ;v) can
be easily recognized from these equations and one has
example,

k̃ j
2@Gj ,i

sc ~r ,r ;v!2Gj ,zz
sc ~r ,r ;v!#

5
i

2pE d2k

b j
H b j

2

Dp j
@2r j 2

p r j 1
p e2ib j dj2r j 2

p e2ibz2

2r j 1
p e2ibz1#1

k̃ j
2

Ds j
@2r j 2

s r j 1
s e2ib j dj1r j 2

s e2ib j z2

1r j 1
s e2ib j z1#2

k2

Dp j
@2r j 2

p r j 1
p e2ib j dj1r j 2

p e2ib j z2

1r j 1
p e2ib j z1#J , ~A7!

while Gj ,i
B,sc(r ,r ;v)2Gj ,zz

B,sc(r ,r ;v) is given by this equation
with p↔s. Adding these two quantities, one finds that t
curly bracket term in Eq.~2.13! is equal to

$•••%528p i E d2k

~2p!2
b jF r j 2

p r j 1
p e2ib j dj

Dp j
1

r j 2
s r j 1

s e2ib j dj

Ds j
G .

~A8!
s.
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