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Classical aspects of quantum walls in one dimension
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We investigate the system of a particle moving on a half linex>0 under the general walls atx50 that are
permitted quantum mechanically. These quantum walls, characterized by a parameterL, are shown to be
realized as a limit of regularized potentials. We then study the classical aspects of the quantum walls by
seeking a classical counterpart that admits the same time delay in scattering with the quantum wall, and also by
examining the WKB exactness of the transition kernel based on the regularized potentials. It is shown that no
classical counterpart exists for walls withL,0, and that the WKB exactness can hold only forL50 and
L5`.
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I. INTRODUCTION

Quantum systems with contact interactions~i.e., point in-
teractions or reflecting boundaries! enjoy an increasing inter
est recently. On the theoretical side, they have been foun
exhibit a number of intriguing features, many of which ha
been seen before only in connection with quantum field th
ries. Examples include renormalization@1–5#, Landau poles
@6#, anomalous symmetry breaking@5#, duality @7–9#, super-
symmetry@9#, and spectral anholonomy@9–11#. On the ex-
perimental side, the rapid developments of nanotechnol
forecast that nanoscale quantum devices can be designe
manufactured into desired specifications. The description
some of these systems will involve the theory of cont
interactions. As a simple example, a piece of a single na
wire would act as a one-dimensional line with two reflecti
end points between which a conduction particle moves
most freely, allowing for a quantum-mechanical descript
with boundaries. Other applications arise, for instance,
systems with impurities that act as point scatterers. All th
areas of interest lend impetus to investigate quantum sys
with contact interactions further to uncover their full pote
tial, both theoretically and experimentally.

The topic of this paper is the quantum half-line syste
which is perhaps the simplest among those with contact
teractions. This system also appears frequently as the ra
part of higher-dimensional systems@12#. ~For recent experi-
mental studies, see Ref.@13# and references therein.! We
consider a quantum particle that moves freely on a half-
x>0 with the end pointx50 acting as a reflecting boundar
or an impenetrable wall. This system is known~see Sec. II!
to admit a one-parameter family of distinct walls charact
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ized by the boundary conditions,

c~0!1Lc8~0!50, ~1.1!

whereL is a parameter that takes all real values includ
L5`. Clearly, the standard wall in which we imposec(0)
50 is obtained forL50 but it is just one of the various
walls allowed, and therefore the first question one may as
whether those nonstandard walls withLÞ0 can arise in ac-
tual physical settings.

To answer this, we study how those nonstandard walls
be realized as a limit of finite~regularizing! potentials. The
potentials we consider are steplike and may readily be ma
factured using, e.g., thin layers of different types of semic
ductors. We shall show that it is indeed possible to rea
such nonstandard walls out of the steplike potentials if
fine tune the limiting procedure. We then turn to the quest
whether such nonstandard walls are available only quan
mechanically or not. This will be examined by looking at th
time delay of the particle in scattering, which is the tim
difference between the moments of incidence and reflec
at the wall. It will be shown that quantum nonstandard wa
with L,0, which are characterized by positive time dela
have no classical counterpart possessing the same time d
which implies that these walls are purely quantum. We a
consider the validity of the semiclassical WKB approxim
tion for the transition kernel under nonstandard walls, wh
now one takes into account the possible two classical pa
the direct path and the bounce path, in the path integral@14#.
This is of interest because it has been known that, for
standard wall as well as that ofL5`, the WKB approxima-
tion becomes exact if a sign factor is properly attached to
contribution of the bounce path. We shall see that for th
two values ofL the required sign factor can be accounted
by the bounce effect, showing that the WKB approximati
is in fact exact, whereas for otherL the WKB exactness
©2002 The American Physical Society02-1
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cannot hold. Before presenting these results, we provide
basics of the quantum system on the half line below.

II. BASICS OF THE QUANTUM SYSTEM
ON THE HALF LINE

The system of a~nonrelativistic! free particle on a half
line xP@0,̀ ) is governed by the HamiltonianH5
2\2/(2m)d2/dx2, supplemented by some boundary con
tion imposed at the wallx50. The boundary condition is
determined by the requirement thatH be self-adjoint on the
positive half linex>0 and, mathematically, this is done b
finding proper domains of the operatorH on which it is
self-adjoint. The result is that there exists a U~1! family of
domains of states specified by Eq.~1.1! ~see, e.g., Ref.@12#,
Appendix D therein!, which can be readily understood by
direct inspection as well. Indeed, one sees by partial inte
tion that for H to be self-adjoint one must havec* c8
5c8* c at x50 for any statec on whichH acts. If c8(0)
Þ0, this impliesc(0)/c8(0)5@c(0)/c8(0)#* 52L with L
being some real constant, which is just the condition~1.1!.1

The casec8(0)50 which also fulfills the requirement can b
included by allowingL5` in Eq. ~1.1!. The whole family is
U~1! because of the range of the parameter:LP
(2`,`)ø$`%>U(1).

Under the boundary condition~1.1! the positive-energy
states are

wk~x!5
1

A2p
~e2 ikx1eid k̇eikx! ~2.1!

with dk52 arccotkL. In addition, forL.0, we also have one
negative-energy state,

wbound~x!5S 2

L D 1/2

e2x/L ~L.0!, ~2.2!

which is a bound state localized at the wall with its char
teristic sizeL. The existence of the bound state~2.2! can also
be ensured from the minimum-energy condition. Namely,
any normalized statec the expectation value of the energ
reads

^c,Hc&5
\2

2m

1

L2 E
0

`

dxuc~x!1Lc8~x!u22
\2

2m

1

L2 ,

~2.3!

where L is the parameter in Eq.~1.1!. The lower bound
2\2/2m1/L2 is attained if there exists a state satisfyi
c(x)1Lc8(x)50 for all x>0, which is just the bound stat
~2.2!.

As seen in the bound state, the parameterL furnishes a
physical scale in many of the properties of the system.

1The fact that the constantL is universal for any statec can be
seen by considering Eq.~1.1! for all linear combinations of two
statesc1 and c2 with L1 and L2 , from which one deducesL1

5L2 immediately.
05210
he

-

a-

-

r

n

example for this is provided by the time delay that occu
when an incoming particle is reflected from the wall. T
time delay in quantum scattering processes has been stu
extensively ~see, e.g.,@18,19# and references therein!. Its
definition and calculation are done for our system
follows.2 Let us consider a wave packet formed out of t
positive-energy states~2.1!,

c~x,t !5E
0

`

dk f~k!eikx0e2~ i\k2/2m!twk~x!

5
1

A2p
E

0

`

dk f~k!eikx0e2~ i\k2/2m!te2 ikx

1
1

A2p
E

0

`

dk f~k!eikx0eidke2~ i\k2/2m!teikx,

~2.4!

wheref (k) is a real function peaked atk0.0. The first term
describes the incident packet whose maximum starts fromx0
at t50 and moves to the left with velocity magnitudev0
5\k0 /m, as can be seen from a stationary phase argum

d/dk@2\k2/~2m!t1kx02kx#uk5k0

50⇒xmax
~1! ~ t !5x02~\k0 /m!t. ~2.5!

Similarly, the reflected packet given by the second te
moves as

xmax
~2! ~ t !52x01~\k0 /m!t12L/@11~k0L !2#. ~2.6!

As t increases, the first packet moves towards the wall ax
50, and its maximum reaches it att15x0 /v0 . Meanwhile,
the second packet comes from the left~if we allow x,0 as
well! moving to the right and arrives at the wall att25„x0
22L/@11(k0L)2#…/v0 . The difference between the two in
stants gives the time delay,

t5t22t152
2mL

\k0@11~k0L !2#
. ~2.7!

For L50 andL5`, this time delay is zero, as one wou
expect on the ground that for such cases there is no pa
eter in the system possessing the dimension of time. N
that for negativeL the time delay is positive, whereas fo
positiveL it is negative.

From the eigenfunctions~2.1! and~2.2! the Feynman ker-
nel describing the transition of the particle fromx5a at t
50 to x5b at t5T can be calculated~see Refs.@15–17#!.
The result is

K~b,T;a,0!5Am/2p i\T@eim/2\T~b2a!2
7eim/2\T~b1a!2

#,
~2.8!

2Compare this with the classical-mechanical definition of tim
delay, presented in Sec. IV.
2-2
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for L50 ~‘‘ 2’’ sign! and L5` ~‘‘ 1’’ sign!. For L,0 the
kernel is given by

Am/2p i\TFeim/2\T~b2a!2
1eim/2\T~b1a!2

2
2

uLu E0

`

dze2z/uLueim/2\T~b1a1z!2G , ~2.9!

and forL.0 by

Am/2p i\TFeim/2\T~b2a!2
1eim/2\T~b1a!2

2
2

L E
0

`

dze2z/Leim/2\T~b1a2z!2G1
2

L
ei\T/2mL2

e2~b1a!/L.

~2.10!

The salient feature of the result is that, forL50 and L
5`, the kernel~2.8! almost coincides with that obtained b
the WKB semiclassical approximation, because the t
terms in Eq.~2.8! correspond to the free kernels for the dire
path from (a,0) to ~b,T! and for the bounce path that hits th
wall once during the transition, respectively. The only pro
lem for the complete WKB exactness is the appearanc
the 7 sign factor attached to the contribution from th
bounce path. We shall show later that this sign factor can
attributed to the classical actionDSbounce5\p gained by the
bounce effect at the wall so thate( i /\)DSbounce571.

III. REALIZATION OF THE WALL

We now discuss how to realize the wall characterized
Eq. ~1.1! in actual physical settings. For this, we shall ado
a regularization method that is analogous to those used
lier for point singularities@4,12#. We extend the space to th
entire line2`,x,` and seek a potentialV(x) with finite
support such that, in the limit of vanishing support, t
-

d
n-
f
b-
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boundary condition~1.1! at x50 can be realized. Obviously
since no probability flow is admitted through the wall atx
50, such a regularized potential has to become infinit
high for x,0 in the limit. A simple choice for the potentia
fulfilling the demand is

V~x!5H V1 , x,2d ~domain I!

V2 , 2d,x,0 ~domain II!

0, x.0 ~domain III!

~3.1!

with constantsV1.0 andV2,0. Here, the scale of the sup
port is given by the regularization parameterd, andV1 and
V2 are assumed to be functions ofd such thatV1 , uV2u→`
asd→0.

To find the appropriate dependence ofV1(d) andV2(d),
let us consider an energy eigenstatew in the potential~3.1!
with energyE,V1 ~see Fig. 1!,

FIG. 1. The regularized potential~3.1! and the eigenfunction
~3.2!.
w~x!5H w I~x!5Nekx, x,2d, k5A~2m/\2!~V12E!,

w II~x!5Aeik̃x1Be2 i k̃x, 2d,x,0, k̃5A~2m/\2!~ uV2u1E!,

w III ~x!5Ceikx1De2 ikx, x.0, k5A2mE/\2

~3.2!
~for E,0, w III (x)5Me2A2muEu/\x). Under such finite poten
tials ~i.e., without infinity or singularity!, the wave function
and its derivative are required to be continuous. The con
tion which is dynamically important is provided by the co
tinuity of the ratiow8/w which is free from the ambiguity o
overall normalization. From this continuity condition, we o
tain

k5
i k̃~Ae2 i k̃d2Beik̃d!

Ae2 i k̃d1Beik̃d
,

w III8

w III
~0!5

i k̃~A2B!

A1B
~3.3!
i-

at x52d andx50. Note that bothk̃ andk ared dependent
k̃5 k̃(d), k5k(d) throughV1(d) andV2(d) and so are the
two ratios in Eq.~3.3!. If we introduce

R~d!5
w III8

w III

~0!, a5arctan
k

k̃
, b5 k̃d, ~3.4!

then from Eq.~3.3! we find
2-3
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R~d!5 k̃
~Ae2 ib2Beib!cosb2 i ~Ae2 ib1Beib!sinb

~Ae2 ib1Beib!cosb2 i ~Ae2 ib2Beib!sinb

5 k̃ tan~a2b!. ~3.5!

The boundary condition~1.1! is realized if

R~d!→2
1

L
as d→0, ~3.6!

independently of the energyE. In what follows, we present a
set of regularized potentials fulfilling this requirement.

To this end, we first define

a05 lim
d→0

a, b05 lim
d→0

b, ~3.7!

and note that, sinceV1(d)→` asd→0, we always havek
→`, whereas since 0,a,p/2 by definition, we have 0
<a0<p/2. Note also that, ifV2(d) used in our regulariza
tion is such thatb→`, then tan(a2b) will oscillate between
2` and` so R(d) will not have a limit. We therefore con
fine ourselves to cases in whichb has a finite~zero or non-
zero! limit b0 . Now, let us supposeb0Þa0 ~modp!, that is,
tan(a2b)→tan(a02b0)Þ0. Then, if uV2u→` we have k̃
→` and, consequently,R(d)→6`. If uV2u remains finite,
on the other hand, then we finda05p/2 and b050 and
henceR(d)→`. We thus see that these regularizations yi
necessarily the standard wallL50.

The foregoing argument shows that nonstandard w
with LÞ0 can be realized only by such realizations in whi
V1 andV2 are fine tuned as

b05a0~modp!. ~3.8!

We shall suppose Eq.~3.8! from now on, and consider th
limit of R(d) for the casesa050, 0,a0,p/2 and a0
5p/2, separately.

~i! Casea050. We then have, asd→0, a'tana5k/k̃
→0 and b2b0→0 and hence tan(a2b)5tan(a2b1b0)
'k/k̃2b1b0. Thus the ratio is approximated as

R~d!'k2 k̃~b2b0!. ~3.9!

Now, if b050 then the right-hand side~rhs! readsk2 k̃2d.
Hence, to get a finiteR(d), k̃2d has to compensate the d
vergence ofk. This can be done ifk and k̃ behave as

k;cdn2
1

L
, k̃;c1/2d~n21!/2 ~21,n,0!,

~3.10!

which is realized if, for instance, we put

V1~d!5
\2

2m S c2d2n2
2c

L
dnD , V2~d!52

\2

2m
cdn21,

~3.11!

with a constantc.0. It is then readily confirmed that thi
regularized potential~3.11! does lead toR(d) fulfilling Eq.
05210
d

ls

~3.6! for all E.0. If b0.0, on the other hand, the
b0d21(b2b0) on the rhs of Eq.~3.9! has to cancel the
divergence of k. This means k̃;b0d211(1/b0)k. The
needed finite term21/L can be provided again byk if k
;c1dn21/L. This is achieved, for example, by

V1~d!5
\2

2m S c2d2n2
2c

L
dnD ,

V2~d!52
\2

2m
~b0

2d2212cdn21!. ~3.12!

It is again easy to confirm that Eq.~3.12! yieldsR(d) fulfill-
ing Eq. ~3.6! for n.2 1

2 .
~ii ! Case 0,a0,p/2. In this case, we havek̃;b0d21

andk;(b0 tanb0)d
21. Using the Taylor expansion

a5arctan~k/ k̃!'a01cos2 a0~k/ k̃2tana0!, ~3.13!

we find

R~d!' k̃ tan@a02b01cos2 a0~k/ k̃2tana0!#

'cos2 a0~k2 k̃ tana0!. ~3.14!

Hence the choice

k;~b0 tanb0!d212~1/cos2 b0!
1

L
~3.15!

may lead to Eq.~3.6!. A possible regularized potential rea
izing Eq. ~3.15! is

V1~d!5
\2

2m F ~b0
2 tan2 b0!d222

2

L
~b0 tanb0 /cos2 b0!d21G ,

V2~d!52
\2

2m
b0

2d22, ~3.16!

which can be shown to giveR(d) satisfying Eq.~3.6!.
~iii ! Case a05p/2. We still have k̃;b0d21 but now

k/ k̃→` so a'p/22 k̃/k, and therefore

R~d!' k̃ tanFp

2
2

k̃

k
2~b2b0!2b0G' k̃F2

k̃

k
2~b2b0!G .

~3.17!

The realization~3.6! will be attained if, for example, we hav
k/ k̃2→` and provide 21/L through k̃ by assuming k̃
;b0d2111/L1/b0 . This is the case with the regularizatio

V1~d!5
\2

2m
c1

2d2n ~n,22!,

V2~d!52
\2

2m S b0
2d221

2

L
d21D .

~3.18!

To summarize, the regularization by means of the step
potential~3.1! leads generically to the standard wallL50. It
2-4
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can also lead to nonstandard wallsLÞ0 but only as excep-
tional cases under the fine tuning Eq.~3.8!. It is worth em-
phasizing that the crucial factor in determining the limit
R(d), i.e., the boundary condition atx50, is not the leading
asymptotic behavior ofV1 and V2 in d→0 but always a
subleading term. A similar phenomenon has been obse
for the regularization of the Dirac delta point interactions
three space dimensions@12#.

The regularizations we used are based on a steplike
tential. Needless to say, other types of potentials can als
used for realizing the walls. One can, for instance, look fo
potential that leads to the realization for anyL without in-
volving the mass parameterm. Such a regularization may b
more desirable than that we constructed—where the po
tials turned out to bem dependent—for the reason that p
tentials should be independent of the particle. Nonethel
our simple regularization may well exhibit a universal fe
ture of the realization of the~standard and nonstandar!
walls, as we can see, for example, the bound state is acc
modated in the negative middle part of the steplike poten
we used.

IV. CLASSICAL COUNTERPARTS

Having seen that the quantum walls characterized bL
can be realized by means of regularized potentials, we n
turn to the question whether those walls have classical co
terparts or not. We investigate this in the phenomena of t
delay discussed in Sec. II, by asking if there is a class
system with some appropriate potentialV(x) that can ac-
count for the same amounts of time delay as those obse
under the walls. Note that systems with the regularized
tentials discussed above are not applicable for this purp
because, in those systems, the time a classical particle sp
in a potential~3.1! tends necessarily to zero asd→0 ~since,
as V2→2`, the distance run by the particle becomes z
while its velocity becomes infinity!.

To find a potential for the classical particle that repr
duces the quantum time delay, we shall first consider
walls with L.0. In this case the time delay~2.7! is negative,
and if the classical picture is available, the incident parti
with velocity magnitudev5\k/m must return earlier by

utu5
2L

v
1

11S mL

\
v D 2 ~4.1!

than we would expect when it collided with the wall atx
50. Observe that, for smallv the ~minus! delay utu ap-
proaches 2L/v. This suggests that a slow particle sees
wall at ~around! x5L, notx50. Consequently, the reflectin
potential V(x) is expected to begin to grow atx5L. For
definiteness, let us search for the potential in the qualita
form as shown in Fig. 2.~This fixes an arbitrariness in th
choice of the potential. As we will see, demanding a positi
monotonically decreasing potential determines the poten
uniquely.! Now, let us introduce

t̃5
2L

v
1t5A2mL2EY S \2

2mL2 1ED , ~4.2!
05210
ed

o-
be
a

n-

s,
-

m-
l

w
n-
e

al

ed
-
e,

nds

o

-
e

e

e

e

,
al

~whereE5 1
2 mv2 is the incoming energy!, which is the time

spent by the particle in the region on the left of the poinx
5L. Our problem is then an inverse problem: Determine
potentialV(x) from a givent̃(E) as a function ofE. This
can be answered if we follow the well-known argument
Landau and Lifshitz@20# used for the problem of determin
ing a well-shaped potential from the period time with whi
a particle moves.

We start by writing the relationship between the poten
and t̃ as

t̃~E!5A2mE
x~E!

L dx

AE2V~x!
5A2mE

0

ES 2
dx~V!

dV D dV

AE2V
.

~4.3!

Dividing by AW2E with W being an auxiliary parameter
and integrating with respect toE from 0 to W leads to

E
0

W t̃~E!dE

AW2E
5A2mE

0

W

dVS 2
dx

dVD E
V

W dE

A~W2E!~E2V!
.

~4.4!

The inner integral~the one with respect toE! givesp, while
on the lhs we can evaluate the integral explicitly@cf. Eq.
~4.2!#. From the result,

pA2mL@121/A11~2mL2/\2!W#5pA2m@L2x~W!#,
~4.5!

we obtain x(W)5L@11(2mL2/\2)W#21/2, inverting it
yields3

V~x!5
\2

2mL2 S L2

x221D . ~4.6!

We can see that this wall-realizing potential sits on t
positive half line. This is unavoidable: Indeed, if a potent
is identically zero on the whole positive half line and

3We remark that while this potential reproduces the time de
classically, it does not reproduce the boundary condition~1.1! and
hence cannot serve as a potential to realize the walls quantum
chanically.

FIG. 2. The realizing potential~4.6! is shown by the solid line
for L.0. For L,0 the obtained potential becomes the dotted l
and is unphysical.
2-5
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nonzero only on the negative half line then the time delay
necessarily non-negative. The most we can reach is tha
penetration of the wall-realizing potential to the positive h
line is finite. Equation~4.6! presents such a solution. We wi
see that, forL,0, we have to pay more.

For L,0, the time delay is positive, i.e., the quantu
wave packet returns later than expected:

t5
2uLu

v
1

11S muLu
\

v D 2 5A2muLu
1

AES 11
2mL2

\2 ED .

~4.7!

This is the time delay we try to reproduce with the cor
sponding classical particle as its classical time delay

tcl,x0
~E!5A2mE

x~E!

x0 dx

AE2V~x!
2

2x0

A2E/m
, ~4.8!

wherex0 is the initial position of the particle. For smallv,
Eq. ~4.7! becomes 2uLu/v, which suggests that a slow pa
ticle enters thex,0 region and sees the wall nearx5
2uLu. For this, the realizing potentialV(x) is expected to
start to increase atx52uLu, and to keep increasing fo
smallerx. However, if one repeats the same argument u
for the L.0 case, one ends up with Eq.~4.6! again, with
now the left branch of this function~see Fig. 2!. The obvious
problem with this branch, i.e., it increases forx to the right of
2uLu and is unphysical, may be understood intuitively
follows. For high energiesE, the particle is expected to mov
approximately freely, and since the particle travels at le
until x52uLu, the E→` asymptotics of the time dela
would be at least 2uLu/v. However, the time delay we hav
to reproduce has only av23 asymptotic behavior. This
means that the coefficient of thev21 term must vanish for
E→`, implying that in the limit the particle reaches on
until x50.

The situation cannot be helped with any additional pot
tial in 2uLu,x,0 or in 0,x, nor by any other modifica-
tion. Actually, it can be proven that no classically accepta
reflecting potential can fulfil the requirement that the tim
delay ~4.7! be reproduced exactly for allx0.xthresh, that is,
for all initial positions of the incoming particle above a finit
possibly positive threshold positionxthresh. To see this, let us
consider an arbitrary piecewise differentiable potential, e
possibly diverging at the discontinuity points. Then the cl
sical force 2V8(x) exists everywhere except for finitel
many points, while at a discontinuity point an incoming cla
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sical trajectory can be continued with the outgoing traject
that has the same energyE as the incoming one. The poten
tial is further required to act as a completely reflecting wa
that is, for every positive energyE, there has to be a turning
point x(E) ~as in Fig. 2!. Note that then the functionx(E) is
necessarily nonincreasing, and its inverse isV(x) locally,
i.e., it reproduces at least parts of the functionV(x).

First let us discuss the case whenV is differentiable~and
hence continuous! everywhere. Thex0 independence of the
time delaytcl,x0

(E) @cf. Eq. ~4.8!# implies

d

dx0
tcl,x0

~E!5A2mF 1

AE2V~x0!
2

1

AE
G50 ~4.9!

and thus thatV50 abovexthresh. Let xposdenote the lowestx
above which the potential is nonpositive. Naturally, one h
xpos<xthresh and can write xpos5sup$xuV(x).0%, from
which one findsxpos5 limE↘0 x(E), that is,xpos is the ‘‘turn-
ing point for zero energy.’’

If there exists an energyE* with a turning point on the
negative half line,x(E* ),0, then for larger energiesE the
time delay is at least

A2mE
x~E

*
!

x0 dx

AE2V
2A2m

x0

AE
, ~4.10!

which is obtained by omitting the time of traveling throug
the interval @x(E),x(E* )#. Since V is continuous on the
interval@x(E* ),x0#, it is bounded and hence the high-ener
asymptotics of Eq.~4.10! is

A2m
x02x~E* !

AE
2A2m

x0

AE
5A2m

ux~E* !u

AE
;

1

AE
.

~4.11!

This is in contradiction with the asymptoticsE23/2 of the
demanded time delay~4.7!. Consequently, all turning point
have to be on the non-negative half line,

x~E!> lim
E8→`

x~E8!5..x`>0. ~4.12!

Next we prove that in (x` ,xpos# the potentialV decreases
strictly. Namely, if we assume the contrary then there will
at least one pointx1 in this interval that is not a turning poin
@see Fig. 3~a!#. Within @x1 ,xpos#, let x2 denote the turning
point with the highest energyE2 . Then, in the function
tcl,x0

(E) there will be a discontinuity atE5E2 :
1

A2m F lim
E↘E2

tcl,x0
~E!2 lim

E↗E2

tcl,x0
~E!G5 lim

E↘E2

E
x~E!

x0 dx

AE2V
2 lim

E↗E2

E
x~E!

x0 dx

AE2V
5 lim

E↘E2

F E
x~E!

x2 dx

AE2V
1E

x2

x0 dx

AE2V
G

2 lim
E↗E2

E
x~E!

x~0! dx

AE2V
5 lim

E↘E2

E
x~E!

x2 dx

AE2V
. lim

E↘E2

E
x1

x2 dx

AE2V
5E

x1

x2 dx

AE22V
.0.

~4.13!
2-6
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FIG. 3. ~a! A nondecreasing part in the potential in (x` ,xpos# causes a discontinuity in the time delay.~b! The obtained qualitative shap
of the potential.
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However, the required quantum time delay, Eq.~4.7!, is a
continuous function everywhere. This result tells us that
the region (x` ,xpos# x(E) is the inverse ofV(x) and is dif-
ferentiable. We have also obtained the qualitative behavio
the candidate potential function@see Fig. 3~b!#. Coming from
the right, it is zero abovexthresh, nonpositive inxpos,x
,xthresh, and is positive and increasing inx`,x<xpos, di-
verging to1` at x` .

Now we are ready to investigate the requireme
1/A2mt(E)51/A2mtcl,x0

(E):

uLu

AES 11
2mL2

\2 ED 5E
x~E!

xpos dx

AE2V
1E

xpos

x0 dx

AE2V
2

x0

AE
.

~4.14!

Observe that the second integral is bounded from above
(x02xpos)/AE, since the potential is nonpositive on that i
terval. Employing again the ‘‘Landau trick’’ to the first inte
gral ~i.e., changing the variable fromx to V, dividing by
AW2E, and integrating between 0 andW!, we find

puLu/A11~2mL2/\2!W<2px~W!, ~4.15!

or

x~W!<2uLu/A11~2mL2/\2!W,0. ~4.16!

This, however, contradicts our previous result that all turn
points have to be on the non-negative half line, showing t
the requirement~4.14! cannot be fulfilled.

We can show that the preceding argument remains v
even if we allow discontinuity points in the potential—on
slight modifications are necessary. Thex0 independence o
the time delay impliesV50 at all continuity points, and
hence everywhere, abovexthresh•xpos is introduced in the
same way and with the same properties as before. Equa
~4.12! also remains valid: When assumingx(E* ),0, the
possible discontinuity points falling betweenx(E* ) and x0
can be covered by intervals of a total length less than,
1
2 ux(E* )u. We omit even these covering intervals from t
time delay, and on the remaining intervals the potentia
continuous and has overall upper and lower bounds. Co
quently, the high-energy asymptotics of the time delay is s
at least;1/AE.
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The proof of the strict decreasing ofV in (x` ,xpos# holds,
too. This also rules out discontinuity pointsxdisc in (x` ,xpos#
with V(xdisc20),V(xdisc10). Others are allowed but do
not cause any trouble in the behavior ofx(E) because, for
energiesEP@V(xdisc10),V(xdisc20)#, we then havex(E)
5xdisc5const and (d/dE)x(E)50. The transformation of
the integration variable in the first integral in Eq.~4.14! re-
mains applicable, while the second integral can also be e
mated as before, in spite of any discontinuity points
(xpos,xthresh#. Therefore, we reach the same contradictory
sult ~4.16! again.

Hence, interestingly enough, the walls with negativeL do
not admit a classical counterpart, i.e., they are genuin
quantum. Incidentally, we mention that if we demand on
that the quantum time delay be reproduced in thex0→`
limit of tcl,x0

(E), then the required realization can b
achieved~see the Appendix!.

V. WKB EXACTNESS

The fact that for walls withL50 andL5` the transition
kernel is almost WKB exact alludes us to examine whet
this implies a complete exactness or not, and if so, whe
such a feature persists to nonstandard walls as well. M
precisely, we wish to see if the sum of amplitudes along
classical two paths, the direct world line from (x,t)5(a,0)
to ~b,T! and the bouncing path that hits the wallx50 before
arriving at ~b,T!, give the exact result@see Fig. 4~a!#. The
question, therefore, is whether or not the kernels~2.8!, ~2.9!,
and ~2.10! can be rewritten in the form of a sum of th
corresponding two terms as

K~b,T;a,0!5A~m/2p i\T!eim/2\T~b2a!2

1A~1/2p i\!~]2Sbounce/]a]b!

3e~ i /\!Sbounce~b,T;a,0!, ~5.1!

whereSbounce(b,T;a,0) is the classical action for the bounc
path, and the factor before the second exponential term c
prises the van Vleck determinant and the Maslov phase
tor corresponding to the turning point~see Ref.@21# for the
details!. In the spirit of the sections herebefore, here ag
the wall is considered not necessarily to be simply the in
nitely high vertical potential wall at the origin but to b
2-7
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FIG. 4. ~a! The direct and the
bounce paths.~b! The bounce path
under a wall-realizing potential.
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realized by some sequence of more general reflecting po
tials. What we require is that the potential sequence m
converge uniformly to zero for allx>xwall with somexwall
which may be positive, and that, for anya, b.xwall , the
bounce path tends to the standard bounce world line depi
on Fig. 4~a!, at least on the space-time regionx.xwall . Oth-
erwise we let the reflecting potential sequence be arbitrar
the left of xwall and, therefore, at the limit of the sequenc
the resultant actionSbouncecan differ from the actionSbounce

(0)

5m(a1b)2/2T that corresponds to the simplest case of
infinitely high vertical potential wall with no extra actio
contribution caused by the wall.

Even these very mild assumptions allow us to obse
some important, generally valid, properties. The first one
that, although the direct path is also influenced by a non
nishing potential, its WKB contribution
A( i /2p\)(]2Sdirect/]a]b)ei /\Sdirect will still reduce to the
first term of Eq.~5.1!. Indeed, since in the limit we haveV
→0 and hence the velocity of the particle tends uniformly
(b2a)/T, we trivially find E→Edirect

(0) 5m/2(b2a)2/T2 and
Sdirect→Sdirect

(0) 5m/2(b2a)2/T. The nontrivial question tha
remains to be shown concerns with the property of the
rivative,]2Sdirect/]a]b→]2Sdirect

(0) /]a]b, but this can be seen
by writing the action as

Sdirect5E
0

T

dt~E22V!52TE12E
0

T

dt~E2V!

52TE1A2mE
a

b

dxAE2V, ~5.2!

which is valid fora, b.xwall , and evaluating

]2Sdirect

]a]b
52

Am/2

AE2V~a!

]E

]b

52A2mFAE2V~a!AE2V~b!E
a

b dx

AE2V3G21

.

~5.3!

Here, the energyE of the direct path is determined by th
condition
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Am/2E
a

b dx

AE2V
5T, ~5.4!

which is used to evaluate]2Sdirect/]a]b in Eq. ~5.3!. Plug-
ging the limiting values for the energies and the potentia
Eq. ~5.3!, we find the required property.

Second, we make the observation that the energy of
bounce path converges toEbounce

(0) 5m/2(a1b)2/T2. This fol-
lows from our requirement that the bounce path must ten
the standard bounce world line outsidexwall , because, then
the velocity of the particle tends uniformly to (a1b)/T un-
der the vanishing potential. In addition, we find that, a
though DSbounce5Sbounce2Sbounce

(0) does not necessarily ten
to zero, in the limit it becomes independent ofa andb. This
can be seen as follows:

Sbounce52TE1A2mE
x~E!

a

dxAE2V1A2mE
x~E!

b

dxAE2V

~5.5!

and

]Sbounce/]a5A2mAE2V~a!, ~5.6!

where now the energy of the bounce path is determined

Am

2 E
x~E!

a dx

AE2V
1Am

2 E
x~E!

b dx

AE2V
5T ~5.7!

@again, Eq.~5.7! is used also for the result~5.6!#. Since now
E→Ebounce

(0) , it follows that

]Sbounce/]a→m~a1b!/T5]Sbounce
~0! /]a, ~5.8!

so ]DSbounce/]a→0. The b independence ofDSbounce is
proven analogously.

Third, if we restrict ourselves to the potential sequenc
of the type~3.1! then Eqs.~5.5! and ~5.7! read

Sbounce52TE1A2m~a1b!AE12A2mdAE1uV2u
~5.9!

and
2-8
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Am/2
a1b

AE
1Am/2

d

AE1uV2u
5T. ~5.10!

From Eq.~5.9! we have that

lim
d→0

DSbounce5 lim
d→0

~2A2mdAuV2u!. ~5.11!

Furthermore,]2Sbounce/(]a]b) can be computed by differ
entiating Eq.~5.6!, and using]E/]b, the latter is obtained by
expressingb5b(E) from Eq. ~5.10! and applying]E/]b
51/@]b/]E#. Taking the limit of the result givesm/T, so we
find that, in the limit, the square-root factors in the two ter
of Eq. ~5.1! equal each other for these steplike potential
quences.

By virtue of these properties, we are able to discuss
question of complete WKB exactness. In the casesL50 and
L5`, it is possible to reproduce the required action con
bution DSbounce5p\ and DSbounce50, respectively, for ex-
ample, with the steplike potential sequences~3.1!. In fact,
choosing forL50,

V1~d!5const3d21, V2~d!52
\2

2m S p

2 D 2

d22

~5.12!

~a potential sequence witha050 andb05p/2), and forL
5`,

V1~d!5
\2

2m
c2d21, V2~d!52

\2

2m
cd23/2, ~5.13!

which is the casen52 1
2 of Eq. ~3.11!, provides just these

needed action contributions@cf. Eq. ~5.11!#. Note that these
potential sequences are, at the same time, correct realiza
of the quantum boundary condition withL50, respectively
L5`, as well. Nevertheless, they are not unique ev
among the steplike realizations with these properties,
presumably other potential shapes can also serve as exam
for even both the complete WKB exactness and realizing
quantum boundary condition.

On the other side, for the other wallsLÞ0, `, one can
prove that no potential sequence can account for the ker
~2.9! and ~2.10! irrespective of whether the potential s
quence reproduces the correct quantum boundary cond
or not. To see this, let us write these kernels in the form

A~m/2p i\T!@eim/2\T~b2a!2
1AL~a,b,T!e~ i /\!Sbounce

~0!
#.
~5.14!

If the complete WKB exactness holds, then argAL(a,b,T)
should correspond to the limit ofDSbounce/\, which we
know is unavoidably independent ofa andb. However, ac-
tually argAL(a,b,T) does depend ona and b, as can be
checked simply, for example, on the large-T asymptotics of
AL(a,b,T),
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AL~a,b,T!

'H 2A~m/2p i\T!e2~2imL/\T!~a1b2L !, L,0,

2

L
e2~a1b!/Le2 im/2\T@~a1b!22~\T/mL!2#, L.0,

~5.15!

as one finds from Eqs.~2.9! and ~2.10!.
We thus learn that the quantum walls withL50 andL

5`, which correspond to the Dirichletc(0)50 and the
Neumannc8(0)50 boundary condition, respectively, ar
distinguished in the U~1! family of walls with respect to the
WKB exactness. These two cases are distinguished als
their scale invariance, which arises due to the absence o
scale parameter. The relationship between the two, the W
exactness and scale invariance, is however unclear.
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APPENDIX: WEAK CLASSICAL REALIZATION OF THE
TIME DELAY FOR LË0

Here, we outline how a weaker classical realization of
quantum time delay, namely, thex0→` limit of the classical
time delaytcl,x0

(E), can be determined for the wallsL,0.
Let us assume that we have a strictly decreasing pos
potential such that, for a fixed finitex0 and all energiesE
above V(x0), tcl,x0

(E)5t(E). We use the Landau trick

again, dividing this equation byAW2E, integrating now
betweenV(x0) andW, and evaluating the left-hand side b
changing the variable toV. From the result we can expres
x(W) to find

x~W!5
x0

p
arccosF12

2V~x0!

W G2
2uLu/p

A11~2mL2/\2!W

3arccosS 11
2mL2

\2 W

11
2mL2

\2 V~x0!

V~x0!

W D 1/2

. ~A1!

Now we perform the limitx0→`, with a fixedW. The sec-
ond term on the rhs of Eq.~A1! remains finite no matter how
V(x0) changes correspondingly. Consequently, to have a
nite x(W) in the limit, arccos@122V(x0)/W# has to tend to
zero. This meansV(x0)→0, and from cos«'12«2/2 («
'0) we have the asymptotics arccos@122V(x0)/W#
'2AV(x0)/W so to reach a finite limit of Eq.~A1! x0AV(x0)
has to converge to a constant. Introducing

cª lim
x0→`

2A2m

p\
x0AV~x0!, ~A2!
2-9
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which will be a free parameter in the realizing potential, t
limit of Eq. ~A1! is

x~W!5
\

A2m
~c/AW21/A\2/2mL21W!. ~A3!

One can check that the inverse of thisx(W) is really a
strictly decreasing potential tending to zero ifc>1, and that
the time delay corresponding to it is

tcl,x0
~E!5\F c

A12V~x0!/E21

AV~x0!E

1
1

A\2/2mL21V~x0! S 1

AE
2

AE2V~x0!

\2

2mL2 1E D G ,

~A4!
Jp

E

al

en

05210
whosex0→` limit is really the desired quantum time dela
~4.7! ~independently ofc!. The potential itself is obtained by
solving the biquadratic equation that follows from Eq.~A3!,
and reads, for example, forc51,

V~x!5
2\2

mL2 S x

uLu D
22/3F S x

uLu D
2/3

1h~x!21

12Ah~x!2h~x!4G22

~A5!

with

h~x!5
1

&
$@A11 1

27 ~x/uLu!411#1/3

2@A11 1
27 ~x/uLu!421#1/3%1/2. ~A6!
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