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Classical aspects of quantum walls in one dimension
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We investigate the system of a particle moving on a half ¥ee0 under the general walls &&= 0 that are
permitted quantum mechanically. These quantum walls, characterized by a paramatershown to be
realized as a limit of regularized potentials. We then study the classical aspects of the quantum walls by
seeking a classical counterpart that admits the same time delay in scattering with the quantum wall, and also by
examining the WKB exactness of the transition kernel based on the regularized potentials. It is shown that no
classical counterpart exists for walls with<0, and that the WKB exactness can hold only for0 and
L=oo,
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I. INTRODUCTION ized by the boundary conditions,

Quantum systems with contact interactigns., point in-
teractions or reflecting boundarjesnjoy an increasing inter-
est recently. On the theoretical side, they have been found to
exhibit a number of intriguing features, many of which havewherelL is a parameter that takes all real values including
been seen before only in connection with quantum field theok =. Clearly, the standard wall in which we impogg0)
ries. Examples include renormalizatiph-5|, Landau poles =0 is obtained forL=0 but it is just one of the various
[6], anomalous symmetry breakif§], duality [7—9], super-  walls allowed, and therefore the first question one may ask is
symmetry[9], and spectral anholononf®—11]. On the ex- whether those nonstandard walls witls=0 can arise in ac-
perimental side, the rapid developments of nanotechnologgual physical settings.
forecast that nanoscale quantum devices can be designed andTo answer this, we study how those nonstandard walls can
manufactured into desired specifications. The description dbe realized as a limit of finitéregularizing potentials. The
some of these systems will involve the theory of contactpotentials we consider are steplike and may readily be manu-
interactions. As a simple example, a piece of a single nandactured using, e.g., thin layers of different types of semicon-
wire would act as a one-dimensional line with two reflectingductors. We shall show that it is indeed possible to realize
end points between which a conduction particle moves alsuch nonstandard walls out of the steplike potentials if we
most freely, allowing for a quantum-mechanical descriptionfine tune the limiting procedure. We then turn to the question
with boundaries. Other applications arise, for instance, irwhether such nonstandard walls are available only quantum
systems with impurities that act as point scatterers. All thesenechanically or not. This will be examined by looking at the
areas of interest lend impetus to investigate quantum systentisne delay of the particle in scattering, which is the time
with contact interactions further to uncover their full poten- difference between the moments of incidence and reflection
tial, both theoretically and experimentally. at the wall. It will be shown that quantum nonstandard walls

The topic of this paper is the quantum half-line system,with L <0, which are characterized by positive time delay,
which is perhaps the simplest among those with contact inhave no classical counterpart possessing the same time delay,
teractions. This system also appears frequently as the radialhich implies that these walls are purely quantum. We also
part of higher-dimensional systerfis?]. (For recent experi- consider the validity of the semiclassical WKB approxima-
mental studies, see Ref13] and references thereinWe  tion for the transition kernel under nonstandard walls, where
consider a quantum particle that moves freely on a half-linenow one takes into account the possible two classical paths,
x=0 with the end poink=0 acting as a reflecting boundary, the direct path and the bounce path, in the path intdde!
or an impenetrable wall. This system is knoygee Sec. )]  This is of interest because it has been known that, for the
to admit a one-parameter family of distinct walls character-standard wall as well as that bf=«, the WKB approxima-

tion becomes exact if a sign factor is properly attached to the
contribution of the bounce path. We shall see that for these

#(0)+Ly'(0)=0, (1.9

*Email address: fulopt@poe.elte.hu two values ofL the required sign factor can be accounted for
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cannot hold. Before presenting these results, we provide thexample for this is provided by the time delay that occurs

basics of the quantum system on the half line below. when an incoming particle is reflected from the wall. The
time delay in quantum scattering processes has been studied
Il. BASICS OF THE QUANTUM SYSTEM extensively (see, e.g.[18,19 and references therginlts
ON THE HALF LINE definition and calculation are done for our system as

o ) follows.? Let us consider a wave packet formed out of the
The system of anonrelativisti¢ free particle on a half positive-energy state@.1),

line xe[0e) is governed by the HamiltonianH=

—#2/(2m)d?/dx?, supplemented by some boundary condi- o e (K22m)t

tion imposed at the walk=0. The boundary condition is w(x,t)=f0 dkf(k)e™ e P(X)
determined by the requirement thdtbe self-adjoint on the

positive half linex=0 and, mathematically, this is done by 1 [« _ o _
finding proper domains of the operatét on which it is z—f dk f(k)e'krog™ (ifkT2mtg—ikx
self-adjoint. The result is that there exists &lJfamily of V2m Jo

domains of states specified by Hd.1) (see, e.g., Ref.12],

Appendix D therein which can be readily understood by a + L fwdkf(k)eiKXOei§ke7(iﬁ,k2/2m)teikx,
direct inspection as well. Indeed, one sees by partial integra- V2w Jo
tion that for H to be self-adjoint one must havg™ ¢’ 2.4

=y'* 4 atx=0 for any state)y on whichH acts. If ' (0)

0, this impliesy(0)/y’(0)=[#(0)/'(0)]* = —L with L wheref (k) is a real function peaked &> 0. The first term
being some real constant, which is just the conditibd).” ~describes the incident packet whose maximum starts fgm
The casey’ (0)=0 which also fulfills the requirement can be 5t t=0 and moves to the left with velocity magnitudg

included by allowing. = in Eq. (1.1). The whole family is  =#k,/m, as can be seen from a stationary phase argument,
U(1) because of the range of the parametdre
(—o0,00)U{ee}=U(1). d/dk[ —7ik?/(2m)t+ kxg— Kx] =,
Under the boundary conditiofl.1) the positive-energy
states are =0=x 1 (1) =%~ (fiko/m)t. (2.5
_ Zikx 4 i Skaikx Similarly, the reflected packet given by the second term
oK(X) —_Zw(e +e'%e™™) (2.7 MOVES s
with 8,=2 arccotkL. In addition, forL >0, we also have one Xl )= = X0+ (fiko /m)t+2L/[ 1+ (koL)?].  (2.6)

negative-energy state,
As t increases, the first packet moves towards the watl at

—xiL =0, and its maximum reaches it gt=Xxy/vy. Meanwhile,
e (L=0), (2.2 the second packet comes from the lgftwe allow x<0 as
well) moving to the right and arrives at the wall Bt (X,
which is a bound state localized at the wall with its charac-—2L/[1+ (koL)?])/ve. The difference between the two in-
teristic sizeL. The existence of the bound st&&2) can also  Stants gives the time delay,
be ensured from the minimum-energy condition. Namely, for

1/2

®bound X) = L

any normalized statg the expectation value of the energy et = — 2mL 2.7
reads 2 1 Ako[1+ (koL)2T" ‘
_R? 1 (= L, hP 1 For L=0 andL =, this time delay is zero, as one would
(bHY) =512 o X[ ()+ L' ("= 52 expect on the ground that for such cases there is no param-

(2.3 eter in the system possessing the dimension of time. Note
that for negativel the time delay is positive, whereas for
where L is the parameter in Eq(1.1). The lower bound positiveL it is negative.
—#2/2m1/L? is attained if there exists a state satisfying From the eigenfunction&.1) and(2.2) the Feynman ker-
y(x)+ Ly’ (x)=0 for all x=0, which is just the bound state nel describing the transition of the particle frora att
(2.2. =0 tox=b att=T can be calculate¢see Refs[15-17)).
As seen in the bound state, the paramétdurnishes a  The result is

physical scale in many of the properties of the system. An ) )
K(b,T;a,0)= Jm/2mi# T[eM2AT(b=a)" 5 gim2AT(b+a)7],

(2.9
The fact that the constart is universal for any statg can be
seen by considering Eq1.1) for all linear combinations of two
statesy; and ¢, with L, and L,, from which one deducek; 2Compare this with the classical-mechanical definition of time

=L, immediately. delay, presented in Sec. IV.

052102-2



CLASSICAL ASPECTS OF QUANTUM WALLS IN ONE. .. PHYSICAL REVIEW A 66, 052102 (2002

for L=0 (“* =" sign) andL=« (“+" sign). For L<O0 the :
1

1
kernel is given by I I | IIL
" o
VM2 A T| @m2iT(b-a)% | gimi2iT(b+a)? 'Vt/\:/\/\/</\/\,
1
) 1
_i dze ZILlgim2iT(b+a+2)? ' 2.9 K !
R i
1
and forL>0 by S
JMI2mi AT em2iT(b—a)? | gim/2iT(b+a)?
— E xdze_Z/Leim/ZhT(b+a_Z)2 + Eeithszze—(b+a)/L
LJo L . v
(2.10 FIG. 1. The regularized potentigB.1) and the eigenfunction

(3.2.
The salient feature of the result is that, fo=0 andL
=00, the kernel(2.8) almost coincides with that obtained by boundary conditiori1.1) atx=0 can be realized. Obviously,
the WKB semiclassical approximation, because the twasince no probability flow is admitted through the wallxat
terms in Eq(2.8) correspond to the free kernels for the direct =g sych a regularized potential has to become infinitely

path from @,0) to (b, T) and for the bounce path that hits the high for x<0 in the limit. A simple choice for the potential
wall once during the transition, respectively. The only prob-fyfilling the demand is

lem for the complete WKB exactness is the appearance of
the = sign factor attached to the contribution from the Vv x<—d (domain )
bounce path. We shall show later that this sign factor can be L

attributed to the classical actianS,,,,.s=7 7 gained by the V(x)=1{ V2, —d<x<0 (domain I) (3.1
bounce effect at the wall so that’")4Sounce= 5 1, 0, x>0  (domain Il

Ill. REALIZATION OF THE WALL .
ON© with constants/;>0 andV,<0. Here, the scale of the sup-

We now discuss how to realize the wall characterized byport is given by the regularization parametgrandV; and
Eq. (1.1) in actual physical settings. For this, we shall adoptV, are assumed to be functions @such thatv,, |V,|—»
a regularization method that is analogous to those used eaasd—0.
lier for point singularitie§4,12]. We extend the space to the  To find the appropriate dependence\gf{d) andV,(d),
entire line —o<x< and seek a potentidl(x) with finite  let us consider an energy eigenstatén the potential(3.1)
support such that, in the limit of vanishing support, thewith energyE<V, (see Fig. 1,

@i(X)=Ne“, x<-—d, k=1 (2m/%?)(V,—E),

e(x)={ oy (x)=Ad+Be K  —d<x<0, k=(2m/A%) (V4 +E), 3.2
en(x)=Ce**+De ™ x>0, k=\2mE/#2

(for E<0, @y (x)=Me ™ ZMEI") Under such finite poten- atx=—d andx=0. Note that botfk and « ared dependent
tials (i.e., without infinity or singularity, the wave function k=%K(d), x=x(d) throughV,(d) andV,(d) and so are the
and its derivative are required to be continuous. The condig, 5 ratios in Eq.(3.3). If we introduce
tion which is dynamically important is provided by the con-
tinuity of the ratiog’/ ¢ which is free from the ambiguity of
overall normalization. From this continuity condition, we ob- o K _
tain R(d)=—(0), «a=arctan-, pB=kd, (3.9
- _ Il k

ik(Ae kd—pggkd) o, 0 ik(A—B) 3.3

Ae kdppggkd ' oy O="278 ' then from Eq.(3.3) we find

K
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_ (Ae 'P—BeP)cosp—i(Ae 'P+BeF)sinp (3.6) for all E>0. If By>0, on the other hand, then
R(d):k(Ae"BJrBe'B)cos,B—i(Ae"B—Be'ﬁ)sin,B Bod Y(B—Bo) on the rhs of Eq(3.9 has to cancel the
_ divergence of k. This meansk~Byd 1+ (1/8,)x. The
=ktana—pB). (3.5 needed finite term-1/L can be provided again by if «
~c,d”—1/L. This is achieved, for example, by

The boundary conditioifl.1) is realized if

hZ ., 2C
1 Vi(d)=z—| c°d“"— —d"|,
R(d)——{ asd—0, (3.6 2m L
ﬁ2
- 24-2 v—1
independently of the enerdy. In what follows, we present a Va(d) 2m(B°d +2ed™). (312
set of regularized potentials fulfilling this requirement.
To this end, we first define It is again easy to confirm that E(B.12) yields R(d) fulfill-
. _ ing Eq. (3.6 for v>— 3.
ap=lim a,  Bo=lim B, 3.7) (i) Case B<ay<m/2. In this case, we havk~B,d~*

-0 -0 and k~ (B tanBy)d 1. Using the Taylor expansion

and note that, sinc¥,(d)—> asd—0, we always havec
—oo, whereas since Qa<w/2 by definition, we have 0
<ag=<m/2. Note also that, iV,(d) used in our regulariza-

a=arctari k/K)~ ay+cof ap( k/k—tanag), (3.13

tion is such thaj3— «, then tang— B) will oscillate between we find

—c and« so R(d) will not have a limit. We therefore con- R(d)~k tar ag— Bo+ cof ao( k/K—tanag)]

fine ourselves to cases in whighhas a finite(zero or non-

zero limit By. Now, let us supposgy# ag (mod ), that is, ~coZ ao(K—?tanao). (3.19

tan(@— B)—tan(ay—By)#0. Then, if |[Vy|—> we have k
—o0 and, consequentlyR(d)— =c. If |V,| remains finite,
on the other hand, then we findy=7/2 and B,=0 and 1
henceR(d)— . We thus see that these regularizations yield k~(BotanBo)d™1—(1/cog By) (3.19
necessarily the standard walk= 0. L

The foregoing argument shows that nonstandard wall ; ; ; )
with L+ 0 can be realized only by such realizations in Which?;i% lggé(éélgqigs'@' A possible regularized potential real
V, andV, are fine tuned as

Hence the choice

h? 2
Bo= ap(modm). (3.9 Vi(d)= 5 (,BStanZ,Bo)d’z—E(,Botan,BO/coszﬁo)d’l ,

We shall suppose Ed3.8) from now on, and consider the
limit of R(d) for the casesay=0, 0<ag<w/2 and «g
= 7/2, separately.

(i) Caseay=0. We then have, ad—0, a~tana=«/k _ . o
.0 and ,3—?30—>0 and hence tan(B)=tan(@— B+ 5, which can be shown to givR(d) sausiylng Eq.(3.6).
(i) Caseag=m/2. We still havek~B,d~! but now

klk—o so a~m/2—kl k, and therefore

_ ﬁz 24—2
Va(d)=—5—Bod "~ (3.16

~klk— B+ Bo. Thus the ratio is approximated as

R(d)~«x—Kk(B—Bo). (3.9 . -
~ v ~
Now, if B,=0 then the right-hand sidehs) readsx—k?d. R(d)%ktar{g— ;_('8_'30)_'30 ~K = E_('B_'BO)}
Hence, to get a finit&}(d), k?d has to compensate the di- (3.17
vergence ofc. This can be done ik andk behave as The realizatior(3.6) will be attained if, for example, we have
1 klk?*— and provide —1/L through k by assumingk
r~cd'= -, k~c¥d(—v2  (—1<p<0), ~ Bod ™1+ 1/L1/B,. This is the case with the regularization,
Vi(d)=5—cld? (v<-2
which is realized if, for instance, we put 1(d)=5-¢1 (v ),
2 2c h? h? 2
— | pr2q2v_ — " Qv - v—1 - 24-2, T 4-1
V,(d) Zm(cd —d ) Va(d)= - 5—cd" V,(d) 2m<ﬁod +od )
(3.1) (3.18

with a constantc>0. It is then readily confirmed that this To summarize, the regularization by means of the steplike
regularized potential3.11) does lead tdr(d) fulfilling Eq. potential(3.1) leads generically to the standard wiak= 0. It
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can also lead to nonstandard walls 0 but only as excep-
tional cases under the fine tuning E8§.8). It is worth em-
phasizing that the crucial factor in determining the limit of
R(d), i.e., the boundary condition at=0, is not the leading E
asymptotic behavior o¥/; and V, in d—0 but always a E
subleading term. A similar phenomenon has been observed :
for the regularization of the Dirac delta point interactions in
three space dimensiof&2].

The regularizations we used are based on a steplike po-
tential. Needless to say, other types of potentials can also be
used for realizing the walls. One can, for instance, look for a
potential that leads to the realization for ahywithout in-
volving the mass parameter. Such a regularization may be
more desirable than that we constructed—where the poten- FIG. 2. The realizing potentigl.6) is shown by the solid line
tials turned out to ben dependent—for the reason that po- for L>0. ForL<0 the obtained potential becomes the dotted line
tentials should be independent of the particle. Nonethelessnd is unphysical.
our simple regularization may well exhibit a universal fea-
ture of the realization of théstandard and nonstandard (whereE=3mu? is the incoming energywhich is the time
walls, as we can see, for example, the bound state is accorapent by the particle in the region on the left of the point
modated in the negative middle part of the steplike potentialE L. Our problem is then an inverse problem: Determine a
we used. potential V(x) from a given7(E) as a function ofE. This

can be answered if we follow the well-known argument of
IV. CLASSICAL COUNTERPARTS Landau and Lifshit420] used for the problem of determin-
ing a well-shaped potential from the period time with which

Having seen that the quantum walls characterized_by g particle moves.
can be realized by means of regularized potentials, we now e start by writing the relationship between the potential
turn to the question whether those walls have classical courgnds as
terparts or not. We investigate this in the phenomena of time

V(z)

|| 2(E) L z

delay discussed in Sec. Il, by asking if there is a classical;(E):\/ﬁfL dx _ WJ’E( B dx(V)| dv
system with some appropriate potenté(x) that can ac- x(E)VE—V(X) 0 av E—-V
count for the same amounts of time delay as those observed 4.3

under the walls. Note that systems with the regularized po- . . N
tentials discussed above are not applicable for this purpos@ividing by yW—E with W being an auxiliary parameter,
because, in those systems, the time a classical particle spenaid integrating with respect & from 0 to W leads to

in a potential(3.1) tends necessarily to zero ds-0 (since, WH(E)dE W dx\ (w dE
asV,— —oo, the distance run by the particle becomes zero f = \/2mf dV( — —) = ——3
o yW-E 0 av/Jv J(W-E)(E-V)
(4.9

while its velocity becomes infinity
To find a potential for the classical particle that repro-

duces Fhe quantum_tlme delay,_we shall f'@ cons@er thel'he inner integralthe one with respect tg) gives, while
walls with L>0. In this case the time deld®.7) is negative, on the Ihs we can evaluate the integral explicittf. Eq
and if the classical picture is available, the incident particle(4 2]. From the result ' '

with velocity magnitudey =#k/m must return earlier by

oL 1 m2mU 1—- 141+ (2mL%#2)W] = my2m[ L —Xx(W)],
- @2 5
v mL
1+ 70) we obtain x(W)=L[1+(2mL¥%4%)W] 2 inverting it
yields®
than we would expect when it collided with the wall xat ) )
=0. Observe that, for smalb the (minug delay |1 ap- V(x)= h (L__l) 4.6
proaches R/v. This suggests that a slow particle sees the 2mL? | x? ' '
wall at (around x=L, notx=0. Consequently, the reflecting _ o o
potential V(x) is expected to begin to grow at=L. For We can see that this wall-realizing potential sits on the

definiteness, let us search for the potential in the qualitativ@0Sitive half line. This is unavoidable: Indeed, if a potential
form as shown in Fig. 2(This fixes an arbitrariness in the iS identically zero on the whole positive half line and is
choice of the potential. As we will see, demanding a positive,

monotonically decreasing potential determines the potential
uniquely) Now, let us introduce we remark that while this potential reproduces the time delay

5 classically, it does not reproduce the boundary conditbd) and
F= TL + 7= /—ZmLZE/ , (4.2) hence cannot serve as a potential to realize the walls quantum me-

chanically.

hZ
om2 B
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nonzero only on the negative half line then the time delay issical trajectory can be continued with the outgoing trajectory
necessarily non-negative. The most we can reach is that thbat has the same ener§yas the incoming one. The poten-
penetration of the wall-realizing potential to the positive halftial is further required to act as a completely reflecting wall,
line is finite. Equatior(4.6) presents such a solution. We will that is, for every positive enerdy, there has to be a turning

see that, fol.<0, we have to pay more. pointx(E) (as in Fig. 2. Note that then the functior(E) is
For L<0, the time delay is positive, i.e., the quantum necessarily nonincreasing, and its inverseVix) locally,
wave packet returns later than expected: i.e., it reproduces at least parts of the functiéx).

First let us discuss the case wh¥ris differentiable(and

e 2|L| 1 ,= \/ﬁ“_l 1 — hence continuoyseverywhere. The, independence of the
v 1+<mi|iL| U) \/E(1+ 2;?2L E time delayq , (E) [cf. Eq. (4.8] implies

d
@7 axg Tl B) = V2m) e =0 (49

This is the time delay we try to reproduce with the corre-
sponding classical particle as its classical time delay

JE V(o f

and thus that/ =0 aboveXinesh LEtXposdENOte the lowest
2o above which the potential is nonpositive. Naturally, one has

Tolxo(E) = \/_f \/E v J2Eim’ (4.8)  Xpos<Xtresn and can write X,os= SUX|V(x)>0}, from

&) (%) m which one findspes=limg. o X(E), that is,X,esis the “turn-
ing point for zero energy.”

If there exists an energ, with a turning point on the

negative half linex(E,)<O0, then for larger energieis the
time delay is at least

wherex, is the initial position of the particle. For small,
Eq. (4.7 becomes A|/v, which suggests that a slow par-
ticle enters thex<<O region and sees the wall near
—|L|. For this, the realizing potentiaf(x) is expected to

start to increase ax=—|L|, and to keep increasing for Xo Xo
),

vam X(E, >J_ “ME

which is obtained by omitting the time of traveling through
—|L| and is unphysical, may be understood intuitively asth® interval{x(E),x(E,)]. SinceV is continuous on the
follows. For high energiek, the particle is expected to move Nt€Val[X(E,),Xo], it is bounded and hence the high-energy
approximately freely, and since the particle travels at leas@Symptotics of Eq(4.10 is

smallerx. However, if one repeats the same argument used
for the L>0 case, one ends up with E¢.6) again, with
now the left branch of this functiofsee Fig. 2. The obvious
problem with this branch, i.e., it increases o the right of

(4.10

until x=—|L|, the E—~«~ asymptotics of the time delay xo—X(E,) IXE,)| 1
would be at least [2.|/v. However, the time delay we have P2mee o \/_ =\2m ~—.

to reproduce has only @ ° asymptotic behavior. This JE JE JE JE
means that the coefficient of the * term must vanish for (4.17)
E—o, implying that in the limit the particle reaches only

This is in contradiction with the asymptotids™%? of the
demanded time delai4.7). Consequently, all turning points
have to be on the non-negative half line,

until x=0.

The situation cannot be helped with any additional potens
tial in —|L|<x<0 or in 0<x, nor by any other modifica-
tion. Actually, it can be proven that no classically acceptable x(E)= lim X(E')=x.=0. (4.12
reflecting potential can fulfil the requirement that the time
delay (4.7) be reproduced exactly for aty> Xresn that is,
for all initial positions of the incoming particle above a finite, ~ Next we prove that inX.. X, the potentiaV decreases
possibly positive threshold positio, . TO see this, let us strictly. Namely, if we assume the contrary then there will be
consider an arbitrary piecewise differentiable potential, everat least one point; in this interval that is not a turning point
possibly diverging at the discontinuity points. Then the clas{see Fig. 8)]. Within [x;,Xpd, let x, denote the turning
sical force —V'(x) exists everywhere except for finitely point with the highest energ¥,. Then, in the function
many points, while at a discontinuity point an incoming clas-Td,XO(E) there will be a discontinuity aE=E,:

E' o

| Jim 7t (B) = lim 7 (E)|=

i fx JXO dx _ im f dx X0 dx
m
V2m| e\ E, JEp ENE,” X(E)VE— v E/|52 xEIWE—-V  e\E,| JXE)WWE— V % VE—V

i J'X(O) dx , sz . f x2 dx -
— m m
E/E,” X(E) VE E\E2 V E\E, V x; VEo;—V
(4.13
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V(z)

| |
| |
I Y(w) l
| |
| E > E, |
| |
| |
| |

]
z
NS \JS
0 2 2% T2 Tpos 0 2 Zpos Zthresh

FIG. 3. (@) A nondecreasing part in the potential ix.(,x,0 causes a discontinuity in the time deldy) The obtained qualitative shape
of the potential.

However, the required quantum time delay, E4.7), is a The proof of the strict decreasing Wfin (X.. ,Xpo¢l holds,
continuous function everywhere. This result tells us that ortoo. This also rules out discontinuity pointgsc in (X.. ,Xposl
the region &.. ,X,0sl X(E) is the inverse oV/(x) and is dif-  with V(Xgsc—0)<V(Xgisc+0). Others are allowed but do
ferentiable. We have also obtained the qualitative behavior afiot cause any trouble in the behavior>dfE) because, for
the candidate potential functi¢geee Fig. 80)]. Coming from  energiesE [ V(Xgisc+ 0),V(Xgisc— 0)], We then havex(E)

the right, it is zero abov&esn, NONPOSItive INXes<X  =Xgisc=const and §/dE)x(E)=0. The transformation of
<X¢hresty @nd is positive and increasing 1, <X<Xy.s, di-  the integration variable in the first integral in E¢.14) re-
verging to+« at X, . mains applicable, while the second integral can also be esti-
Now we are ready to investigate the requirementmated as before, in spite of any discontinuity points in
1\2mr(E)=1/2m7y, (E): (Xpos: Xtnresnl- Therefore, we reach the same contradictory re-
sult (4.16 again.
IL| J‘Xpos dx N xo  dX Xo Hegce, interlestinglly enough, the walls \;]vith negativéo |
= - not admit a classical counterpart, i.e., they are genuinely
\/E( 1+ 2_m;E) KENE-V  JxeE-V E quantum. Incidentally, we mention that if we demand only
h that the quantum time delay be reproduced in xge»o°
(414 jimit of Tax,(E), then the required realization can be

Observe that the second integral is bounded from above bgchieved(see the Appendix
(xo—xpos)/\/E, since the potential is nonpositive on that in-

terval. Employing again the “Landau trick” to the first inte- V. WKB EXACTNESS
gral (i.e., changing the variable from to V, dividing by _ -
JW=E, and integrating between 0 awd), we find The fact that for walls witih. =0 andL =< the transition

kernel is almost WKB exact alludes us to examine whether
a|L|/N1+(2m L%/ A2)W= — mx(W), (4.15 this implies a complete exactness or not, and if so, whether
such a feature persists to nonstandard walls as well. More
or precisely, we wish to see if the sum of amplitudes along the
classical two paths, the direct world line from,()=(a,0)
X(W)=—|L|/V1+(2mL*¥#?*)W<O. (416  to (b, T) and the bouncing path that hits the wai 0 before
arriving at (b, T), give the exact resulftsee Fig. 4a)]. The
uestion, therefore, is whether or not the kerrigl§), (2.9),
nd (2.10 can be rewritten in the form of a sum of the
8orresponding two terms as

This, however, contradicts our previous result that all turnin
points have to be on the non-negative half line, showing tha
the requirement4.14) cannot be fulfilled.

We can show that the preceding argument remains vali

even if we allow discontinuity points in the potential—only o\ [T e AimI2hT(b—a)2

slight modifications are necessary. Tkg independence of K(b,T;a,0)=v(m2miaT)e

the time delay impliesv=0 at all c_ont.inuity point_s, and + (11271 %) (87Spouned 92D)

hence everywhere, abov€pes Xpos IS introduced in the _

same way and with the same properties as before. Equation X e(/7)Spouncéb. T:2.0) (5.2

(4.12 also remains valid: When assumingE, )<O0, the

possible discontinuity points falling betweet(E, ) andx,  whereS,,,,.{b,T;a,0) is the classical action for the bounce
can be covered by intervals of a total length less than, sayath, and the factor before the second exponential term com-
3IX(E,)|. We omit even these covering intervals from the prises the van Vleck determinant and the Maslov phase fac-
time delay, and on the remaining intervals the potential igor corresponding to the turning poitgéee Ref[21] for the
continuous and has overall upper and lower bounds. Conseletails. In the spirit of the sections herebefore, here again
quently, the high-energy asymptotics of the time delay is stilthe wall is considered not necessarily to be simply the infi-
at least~ 1/\E. nitely high vertical potential wall at the origin but to be
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FIG. 4. () The direct and the
bounce pathgb) The bounce path
under a wall-realizing potential.

0 o b

realized by some sequence of more general reflecting poten- b dx
tials. What we require is that the potential sequence must ym/2 =T, (5.9
converge uniformly to zero for alt= X, with somex,,q aVE-V

which may be positive, and that, for arsy b>Xx,,,, the . )

bounce path tends to the standard bounce world line depicte§ich is used to evaluaté’Syrea/ dadh in Eq. (5.3. Plug-
on Fig. 4a), at least on the space-time region X,y Oth- ging the I|m|t|ng values for the energies and the potential in
erwise we let the reflecting potential sequence be arbitrary t&9- (5-3, we find the required property.

the left of x,y and, therefore, at the limit of the sequence, >ccond, we make the observation that the energy of the

0 _ 2/T2 Thi -
the resultant actio®,,c.Ccan differ from the actio (0) bounce path converges Eyqnce~ M/2(a-+b)*/T". This fol

—m(a+b)2/2T that corresponds to the simplest case of thd®Ws from our requirement that the bounce path must tend to

infinitely high vertical potential wall with no extra action the standard bounce world line outsiBg,, because, then

contribution caused by the wall. the velocity (_)f t.he partlclg tends unlfp_rmly tmfr_b)/T un-
Even these very mild assumptions allow us to observéjer the vanishing potenu%l. In addition, we find 'that, al-

some important, generally valid, properties. The first one i$h0U9N A Spounce= Shounce™ S'E)o)unce. does not necessarily tend

that, although the direct path is also influenced by a nonval® Zero, in the limit it becomes independentaoéndb. This

nishing potential, its WKB contribution ¢an be seen as follows:

V(i7274) (97 Syirect! dadb) /" Sdrect will still reduce to the A )

first term of Eq.(5.1). Indeed, since in the limit we hawé Svounce — TE+ \/ﬁf dxE—V+ \/ﬁf dxVE—V

—0 and hence the velocity of the particle tends uniformly to x(E) X(E)

(b—a)/T, we trivially find E—E©),_=m/2(b—a)?/T2 and (5.9

Sairec— Sihe=M/2(b—a)?/T. The nontrivial question that ang

remains to be shown concerns with the property of the de-

rivative, 9°Syirect/ dadb— 9°S$ / dadb, but this can be seen Shouncd 9a= \2mVE—V(a), (5.6

by writing the action as

where now the energy of the bounce path is determined by

\Ffa dx +\/Efb dx T 57
2 Jxe)\E-V 2 Jxe)JE-V '

[again, Eq(5.7) is used also for the resulb.6)]. Since now
E—EW, .o it follows that

T T
Sdirec= fo dt(E—2V)= —TE+2JO dt(E—V)

=—TE+ \/ﬁjbdx\/E—V, (5.2

which is valid fora, b>x,,,,, and evaluating
ISpouncd da—M(a+b)/T=dSQ dda, (5.9

f?zsdirect_ m/2 JE
dgasb — \JE—V(a) b S0 dAS,ouncd da—0. The b independence ofA S,y nce IS
. proven analogously.
b dx Third, if we restrict ourselves to the potential sequences
=—\2m| JE-V(a) \/E_V(b)ja —\/mg of the type(3.1) then Egs(5.5 and(5.7) read

(5.3 Svounce= — TE+v2m(a+b) VE+2\2mdVE+|V,|
(5.9

Here, the energ¥ of the direct path is determined by the
condition and
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\/_ + Jm2——=T. 5.1
e 549
From Eq.(5.9 we have that

lim A Spounce lim (23/2mdy[V,)). (5.11)

d—0 d—0

Furthermore,#?Spouncd (dadb) can be computed by differ-
entiating Eq.(5.6), and using’E/db, the latter is obtained by
expressingb=Db(E) from Eq. (5.10 and applyingdE/db
=1/ db/9E]. Taking the limit of the result givesV/ T, so we
find that, in the limit, the square-
of Eq. (5.1) equal each other for these steplike potential se-
qguences.

PHYSICAL REVIEW A 66, 052102 (2002

A (a,b,T)
—J(m2miaT)e  @mbAmiatb-b) | <o,
) ée’(a+b)/Lefim/2ﬁT[(a+b)27(ﬁ’T/mL)2], L>0,
(5.15

as one finds from Eq42.9) and(2.10.

We thus learn that the quantum walls with=0 andL
=, which correspond to the Dirichle(0)=0 and the
Neumanny'(0)=0 boundary condition, respectively, are
distinguished in the 1) family of walls with respect to the
WKB exactness. These two cases are distinguished also by

Stheir scale invariance, which arises due to the absence of the

scale parameter. The relationship between the two, the WKB
exactness and scale invariance, is however unclear.

By virtue of these properties, we are able to discuss the

guestion of complete WKB exactness. In the cdse and

L=oo, it is possible to reproduce the required action contri-

bution ASygunce mh and ASyqnce 0, respectively, for ex-
ample, with the steplike potential sequend8sl). In fact,

choosing forL =0,
2
Z d—2
2

(5.12

2

Vi(d)=consxd™!, V,(d)=

2m

(a potential sequence withy=

=00,

0 andBy=m/2), and forL

2

h 2
V(d)= ﬁczd‘l,

h
V,(d)=— ﬁco|—3/2, (5.13

which is the caser= — 3 of Eq. (3.11), provides just these
needed action contrlbutlor[sf Eqg. (5.11]. Note that these
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APPENDIX: WEAK CLASSICAL REALIZATION OF THE
TIME DELAY FOR L<O0

Here, we outline how a weaker classical realization of the
quantum time delay, namely, tlxg— o limit of the classical
time delaya-c,,xo(E), can be determined for the walls<O.

Let us assume that we have a strictly decreasing positive
potential such that, for a fixed finite, and all energie€
above V(xg), TC|’XO(E):T(E). We use the Landau trick
again, dividing this equation byW-—E, integrating now
betweenV(x,) andW, and evaluating the left-hand side by
changing the variable t&. From the result we can express

potential sequences are, at the same time, correct realizatiopew) to find

of the quantum boundary condition with=0, respectively
L=o, as well.

guantum boundary condition.
On the other side, for the other walls#0, «, one can

prove that no potential sequence can account for the kernels

(2.9 and (2.10 irrespective of whether the potential se-

Nevertheless, they are not unique even Xo

among the steplike realizations with these properties, and x(W)—?arcco%l—
presumably other potential shapes can also serve as examples

for even both the complete WKB exactness and realizing the

2V(Xo) 2|/
W Vi+(2mL2#%)W
2mL2 1/2
1+ —7W Vixe)

Xarcco (A1)

2
1+ —ﬁrV(XO)

guence reproduces the correct quantum boundary condition

or not. To see this, let us write these kernels in the form

JMR2aihT)[em2iTh-2% 4 A (a,b,T)el/"Souncd.
(5.14

If the complete WKB exactness holds, then Ar¢p,b,T)

should correspond to the limit oA Sy nd%, Which we
know is unavoidably independent afand b. However, ac-
tually argA (a,b,T) does depend ora and b, as can be
checked simply, for example, on the larfexsymptotics of
A (a,b,T),

Now we perform the limitxo— o0, with a fixedW. The sec-
ond term on the rhs of E§A1) remains finite no matter how
V(Xq) changes correspondingly. Consequently, to have a fi-
nite x(W) in the limit, arccogl—2V(xy)/W] has to tend to
zero. This meand/(x,)—0, and from cos~1—¢%2 (e
~0) we have the asymptotics arcEbs2V(xy)/W]
~2\V(Xq)/W so to reach a finite limit of EQAL) xqvV(Xg)

has to converge to a constant. Introducing

c:= lim

X0—>oo

(A2)

242
meOW(x(»,

052102-9



FULOP, CHEON, AND TSUTSUI PHYSICAL REVIEW A66, 052102 (2002

which will be a free parameter in the realizing potential, thewhosexy— o limit is really the desired quantum time delay

limit of Eq. (A1) is (4.7 (independently ot). The potential itself is obtained by
solving the biquadratic equation that follows from E43),
h 5 5 and reads, for example, far=1,
X(W) = — (c/yW—1/VEZ2mLZ+W).  (A3)
Vv2m
Zﬁz X =2/ X 2/3
One can check that the inverse of thi§W) is really a V(X)ZW(M) T(m +9(x)" 1

strictly decreasing potential tending to zerac# 1, and that
the time delay corresponding to it is

JI=V(x0)/E—1

-2

+2yn(x) = 7(x)*

(A5)

Tax.(E)=1| C
o Wixo)E .
with
N 1 1 JE—V(xg) 1
JR2m2+V(xg) | VE 47 ’ n(x)=—{[V1+5(x/L])*+1]"°
~——+tE V2
2mL
(A4) —[Vi+FHXLD* =112 (A8)
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