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Thermodynamics of an interacting trapped Bose-Einstein gas in the classical field approximation
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We present a convenient technique describing the condensate in dynamical equilibrium with the thermal
cloud, at temperatures close to the critical one. We show that the whole isolated system may be viewed as a
single classical field undergoing nonlinear dynamics leading to a steady state. In our procedure it is the
observation process and the finite detection time that allow for splitting the system into the condensate and the
thermal cloud.

DOI: 10.1103/PhysRevA.66.051602 PACS nuntber03.75.Fi

Successful experimental realization of Bose-Einstein conpositionr and obeys standard bosonic commutation relations
dens_ati(_)n in a dilute gas of alkali atorfid offers a new and \i,(r,t)'(l‘ﬁ(r/’t)]: S(r—r"). The first term describes par-
fascinating tool to probe the border between quantum an%cles with massm trapped in a potential of a spherically
classical worlds. The theory. of the dyr]amlcal behavior Ofsymmetric harmonic oscillator of frequenay, while the
such a many-body system is very difficult and cannot besg.ong term describes two-body interactions. Here, we have

solvgd.exac'tly. It iS. pqrticularly héf.d to extract quantitl"‘tiveassumed that particles interact via a contact poteMial
predictions in the vicinity of the critical temperature. At the —r')=4mh2a.5(r—r')/m, wherea, is the s-wave scatter-
S 1 S

céther extreme, Izlitdzero_t;[egw%erart]ure, the f‘_NTj‘kly 'meriCtiQI g length. The Heisenberg equation originating from this
ose gas is well described by the mean-field approach. amiltonian acquires the following form:

particles occupy the same quantum state whose wave func-
tion is the lowest-energy solution of the Gross-Pitaevskii g (rt) 72v2

1 A
(GP) equation[2]. At low temperatures the Bogoliubov ap- + =maw?r? | ¥ (r,t)

proximation comes handy3] with its quasiparticles that at 2m 2
have just been observed in a direct experimght The Amhla. . A A
theory gets much more complex at higher temperatures. + S\IfT(r,t)\I’(r,t)\P(r,t). 2

There is a considerable effort to develop a working theoret-

ical and numerical tool valid there. One group of papersy
[5—9] from the very beginning describes the system as CoONgn
sisting of two(interacting fractions: the condensate and the

full operator solution of the nonlinear Eq2) is not
own. In addition, the identification of a condensate phase
is also a subtle issue. The only exception is a system of
. g . gparticles in a periodic box. Here, the symmetry of the prob-
numerically. The other group interprets the high-energy Soroy, heins: natural eigenmodes of the system are plane waves
lutions of the time-dependent GP equation as describing thﬁ/ith a quantized momenturk=27(j1,j»,js)/L (j; being

full condensate plus therma_1l CIO_Ud syst¢hl]. As a rule, integer,L-box sizg. Therefore, the field operator can be ex-
these authors were able to identify the condensate as a deﬁ

. . ' anded in these modes,
nite part of the system only in the somewhat academic case
of the gas in a rectangular box with periodic boundary con-
ditions. In this case, the condensate is just the zero momen- W(rt)=— exp(—ik- r)ék(t). (3)
tum component of the wave function. The aim of this Rapid
Communication is to show that much more may be achieved ] . ) ) )
with the readily available high-energy solutions of the GPA Bose-Einstein condensate can be uniquely associated with
equation in harmonic traps. It is also possible to split thisthe zero-momentum mod&=0. The annihilation and cre-
solution into a sum of the condensed and uncondensed par&tjon operators, ,a; satisfy nonlinear equations following

define the condensate wave function and approximately estfrom Eq. (2).

mate the temperature of the resulting system. Different approximate approaches mentioned aljéved)]
The HamiltonianH of the system takes the form have been introduced in order to solve the problem. Here, we
2 4 want to utilize a method which has been extensively and
2 p g successfully explored in quantum optics. A quantum-field
H= | d*r¥T(rt (—+—m Zrz)\lf rt Yy exp N prcs. A 9
J (r,H 2m 2% (r.Y) operator describing a coherent electromagnetic f&lth as

laser lighy can be replaced by a complex valued classical

f & Wi, TT(r,)W(r,H)W(r,), field. Such a substitution is justified for these modes that are
highly occupied. Only then are quantum fluctuations negli-

(1) gible and the nonvanishing commutator may be ignored.

This kind of approximation has been used recently in Ref.

where W (r,t) is a field operator that destroys a particle at[10] for the matter fielda,—a, . Note that,>,|a,|?>=N and

2mh?ag
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steady state is reached after several milliseconds. We have
checked that the steady state attained does not depend on the
choice of the initial wave functiofin particular, on the fact
whether its phase is random or has long as the number of
particles and the total energy are kept constant.

The high-energy solutions of the GP equation have strik-
ing features[11]. A snapshot of the density distribution is
shown in Fig. 1. The density is extremely irregular and ex-
hibits a number of sharp spikes changing its shapes and po-
sitions on very short time scales. Typical methods used to
monitor trapped atomic condensates involve optical tech-
niques. A condensate is illuminated by laser light which, af-
ter passing through the atomic systéamd some optical el-
ement$, is monitored by a charge-coupled device camera.
The exposure timeé\t varies from a few microseconds to
hundreds of milliseconds and within this time the condensate
density undergoes rapid changes due to the fast dynamics but
also because of quantum fluctuations. The nature of the ob-
sity distribution in thez=0 plane of the Bose gas with the total Servation process mtmdu.ces a kind of smearing. In fa_Ct’ in
energyE=70h w. In this and all the following figures, lengths are such a 'Or.‘g EXposure a tlm? a_verage_d rather then_an Instan-
given in units ofd= \%/ma. taneoqs smgle—pa_rtlcle d_en5|ty is monitored. The_emstence of

short time scales in nonlinear many-body dynamics has to be
taken into account. The object of physical significance is
therefore a time-averaged single-particle density matrix

FIG. 1. Cross section of the instantaneous snapshot of the de

the condensate occupation is equalrig=|ag|?. On the
other hand, it follows from Eqgsi2) and (3) that the semi-
classical approximation is equivalent to a substitution: 1 freau
W(r,t)— VNV (r,t)=(1L*) S acexp(-ik-r),  where p(rl,rz,t)=—J TH(ry )W (rp,t)dt. (@)
W (r,t) fulfills the standard GP equation. According to con- At)i-awe
ventional wisdom, this equation describes a pure condensate
at zero temperature, hence the whole classical fie(d,t) This coarse graining procedure destroys the purity of a state
represents the condensate populated igy=N particles of the system. After the time averaging all irregularities of
[11,12. the density are being smoothed out especially in the inner
It seems that the two contradicting interpretations of thepart of the density profilésee Fig. 2 The resemblance to
high-energy solution coexist in the literature. In the follow- the well publicized photographs of the experimental conden-
ing, we will clarify this seeming incongruity. We focus our sates at intermediate temperatures is striKihg|. Varying
attention on experimentally relevant system of 100 8®b  the energy of the gas, we can scan the whole range from the
atoms trapped in the spherically symmetric harmonic potenpure condensate all the way to a nearly critical condition of
tial of frequencyw=2#7100 Hz. Our procedure is as fol- no condensate. The sample profiles of the time-averaged col-
lows. First, we define the wave function of the system on aumn density(integrated along theaxis) are shown in Fig. 2.
spatial three-dimensional grid. Initial values of the waveln Fig. 2(a,b note the bimodal structure of the distribution:
function at each point are chosen in accordance with théhe central peak corresponding to the Bose-Einstein conden-
constraints of a fixed energy and particle number. Next, wesate and the broad background identified with the thermal
propagate this state in time, solving the time dependent GEloud.
equation with the help of the fast Fourier transform. It occurs We can provide a quantitative analysis of the resulting
that for the given total energy and particle number the samaveraged state of the Bose gas. To this end, we recall a clas-

FIG. 2. Time-averaged stationary column density distribution for a Bose gas plotted for different values of total En@g¥
=70.00tw (30% atoms in condensatéh) E=23.67 w (72% of atoms in condensatéc) E=13.04 w (pure condensate
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sic definition of the condensate by means of the spectral 0.0020 . . T .
decomposition of the single-particle density mafr4]. Di- osk T ]
agonalization of a single-particle time-averaged density ma- o
trix leads to natural eigenmodeg(r,t) and eigenvalues _ 0.0015 %.'02_ 1]
(2] > Ve
ni/N, lE 5
k=]
n %‘ 0.0010 & 0.1F 14
i
.M, )= 2, = (ry, ) gi(ry,t). 5 G -
p(r1ira =2 QUi (r,DYi(r2,0) (5) o T ——

0.0005 Eigenvalue number 4
The system may be viewed as a mixture of many coupled
coherent modes);, whose occupation ig);. The self- LN - ,
consistency of the model requires that population of each 0 4 8 12 16
single modey; is large,n;>1. Otherwise, the substitution of r/d
the field operatof¥(r,t) by a wave function¥(r,t) would FIG. 3. Time-averaged radial density profile of a stationary state

not be justified. The existence of the dominant eigenvaluef a Bose gas. The total energy E5=70.00tw. Density of the
no/N of the order of unity signifies the presence of the con-whole system, solid line; profile of the Bose-Einstein condensate
densate with the corresponding eigenvectigy being its  [defined as a dominant eigenmodepg(r;,r,)], dashed line. All
wave function. As the modes and their occupation are knowgigenvalues opo(r;,r,) are shown in the inset.
only after the time averaging, the verification of the semi-
classical criterion can only be doreeposteriori We try a  Therefore, the eigenvectors must be proportional to the
number of grids and choose the one that yields the highesipherical harmonicsY,,,. What remains is the one-
occupation of all modes, justifying the semiclassical approxi-dimensional diagonalization in the radial variable of the fol-
mation. lowing projection of the density matrix:

The time averaging followed by a diagonalization of the
density matrix gives the spatial modes of the system. These
m(_)des are typically _not_known even in a _sta_tionary case. plm(r,r'):f p(r, Q" QNYFE(Q)Ym(Q)dQ dQ’,
Still, the only exception is the box with periodic boundary
conditions. Let us illustrate our method using again this (@)
simple case. Substitution of all annihilation operators by
complex amplitudes,— a, gives the following expression Where the integration is performed over solid andlesnd
for the single-particle density matrix: )’ associated with the corresponding particle coordinates.

We expect the condensate to be present in the zero-angular-
- 1 momentum component of the single-particle density matrix.
p(rira, )~y > exfdik-(ri—ry)lla(t)?  (6)  Indeed, in the inset of Fig. 3 we show a typical distribution
. of the eigenvalues of thie=0 part of the density matrix with

and the time averaging leaves only diagonal eleménts one dominant eigenvalue and with the corresponding eigen-

=k’ as the off-diagonal ones oscillate rapidly and get rap-
idly dephased.a(t)ya(t),~ 8y s|ax(t)|?. Obviously, the
|a,|? are populations of different modes. Only if one intro-
duces a kind of coarse graining leading to a suppression of
the off-diagonal elements of the single-particle density ma-
trix one can identify th&k=0 mode as a Bose-Einstein con-
densate with an occupation given bgo|? . Without this
additional assumption the whole complex fieli(r,t) de- 0.4
scribes one coherent, dynamically evolving Bose-Einstein
condensate without any thermal cloud. This kind of interpre- 02k
tation is used in Ref§11,12. On the contrary, identification 0
of the k=0 momentum component oF (r,t) with a Bose
condensate has been directly assumed in REJ. Our 0
analysis solves this apparent contradiction. By examining a
detection process and the relevant time scale, we can g 4. condensate fraction versus temperatur@har inset the
uniquely determine the condensate fraction, its wave funcCeota) energy of the system. The solid line represents the ideal gas in
tion as well as the structure of excited modes of the interactme thermodynamic limit, the dashed line depicts the results of Ref.
ing system. Moreover, the method is no longer limited to an16] obtained within a finite-temperature Hartree-Fock scheme,
academic problem of the uniform system. A steady-statguhile dots show our data. Error bars indicate a range of tempera-
single-particle density matrix for the spherically symmetrictures for which we obtain acceptable fits of the ideal Bose gas
trapping potential must have eigenvectors that are simultadistribution to the outer wings of the thermal clotm. is the ideal-
neously diagonalizing the angular momentum operatorsgas critical temperature in the thermodynamic limit d&hg=% .

1
I

0.8

= 06 1
\O
c

051602-3



RAPID COMMUNICATIONS

Gé)RAL, GAJDA, AND RZAZEWSKI PHYSICAL REVIEW A 66, 051602ZR) (2002

function plotted in Fig. 3 together with the whole time- dance with the experimental procedures, stresses the role of a
averaged radial density distribution. finite exposure time when photographing the condensate. In
The last point raised here is the question of temperaturaghe self-consistent determination of the condensate fraction
In principle, we could do something similar to a typical ex- we rely solely on the classic criterion of Onsager and Pen-
periment: switch off the trapping potential, let the gas expandose. This way we avoid an arbitrary splitting of the system
and analyze the properties of the thermal part. Numericainto the condensed and thermal components from the very
limitations and the constraining condition of the high occu-beginning. The method may be used to model the impact of
pation of each eigenmode make it hard. Alternatively, we carthermal fluctuations on the dynamical processes with the
follow the procedure of Refl15] and fit the profile of the condensate, such as solitons or vortices. The next step in
thermal fraction of the ideal Bose gas to the outer part of ougoing beyond the approximations employed in our model is
averaged density. This yields a reasonable, order of magnihe estimation of the influence of quantum corrections to the
tude result. The temperature dependence of the condenselhssical fields, in particular the study of the corresponding
fraction together with its large uncertainty is shown in Fig. 4.time scales.
In the inset, we plotted the energy dependence of the number
of atoms in the condensate. We compare our results with the We thank J. Mostowski and G.V. Shlyapnikov for stimu-
ideal gas and with a two-gas estimafinite-temperature lating discussions. K.R. is supported by a subsidy from the
Hartree-Fock scheniéd 6]). We see a reasonably good agree-Foundation for Polish Science. K.G. and M.G. acknowledge
ment between all three calculations. support by Polish KBN Grant Nos. 5 PO3B 102 20 and 2
To summarize: we have shown a simple way of numeri-PO3B 078 19, respectively. Numerical calculations have
cally simulating the stationary dynamics of a weakly inter-been performed using computers at the Interdisciplinary
acting trapped Bose gas at finite temperature, which uses @enter for Mathematical and Computational Modelling of
semiclassical representation of the matter field and, in accolarsaw University.
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