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Thermodynamics of an interacting trapped Bose-Einstein gas in the classical field approximation
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We present a convenient technique describing the condensate in dynamical equilibrium with the thermal
cloud, at temperatures close to the critical one. We show that the whole isolated system may be viewed as a
single classical field undergoing nonlinear dynamics leading to a steady state. In our procedure it is the
observation process and the finite detection time that allow for splitting the system into the condensate and the
thermal cloud.
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Successful experimental realization of Bose-Einstein c
densation in a dilute gas of alkali atoms@1# offers a new and
fascinating tool to probe the border between quantum
classical worlds. The theory of the dynamical behavior
such a many-body system is very difficult and cannot
solved exactly. It is particularly hard to extract quantitati
predictions in the vicinity of the critical temperature. At th
other extreme, at zero temperature, the weakly interac
Bose gas is well described by the mean-field approach.
particles occupy the same quantum state whose wave f
tion is the lowest-energy solution of the Gross-Pitaevs
~GP! equation@2#. At low temperatures the Bogoliubov ap
proximation comes handy@3# with its quasiparticles tha
have just been observed in a direct experiment@4#. The
theory gets much more complex at higher temperatu
There is a considerable effort to develop a working theo
ical and numerical tool valid there. One group of pap
@5–9# from the very beginning describes the system as c
sisting of two~interacting! fractions: the condensate and th
thermal cloud. This ambitious program is very demand
numerically. The other group interprets the high-energy
lutions of the time-dependent GP equation as describing
full condensate plus thermal cloud system@10#. As a rule,
these authors were able to identify the condensate as a
nite part of the system only in the somewhat academic c
of the gas in a rectangular box with periodic boundary c
ditions. In this case, the condensate is just the zero mom
tum component of the wave function. The aim of this Rap
Communication is to show that much more may be achie
with the readily available high-energy solutions of the G
equation in harmonic traps. It is also possible to split t
solution into a sum of the condensed and uncondensed p
define the condensate wave function and approximately
mate the temperature of the resulting system.

The HamiltonianH of the system takes the form

H5E d3r Ĉ†~r ,t !S p2

2m
1

1

2
mv2r 2D Ĉ~r ,t !

1
2p\2as

m E d3r Ĉ†~r ,t !Ĉ†~r ,t !Ĉ~r ,t !Ĉ~r ,t !,

~1!

where Ĉ(r ,t) is a field operator that destroys a particle
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positionr and obeys standard bosonic commutation relati

@Ĉ(r ,t),Ĉ†(r 8,t)#5d(r2r 8). The first term describes par
ticles with massm trapped in a potential of a sphericall
symmetric harmonic oscillator of frequencyv, while the
second term describes two-body interactions. Here, we h
assumed that particles interact via a contact potentialV(r
2r 8)54p\2asd(r2r 8)/m, whereas is thes-wave scatter-
ing length. The Heisenberg equation originating from th
Hamiltonian acquires the following form:

i\
]Ĉ~r ,t !

]t
5S 2

\2¹2

2m
1

1

2
mv2r 2D Ĉ~r ,t !

1
4p\2as

m
Ĉ†~r ,t !Ĉ~r ,t !Ĉ~r ,t !. ~2!

A full operator solution of the nonlinear Eq.~2! is not
known. In addition, the identification of a condensate ph
is also a subtle issue. The only exception is a system
particles in a periodic box. Here, the symmetry of the pro
lem helps: natural eigenmodes of the system are plane w
with a quantized momentumk52p( j 1 , j 2 , j 3)/L ( j i being
integer,L-box size!. Therefore, the field operator can be e
panded in these modes,

Ĉ~r ,t !5
1

L3/2 (
k

exp~2 ik•r !âk~ t !. ~3!

A Bose-Einstein condensate can be uniquely associated
the zero-momentum mode,k50. The annihilation and cre
ation operatorsâk ,âk

† satisfy nonlinear equations following
from Eq. ~2!.

Different approximate approaches mentioned above@5–9#
have been introduced in order to solve the problem. Here,
want to utilize a method which has been extensively a
successfully explored in quantum optics. A quantum-fie
operator describing a coherent electromagnetic field~such as
laser light! can be replaced by a complex valued classi
field. Such a substitution is justified for these modes that
highly occupied. Only then are quantum fluctuations neg
gible and the nonvanishing commutator may be ignor
This kind of approximation has been used recently in R
@10# for the matter field:âk→ak . Note that,(kuaku25N and
©2002 The American Physical Society02-1
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the condensate occupation is equal ton05ua0u2. On the
other hand, it follows from Eqs.~2! and ~3! that the semi-
classical approximation is equivalent to a substitutio
Ĉ(r ,t)→ANC(r ,t)5(1/L3/2)(kakexp(2ik•r ), where
C(r ,t) fulfills the standard GP equation. According to co
ventional wisdom, this equation describes a pure conden
at zero temperature, hence the whole classical fieldC(r ,t)
represents the condensate populated byn05N particles
@11,12#.

It seems that the two contradicting interpretations of
high-energy solution coexist in the literature. In the follow
ing, we will clarify this seeming incongruity. We focus ou
attention on experimentally relevant system of 100 00087Rb
atoms trapped in the spherically symmetric harmonic pot
tial of frequencyv52p100 Hz. Our procedure is as fo
lows. First, we define the wave function of the system o
spatial three-dimensional grid. Initial values of the wa
function at each point are chosen in accordance with
constraints of a fixed energy and particle number. Next,
propagate this state in time, solving the time dependent
equation with the help of the fast Fourier transform. It occ
that for the given total energy and particle number the sa

FIG. 1. Cross section of the instantaneous snapshot of the
sity distribution in thez50 plane of the Bose gas with the tot
energyE570\v. In this and all the following figures, lengths ar
given in units ofd5A\/mv.
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steady state is reached after several milliseconds. We h
checked that the steady state attained does not depend o
choice of the initial wave function~in particular, on the fact
whether its phase is random or not! as long as the number o
particles and the total energy are kept constant.

The high-energy solutions of the GP equation have st
ing features@11#. A snapshot of the density distribution i
shown in Fig. 1. The density is extremely irregular and e
hibits a number of sharp spikes changing its shapes and
sitions on very short time scales. Typical methods used
monitor trapped atomic condensates involve optical te
niques. A condensate is illuminated by laser light which,
ter passing through the atomic system~and some optical el-
ements!, is monitored by a charge-coupled device came
The exposure timeDt varies from a few microseconds t
hundreds of milliseconds and within this time the condens
density undergoes rapid changes due to the fast dynamic
also because of quantum fluctuations. The nature of the
servation process introduces a kind of smearing. In fact
such a long exposure a time averaged rather then an ins
taneous single-particle density is monitored. The existenc
short time scales in nonlinear many-body dynamics has to
taken into account. The object of physical significance
therefore a time-averaged single-particle density matrix

r~r1 ,r2 ,t !5
1

DtEt2Dt/2

t1Dt/2

C* ~r1 ,t8!C~r2 ,t8!dt8. ~4!

This coarse graining procedure destroys the purity of a s
of the system. After the time averaging all irregularities
the density are being smoothed out especially in the in
part of the density profile~see Fig. 2!. The resemblance to
the well publicized photographs of the experimental cond
sates at intermediate temperatures is striking@13#. Varying
the energy of the gas, we can scan the whole range from
pure condensate all the way to a nearly critical condition
no condensate. The sample profiles of the time-averaged
umn density~integrated along thez axis! are shown in Fig. 2.
In Fig. 2~a,b! note the bimodal structure of the distributio
the central peak corresponding to the Bose-Einstein cond
sate and the broad background identified with the ther
cloud.

We can provide a quantitative analysis of the result
averaged state of the Bose gas. To this end, we recall a

n-
FIG. 2. Time-averaged stationary column density distribution for a Bose gas plotted for different values of total energyE. ~a! E
570.00\v ~30% atoms in condensate!. ~b! E523.67\v ~72% of atoms in condensate!. ~c! E513.04\v ~pure condensate!.
2-2
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sic definition of the condensate by means of the spec
decomposition of the single-particle density matrix@14#. Di-
agonalization of a single-particle time-averaged density m
trix leads to natural eigenmodesc i(r ,t) and eigenvalues
ni /N,

r~r1 ,r2 ,t !5(
i

ni

N
c i* ~r1 ,t !c i~r2 ,t !. ~5!

The system may be viewed as a mixture of many coup
coherent modesc i , whose occupation isni . The self-
consistency of the model requires that population of e
single modec i is large,ni.1. Otherwise, the substitution o
the field operatorĈ(r ,t) by a wave functionC(r ,t) would
not be justified. The existence of the dominant eigenva
n0 /N of the order of unity signifies the presence of the co
densate with the corresponding eigenvectorc0 being its
wave function. As the modes and their occupation are kno
only after the time averaging, the verification of the sem
classical criterion can only be donea posteriori. We try a
number of grids and choose the one that yields the hig
occupation of all modes, justifying the semiclassical appro
mation.

The time averaging followed by a diagonalization of t
density matrix gives the spatial modes of the system. Th
modes are typically not known even in a stationary ca
Still, the only exception is the box with periodic bounda
conditions. Let us illustrate our method using again t
simple case. Substitution of all annihilation operators
complex amplitudesâk→ak gives the following expression
for the single-particle density matrix:

r~r1 ,r2 ,t !'
1

V (
k

exp@ ik•~r12r2!#uak~ t !u2, ~6!

and the time averaging leaves only diagonal elementk
5k8 as the off-diagonal ones oscillate rapidly and get r
idly dephased,a(t)k* a(t)k8'dk,k8uak(t)u2. Obviously, the
uaku2 are populations of different modes. Only if one intr
duces a kind of coarse graining leading to a suppressio
the off-diagonal elements of the single-particle density m
trix one can identify thek50 mode as a Bose-Einstein co
densate with an occupation given byua0u2 . Without this
additional assumption the whole complex fieldC(r ,t) de-
scribes one coherent, dynamically evolving Bose-Einst
condensate without any thermal cloud. This kind of interp
tation is used in Refs.@11,12#. On the contrary, identification
of the k50 momentum component ofC(r ,t) with a Bose
condensate has been directly assumed in Ref.@10#. Our
analysis solves this apparent contradiction. By examinin
detection process and the relevant time scale, we
uniquely determine the condensate fraction, its wave fu
tion as well as the structure of excited modes of the inter
ing system. Moreover, the method is no longer limited to
academic problem of the uniform system. A steady-st
single-particle density matrix for the spherically symmet
trapping potential must have eigenvectors that are simu
neously diagonalizing the angular momentum operat
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Therefore, the eigenvectors must be proportional to
spherical harmonicsYlm . What remains is the one
dimensional diagonalization in the radial variable of the f
lowing projection of the density matrix:

r lm~r ,r 8!5E r~r ,V;r 8,V8!Ylm* ~V!Ylm~V8!dV dV8,

~7!

where the integration is performed over solid anglesV and
V8 associated with the corresponding particle coordina
We expect the condensate to be present in the zero-ang
momentum component of the single-particle density mat
Indeed, in the inset of Fig. 3 we show a typical distributi
of the eigenvalues of thel 50 part of the density matrix with
one dominant eigenvalue and with the corresponding eig

FIG. 4. Condensate fraction versus temperature or~the inset! the
total energy of the system. The solid line represents the ideal ga
the thermodynamic limit, the dashed line depicts the results of R
@16# obtained within a finite-temperature Hartree-Fock schem
while dots show our data. Error bars indicate a range of temp
tures for which we obtain acceptable fits of the ideal Bose
distribution to the outer wings of the thermal cloud.Tc is the ideal-
gas critical temperature in the thermodynamic limit andE05\v.

FIG. 3. Time-averaged radial density profile of a stationary st
of a Bose gas. The total energy isE570.00\v. Density of the
whole system, solid line; profile of the Bose-Einstein condens
@defined as a dominant eigenmode ofr00(r 1 ,r 2)], dashed line. All
eigenvalues ofr00(r 1 ,r 2) are shown in the inset.
2-3
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function plotted in Fig. 3 together with the whole time
averaged radial density distribution.

The last point raised here is the question of temperat
In principle, we could do something similar to a typical e
periment: switch off the trapping potential, let the gas expa
and analyze the properties of the thermal part. Numer
limitations and the constraining condition of the high occ
pation of each eigenmode make it hard. Alternatively, we
follow the procedure of Ref.@15# and fit the profile of the
thermal fraction of the ideal Bose gas to the outer part of
averaged density. This yields a reasonable, order of ma
tude result. The temperature dependence of the conde
fraction together with its large uncertainty is shown in Fig.
In the inset, we plotted the energy dependence of the num
of atoms in the condensate. We compare our results with
ideal gas and with a two-gas estimate~finite-temperature
Hartree-Fock scheme@16#!. We see a reasonably good agre
ment between all three calculations.

To summarize: we have shown a simple way of nume
cally simulating the stationary dynamics of a weakly inte
acting trapped Bose gas at finite temperature, which us
semiclassical representation of the matter field and, in ac
ys
.
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dance with the experimental procedures, stresses the role
finite exposure time when photographing the condensate
the self-consistent determination of the condensate frac
we rely solely on the classic criterion of Onsager and P
rose. This way we avoid an arbitrary splitting of the syste
into the condensed and thermal components from the v
beginning. The method may be used to model the impac
thermal fluctuations on the dynamical processes with
condensate, such as solitons or vortices. The next ste
going beyond the approximations employed in our mode
the estimation of the influence of quantum corrections to
classical fields, in particular the study of the correspond
time scales.
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